
The ultimate cost of an unpaid individual claim follows a probability distribution, and usually
will not be the exact point resulting from use of a loss development factor. So, when actuaries
apply loss development factors to individual claims, they often create biased estimates of excess
loss costs. Methods for creating a loss development probability distribution are developed. It
is shown that the results of those methods are unbiased not only in terms of developing losses
overall, but also projecting the ultimate costs in any layer. Methods to adjust the probability
distribution for other development maturities and different claim handling are provided.

Keywords: Excess loss development, stochastic loss development factor, large deductible reserv-
ing, excess loss reserving, unbiased development

1 Introduction

This paper presents a theory and methods for estimating ultimate costs in excess layers from
immature claims data. It is not unusual for actuaries to be encouraged to develop individual claims.
For example, a paper by Lowe, Jing and Lebens 2009 suggests that in some cases developing the
remaining open claims may be among the more accurate methods for estimating the reserve needs
of very mature years. However, as Holler and Philbrick 1996 noted, applying the loss development
factors derived from the entire body of claims to the large claims to get a “burning cost” estimate
of the excess losses underestimates the excess losses. Looking at things symmetrically, applying
unlimited1 loss development factors to limited claims, and then eliminating the “developed” portion
above the limit will overestimate the limited losses.

So, an alternate approach to loss development is necessary. Holler and Philbrick 1996 suggest
strategies such as beginning with the distribution of claims as reported at an early maturity, then
adjusting the mean and variance to reflect changes in the severity distribution that are expected
as losses migrate to their ultimate values. This indirectly addresses the overriding issue with
developing individual claims—-that while aggregate claims may develop in a relatively predictable
fashion, the ultimate cost of an individual claim is best characterized by a probability distribution2.
It is not difficult to see that the probability distribution model explains the problems noted in
Holler and Philbrick. One might expect that the claims that develop into large claims might
have larger than average development. Hence, applying a standard development factor to those
claims underestimates their (excess) loss. However, it would of course be absurd to apply larger

1This statement assumes the claims handling underlying the loss development factors is a good match for that
employed on the book of business being analyzed.

2This is sometimes referred to as a “stochastic development factor”.
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than average development factors to all the claims. So, done properly, the implementation of a
probability distribution approach to loss development has potential to create unbiased estimates of
excess loss costs.

One may approach this in more than one way. The particular focus of this paper is developing a
single probability distribution that applies to all claims of a given maturity, and generates unbiased
estimates of the claims in any layer, including the various excess layers. There may be alternate
approaches that use different probability distributions for different claims, but this method is
presented because it is relatively tractable, yet it eliminates the bias in the burning cost approach.

This article contains general methodologies for computing probability distributions for loss de-
velopment, together with a toolkit of practical methods to implement the methodologies. Except
where noted otherwise3, the toolkit methods employ only functionality available in the most com-
mon spreadsheet software, so the tools may be implemented by any actuary with that software who
obtains the needed data. So, the tools enable broad use of probability distributions for loss devel-
opment. That has potential to significantly improve actuarial reserving for unpaid losses above a
large deductible, excess-of-loss reinsurance, and so forth. The discussion involves several changes
of variables and other transformations, but the reader will be rewarded with methods that produce
unbiased estimates of ultimate excess losses for reserving and pricing.

The basic concept of probability distributions for development of individual claims is not entirely
new. That process of using a probability distribution to gain a more accurate estimate of the
ultimate severity was previously articulated by Gillam and Couret 1997, and discussed in greater
detail by Mahler 1998. This approach builds on that concept and presents a different approach to
the distribution.

2 The Conceptual Approach

The key goal of this approach is to create a loss development factor distribution that, combined
with the immature losses, creates unbiased estimates of the excess loss costs. The core principle
begins with the severity distribution underlying the “raw” undeveloped losses4, “sX(x)”, and the
severity distribution expected at ultimate, “sY (y)”. Then one must create some severity distribution
for the development “sR(r)” generating a variable “R” such that independent samples from the
raw distribution, “X” and the development distribution “R”, generate a product X × R that
is distributed according to sY (y). Thus, R represents the desired distribution of possible loss
development factors. Even if X takes a single value, X × R represents possible values that X
may “develop”5 to. In other words, given a very large body of claims, combining the products
of the undeveloped data and the development distribution would reproduce the ultimate severity
distribution (times the number of claims).

A few comments are in order before proceeding further. First, note that even in the presence
of limited data, say, only “c” claims,

∑c
h=1Xh×Rh, or for an interval

∑c
h=1min{max{Xh×Rh−

3All the methods may be implemented on a common spreadsheet platform, but the author found implementing
the Fourier transform method using the approach in the spreadsheet program to be challenging.

4This paper will follow the standard convention from statistics that capital letters to the random variable as a
whole, whereas lowercase letters refer to specific instances or outcomes of the random variables.

5The term development is a bit of a misnomer as the development distribution f(r) could be determined so that
it is appropriate across the entire body of claims, including closed claims. Further, it is not designed to, say, create
a perfect predictor of the distribution of possible ultimate costs of a claim presently reserved at exactly $10,000.
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B, 0}, T −B}, generates unbiased6 estimates of the loss costs that will develop from those c claims
in any interval such as [B, T ] . By construction, extending a set of claims that fully represent sX(x)
through the distribution of R, produces sY (y). Therefore, it will represent the ultimate claims cost
in any interval of possible values of Y . So, one would say

Edistribution[X ×R] = Y, (1)

where the expectation is across all possible values of X and it equals the full probability distribution
for Y . In other words, applying the spread induced by R to and across all sets of raw claims creates
an unbiased estimate of the entire distribution, values in various intervals, etc. for Y . So, this
creates a powerful tool for evaluating development into various bands of large losses.

Of note, then Mahler’s expression∑
all claims “X′′h

Xh

∫ ∞
L/Xh

sR(r)

(
r − L

Xh

)
dr, (2)

for the developed loss excess (of some limit/retention “L”) arising from a group of claims provides
an unbiased estimate of the potential ultimate cost of those claims that is excess of L.

Basic Criteria for X and Y

It stands to reason that, unless R is a constant, it will add what may be vaguely described as
“additional spread” to the distribution X. So one would strongly expect that if the variance of
X is larger than that of Y , then no independent R exists so that X × R has the same severity
distribution as Y . Similarly if X has a similarly vaguely defined “fatter tail” at the largest values
than Y , then no independent R exists to link them.

3 The Underlying Approach to Estimating R

Considering the discussion above, it appears that, given some severity distribution for the undevel-
oped losses that generates X, and some other severity distribution for the ultimate losses Y , one
seeks a third distribution R such that

X ×R ∼ Y, (3)

(where the “∼” indicates that the two sides are essentially identical7.) It is often extremely difficult
to determine a distribution for such an R, but the process may be simplified somewhat by taking
natural logarithms of both sides to get

ln(X) + ln(R) ∼ ln(Y ). (4)

That simplifies an extremely complex multiplication-type problem, producing a more tractable
addition problem. However, it may be confusing to discuss a distribution labeled, for example,
“ln(X)”. So, it should be helpful to use new variables to describe the logarithms, U = ln(X),
Z = ln(R), and W = ln(Y ). Then

6A potential issue with late reported claims does exist, but a correction will be noted later in this article.
7Technically, that the cumulative density functions of the two sides are identical
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U + Z ∼ W. (5)

Note that converting the severity probability distribution sX of x to the severity distribution sU
for U = ln(x) (and vice versa) requires a key principle from calculus. An example will illustrate the
issue that must be dealt with, and the resolution. Say, for example, that U is normally distributed
with mean µ and variance σ2. Then, its density function would be

sU (u) =
1√
2πσ

exp−(u− µ)2

2σ2
. (6)

If one were to attempt to evaluate sX by simply substituting ln(x) for u in that formula, one would
obtain

sX(x) ? =?
1√
2πσ

exp−(ln(x)− µ)2

2σ2
. (7)

Usually, that is not even a probability distribution (usually its total integral is not unity (1.00)).
Obviously, in this case sX should be a lognormal distribution with parameters µ and σ. So, the
formula should be

sX(x) =
1

x
√

2πσ
exp−(ln(x)− µ)2

2σ2
. (8)

The additional “1/x” factor illustrates a key principle involved in substituting a function of a vari-
able (in this case u = ln(x)) for the main variable in a severity distribution. To keep a distribution
function that integrates to unity (1.00), one must follow the rules for substituting variables in in-

tegrals. In effect, that requires multiplying the expression in (7) by the d ln(x)
dx = 1/x needed in

equation (8). This illustrates the fact that, since ln(x) grows more slowly, and generally has much
lower values that f(x) = x above unity, its values tend to be more compressed relative to the
x’s that gave rise to the ln(x)’s. Therefore, and especially for large x, without the correction the
weights given to the sU (ln(x))’s would be diluted.

Using that principle, one may note that

sU (ln(x))

x
= sX(x) = sX(exp(u)); sX(exp(u)) exp(u) = sU (u); sX(exp(u)) = sU (u) exp(−u);

sZ(ln(r))

r
= sR(r) = sR(exp(z)); sR(exp(z)) exp(z) = sZ(z); sR(exp(z)) = sZ(z) exp(−z); and,

sW (ln(y))

y
= sY (y) = sY (exp(w)); sY (exp(w)) exp(w) = sW (w); sY (exp(w)) = sW (w) exp(−w).

(9)

So, using the exponential and logarithm functions and their derivatives, one may translate from
the original multiplicative equation for R to an additive problem, and vice versa.

3.1 A Basic Approach Using Matrices

Most modern spreadsheet packages contain the ability to perform matrix arithmetic. And the
process of adding the values of U to those of Z to produce the values of W may be mirrored
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numerically in a set of equations that create a matrix. The first step is to set up the discrete
analogues to U , Z, and W . A set of evenly spaced points is to be used to represent each probability
distribution. They will be organized so that the difference between each two adjacent points (of each
distribution) is equal to the “grid size” g. So, [U ] is defined 8 on the points 0, g, 2g, ..., lg indexed
by i = 0, 1, 2, ..., l. The brackets denote a vector or matrix. The probability density function at
each point, following equation (9), is

sU (ig) = sX(exp(ig)) exp(ig). (10)

Further, ig represents an interval [(i− .5)g, (i+ .5)g] of size g. So, one may estimate the probability
that u falls in the interval, taking sU (ig) as representative of the probability density function in
the interval. Then

PU [(i− .5)g, (i+ .5)g] ≈ gsU (ig) = gsX(exp(ig)) exp(ig) = [U ]i. (11)

[U ] and the related vectors are used to clarify the difference between the actual distributions and
their discrete analogues. [U ] contains the gsU (ig) = gsX(exp(ig)) exp(ig)’s for i = 0, 1, 2, ..., l from
equation (11); [Z] represents the gsZ(jg) = gsR(exp(jg)) exp(jg)’s for j = 0, 1, 2, ...,m; and [W]
contains the gsW (kg) = gsY (exp(kg)) exp(kg)’s for k = 0, 1, 2, ..., n. Note that the number of points
in each vector (l, m, and n), may all be different depending on the spread of probabilities of Z
desired and how many of the sums (discussed later) are to be evaluated.

Now that the setup of the vectors is complete, one may set up the matrix equation for [Z]. This
uses the probabilities of the various combinations of i and j that add to each k. In this example,
the lowest value of both i and j is zero. So, the only way to sum an index of [U ]i and an index of
[Z]j to index [W]0 = 0 × g is if i = j = 0. So, since X and R are independent, U and Z are too.
Therefore, the discrete probability [W]0 is approximately [U ]0 × [Z]0 ( the probability of a zero
occurring in both vectors). Similarly, with these vectors the only way to obtain k = 1 for [W]1 is
if one of i and j is zero, and the other equals one. So,

[W]1 ≈ [U ]0 × [Z]1 + [U ]1 × [Z]0, (12)

and for the general case of k

[W]k ≈
k∑
i=0

[U ]i × [Z]k−i. (13)

Of course, the above could possibly have different limits of summation depending on the limits
imposed by l, m, and n. For example, if l < k = n, then the limit of summation could only go to
l.

Clearly, equation (13) represents a series of linear equations in the [Z]j ’s that target the [W]k’s.
The various [U ]i’s are the coefficients. So, one may represent the approximate relationships with
the matrix equation

[W] = [U∗]× [Z], (14)

8This example starts the index at zero to simplify the illustration. One could just as easily start with -1 or even
-10 to reflect possible downward development by factors of exp(−1) or exp(−10).
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Further [U∗] is defined9, using the [U ]i’s, as

[U∗] =


U0 0 0 ...
U1 U0 0 ...
U2 U1 U0 ...
... ... ... ...

 (15)

(omitting the brackets on the individual values inside the matrix for simplicity).
Of course, this is only a “discrete” representation of the probability distributions of ln(x), ln(r),

and ln(y). Hence, it will not generate the exact, or even a continuous, distribution for R, however
such a discrete approximation should reflect some of the basic characteristics of R. So it should
usually be preferable to simply multiplying each loss by a single loss development factor (as is done
in burning cost).

To complete the estimation, one may use the linear algebra formula for the [Z] generating the
[U∗]× [Z] that has the least squared error10 in approximating [W]

[Z] =

(
[U∗]T × [U∗]

)−1
×
(

[U∗]T × [W]

)
(16)

where the upper T denotes transpose and the upper −1 denotes matrix inverse. Importantly, matrix
multiplication, matrix transposition, and matrix inversion functions are all available in the most
common spreadsheet software package (and likely other spreadsheet software as well). So, virtually
any actuary, when given the distributions sX and sY , can perform these calculations.

Of course, one seeks the distribution sR, not the vector [Z]. One way to use it is to convert [Z]
to samples from the probability mass function sZ (recall that [Z] contains approximate probabilities
of intervals, not points), and then convert those to the probability function sR at various values of
R. As a first step, for each of the values in [Z], and indexed by j

sZ(jg) = sZ(Z = jg) = [Z]j/g. (17)

Then, one may use equation (9) to get values of sR at the points exp(0), exp(g), exp(2g), ...

sR(exp(jg)) = sZ(jg) exp(−jg) = [Z]j exp(−jg)/g. (18)

That provides a sample of sR at the exp(jg) points. A curve of some kind may be fitted to them
to complete the construction of sR. Then, the Mahler excess function in equation (2) may be
computed for each claim.

There is a second way that the [Z]j ’s may be used. Each value [Z]j represents the probability
that Z falls in an interval between (j − .5)g and (j + .5)g. So, they also represent the probability
that R falls in an interval between exp ((j − .5)g) and exp ((j + .5)g). As long as the range of the
corresponding values from R cover a wide enough range, one could use the set of discrete points
exp(0), exp(g), exp(2g), ..., and assign each the probability of the interval they represent, [Z]j .
The resulting discrete distribution could represent sR. One would simply take each undeveloped
claim and multiply it by exp(0), exp(g), exp(2g), ... with probabilities [Z]0, [Z]1, [Z]2, ... to

9Slightly different situations may arise when the lowest index of one or more of the vectors [U ], [Z], or [W] is not
zero, but the conversion should be straightforward.

10Generally, since [Z] has m potential values and [U ] has l potential values, [W] potentially has l + m values, so
there are typically more equations to solve than entries in [Z]. This is an overdetermined system of equations.
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estimate the range of ultimate values the claim might represent. Then, the amounts excess over
the deductible or attachment for each claim X, using all the XR = X exp(jg)’s, with probabilities
[Z]j may be used to compute the excess loss

∑
all claims “X′′i

m−1∑
j=0

max{Xi exp(jg)− L, 0}[Z]j (19)

An example of the calculations in this section may be found in Appendix A.

A Brief Note on Discrete/Numerical Analysis Approximations

Two campers are in the woods and see a hungry bear...

The first camper says ‘I hope I can run faster than the bear.’,
The second one says ‘I don’t need to run faster than the bear, I just need to run faster than you.’
-Old joke

As one may see in Appendix A, the discrete approximations above (and below) do not gener-
ate exact or perfect solutions. That is of course a general characteristic of numerical methods.
However, note that actuarial science is not itself a method for exactly computing exact losses, or
the exact cost of the claims covered by a loss reserve. The key questions to ask are ”Does it generate
a better approximation than burning cost?” and ”Do I nevertheless have a method to make my
estimate more accurate?”.

3.2 An Improved Matrix Approach—Covering the Upper Range (or Another
Wider Range) of ln(Y ) = W

Experimentation with matrix calculations suggests that the accuracy may be improved by letting
the number of entries (rows) in [W] be much larger11 than the number of rows in [U ]. This makes
sense, since equation (4) says that ln(X)+ln(R) ∼ ln(Y ). Therefore, ln(Y ) = W should tend toward
larger values than ln(X) = U . In fact, if X and R were constrained to be less than max(X) and
max(R), ln(Y ) would range up to max(ln(X))+max(ln(R)). Further, numerical analysts know well
that when the data and curves may contain mild distortions, so-called “overdetermined” systems
of equations, with more equations than variables to be solved for, often perform better than those
using square matrices. Therefore, one might replace equation (13) with (for each k indexing [W])
between kmin and kmax, inclusive,

[W]k =

min(k,jmax)∑
j=max(jmin,k−jmax)

[U ]k−j [Z]j . (20)

So, one might have a matrix [U∗] that looks like

11Note, though, that using a large multiple of the number of elements in [Z] will increase the complexity, and thus
the likely error, in the matrix arithmetic.
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[U∗] =



U0 0 0 ...
U1 U0 0 ...
U2 U1 U0 ...
... ... ... ...
... ... ... ...
... 0 Ul Ul−1
... 0 0 Ul


, (21)

but the earlier equation (16) for computing [Z] still applies. An example of the calculations may
be found in Appendix B.

Another approach would be to focus on the upper tail of the distribution. One might seek only
use versions of equation (21) that are above some value “kmin”. Then, [U∗] might look like

[U∗] =



Ukmin Ukmin−1 Ukmin−2 ...
Ukmin+1 Ukmin Ukmin−1 ...

... ... ... ...

... ... ... ...

... 0 Ul Ul−1

... 0 0 Ul

 . (22)

Some variations on that format exist depending on items such as whether kmin is larger than the
largest index of [U ], specifically l.

Experimentation with this approach suggests that it generally seems to be better conditioned
than the situations where [Z] and [W] are about the same size. Further, when the scopes of [U ]
and [W] (specifically, the ranges of the ig’s and kg’s) are limited to areas where the probability
distributions have substantial weight, the calculations seem to be better conditioned. Unfortunately,
if the development pattern under Z features very large development, but only on a very small
number of claims, then the truncated problem may not provide a proper estimate of Z. However,
there are some methods following that may be of assistance.

3.3 Enhancing the Results of the Matrix Calculations

There are a couple of types of error that were often observed in the calculation of [Z] using equation
(16). First, one should understand that, especially when very low values of [U ]i or [W]k are used
in a matrix approach, the calculations may generate significant numerical error. The first type of
error that might be corrected tends to arise near the outlying values of jg where the actual values of
sZ(jg) might be expected to be very low. The matrix calculations might have difficulty estimating
these very low values in conjunction with the calculation of the larger values near the main body of
the distribution sZ . So, one might see output points here with negative probability, or very large
probability at one point followed immediately by very low probability. One could likely enhance
the quality of the final estimate of [Z]j at these points by fitting curves to extend the information
in the main body of the distribution, by limiting the fit to the upper end of the distribution as in
Appendix C, or, if the exact values are less material, simply by using judgment.

Next, in practice sometimes the probabilities in [Z] do not quite sum to unity. This may be
resolved by simply multiplying all the values [Z]j by a common correction factor 1.00∑

[Z]j
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A last pair of corrections involve finding inaccuracies in the estimated mean and variance. For
background, given distributions for U and W , and the assumed independence of U and Z, then the
means and variances of three distributions satisfy

E[U ] + E[Z] = E[W ], or E[Z] = E[W ]− E[U ], and (23)

V ar[U ] + V ar[Z] = V ar[W ], or V ar[Z] = V ar[W ]− V ar[U ].

So, since the distributions of U and W are known, the mean and variance of Z may be computed
before the matrix calculations begin. However, sometimes the errors in the matrix calculations lead
to a slightly different mean and variance for [Z]. First, one may consider the case where the mean
of the result of the matrix calculations is µZ + e and the correct value is, not surprisingly, µZ . The
straightforward solution is to move the index associated with each probability down by e/g. Or one
may replace the probability associated with each index j with the probability at j + e/g. So, the
revised probability assigned in [Z]j would be the current value in [Z]j+e/g. Recognizing that e/g
may not be an integer, this may require interpolation. Straight linear interpolation may be used,
or the improved interpolation along the curve in Boor 2014 may generate better results.

The remaining correctable issue arises when the variance of [Z] does not match the value
projected in equation (23). Then, the values must all be moved uniformly closer to the mean,
or uniformly further away from the mean, in order to fulfill the mathematical identity. One may
simply employ the correction formula

Revised ([Z]j) = [Z][
µZ+(jg−µZ)

√
(V ar[W ]−V ar[U ])/V ar[Z])

]
/g
. (24)

The formula is somewhat lengthy, but one may see that it simply replaces the distance from the
mean with a value scaled to produce the proper variance. As with the correction of the mean, it will
likely require interpolation. Further, if the result generates more or fewer points, the distribution
may need to be rebalanced to sum to unity overall.

Using these techniques, one may improve the utility of the calculated [Z] and consequently
obtain a better estimation of R. Examples of these methods may be found in Appendix C.

3.4 Fitting a Distribution for Z by Mean and Variance Matching

As an alternative, one could consider determining the optimum choice from some family of dis-
tributions. For example, if one had reason to believe that the underlying distribution of R was a
lognormal distribution, then one could assume that ln(R) has a normal distribution. And all that
would be needed is to determine the µZ and σZ . But, as stated previously, since ln(R) = Z is
constructed to be independent of ln(X) = U ,

E[W ] = E[U ] + E[Z]

V ar[W ] = V ar[U ] + V ar[Z]

(25)

Thus, since the distributions of X and Y are known inputs, so are those of U and W . As noted
earlier, one could compute the normal parameters of Z, and hence the lognormal parameters of R.
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µZ = E[W ]− E[U ]

σ2Z = V ar[W ]− V ar[U ].

(26)

Of course, one often assumes that the distribution of R comes from some other family (i.e., is
not lognormal). However, if the first and second moments are to be matched to choose the specific
distribution, then equations (26) may still be used to pick a specific sZ from a family of distributions
corresponding to possible distributions of ln(R). Then, an exponential change of variable (following
equation (9)) will provide the distribution for R.

3.5 Fitting a Distribution for Z by Matrix-Based Parameter Estimation

An alternative method for selecting the parameters of a specific distribution for Z from a curve
family involves a numerical method. In this case, one would select the best estimate of sZ using
the solution finder routines available in spreadsheet software packages. For example, one may
desire that sZ come from some class of distributions such as the Pareto, lognormal, etc. Then
one could fit the parameters of the distribution by choosing the parameters that result in the best
estimates of key values of [W] when the discrete probability distribution corresponding to those
parameters is combined with the proper [U∗]. Effectively one would feed the matrix [Z] of the
Pareto distribution through the [U∗] × [Z] process and compute the corresponding error in this
estimate of [Z]. Then, one would vary the parameters (as standard spreadsheet software does) to
minimize the error estimating [W] and find the best choice of parameters. Such a calculation is
shown in Appendix D. Admittedly, this is essentially another matrix approach. However, since the
type of distribution is specified, one should need fewer points, and less computational complexity,
to simply estimate the parameters of the distribution.

3.6 Matching the Pareto Alpha Parameter

When developing individual claims for excess layers, it may often be more important to just know
the upper end of the sR distribution. Further, the upper end of the sY distribution may itself result
from an extrapolation, often using a Pareto distribution. Therefore, it may be more important to
find an R that creates the Pareto character of Y than to find an R that generates a good match
across the entire domain of Y . This approach skips the intermediate step of taking logarithms U
and W of X and Y and estimates characteristics of R directly from X and Y . To do so, one may
begin with an assumption that Y ’s Pareto parameters are α and yM , generating

sY (y) =
α× yαM
yα+1

, (27)

and similarly that

sX(x) =
β × xβM
xβ+1

, (28)

Of course, it must be that α ≤ β, since R adds “spread” to X. Then, a paper by Pederzoli and
Rathie 1980 states that if X and Y are independent, with α < β, then R, the quotient of Y over
X, will follow the Pareto distribution
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sR(r) =
αβ

α+ β
× (yM/xM )α

rα+1
, (29)

which is itself a Pareto distribution. However, Y is actually dependent on X. So the above
represents more of a general guideline.

However, the distribution of the product of any Pareto distributions X and R generally has
a Pareto character at the upper severities, matching the lowest (thickest tail) of β and the R’s
power parameter “γ”. Specifically, if X and R are Pareto distributions, then Y will have Pareto-
type character in the upper tail, corresponding to the lowest power parameter. To fully specify R,
one would assume that it has the parameters γ and rM , and γ < β. Then, if X has the Pareto
parameters listed earlier,

sY (y) =
βγ

β − γ

{
(xMrM )γ

yγ+1
− (xMrM )β

yβ+1

}
. (30)

One may see that as y gets large, the first term, which has Pareto power γ (from R) will dominate
the final result.12 This indicates suggests that the Pareto power of R will generally match the
Pareto power of Y .

So, R may be estimated by simply matching the α parameter of the distribution of Y . Note
that even if X has too thin a tail13 to be a Pareto distribution, using a Pareto distribution with
parameter α for R will still mean that the power parameter of X × R will be α. For example,
consider the case where X is a constant.

Then, the primary goal is to find an R which, in conjunction with X will generate a distribution
X ×R with a Pareto shape parameter of α. So, it is necessary to estimate α from the values of Y .
One may use the various upper percentiles of FY , the cumulative distribution function associated
with the severity mass function sY . If one chooses p1 and p2 to be probabilities fairly close to unity,
and their corresponding 100p1% and 100p2% percentiles are F−1Y (p1) and F−1Y (p2), then

α =
ln
(
1−p1
1−p2

)
ln
(
F−1
Y (p2)

F−1
Y (p1)

) . (31)

Alternately, one may use any other standard method to determine the Pareto power parameter in
the upper tail.

One may also correct the absolute value of the result. If the final distribution of X ×R results
in probabilities for large values that are d% of the probabilities Y generates for the same values,
one need only alter the truncation point of R by (1/d)1/α to create the desired absolute level of the
distribution of Y at the upper amounts. So, using this approach, a distribution for R that provides
the key Pareto-type characteristics at the upper limits of the distribution of Y may be computed.

3.7 Fourier Analysis—A Heavily Mathematical Approach

Fourier analysis represents an advanced mathematical approach, using complex variables, to (among
other things) compute the distributions of sums and differences of random variables.14 For example,

12The calculations underlying this formula, which is likely not new, involve using u = ln(x), etc. logarithmic
substitutions and standard calculus.

13When β = α, however, this process may not work.
14The reader that is not familiar with complex-valued functions, characteristic functions or Fourier transforms

should not let this digression become a deterrent. The use of those is limited to this section.
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when U and W are instances of well-known types of probability distributions, it might be possible
to find the distribution Z using characteristic functions (Fourier transforms). Such a transform of
some random variable, for example “T” would be

ϕT (ω) = E[exp(iωX)]. (32)

It is well known that when U + Z ∼W that

ϕU (ω)× ϕZ(ω) = ϕW (ω) (for all ω). (33)

So
ϕZ(ω) = ϕW (ω)÷ ϕU (ω), (34)

and using the inverse of the characteristic function, (so as to simplify the formula)

sZ(z) =
1

2π

∫ ∞
−∞

exp(−iωz)ϕW (ω)

ϕU (ω)
dω, (35)

which may then be used to construct sR using equation (9). It is not difficult to see, though,
that even computing the Fourier transform is complicated (and uses complex numbers to boot).
So, at least insofar as a paper and pencil approach is involved, this Fourier transform approach
may be difficult to use on the less structured loss distributions associated with insurance claims.
Possibly, there may be packaged software that can reliably estimate whole complex functions and,
therefore, compute the needed transforms. The author is not aware of such software, but the
author rarely uses complex valued functions at work. A discussion of the discrete estimates of
Fourier transforms, and some discussion of when they are effective and ineffective may be found
in Halliwell 2014. However, a significant concern exists with any such approach. Since complex
analysis is not included on the Casualty Actuarial Society’s syllabus of examinations, this approach
may be too technical for many actuaries to use or understand.

3.8 Testing the Results

Noting that the different methods have different strengths and weaknesses, it may be prudent, after
estimating R, to run a Monte Carlo sample of X ×R and see whether or not the result mirrors Y .
Usually, special attention should be placed on the larger values in the range of Y . Further, it may
be preferable to use more than one method and test each method to determine which one performs
best.

4 Finding Data and Using Data Effectively

Implementing the various procedures above requires having a severity distribution at the same
maturity as the claims to be developed, and the ultimate severity distribution (or least suitable
approximations to the two). Of course, if one has a benchmark ultimate loss distribution from some
source, and the sX severity distribution is from the actual claims to be developed, X × R, up to
approximations in the process, has to simply regurgitate the benchmark ultimate loss distribution
one began with. So, it would often be necessary to use external data to derive sR. It may be
appropriate, though, to modify sR to reflect differences between the characteristics of the data being
developed and the characteristics of the benchmark. Further, considering the difficulty inherent in
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obtaining severity distributions for immature data, it may be helpful to use adjustment processes
to adjust an sR distribution for data at 12 months maturity to develop sR’s suitable for data at,
say, 24 or 36 months maturity.

4.1 Using the Severity Distributions of a Larger Body of Claims

Using the severity distributions of a broader group that contains or matches the body of claims
to be developed provides a good alternative to datasets with limited credibility. Note that while
the 12 months and ultimate severity distributions of some line of business in a single state may
contain too few claims to reliably compute an sR for that state, the data from the entire country
for that line of business may well provide a good benchmark. So, it may be helpful to develop the
sR distribution from a broader dataset. Similarly, instead of using the data from a program15 or
class, it may be helpful to use an sR for the entire line of business. Lastly, although the discussion
of this approach is short, it should not diminish the relevance of the method. Not only can it solve
the problem of constructing sR for small programs and classes, it also eliminates the problem of
obtaining separate sX and sY distributions for each class.

4.2 Using the Severity Distributions Underlying Advisory/Rating Organiza-
tion Loss Costs/Rates

Another approach is to develop sX and sY from material provided by advisory or rating organi-
zations. For example, one might request (typically, at some cost) a sample of all the individual
claims at twelve months for the class underlying some increased limit or excess charge table. Then,
one might use that twelve month’s data to generate sX , and the organization’s loss distribution16

underlying the increased limit or excess ratio table as sY . As long as the scope of the data in such
an sX is a good match for the scope of the data in the sY , those would provide the raw materials
needed to generate an sR. Further, it would appear to be fairly important that the sX distribution
and the sY distribution come from the same block of business, since the resulting sR is computed
using the differences between them. Consider, though, a small block of business that is a subset of
the original, presumably fairly homogeneous, block17. Using the resulting sR from a slightly differ-
ent, but larger block of business18 would not be expected to generate significant error, especially if
the adjustments in the following section are used. Therefore, one might expect the resulting sR to
often have relatively small errors in estimating the loss development distribution for the modified
block. So, this could be a good source of data for computing sR for the slightly modified block of
business.

15As will be seen later, it is possible to adjust sR for differences in claim handling, and adjustments of that sort
may be required.

16It should be noted that whatever loss cost “trend” adjustments that are needed to match the occurrence, etc.
periods of the two distributions will be done.

17Or one that has development and reserving patterns that are otherwise similar to those of the original block of
business

18As stated previously, the key questions to ask are ‘Does it generate a better approximation than burning cost?’
and ‘Do I nevertheless have a method to make my estimate more accurate?’.
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4.3 Modifying the Key Parameters of sR or X to Mirror Different Loss Devel-
opment Patterns

There are some fairly straightforward adjustments one might make to sR to make it useful for blocks
of business that have significant, but tractable, differences. For example, the time and expense of
computing an sR for data at 12 months may necessitate that the results be adjusted for use at 24,
36, etc. months. It would not be unusual for an insurance enterprise to have a large general liability,
commercial auto liability, or workers compensation program handled by in-house claims adjusters,
yet also have a similar program where losses are adjusted by a third party claims administrator
(“TPA”). It is also possible that the company might have some block of business that is administered
in-house, but has some claims with different features than the base program. Volume considerations
might necessitate that sR be computed from the main or “benchmark” program and reflect the loss
development distribution of the main program. But, quite often the basic loss development factors
for the “alternate” (for example, the TPA-administered) program19 will be different than those of
the main program. It is possible to correct sR for the overall development difference. For example,
assuming sR is created so that the mean of R is LDFbenchmark, and that the alternate program has
a loss development factor of LDFalternate. Then, one may use the formula

sR,alternate(r) = sR

(
LDFalternate
LDFbenchmark

r

)
LDFalternate
LDFbenchmark

. (36)

As one may see, this is similar to the calculations in Appendix C, Table 6 that were discussed
in subsection 3.3, when one considers the expansion of the intervals between the discrete “r” points
induced in Table 6. In fact, one could replace the formula in equation (36) with the calculations on
Table 6 in discrete cases20. So, adjusting the random development distribution sR for differences
in overall development is fairly tractable.

On the other hand, it is often more preferable to leave R as computed and modify the X. In
that event, one could simply compute

xadjusted = xalternate
LDFalternate
LDFbenchmark

(37)

for each xalternate in the dataset of claims. Then, one would apply the range of potential development
factors sR to the resulting xadjusted’s in accordance with equation (2). In some respects, this is a
more straightforward process.

There is a more subtle aspect of reserving that may be considered as well. The differences in
loss development factors do reflect the relative levels of overall development. But, one should also
consider the accuracy of reserving. For example, suppose a TPA uses a strict formula approach to
reserving, where every claim is reserved at the average cost at the given maturity of the reserves
set by the benchmark adjusters. The loss development factors needed for the TPA will equal that
of the reference (in this case in-house) data. However, it should be clear that since the TPA’s
reserves feature no claims of above average size, combining the TPA’s data with sR will predict too
few excess losses. So, in that case, one may regard the benchmark data as being more accurately
reserved. In fact, to the extent that the variance in loss sizes in the X distribution mirrors the

19This is not intended to provide commentary on TPA-administered programs. It is merely used to provide an
example where the claims profile may be different than that of the standard program.

20Excepting that Table 6 is more oriented toward matching the logarithm of R to the logarithms of X and Y than
adjusting sR.
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differences in the losses at ultimate Y , one may regard greater variance as greater accuracy in
reserving. Of course, it is possible that some differences in reserves set by a claims staff may be
due to factors that do not relate to ultimate costs. So, variance should be regarded as an indicator,
not a perfect measure of the reserving accuracy in X.

An important aspect of the variance of the immature, undeveloped loss should be considered.
Even when there is too little data to construct a reliable loss distribution for the undeveloped
losses, there may nonetheless be enough to provide an acceptable estimate of the variance of the
undeveloped losses.

The key factor to match to the reference data is not the variance, though. It is the coefficient
of variation, cv. That is because correcting Xalternate, for example, for a higher development factor
raises the variance by LDFalternate

LDFbenchmark
along with the values of Xalternate. So it is important to either

use LDF-adjusted data or strictly use the coefficient of variation to compute the variance of the
alternate claims regime/alternate block of business.

So, at the start, a logical correction might be to simply expand or contract21 the variance of
the x’s. For instance, if the variance22 is presently α2 and the R was developed using a distribution
with a variance of β2, and µX is the mean, then one may use

xtransformed = µX +
β

α
(x− µX) (38)

to get the desired variance. Then, one might apply R to each revised claim amount xtransformed.
An alternate method is also needed. Although the method guarantees the needed variance of

Xtransformed, it has a substantial weakness. When X contains values that are small enough, and
β
α > 1, one may obtain negative values of xtransformed. Of course, often such values will be irrelevant
to the pricing of the excess layers. But, an alternative is needed for the cases where the smaller
losses affect the expected excess losses. Such an approach involves looking at the logarithms of
the values of X and using a power function (to some γth power)23 to approximately correct the
variance. The first steps involve computing the geometric mean µgeometric and adjustment factor γ

µgeometric = E[ln(X)]

γ =

√
ln(c2v[benchmark] + 1)

ln(c2v[alternate] + 1)
.

Then, one may compute the distribution with the “power” variance correction, by computing each
xtransformed via

xtransformed =

(
x

µgeometric

)γ
µgeometric (39)

This only technically promises the correct variance when X is a lognormal distribution. However, it
could be expected to produce reasonable results as long as X is not too different from a lognormal
distribution. Further, when it does not appropriately mirror the desired variance, the γ parameter
could always be revised.

21This implicitly provides a rationale for adjusting the x’s rather than the distribution of R. The variance of the
x’s may be corrected up or down as needed, but computing a R with lower variance, since it is a distribution rather
than a set of values, is more complicated.

22α and β are reused here from subsection 3.6 to avoid using unfamiliar symbols, but of course they have a
completely different meaning in this context.

23The variable γ is reused here to avoid using unusual variable names, just as with α and β.
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So, with these changes, especially when the mean adjustment and variance adjustment are made
in tandem, it is possible to modify the claims data to make them suitable for combination with a
R from some not-too-different severity distribution.

4.4 Non-Matching, but Usable, Benchmarks

Subsection 4.3 opens up a large range of opportunities to use benchmark data. For example, insur-
ance company data might be used for claims severity distributions reported by TPA’s. Conceivably,
as long as the general curve is reasonably predictive of the range of development, it might be used
for claims severity data from other maturities. Of course, there is no reason to believe that similar-
developing subsets of some benchmark could not use the sR of the benchmark. So, once sR is
established for some benchmark, one might expect it to have wide applicability.

5 Pure IBNR Claims

A criticism that may be raised about the processes in this paper is that they do not recognize
true late reported or IBNR claims. One must also recognize the potential that the late reported
claims may be more severe than the remaining claims. If the late reported claims were part of the
distribution of the x’s, they would definitely affect the X×R combination. But they are not. They
are, however, part of the y’s. So, even though the severities of the late reported claims are not
included in X, X×R generates all the ultimate severities of Y . Therefore, the expected distribution
of possible x’s is sufficient for the distribution X × R to generate the full severity distribution Y .
By construction, R implicitly recognizes the missing, potentially larger, severities that would be
generated by the late reported claims.

However, the developed excess loss will be missing some claims counts across-the-board. For
example, if 10% of all the ultimate claim counts in some product line are as yet unreported at 24
months, and the x’s used in Mahler’s equation (2) for the excess loss estimate are the loss amounts
of the claims reported at 24 months, then the result will be deficient by 10% every time. That is
both bad news and good news. All the excess loss estimates must be adjusted, but the predicted
costs in each and every layer need only be corrected via a division by .9. That simple correction
(multiplying the end result of Mahler’s equation by the reported count development factor) suffices
to create fully unbiased predictions of the costs in the various layers.

6 Those Pesky Closed Claims

A common criticism from users of loss reserve reports covering excess programs is that some of
the claims projected to develop into the excess layer are already closed. In the context of this
paper it should be clear that if some large closed claims are expected in the dataset, removing
them would bias the resulting estimate of the ultimate excess loss. Thus, an alternative that does
not combine closed claims with the standard construction of R is desirable. The solution involves
simply removing the closed claim distribution within X from both: the severity distribution of the
claims reported to-date (sX); and, that of the ultimate claims (sY ). To do so, one needs the total
number of expected claims to-date in X, “a”, the expected number of closed claims to-date in X
,“b”, the expected number of ultimate claims “c”, and the special distribution of the closed claims
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to-date in X, “sX,C”. Then, one may compute the distributions of the open claims in X, “sX,O”
and the ultimate loss distribution excluding the claims closed in X, “sY,O”, as

sX,O(x) =
asX(x)− bsX,C(x)

a− b
, for all x, and (40)

sY,O(y) =
csY (y)− bsX,C(y)

c− b
for all y. (41)

The resulting sX,O and sY,O may then be used with all the techniques presented previously to
develop a random development distribution R for just the open claims.

7 Summary

Developing individual claims with standard, single-valued24 loss development factors generally un-
derstates the cost of the excess layers. Although eliminating the bias in that process is a challenging
problem, an overall framework for unbiased development of excess layers based on stochastic devel-
opment (probabilistic loss development factors) using a single development distribution was shown.
A number of methods for estimating the values of that probability distribution were developed.
Some involve a matrix approach, some involve differing approaches to curve-fitting, and some in-
volve the complexities of Fourier transforms. So, one may use more than one method to develop
the probability distribution for loss development, and mirror the use of multiple reserving methods
in underlying layers with multiple reserve indications for the losses in the excess layer(s). Further,
a number of methods for adjusting the distribution when data that exactly matches the reserving
situation is not available were discussed.

Hopefully, these methods will be broadly used. It is also hoped that other papers will expand the
tools available. As promised, though, the methods provided for computing this random development
factor offer a means to provide an unbiased development approach. Specifically, these methods
offer an opportunity to prepare unbiased estimates of claim groups such as losses excess of large
deductibles or losses excess of a specific retention. Those results may in turn be used in both
reserving and pricing. Consequently, this approach has the potential to improve the accuracy of
actuarial projections.
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A Example of the Matrix Method for Estimating Z and R

Suppose one begins by computing [U ] from X and sX(whose values are given below), starting from
values of u that start at zero and are .3 apart.

Table 1: Calculation of [U ] from Values of X

u (or .3i) x = exp(u) sX(x) sU (u) = xsX(x) [U ]i = .3sU (u)
0 1.000 .333 .333 .100
.3 1.350 .494 .667 .200
.6 1.822 .549 1.000 .300
.9 2.460 .339 .833 .250

1.2 3.320 .151 .500 .150

Therefore

[U ] =


.10
.20
.30
.25
.15

 . (42)

Similar calculations for [W],this time beginning with some given values of Y , yields the values
tabulated below.

So

[W] =


.010
.040
.100
.185
.235

 . (43)

Then the index j of [Z]j is set to cover 0, .3,.6, and .9. Following equation (14) the corresponding
matrix equation for [Z] using [U∗] and [W] is
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Table 2: Calculation of [W] from Values of Y

w (or .3k) y = exp(w) sY (y) sW (w) = ysY (y) [W]k = .3sW (w)

0 1.000 .033 .033 .010
.3 1.350 .099 .133 .040
.6 1.822 .183 .333 .100
.9 2.460 .251 .617 .185

1.2 3.320 .236 .783 .235


.10 0 0 0
.20 .10 0 0
.30 .20 .10 0
.25 .30 .20 .10
.15 .25 .30 .20

× [Z] =


.010
.040
.100
.185
.235

 (44)

That illustration shows the structure of the matrix equation (and [U∗]) . The columns of [U∗]
contain equal values from [U ], but they are offset, and have successively more and more preceding
zeros. Per the equation, that information can provide an estimate for [Z]. Even though [Z] has
four entries and [W] has five, standard linear algebra provides a way to find the four dimensional
array [Z] for which [U∗]× [Z] best estimates25 [W]. To provide a view of the calculations and the
characteristics of the various matrices, calculations for this numerical example follow.

The best estimate process generates a four by four system of equations by multiplying both
sides of equation (44) by [U∗]T , the matrix transpose of [U∗]. That gives the initial matrix equation

[U∗]T × [U ]∗ × [Z] = [U∗]T × [W], (45)

or 
.10 .20 .30 .25 .15
0 .10 .20 .30 .25
0 0 .10 .20 .30
0 0 0 .10 .20

×

.10 0 0 0
.20 .10 0 0
.30 .20 .10 0
.25 .30 .20 .10
.15 .25 .30 .20

× [Z] (46)

=


.10 .20 .30 .25 .15
0 .10 .20 .30 .25
0 0 .10 .20 .30
0 0 0 .10 .20

×

.010
.040
.100
.185
.235

 ,
(47)

25Least sum of squared errors in estimating the various elements of [W].
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which may be reduced, using a popular spreadsheet program, to
.2250 .1925 .1250 .0550
.1925 .2025 .1550 .0800
.1250 .1550 .1400 .0800
.0550 .0800 .0800 .0500

× [Z] =


.12050
.13825
.11750
.06550

 . (48)

Note that at this stage, the values still look tractable. Then, since [U∗]T × [U∗] is a four by four

matrix, it potentially has an inverse. Assuming such an inverse
(
[U∗]T × [U∗]

)−1
exists, then one

may solve for [Z]. In fact, [U∗]T × [U ]∗] does have an inverse (as determined using the same popular
spreadsheet program) and it is

(
[U∗]T × [U∗]

)−1
=


56.896 −87.931 22.413 42.241
−87.931 208.620 −198.275 80.172
22.413 −198.275 460.344 −443.965
42.241 80.172 −443.965 555.603

 . (49)

Note that this matrix, although an inverse of a matrix with strictly positive elements, all between
5% and 23%, has very large elements and some very large negative elements. So, one might expect
such matrices to magnify small errors or be “ill-conditioned”. In this case, though, in conjunction
with equation (48) it produces an accurate solution26 for the matrix equation of

[Z] =


.1
.2
.3
.4

 . (50)

Having [Z] should allow us to estimate the excess losses from undeveloped losses. For example,
suppose one has only three losses reported so far, at $5,000, $50,000, and $75,000, and one seeks
the expected ultimate loss excess of $100,000. The first step is to follow the protocols of equation
(19). Those essentially say that we may take the probabilities generally represented by the [Z]j ’s
as representing the probability in intervals around the r = exp(jg)’s. So, each exp(jg) may be
taken as representative of the r-values in its representative interval with the probability of r lying
in the interval at [Z]j . So, Table 3 shows how the ultimate excess loss may be estimated using the
discrete values associated with the [Z]j ’s.

Of note, using the [Z]-weighted average of the loss development factors (in other words, the
single loss development factor from, say, the chain-ladder method) would only produce an “esti-
mated” excess loss of $42,533. Note also that the $42,533 is unusually close to the excess value of
$54,226 because of the large weight on the highest development factor. In conclusion, though, the
results of Table 3 are directionally correct.

Another alternative is to compute the sR values using the [Z]j ’s at the z = ln(r) points that
correspond to the ig’s, then fit a curve to them. Such an analysis is shown in Table 4. Note that the
increase in probability at higher limits in this example is unusual (one would expect sR to decrease
slowly till r reaches either some large value or infinity). The fact that a uniform distribution
was used emanates from that situation, and the choice of a uniform distribution should not be

26It should be stated that ill-conditioned matrices do tend to magnify errors. The quality of the result above
appears to result from the fact that [U∗]T × [U∗] is only a four by four matrix.
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Table 3: Sample Calculation of Estimated Excess Loss Using [Z]

Index “j” [Z]j Wtd.
0 1 2 3 Average

[Z]j 0.1 0.2 0.3 0.4
exp(.3j) = r = LDF 1.000 1.350 1.822 2.460

Loss 1 $5,000 $5,000 $5,000 $5,000
Developed $5,000 $6,749 $ 9,111 $12,298
Excess $100,000 $0 $0 $0 $0 $0

Loss 2 $50,000 $50,000 $50,000 $50,000
Developed $50,000 $67,493 $91,106 $122,980
Excess $100,000 $0 $0 $0 $22,980 $9,192

Loss 3 $75,000 $75,000 $75,000 $75,000
Developed $75,000 $101,239 $136,659 $184,470
Excess $100,000 $0 $1,239 $36,659 $84,470 $45,034

Total Est. Excess $54,226

considered normal. So, one should simply take this as an illustration of curve-fitting using [Z].
The poor quality fit that results, and the fact that the mean of the fitted distribution is less than
the average loss development factor (at least that per the point estimate approach) yields the very
unusual result that the fitted curve excess loss is less than that derived by burning cost. This
should be taken to reinforce the importance of matching the mean when the distribution of R is
determined. Fitting a curve of course differs radically from curve family to curve family27.

So, by estimating [Z] representing sZ , then dividing out the exponent of the matrix indices
(along with the scale factor) gives the severity distribution sR as noted in equation (9). So, when it
is effective, this discrete approximation may produce a useful estimation of the transition probability
density (and a consequently useful measure of the excess losses).

However, it must be noted that there are two concerns with the use of this specific method. The
first is that when one begins with 0 as an index of [Z], that represents a lower bound for R of 1.00.
So, one is beginning with a cap from below for r of unity. Thus, one is assuming that no claims will
develop downward28 under any circumstances. In most circumstances, such an assumption might
be thought of as unreasonable. A second concern arises from the setup of the matrix equations.
When using this method with a fairly large number (perhaps twenty or so) of values of z, or for
which values along long stretches of [U ] or [W] are near zero, computational error may cause the
numerical solution may be so far off as to be completely unreasonable. So, there is significant
motivation for improving this method.

27Other than the two stalwarts of method of moments and the use of a solution routine to solve a least squares
problem (per the example in Table 9).

28Of course, this may be resolved by accepting some negative indices, perhaps even only one negative index, for
the values of Z.
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Table 4: Sample Severity Curve Fitting and Calculation of Estimated Excess Loss Using [Z]

Index “j”
0 1 2 3

[Z]j 0.1 0.2 0.3 0.4
exp(.3j) = r 1.000 1.350 1.822 2.460
sR(r) = Z]j/(.3 exp(.3j)) 0.33333 0.49387 0.54881 0.54209

Uniform distribution of Best Fit:

Avg. Value s = .47953; Inverse=Interval Length = 2.0837 (Use 2.0)
sR-Wtd. Avg. of Points = Center of Interval=1.7378 (Use 1.7)
Selected Uniform Distribution with Mass .5 on [.7, 2.7)

Mahler Excess Function =
∫ 2.7
100,000/C .5(rC − 100, 000)dr,

for each claim amount C such that 2.7C ≥ 100, 000

Loss 1 5,000 Excess = 0
Loss 2 50,000 Excess = 6,125
Loss 2 75,000 Excess = 35,021

Total 41,146

B Example of How to Set Up the Key Calculations for an Overde-
termined Matrix

An overdetermined matrix system brings many more data points (values in [W]) that one would
attempt to match, but can create more complex matrix arithmetic. Per equation (14), though, the
calculations are specified and use functions available in at least one standard spreadsheet program.

An example will illustrate how to set up the matrix calculations. In it, the introductory setup
of [U ] and [W] (as illustrated in the Appendix A example, with different values) will be presumed
to have already been completed. Further, the final conversion from [Z] to R (also illustrated in
Appendix A, again with different values) will be omitted as well. The focus will simply be on the
setup of the matrix arithmetic.

If one has the following vectors:

[W] =



.080

.100

.140

.180

.180

.140

.100

.080


(51)
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for −2g, −1g, 0g, 1g, 2g, 3g, 4g, 5g;

[U ] =


.10
.20
.30
.25
.15

 (52)

for −1g, 0g, 1g, 2g, 3g,; and

[Z] is set to cover −1g, 0g, 1g, 2g;

then the matrix equation using [U∗]× [Z] = [W] is

.10 0 0 0

.20 .10 0 0

.30 .20 .10 0

.25 .30 .20 .10

.15 .25 .30 .20
0 .15 .25 .30
0 0 .15 .25
0 0 0 .15


× [Z] =



.080

.100

.140

.180

.180

.140

.100

.080


. (53)

Clearly, one may then solve for [Z] using the methods of subsection 3.1, specifically, using equation
(16).

C An Example of How the Matrix Equation Output May be
Corrected

As noted in subsection 3.5 sometimes computer-based matrix arithmetic may distort the mean and
variance of Z somewhat. However, the author’s experience suggests it is likely to be possible to
remove much of the distortion. An example of the correction process follows.

One may numerically solve the discretized problem specified as:

• W is a normal distribution with mean 5.5 and variance .74 (W∼N(5.5, .74));

• U∼N(3, .49);

• both are discretized to [U ] and [W] with increments of .1;

• the matrix equation covers W between 3.2 and 7.6 and U between 1.2 and 4.8; and

• a discretized solution for Z ([Z])in increments of .1 between 1.2 and 3.6 is sought.
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The results of the calculation of [Z] are shown below:

[Z] =



0.06384
−0.02399
−0.01848
−0.00732

0.00756
0.02386
0.03937
0.05234
0.07509
0.05579
0.06094
0.06446
0.06644
0.06686
0.06556
0.06228
0.11377
0.07348
0.05943
0.04086
0.01971
−0.00130
−0.01903
−0.03044

0.09551



. (54)

One may clearly see that the values between 0.06384 and -0.00732 are dominated by error, while
0.00756 is suspect. At the bottom of the matrix 0.01971 is suspect, whereas -0.00130 through
0.09551 are in error. The results in the middle are initially presumed to be relatively accurate.

Of course, the problem in U and W has a known solution. The sum of two independent
normal distributions is itself a normal distribution, with a mean equal to the sum of the means
and a variance equal to the sum of the variances29. So, R∼N(2.5, .25). So, the matrix results are
compared to the actual results in Table 5.

Interestingly, Table 5 essentially confirms the judgment-based assessment of which points are
valid and which are not. The “correct” points are also imperfect, but they are somewhat close
to the distribution. This illustrates how one might extract a useful approximation from a matrix
approximation that generates some amount of approximation error.

The results may be enhanced further. First, one may limit the computed points to those
between 1.7 and 3.1. Then, the probabilities only sum to roughly 92%. So, the probabilities
should be rescaled to total unity. Also, assuming that one did not know (as one generally would
not) that the distribution was a normal distribution, one would still know the mean and variance
of ln(X) = U (3 and .49) and the mean and variance of ln(Y ) = W (5.5 and .74), since those

29Note that the last two sum formulas are not unique to normal distributions, but apply to any two independent
distributions.
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Table 5: Comparison of Matrix-Estimated [Z] Distribution and Actual N(2.5, .25) Distribution

Estimated True
.1×N(2.5, .25) .1×N(2.5, .25) Estimation

ln(r) = z Value sZ(z) Value sZ(z) Error%

1.2 0.06384 0.00272 2247 %
1.3 -0.02399 0.00448 -635 %
1.4 -0.01848 0.00709 -361 %
1.5 -0.00732 0.01080 -168 %
1.6 0.00756 0.01579 -52 %
1.7 0.02386 0.02218 8 %
1.8 0.03937 0.02995 31 %
1.9 0.05234 0.03884 35 %
2.0 0.07509 0.04839 55 %
2.1 0.05579 0.05794 -4 %
2.2 0.06094 0.06664 -9 %
2.3 0.06446 0.07365 -12 %
2.4 0.06644 0.07821 -15 %
2.5 0.06686 0.07979 -16 %
2.6 0.06556 0.07821 -16 %
2.7 0.06228 0.07365 -15 %
2.8 0.11377 0.06664 71 %
2.9 0.07348 0.05794 27 %
3.0 0.05943 0.04839 23 %
3.1 0.04086 0.03884 5 %
3.2 0.01971 0.02995 -34 %
3.3 -0.00130 0.02218 -106 %
3.4 -0.01903 0.01579 -221 %
3.5 -0.03044 0.01080 -382 %
3.6 0.09551 0.00709 1247 %

distributions are known starting points. So, by subtraction, the mean of ln(R) = Z would have to
be 2.5 and its variance would have to be .25. For the adjusted distribution, the mean is 2.46 and
the variance is .155. So, although the mean is relatively close, the variance contains serious error.

To correct this, two steps are needed. First, since the mean should be moved up by .04/.1 =40%
of the grid size. So, each point is assigned 60% of its current value and 40% of the value below.
The results are shown below

However, the problems with the variance remain. To understand the problem better, it is helpful
to compute the ratio of the standard deviation desired,

√
.25 = .5, and the standard deviation

presently30 in the estimated31 distribution of [Z],
√
.155 ≈ .39. That ratio is approximately 1.25.

30After correcting the mean.
31Note that since the distribution is discretized, some values may add up to something slightly different than unity

when they should add to unity and modest effects on the mean and variance may occur.
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Table 6: [Z] with Mean Adjusted to 2.5

Adjusted
ln(r) = j [Z]j

1.7 0.01555
1.8 0.03603
1.9 0.05122
2.0 0.07169
2.1 0.06899
2.2 0.06396
2.3 0.06850
2.4 0.07132
2.5 0.07245
2.6 0.07178
2.7 0.06908
2.8 0.10122
2.9 0.09733
3.0 0.07067
3.1 0.05246
3.2 0.01775

Then, if maintaining the grid size is not needed32, one may simply expand the grid as j = 2.5 +
1.25 ∗ (j − 2.5) to get the values in Table 7.

Alternately, linear interpolation using the reference values in Table 7, plus an approximate
1/1.25 correction for the grid size difference (essentially, there are now 23 points rather than 17)
produces the mean/variance adjusted distribution33 from the original grid in Table 5. Table 8
compares the results to the true distribution.

In this case, both the mean/variance adjusted34 distribution and the result of the original matrix
arithmetic have significantly more weight towards larger and smaller development. So, they would
tend to overestimate excess losses. However, that does not imply that the methodology will always
do so, and it should still be more accurate than applying the same loss development factor to all
claims.

Although the process is not presented in detail here, one could assign greater weight to the large
values in [W] by multiplying each of the equations (one for each “k’) represented by equation (13)
by an individual weight wk, and then creating [U∗] and [W] from the weighted values. One must
be careful, though to avoid placing too much weight, say, on the equations of the largest five k’s,
or the problem [U∗]× [Z] = [W] will essentially become only a five dimensional problem.

32For example, if the goal is simply to provide a distribution between a discrete set of points (per equation (19))
to use as a proxy for the continuous distribution of R.

33Including a needed off-balance correction, so the probabilities sum to unity
34To a mean of 2.529 and variance of .2634
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Table 7: [Z] with Variance Adjusted to .25 by Expanding Indices

Adjusted
ln(r) = j [Z]j

1.5 0.01248
1.6 0.02512
1.7 0.03603
1.8 0.04742
1.9 0.05717
2.0 0.05537
2.1 0.05226
2.2 0.05346
2.3 0.05584
2.4 0.05739
2.5 0.05815
2.6 0.05773
2.7 0.05635
2.8 0.06536
2.9 0.08071
3.0 0.07811
3.1 0.06165
3.2 0.04819
3.3 0.03139
3.4 0.00996

D Example of Fitting a Distribution Using a Matrix-Type Ap-
proach.

For example, if one desired that sZ follow a shifted (to negative one—to easily accommodate the
indices of [U ] and [W] in the example beginning at (43) and (42)) Pareto distribution35, then one
could fit the optimum Pareto parameters36 by minimizing a weighted sum of the squared errors
between the Pareto-generated discrete probability distribution at 0, 1, 2, and 3.

The light gray Pareto parameters at the top of the Table 9 were varied to obtain the lowest value
of the weighted sum at the bottom of the table. In most practical situations, numerical solution
software present in common spreadsheet programs may be used to find the optimum weighted sum
of squares in dark gray by varying the input Pareto parameters in light gray. In this case, the
numerical solution process in the software failed, but an approximate solution (and of course all
numerical solutions are approximate anyway) was found by varying the parameters in light gray
until changes in the parameters ceased to reduce the weighted sum.

35Use of the shifted Pareto is not intended to endorse its utility for modeling. It is merely used because its
calculation is simple.

36xM is the shift, α is the power.
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Table 8: Comparison of Approximate Mean/Variance Adjusted Matrix-Derived [Z] Distribution
on Original Grid and Actual Distribution

Estimated True
.1×N(2.5, .25) .1×N(2.5, .25) Estimation

ln(r) = j Value [Z]j Value [Z]j Error%

1.5 0.01248 0.01080 16 %
1.6 0.02512 0.01579 59 %
1.7 0.03603 0.02218 62 %
1.8 0.04742 0.02995 58 %
1.9 0.05717 0.03884 47 %
2.0 0.05537 0.04389 26 %
2.1 0.05226 0.05794 -10 %
2.2 0.05346 0.06664 -20 %
2.3 0.05584 0.07365 -24 %
2.4 0.05739 0.07821 -27 %
2.5 0.05815 0.07979 -27 %
2.6 0.05773 0.07821 -26 %
2.7 0.05635 0.07365 -23 %
2.8 0.06536 0.06664 -2 %
2.9 0.08071 0.05794 39 %
3.0 0.07811 0.04389 78 %
3.1 0.06165 0.03884 59 %
3.2 0.04819 0.02995 61 %
3.3 0.03139 0.02218 42 %
3.4 0.00996 0.01579 -37 %

Table 9: Illustration of Minimum Weighted Sum of Squares Approach with Shifted Pareto Distri-
bution and Data from Equation (43)

Optimal Pareto Parameters xM = 2.79 α = 1.64

Pareto Squared
Index [U∗] Values [Z] [U∗]× [Z] [W] Error Weight

0 0.1 0.0 0.0 0.0 0.2618 0.0262 0.010 0.00026 4
1 0.2 0.1 0.0 0.0 0.1411 0.0665 0.040 0.00070 5
2 0.3 0.2 0.1 0.0 0.0855 0.1153 0.100 0.00023 6
3 0.4 0.3 0.2 0.1 0.0562 0.1698 0.185 0.00023 7
4 0.5 0.4 0.3 0.2 0.2243 0.235 0.00003 8

Weighted Sum = .0078

Unbiased Development for Individual Claims--Taming the Wild Burning Cost

Casualty Actuarial Society E-Forum, Spring 2017, Volume 2 28




