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Since the original publication of this monograph in January 2015, a number of events 
transpired.

• The Bayesian MCMC software, Stan, currently appears to be the software of choice 
by many CAS members.

• In Meyers (2017) and Meyers (2018) I have done research that applies the 
techniques described in the original monograph in an attempt to advance the 
state of the art in (1) quantifying dependencies between lines of insurance and 
(2) calculating a cost of capital risk margin.

• I have presented this material in over a dozen conferences and workshops. Each 
time that I did this, I spotted and made improvements in both the presentation 
and the methodology.

• I have had a number of in-depth exchanges with interested individuals. Out of 
these exchanges, some very good ideas have emerged.

As time progressed, it became clear that the additions and improvements generated 
by this ongoing research created inconsistencies between the various publications that 
could inhibit the adoption of this research. So I asked the CAS if a second edition of 
the monograph could be done and received the go-ahead. What this edition does is 
present the highlights of my research in this area in an integrated fashion.

Here is a summary of the major changes.

• The Bayesian MCMC modeling has been done using the Stan software instead  
of JAGS.

• My research on dependencies and risk margins is included.
• The set of loss triangles analyzed has changed. In the original edition, there 

were a number of loss triangles that, had I actually looked at them, would 
have been discarded. The triangle selection process for this edition was more 
rigorous.

• There is a different set of models. The new models include a Bayesian MCMC 
version of the Cape Cod model and an integrated Paid/Incurred loss model. Gone 
are the attempts at an incremental paid loss model. (I spent a good amount of time 
trying to get a new incremental paid model, but my attempts did not yield a model 
that validated.)

• There is a more thoughtful selection of prior distributions for the Bayesian 
models.

Preface to the 2nd Edition
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• The only tests on the first edition are the p-p plots. This second edition adds 
prospective tests and an additional retrospective test for the models. These tests 
will include a criterion for adding/deleting a particular parameter to the model.

• While I hope that the conclusions in this monograph, and the reasoning behind 
these conclusions, will be understandable by most actuaries, I removed some  
of the text designed to introduce actuaries to the tools needed to actually perform 
the analyses. There is a lot of good introductory material out there that interested 
actuaries can find quickly. The http://mc-stan.org Stan website is a good place  
to start.



Ali Ishaq, Editor in Chief
Emmanuel Theodore Bardis
Craig C. Davis
Scott Gibson
Glenn Meyers
Brandon Smith
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1. Introduction

The attempts to apply enterprise risk management principles to insurance has 
placed a high degree of importance on quantifying the uncertainty in the various  
necessary estimates with stochastic models. For general insurers, the most important 
liability is the reserve for unpaid losses. Over the years a number of stochastic 
models have been developed to address this problem. Two of the more prominent non-
proprietary models are those of Mack (1993, 1994) and England and Verrall (2002).

While these and other models provide predictive distributions of the outcomes, 
very little work has been done to retrospectively test, or validate, the performance of 
these models in an organized fashion on a large number of insurers. In 2011, with the 
permission of the National Association of Insurance Commissioners (NAIC), Peng Shi 
and I, in Meyers and Shi (2011), were able to assemble a database consisting of a large 
number of Schedule P triangles for six lines of insurance. These triangles came from 
insurer NAIC Annual Statements reported in 1997. Using subsequent annual state-
ments we “completed the triangle” so that we could examine the outcomes and validate 
the predictive distribution for any proposed model.

Sections 3 and 4 attempt to validate the models of Mack (1993, 1994) and England 
and Verrall (2002). As it turns out, these models do not accurately predict the distribu-
tion of outcomes for the data included in the subject database. Explanation for these 
results include the following.

• The insurance loss environment is too dynamic to be captured in a single stochastic 
loss reserve model, i.e., there could be different “black swan” events that invalidate 
any attempt to model loss reserves.1

• There could be other models that better fit the existing data.
• The data used to calibrate the model is missing crucial information needed to 

make a reliable prediction. Examples of such changes could include changes in the 
way the underlying business is conducted, such as changes in claim processes or 
changes in the direct/ceded/assumed reinsurance composition of the claim values 
in triangles.

One way to rule out the first item above is to (1) find a better model; and/or (2) 
find better data. This monograph examines a number of different models and data 

1 The term “black swan,” as popularized by Taleb (2007), has come to be an oft-used term representing a rare  
high-impact event.



2 Casualty Actuarial Society

Stochastic Loss Reserving Using Bayesian MCMC Models

sources that are available in Schedule P. The data in Schedule P includes net paid losses, 
net incurred losses, and net premiums.

A characteristic of loss reserve models is that they are complex in the sense that 
they have a relatively large number of parameters. A major difficulty in quantifying the 
uncertainty in the parameters of a complex model has been that it takes a fair amount 
of effort to derive a formula for the predictive distribution of outcomes. See Mack’s 
(1993, 1994) papers and Bardis, Majidi and Murphy’s (2012) paper for examples of 
analytic solutions. Taking advantage of ever-increasing computer speed, England and 
Verrall (2002) pass the work on to computers using a bootstrapping methodology 
with the overdispersed Poisson distribution (ODP). Not too long ago, the Bayesian 
models2 were not practical for models of any complexity. But with the relatively recent 
introduction of Bayesian Markov Chain Monte Carlo (MCMC) models, complex 
Bayesian stochastic loss reserve models are now practical in the current computing 
environment.

Although Markov chains have long been studied by probability theorists, it took a 
while for their application to Bayesian statistics to be recognized. Starting in the 1930s, 
physicists began using statistical sampling from Markov chains to solve some of the 
more complex problems in nuclear physics. The names associated with these efforts 
include Enrico Fermi, John von Neumann, Stanislaw Ulam and Nicolas Metropolis. 
This led to the Metropolis algorithm for generating Markov chains. Later on, W. Keith 
Hastings (1970) recognized the importance of Markov chains for mainstream statistics 
and published a generalization of the Metropolis algorithm. That paper was largely 
ignored by statisticians at the time as they were not accustomed to using simulations 
for statistical inference. Gelfand and Smith (1990) provided the “aha” moment for 
Bayesian statisticians. They pulled together a relevant set of existing ideas at a time 
when access to fast computing was becoming widely available. Sharon McGrayne 
sums up, “Almost instantaneously MCMC and Gibbs sampling changed statisti-
cians’ entire method of attacking problems. In the words of Thomas Kuhn, it was a 
paradigm shift. MCMC solved real problems, used computer algorithms instead 
of theorems, and led statisticians and scientists into a world where ‘exact’ meant 
‘simulated’ and repetitive computer simulations replaced mathematical equations. It 
was a quantum shift in statistics” (McGrayne 2011, Part V).

As was the case for the other social sciences, Bayesian MCMC should eventually 
have a profound effect on actuarial science. And in fact, its effect has already begun. 
Scollnik (2001) introduced actuaries to Bayesian MCMC models. De Alba (2002), 
along with Ntzoufras and Dellaportas (2002), quickly followed by applying these 
models to the loss reserving problem. Verrall (2007) applied them to the chain  
ladder model. In the time since these papers were written, the algorithms implement-
ing Bayesian MCMC models have gotten more efficient, and the associated software 
has gotten more user friendly.

2 By a “Bayesian model” I mean a model with its parameters having a prior distribution specified by the user. 
By “Bayesian estimation” I mean the process of predicting the distribution of a “statistic of interest” from the 
posterior distribution of a Bayesian model.



Casualty Actuarial Society 3

Stochastic Loss Reserving Using Bayesian MCMC Models

Here is the situation we now face. First, we are able to construct a wide variety of 
proposed models and predict their distribution of outcomes with the Bayesian MCMC 
methodology. Second, we are able to validate a proposed stochastic loss reserve model 
using a large number of insurers on the CAS Loss Reserve Database. If the insurance 
loss environment is not dominated by a series of unique “black swan” events, it should 
be possible to systematically search for models and data that successfully validate. This 
monograph describes the results I have obtained to date in my pursuit of this goal.

Before introducing Bayesian MCMC models, this monograph will start with 
examining the Mack (1993, 1994) and the England and Verrall (2002) models. It will 
identify shortcomings based on the validation results on the holdout data. It will then 
apply the Bayesian MCMC methodology to proposed models that validate on the 
holdout data.

While I believe I have made significant progress in identifying models that do suc-
cessfully validate on the data I selected from the CAS Loss Reserve Database, it should 
be stressed that more work needs to be done to confirm/reject these results for different 
data taken from different time periods.

The intended audience for this monograph consists of general insurance actuaries 
who are familiar with the Mack (1993, 1994) and the England and Verrall (2002) 
models. While I hope that most sections will be readable by a “generalist” actuary, 
those desiring a deeper understanding should work with the companion R/Stan scripts 
to this monograph.3

The computer script used to implement these models is written in the R program-
ming language. To implement the MCMC calculations the R script contains another 
script that is written in Stan. Like R, Stan is an open source programming language 
one can download for free. For readers who are not familiar with R and Stan, here are 
some links to help the reader get started.

• http://r-project.org The home page of the R-Project.
• http://mc-stan.org A link to the Stan home page. This website provides instruc-

tions for installing and for getting started with Stan.
• http://www.rstudio.com/ A currently popular editor for R scripts.

3 These scripts are available at https://www.casact.org/sites/default/files/2021-04/meyers-appendix.zip.
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2. The CAS Loss Reserve Database
In order to validate a model, one needs not only the data used to build the model, but 
also the data with outcomes that the model was built to predict. Schedule P of the NAIC 
Annual Statement contains insurer-level run-off triangles of aggregated losses by line of 
insurance. Triangles for both paid and incurred losses (net of reinsurance) are reported 
in Schedule P.4 To get the outcomes, one must look at subsequent Annual Statements.

To illustrate the calculations described in this monograph, I selected incurred and 
paid loss triangles from insurers in the database. The data from one of these insurers, 
insurer group #353 for Commercial Auto, are in Tables 2.1, 2.2, and 2.3. The data in 
the loss triangles above the diagonal lines are available in the 1997 Annual Statement. 
These data are used to build the models discussed below. The outcome data below 
the diagonal lines were extracted, by row, from the Annual Statements listed in the 
“Source” column. These data are used to validate the models.

The database, along with a complete description of how it was constructed and 
how the insurers were selected, is available on the CAS website at https://
www.casact.org/publications-research/research/research-resources/loss-reserving-
data-pulled-naic-schedule-p.

This monograph will fit various loss reserve models, and test the predictive 
distri-butions, to a set of 200 insurer loss triangles taken from four Schedule P (50 
from each of Commercial Auto, Personal Auto, Workers’ Compensation and 
Other Liability) lines of insurance. An underlying assumption of these models is 
that there have not been any substantial changes in the insurer’s operation. In our 
real world, insurers are always tinkering with their operations. Schedule P provides 
two hints of possible insurer operational changes.
• Changes in the net premium from year-to-year
• Changes in the ratio of net to direct premium from year to year

The criteria for selecting the 200 insurer loss triangles rests mainly on controlling
for changes in the above two items. The Appendix gives the group codes for the selected 
insurers by line of insurance and gives a detailed description of the selection algorithm.

Key summary statistics from all the models considered in the monograph will be 
available from the CAS website at https://www.casact.org/sites/default/
files/2021-04/meyers-appendix.zip.

4 Paid losses are reported in Part 3 of Schedule P. Incurred losses are the losses reported in Part 2 minus those 
reported in Part 4 of Schedule P.

https://www.casact.org/pubs/monographs/meyers/Appendix.zip
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Table 2.1.  Illustrative Loss Triangle Net Written Premium

AY 1 2 3 4 5 6 7 8 9 10

Premium 5812 4908 5454 5165 5214 5230 4992 5466 5226 4962

Table 2.2.  Paid Illustrative Loss Triangle Net of Reinsurance

AY \ Lag 1 2 3 4 5 6 7 8 9 10 Source

1988 952 1529 2813 3647 3724 3832 3899 3907 3911 3912 1997

1989 849 1564 2202 2432 2468 2487 2513 2526 2531 2527 1998

1990 983 2211 2830 3832 4039 4065 4102 4155 4268 4274 1999

1991 1657 2685 3169 3600 3900 4320 4332 4338 4341 4341 2000

1992 932 1940 2626 3332 3368 3491 3531 3540 3540 3583 2001

1993 1162 2402 2799 2996 3034 3042 3230 3238 3241 3268 2002

1994 1478 2980 3945 4714 5462 5680 5682 5683 5684 5684 2003

1995 1240 2080 2607 3080 3678 2004 4117 4125 4128 4128 1997

1996 1326 2412 3367 3843 3965 4127 4133 4141 4142 4144 2005

1997 1413 2683 3173 3674 3805 4005 4020 4095 4132 4139 2006

Table 2.3.  Incurred Illustrative Loss Triangle Net of Reinsurance

AY \ Lag 1 2 3 4 5 6 7 8 9 10 Source

1988 1722 3830 3603 3835 3873 3895 3918 3918 3917 3917 1997

1989 1581 2192 2528 2533 2528 2530 2534 2541 2538 2532 1998

1990 1834 3009 3488 4000 4105 4087 4112 4170 4271 4279 1999

1991 2305 3473 3713 4018 4295 4334 4343 4340 4342 4341 2000

1992 1832 2625 3086 3493 3521 3563 3542 3541 3541 3587 2001

1993 2289 3160 3154 3204 3190 3206 3351 3289 3267 3268 2002

1994 2881 4254 4841 5176 5551 5689 5683 5688 5684 5684 2003

1995 2489 2956 3382 3755 4148 4123 4126 4127 4128 4128 2004

1996 2541 3307 3789 3973 4031 4157 4143 4142 4144 4144 2005

1997 2203 2934 3608 3977 4040 4121 4147 4155 4183 4181 2006
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3.  Validating the Mack Model 
on Incurred Losses

Probably the two most popular nonproprietary stochastic loss reserve models are 
those of the Mack (1993, 1994) chain ladder model and the England and Verrall 
(2002) bootstrap ODP model. This section describes an attempt to validate the 
Mack model on the incurred loss data from several insurers that are included in 
the CAS database. Validating the bootstrap ODP model will be addressed in the  
following section.

Let’s begin with the classic chain ladder model. Let Cw,d denote the accumulated 
loss amount, either incurred or paid, for accident year, w, and development lag, d, 
for 1 ≤ w ≤ K and 1 ≤ d ≤ K. Cw,d is known for the “triangle” of data specified by  
w + d ≤ K + 1. The goal of this model is to estimate the loss amounts in the last  
column of data, Cw,K for w = 2, . . . , K. To use the chain ladder model, one first  
calculates the age-to-age factors given by

for 1, . . . , 1. (3.1)
, 1

1

,
1

∑

∑
= = −

+
=

−

=

−f
C

C
d Kd

w d
w

K d

w d
w

K d

The chain ladder estimate of Cw,K is the product of the latest reported loss,  
Cw,K+1-w, and the subsequent age-to-age factors fK+1–w • . . . • fK-1. Putting this  
together we have

C C f fw K w K w K w K. . .. . . . (3.2), , 1 1 1= + − + − −

Taylor (1986, p.40) discusses the origin of the chain ladder model and concludes that “It 
appears that it probably originated in the accounting literature, and was subsequently 
absorbed in to, or rediscovered in, the actuarial.” He goes on to say that “Of course, 
one must bear in mind that both the chain ladder model and estimation method are 
fairly obvious and might have been derived several times in past literature.” Taylor 
believes that the rather whimsical name of the model was first used by Professor R.E. 
Beard as he championed the method in the early 1970s while working as a consultant 
to the U.K. Department of Trade.
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Mack (1993, 1994) turns the deterministic chain ladder model into a stochastic 
model by first treating �Cw,d as a random variable that represents the accumulated loss 
amount in the (w, d ) cell. He then makes three assumptions:5

1. E[ �Cw,d+1|Cw,1, . . . , Cw,d] = Cw,d • fd

2. For any given d, the random variables �Cv,d and �Cw, d are independent for v ≠ w.
3. Var [ �Cw,d+1|Cw,1, . . . , Cw,d] = Cw,d • αd

The Mack estimate for E[ �Cw,K] for w = 2, . . . , K is given by

iC C f fw K w K w K w K. .ˆ ˆ . . . ˆ (3.3), , 1 1 1= + − + − −

where

ˆ (3.4)
, 1

1

,
1

∑

∑
=

+
=

−

=

−f
C

C
d

w d
w

K d

w d
w

K d

Given his assumptions above, Mack then derives expressions for the standard 
deviations SD[ �Cw,K] and SD[∑K

w = 2 �Cw,K]. Table 3.1 applies Mack’s expressions to the 
illustrative insured data in Table 2.3 using the R “ChainLadder” package.

In addition to the loss statistics calculated by the Mack expressions, Table 3.1 con-
tains the outcomes {Cw,10} from Table 2.3. Following Mack’s suggestion, I calculated 
the percentile of ∑10

w=1 Cw,10, assuming a lognormal distribution with matching the 
mean and the standard deviation.

Taken by itself, an outcome falling in the 86th percentile gives us little information, 
as that percentile is not unusually high. If the percentile was, say, above the 99.5th per-
centile, suspicion might be warranted. My intent here is to test the general applicability 
of the Mack model on incurred loss triangles. To do this I selected 200 incurred loss 
triangles, 50 each from four different lines of insurance, and calculated the percentile 
of the ∑10

w=1 Cw,10 outcome for each triangle. My criteria for “general applicability of the 
model” is that these percentiles should be uniformly distributed. And for a sufficiently 
large sample, uniformity is testable! Klugman et. al. (2012, Section 16.3) describe a 
variety of tests that can be applied in this case.

Probably the most visual test for uniformity is a plot of a histogram. If the per-
centiles are uniformly distributed, we should expect the height of the bars to be equal. 
Unless the sample size is very large, this will rarely be the case because of random fluctua-
tions. A visual test of uniformity that allows one to test for statistical significance is the  
p-p plot combined with the Kolmogorov-Smirnov (KS) test. Here is how it works.

5 Depending on the context, various quantities, such as Cw,d, will represent observations, estimates or random 
variables. In situations where it might not be clear, let’s adopt the convention that for a quantity X, �X  indicates 
that X is being treated as a random, or simulated, variable, X̂ will denote an estimate of X, and a bare X will be 
treated as a fixed observation or parameter.
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Suppose one has a sample of n predicted percentiles ranging from 0 to 100 and sort them 
into increasing order. The expected value of these percentiles is given by {ei} = 100 • {1/(n + 1),  
2/(n + 1), . . . , n/(n + 1)}. One then plots the expected percentiles on the horizontal axis 
against the sorted predicted percentiles on the vertical axis. If the predicted percentiles 
are uniformly distributed, we expect this plot to lie along a 45° line. According to the  
KS test as described by Klugman et. al. (2012, p. 331) one can reject the hypothesis that 
a set of percentiles {pi} is uniform at the 5% level if D ≡ max|pi – fi | is greater than its 
critical value, 136/ n where { fi } = 100 • {1/n, 2/n, . . . , n/n}. This is represented visually 
on a p-p plot by drawing lines at a distance 136/ n above and below the 45° line.6 We 
reject the hypothesis of uniformity if the p-p plot lies outside the band defined by those 
lines. For the purposes of this monograph, a model will be deemed “validated” if it passes 
the KS test at the 5% level.

Klugman (2012, p. 332) also discusses a second test of uniformity that is applica-
ble in this situation. The Anderson-Darling (AD) test is similar to the Kolmogorov-
Smirnov test, but it is more sensitive to the fit in the extreme values (near the 0th and 
the 100th percentile) of the distribution. I applied the AD test along with the KS test 
on the models described in this monograph with the result that almost all AD tests 
failed. If in the future someone develops a more refined model, we can raise the bar 
to the more stringent AD test. Until that happens, I think the KS test is the best tool 
to differentiate between models.

Figure 3.1 shows both histograms and p-p plots for simulated data with n = 100. 
The plots labeled “Uniform” illustrate the expected result. The KS D statistic accom-
panies each p-p plot. The “ *” indicates that the D statistic is above its critical value.

Table 3.1.  Mack Model Output for the Incurred Illustrative Loss Triangle

w Estimate SD CV Outcome Percentile

1 3917 0 0.000 3917

2 2538 0 0.000 2532

3 4167 3 0.001 4279

4 4367 37 0.009 4341

5 3597 34 0.010 3587

6 3236 40 0.012 3268

7 5358 146 0.027 5684

8 3765 225 0.060 4128

9 4013 412 0.103 4144

10 3955 878 0.222 4181

Total 38914 1057 0.027 40061 86.03

6 This is an approximation as fi ≈ ei.
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Figure 3.1 also shows p-p plots for various departures from uniformity. For exam-
ple, if the predicted distribution is too light in the tails, there are more than expected 
high and low percentiles in the predicted outcomes and we see a p-p plot that looks like 
a slanted “S” curve. If the predicted distribution is too heavy in the tails, there are more 
than expected middle percentiles in the predicted outcomes and we see a p-p plot that 
looks like a slanted backward “S” curve. If the model predicts results that are in general 
too high, predicted outcomes in the low percentiles will be more frequent.

To validate the Mack model I repeated the calculations for the 200 selected incurred 
loss reserve triangles.
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Figure 3.2.  p-p plots for the Mack Model on Incurred Loss Triangles

Figure 3.2 shows the p-p plots for the Mack model. The plots were first done  
separately for the outcome percentiles in each line of insurance. Although the 
plots fall inside the KS band for three of the four lines, the plots for all four of  
the lines resemble the slanted “S” curve that is characteristic of a light-tailed pre-
dicted distribution. When we combine the outcome percentiles of all four lines, 
the p-p plot lies outside the KS band and we conclude that the distribution pre-
dicted by the Mack model is too light in the tails for these data. In all the validation 
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plots below the KS critical values are 19.2 and 9.6 for the individual lines and all 
lines combined, respectively.

Actuaries might justifiably complain that the performance of a model on different 
loss triangles from a different time period may not be relevant to their current problem. 
This complaint is duly noted and acknowledged. However, it has been my experience 
that actuaries choose a model based as much on its reputation as much as its goodness 
of fit to current data.

Given this history, let’s define the term “reputation” to mean the result of a retro-
spective analysis based on the set of 200 loss triangles taken from the CAS Loss 
Reserve Database, within this monograph. We can then summarize the above conclu-
sion by saying that the Mack model has a reputation for predicting light tails in the 
distribution of all possible outcomes.

Below, we will introduce a diagnostic for Bayesian MCMC models can be used 
with the upper triangle data that are available the the time the analyses are being 
performed.
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4.  Validating the Bootstrap ODP and  
Mack Models on Paid Losses

This section does an analysis similar to that done in the last section for the bootstrap 
ODP model as described by England and Verrall (2002) and implemented by the  
R “ChainLadder” package. This model was designed to work with incremental losses, Iw,d, 
rather than the cumulative losses Cw,d, where Iw,1 = Cw,1 and Iw,d = Cw,d - Cw,d-1 for d > 1.

A key assumption made by this model is that the incremental losses are described 
by the overdispersed Poisson distribution with:

� �i i i[ ] [ ]= α β = φ α βE I and Var Iw d w d w d w d, ,

The parameters of the model can be estimated by a standard generalized linear model 
(GLM) package.7 They then use a bootstrap resampling procedure to quantify the 
volatility of the estimate.

England and Verrall point out that the using the ODP model on incremental losses 
almost all but requires one to use paid, rather than incurred, losses since the over
dispersed Poisson model is defined only for nonnegative losses. Incurred losses include 
estimates by claims adjusters that can (and frequently do) get adjusted downward. 
Negative incremental paid losses occasionally occur because of salvage and subrogation, 
but a feature of the GLM estimation procedure allows for negative incremental losses 
as long as all column sums of the loss triangle remain positive.

Table 4.1 gives the estimates of the mean, the standard deviation for both the ODP 
(with 10,000 bootstrap simulations) and Mack models on the data in Table 2.2. The 
predicted percentiles of the outcomes are also given for each model.

The validation p-p plots, similar to those done in the previous section, for both 
the ODP and the Mack models on paid data are in Figures 4.1 and 4.2. The results 
for both models are quite similar. Neither model validates well on the paid triangles. 
A comparison of the p-p plots in Figures 4.1 and 4.2 with the illustrative plots in 
Figure 3.1 suggests that the these models deserve a reputation for overestimating the 
ultimate losses.

7 England and Verrall (2002) use a log link function in their GLM. They also note that the GLM for the ODP 
maximizes the quasilikelihood, allowing the model to work with continuous (noninteger) losses.



Casualty Actuarial Society 13

Stochastic Loss Reserving Using Bayesian MCMC Models

Let’s now consider the results of this and the prior section. These sections show 
that two popular models do not validate on outcomes of the 200 Schedule P triangles 
drawn from the CAS Loss Reserve Database. These models do not validate in different 
ways when we examine paid and incurred triangles. For incurred triangles, the distri
bution predicted by the Mack model has a light tail. For paid triangles, the distribu
tions predicted by both the Mack and the bootstrap ODP models tend to produce 
expected loss estimates that are too high. There are two plausible explanations for these 
observations.

1. The insurance loss environment has experienced changes that are not observable 
at the current time.

2. There are other models that can be validated.

To disprove the first explanation, one can develop models that do validate. Fail
ing to develop a model that validates may give credence to, but does not necessarily  
confirm, that the first explanation is true. This monograph now turns to describing 
some efforts to find models that do validate.

Table 4.1.  ODP and Mack Model Output for the Illustrative Loss 
Triangle Paid Losses

w

ODP Mack

OutcomeEstimate SE CV Estimate SE CV

1 3912 0 0 3912 0 0.0000 3912

2 2532 21 0.0083 2532 0 0.0000 2527

3 4163 51 0.0123 4162 3 0.0007 4274

4 4369 85 0.0195 4370 28 0.0064 4341

5 3554 96 0.0270 3555 35 0.0098 3583

6 3211 148 0.0461 3213 157 0.0489 3268

7 5161 240 0.0465 5167 251 0.0486 5684

8 3437 332 0.0966 3442 385 0.1119 4128

9 4220 572 0.1355 4210 750 0.1781 4144

10 4635 1048 0.2261 4616 957 0.2073 4139

Total 39193 1389 0.0354 39177 1442 0.0368 40000

Percentile 73.91 72.02
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Figure 4.1.  p-p Plots for the Bootstrap ODP Model on Paid Loss Triangles
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Figure 4.2.  p-p Plots for the Mack Model on Paid Loss Triangles
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5. The Cross Classified Model

The purpose of this section is to introduce a basic Bayesian MCMC that is appropriate 
for stochastic loss reserving. It assigns an independent parameter for each accident 
year and development year. The section will then describe some diagnostics to test the 
model assumptions.

The CRoss Classified (CRC) Model

1. logelr ∼ normal(-0.4, 10.
2.	 aw ∼ normal(0, 10) for w = 2, . . . , 10. Set a1 = 0. 
3. βd ∼ normal(0, 10) for d = 1, . . . , 9. Set β10 = 0.
4. ai ∼ uniform(0, 1) for i = 1, . . . , 10.
5. Set sd

2 = ∑10
i=d ai for d = 1, . . . , 10. Note that this forces s1

2 > . . . > s2
10.

6. Set µw,d = log(Premiumw) + logelr + aw + βd.
7. Then Cw,d ∼ lognormal(µw,d, sd).

The constraint in line 5 deserves an explanation. The losses Cw,d consist of claims 
with a mixture of settlement dates. The proportion of settled claims increases as the 
development period, d, increases. Hence the decrease in the variance sd

2 as d increases.
Note that there are 29 initial parameters (logelr, aw for w = 2, . . . , 10, βd, for  

d = 1, . . . , 9 and ai for i = 1, . . . , 10) in this model. We will refer to the parameters 
µw,d and sd for w = 1, . . . , 10 and d = 1, . . . , 10 as transformed parameters.

As this is the first Bayesian MCMC model in this monograph, let me describe my 
underlying philosophy that has evolved over the years as I have been building such 
models. This evolution came from successes, failures and advice from many sources.

• I regard the prior distributions I choose for the model are not a statement of 
my prior belief, but should be regarded as a feature of the model. The selection 
of the form of the model is every bit as subjective as the selection of the prior 
distributions.

• Whenever possible, I try to formulate models and model parameters in terms 
of quantities that are familiar to the intended users of the model. For example,  
I expect users will have some familiarity with the expected loss ratio. Given that 
β10 = 0, the user will have no trouble in interpreting the final loss ratio in the CRC 
model at w = 1 and d = 10 as approximately elogelr. Recall that a1 = 0 and, as we 
shall see, s10 is usually small. The magnitude of the aws gives an indication of how 
much the loss ratio varies from year to year.
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• The prior distributions I choose are wider that what I personally believe. One 
should leave room for surprises.

• But on the other hand, I do not like improper priors, or priors that are heavy-
tailed in regions that I consider impossible. Major (2017) shows examples of weird 
behavior that can occur with heavy-tailed priors.

• Technical note—Often for numerical purposes, I avoid the use of hard boundaries 
in my choice of prior distributions. Sometimes this can be tricky. As an example, 
Line 4 in the CRC model above may seem like a contradiction to this practice, but 
here is what I did in the Stan script. The initial parameter, which I call ai

ig was sampled 
from an inverse gamma distribution. The transformed parameter ai is then set equal 
to the cumulative probability of 1/ai

ig from the corresponding gamma distribution, 
with the result that the prior distribution of ai is uniformly distributed. The reason 
for this is, the ai can often be very close to zero, causing the Stan software to issue 
warnings. This transformation gives the sampler more room to work with.

Given the CRC model and the data for the illustrative insurer, I used the Stan soft-
ware to produce a sample of size 10,000 from the posterior distribution of the model. 
Table 5.1 gives the mean and standard deviation for the posterior distribution of the 
key parameters in that sample.

logelr -0.3965 0.0233

a1 0.0000 0.0000

a2 -0.2541 0.0283

a3 0.1217 0.0326

a4 0.2152 0.0395

a5 0.0149 0.0466

a6 -0.0343 0.0637

a7 0.4354 0.0775

a8 -0.0199 0.1161

a9 0.2060 0.1813

a10 0.3435 0.3316

β1 -1.1999 0.1156

β2 -0.5751 0.0839

β3 -0.2825 0.0607

β4 -0.0954 0.0509

β5 -0.0628 0.0461

Table 5.1.  CRC Model Parameter Summary for the Paid 
Illustrative Loss Triangle

Mean Std. Dev. Mean Std. Dev.

β6 -0.0170 0.0413

β7 -0.0060 0.0388

β8 -0.0038 0.0377

β9 -0.0056 0.0351

β10 0.0000 0.0000

s1 0.2965 0.1034

s2 0.2073 0.0543

s3 0.1334 0.0374

s4 0.0946 0.0293

s5 0.0730 0.0249

s6 0.0576 0.0219

s7 0.0472 0.0197

s8 0.0384 0.0175

s9 0.0300 0.0152

s10 0.0202 0.0128
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Table 5.2.  CRC Model Output for the Paid Illustrative Loss Triangle

w Premium Estimate SE CV Outcome Percentile

1 5812 3912 0 0.0000 3912

2 4908 2564 114 0.0445 2527

3 5454 4149 193 0.0465 4274

4 5165 4315 223 0.0517 4341

5 5214 3566 203 0.0569 3583

6 5230 3410 249 0.0730 3268

7 4992 5208 445 0.0854 5684

8 5466 3630 442 0.1218 4128

9 5226 4392 817 0.1860 4144

10 4962 4976 1762 0.3541 4139

Total 52429 40121 2487 0.0620 40000 51.88

Table 5.3.  CRC Model Output for the Incurred Illustrative Loss Triangle

w Premium Estimate SE CV Outcome Percentile

1 5812 3917 0 0.0000 3917

2 4908 2549 68 0.0267 2532

3 5454 4110 120 0.0292 4279

4 5165 4308 139 0.0323 4341

5 5214 3546 127 0.0358 3587

6 5230 3329 147 0.0442 3268

7 4992 5315 284 0.0534 5684

8 5466 3776 304 0.0805 4128

9 5226 4203 579 0.1378 4144

10 4962 4095 1216 0.2969 4181

Total 52429 39147 1642 0.0419 40061 74.75

Our initial objective is to obtain the predictive distribution of the loss outcome at 
development year 10, by accident year and in total for all the accident years. To to this 
we simulate for each of the 10,000 parameter vectors:

1. Set µw,10 = log(Premiumw) + logelr + aw for w = 2, . . . , 10.
2. Simulate �Cw,10 ∼ lognormal(µw, 10, s10) for w = 2, . . . , 10.
3. Calculate �CTot,10 = C1,10 + ∑10

w=2 �Cw,10.

Table 5.1 gives a summary of the parameters for the illustrative insurer paid losses.  
Tables 5.2 and 5.3 give the model output for the illustrative insurer paid and incurred 
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losses respectively. Here, the term “Estimate” is defined as the mean of the correspond-
ing simulated outcomes at development year 10.

Our second objective is to calculate the predicted percentile of the outcome. This is 
done by counting the number of �CTot,10s that are less than or equal the actual outcome. 
These percentiles are shown in the far right columns of Tables 5.2 and 5.3.

Figures 5.1 and 5.2 give the p-p plots for the set of 200 selected paid and incurred 
triangles. The paid CRC model p-p plots look a bit worse than the the corresponding 
plots for the Mack and ODP models, but they indicate a similar pattern as Mack and 
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Figure 5.1.  p-p Plots for the CRC Model on Paid Loss Triangles
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Figure 5.2.  p-p Plots for the CRC Model on Incurred Loss Triangles

ODP—the paid CRC models share the reputation of predicting losses that are too high. 
The incurred CRC incurred p-p plot is better than the corresponding plot for the Mack 
model, but it still indicates that it still understates the variability of the predicted losses.

The p-p plots in Figures 3.2 – 5.2 are indicators of the reputation of a model. While the 
reputation of a model is good to know, the actuary who is setting reserves now will want other 
diagnostics such as residual plots and goodness of fit measures that are applicable to data we 
have now—the upper triangle. Let’s now look at residual plots. We will defer our goodness 
of fit measure until the next section where we compare the fits of two different models.
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Bayesian MCMC models differ from the standard frequentist models in that we 
have a large sample of parameter vectors, rather than a single parameter vector that 
arises from, say, a maximum likelihood estimate. To deal with this, one can take a ran-
dom sample of 100 js and use the corresponding parameter vectors, µ j

w,d and sd
j from 

the posterior distribution and calculate the standardized residuals, r j
w,d, for the log of all 

losses in the training (upper) loss triangle.

( )=
−µ

σ
= = −r

C
w d w jw d

j w d w d
j

d
j

log
for 1, . . . ,10 1, . . . ,11 and for each . (5.1),

, ,

There are 5,500 values of r j
w,d. We then put these values into a series of Box plots, 

organized first by accident year, w, and then by development year, d.
In this monograph, the Box plot (a.k.a Box and whisker plot) plots the interquartile 
range as solid bars. The “whiskers” of the plot span the region starting with the top 
(bottom) plus (minus) 1.5 times the length of the interquartile range. Any points 
outside the range of the whiskers are plotted individually.

The expected interquartile range for standardized normal residuals are indicated by 
thin black lines on the plot. In general we should expect the interquartile range of the 
data to fall pretty close to those black lines.

Figures 5.3 and 5.4 show the standardized residual Box plots for the paid and incurred 
losses of the CRC model run with the illustrative insurer. They may not seem all that 
bad to one who has looked at similar plots for other loss reserve models. Generally, one 
should feel some comfort if the interquartile range contains 0. But I suggest that the 
reader withhold judgment until we have seen the corresponding plots for other models.
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Figure 5.3.  CRC Standardized Residual Box 
Plots for the Paid Illustrative Loss Triangle
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6. The Stochastic Cape Cod Model

One of the most popular loss reserving methodologies is given by Bornhuetter-Ferguson 
(BF) (1972). A key input to the loss reserve formula given in that paper is the expected 
loss ratio, which must be judgmentally selected by the actuary. Presentations by Clark 
(2013) and Leong (2013) suggest that the BF method that assumes a constant loss 
ratio provides a good fit to industry loss reserve data.

The general idea behind BF is to first use a standard method, e.g., the chain ladder 
model, to estimate the proportion of losses that are not reported at the end of the most 
recent development period 11 - w. Call this quantity, V11-w. Using the notation in this 
monograph, the projected ultimate loss for accident year w is then given by

i iˆ Premium for 2, . . . ,10 (6.1),10 ,11 11= + =− −C C ELR V ww w w w w

where ELR is the judgmentally selected expected loss ratio.
Over the years many actuaries have been uncomfortable with the sensitivity of 

the ultimate loss estimate to the judgmentally selected expected loss ratio. To address 
this concern, James Stanard (1985) and Hans Bühlmann independently, according to 
Patrik (2001), proposed a model in which the expected loss ratio is estimated from the 
data. As Bühlmann first proposed this model at a meeting in Cape Cod, it has come to 
be know as the “Cape Cod” model.

Let’s now examine one way to describe a stochastic Cape Cod model.

The Stochastic Cape Cod (SCC) Model

1. logelr ∼ normal(-0.4, 10).
2. βd ∼ normal(1, 10) for d = 1, . . . , 9. Set β10 = 0.
3. ai ∼ uniform(0, 1) for i = 1, . . . , 10.
4. Set sd

2 = ∑10
i=d ai for d = 1, . . . , 10. Note that this forces s1

2 > . . . > s2
10.

5. Set µw,d = log(Premiumw) + logelr + βd.
6. Then Cw,d ∼ lognormal(µw,d, sd).

Given the SCC model and the paid data for the illustrative insurer, I used the Stan 
software to produce a sample of size 10,000 from the posterior distribution of the 
model. Table 6.1 gives the mean and standard deviation for the posterior distribution 
of the relevant parameters in that sample.
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Our initial objective is to obtain the predictive distribution of the loss outcome at 
development year 10, by accident year and in total for all the accident years. To to this 
we simulate for each of the 10,000 parameter vectors:

1. Set µw,10 = log(Premiumw) + logelr for w = 2, . . . , 10.
2. Simulate �Cw,10 ∼ lognormal(µw,10, s10) - eµw,11-w+s2

11-w/2 + Cw,11-w for w = 2, . . . , 10.
3. Calculate �CTot,10 = C1,10 + ∑10

w=2 �Cw,10.

Step 2 in the above differs from the corresponding step in the CRC model. It first 
simulates a loss at development year 10. It then subtracts the expected value of the 
current reported loss from the SCC model8 and then adds the current reported loss 
from the SCC model. Tables 6.2 and 6.3 give the SCC model output for the illustra-
tive insurer.

Figures 6.3 and 6.4 indicate a decidedly worse reputation (as defined Section 3) for 
the SCC model than for the other models described above. The standardized residual 
plots in Figures 6.1 and 6.2 suggest that the assumption of a fixed expected loss ratio 
across accident years may explain the poor performance of the SCC model. More will 
be said about this poor performance at the end of this section.

Given that we now have two models, we now discuss how we compare models 
using only the upper triangle data. Let’s start the discussion with a review of the Akaike 
Information Criteria (AIC).

8 Recall the mean of a lognormal distribution is eµ+s2/2

logelr -0.4033 0.1123

β1 -1.0897 0.1870

β2 -0.4926 0.1691

β3 -0.2155 0.1604

β4 -0.0170 0.1577

β5 -0.0439 0.1547

β6 0.0109 0.1559

β7 0.0214 0.1565

β8 -0.0418 0.1586

β9 -0.1251 0.1603

β10 0.0000 0.0000

Table 6.1.  SCC Parameter Summary Paid Illustrative  
Loss Triangle

Mean Std. Dev. Mean Std. Dev.

s1 0.4608 0.1201

s2 0.3691 0.0735

s3 0.3183 0.0585

s4 0.2853 0.0501

s5 0.2579 0.0448

s6 0.2351 0.0412

s7 0.2132 0.0385

s8 0.1887 0.0368

s9 0.1572 0.0372

s10 0.1051 0.0451
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Table 6.2.  SCC Model Output for the Paid Illustrative Loss Triangle

w Premium Estimate SE CV Outcome Percentile

1 5812 3912 0 0.0000 3912

2 4908 2905 640 0.2203 2527

3 5454 4265 724 0.1698 4274

4 5165 4199 703 0.1674 4341

5 5214 3376 694 0.2056 3583

6 5230 3097 690 0.2228 3268

7 4992 4645 665 0.1432 5684

8 5466 3180 700 0.2201 4128

9 5226 3639 657 0.1805 4144

10 4962 3506 591 0.1686 4139

Total 52429 36725 3950 0.1075 40000 83.38

Table 6.3.  SCC Model Output for the Incurred Illustrative Loss Triangle

w Premium Estimate SE CV Outcome Percentile

1 5812 3917 0 0.0000 3917

2 4908 2914 627 0.2152 2532

3 5454 4273 704 0.1648 4279

4 5165 4213 686 0.1628 4341

5 5214 3420 675 0.1974 3587

6 5230 3109 686 0.2206 3268

7 4992 4907 671 0.1367 5684

8 5466 3350 723 0.2158 4128

9 5226 3514 709 0.2018 4144

10 4962 3319 659 0.1986 4181

Total 52429 36936 3941 0.1067 40061 82.69
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Figure 6.3.  p-p Plots for the SCC Model on Paid Loss Triangles



28 Casualty Actuarial Society

Stochastic Loss Reserving Using Bayesian MCMC Models

0 20 40 60 80 100

0
10

50
30

20
60

40

CA - SCC Incurred

P
re

di
ct

ed

0 20 40 60 80 100

Expected

KS D = 33.9 *

Crit. Val. = 19.20
40

20
60

80
10

0

PA - SCC Incurred

P
re

di
ct

ed

0 20 40 60 80 100

Expected

KS D = 31.8 *

Crit. Val. = 19.20
40

20
60

80
10

0
WC - SCC Incurred

P
re

di
ct

ed

0 20 40 60 80 100

Expected

KS D = 27.2 *

Crit. Val. = 19.20
40

20
60

80
10

0

OL - SCC Incurred
P

re
di

ct
ed

0 20 40 60 80 100

Expected

KS D = 43.4 *

Crit. Val. = 19.20
40

20
60

80
10

0

CA+PA+WC+OL

F
re

qu
en

cy

CA+PA+WC+OL

P
re

di
ct

ed

0 20 40 60 80 100

Expected

KS D = 23.2 *

Crit. Val. = 9.60
40

20
60

80
10

0

Figure 6.4.  p-p Plots for the SCC Model on Incurred Loss Triangles
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Suppose that we have a model with a data vector, x = {xi}N
i=1, and a parameter vector 

q, with p parameters. Let q̂ be the parameter value that maximizes the log-likelihood, 
L, of the data, x. Then the AIC is defined as

i i ( )= − θxp LAIC 2 2 ˆ (6.2)

Given a choice of models, the model with the lowest AIC is to be preferred. This 
statistic rewards a model for having a high log-likelihood, but it penalizes the model 
for having more parameters.

There are problems with the AIC in a Bayesian environment. Instead of a single 
maximum likelihood estimate of the parameter vector, there is an entire sample of 
parameter vectors taken from the model’s posterior distribution. There is also the 
sense that the penalty for the number of parameters should not be as great in the pres-
ence of strong prior information. To address these concerns, Gelman et. al. (2014, 
Chapter 7) describe statistics that generalize the AIC in a way that is appropriate for 
Bayesian MCMC models. Here is a brief overview of one of these statistics.9

First, given a stochastic model, p(x|q), define the expected log predictive density as

ilog (6.3)
1

∫∑ ( )( ) ( )= θ θ θ
=

elpd p x f di
i

I

where f is the unknown density of q.
If {qj} J

j=1 is a random sample from the posterior distribution of q, define the com-
puted log predicted density as

� log
1

(6.4)
11

∑∑ ( )= θ
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Note that if we replace {qj} J
j=1 with the maximum likelihood estimate, q̂, lpd�  is 

equal to L(x |q̂) in Equation 6.2.
If the data vector, x, come from a holdout sample, i.e., x was not used to gener-

ate the parameters, {qj} J
j=1, then the lpd�  is an unbiased estimate of elpd. But if the data 

vector, x, comes from the training sample, i.e., x was used to generate the parameters, 
{qj} J

j=1, then we expect lpd�  to be higher than elpd. The amount of that bias is called the 
“effective number of parameters.”

Now let’s consider what is called “leave one out cross validation” or “loo” for short. 
For the data point, xi, one might obtain a sample of parameters {q(-i)} by an MCMC 
simulation using all values of x except xi. After doing this calculation for all observed data 
points in x, one can then use Equation 6.4 to calculate an unbiased estimate of the elpd.

� ∑∑ ( )= θ








( )−

==
elpd

J
p xloo i j

i

j

J

i

I
log 1 (6.5)

11

9 Other popular statistics include the Deviance Information Criterion (DIC) and the Wantanabe-Akaike Information 
Criterion (WAIC). Gelman et. al. (2014, Chapter 7) make the case that the LOOIC is a superior measure.
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While the speed of recent MCMC software packages is impressive, rerunning 
an MCMC model for each data point would tax the patience of most practitio-
ners. Methods to efficiently calculate �elpdloo have been developed. Rather than redo 
the MCMC simulation, these methods estimate the �elpdloo using the I × J matrix of  
log-likelihoods of each observation, xi given each parameter vector, qj. Vehtari et. al. 
(2017) provide the most up-to-date approaches that are incorporated in the R “loo” 
package. That is what this monograph uses.

When comparing two models, the model with the highest �elpdloo should be pre-
ferred. For historical reasons, many prefer to state the results on the deviance scale, 
which similar to that of the AIC in Equation 6.2. This is done by writing

� �i i i= − = −elpd p lpdloo loo looLOOIC 2 2 2 (6.6)

Table 6.4 provide these model comparison statistics for the illustrative insurer. 
These statistics strongly favor the CRC model. Moreover, when you compare the sta-
tistics for the models applied to the entire set of 200 loss triangles, the CRC model is 
favored for all 200 paid and incurred loss triangles.

To be fair, one should note that the Bornhuetter-Ferguson/Cape Cod literature 
stresses the importance of adjusting the premium a level consistent with the expected 
losses. No such adjustment was made in the SCC model as presented here. One should 
view the results above as an indication of the sensitivity of the BF method to the 
premium adjustment.

That being said, one should also note that the CRC model above, along with the 
newer models described below allow an actuary to, by the choice of prior distributions, 
judgmentally influence the expected loss ratio by accident year.

Table 6.4.  Model Comparison Statistics 
for the Illustrative Loss Triangle

Model elpd�loo ploo LOOIC

CRC-Paid 47.80 14.97 -95.60

SCC-Paid -5.14 8.75 10.28

CRC-Incurred 70.97 15.07 -141.93

SCC-Incurred -2.85 9.13 5.69
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7. The Changing Settlement Rate Model

The p-p plots in Figure 5.1 for paid losses and Figure 5.2 for incurred losses indicate 
that the problem for the CRC model differs for paid and incurred losses. For paid 
losses, the CRC model tends to overestimate the ultimate losses. For incurred losses, 
the CRC model tends to understate the variability of the ultimate loss estimate. This 
section proposes a model that attempts to correct the overestimate of paid ultimate 
losses by adjusting for a change in the claim settlement rate. The next section attempts 
to correct for the underestimate of the variability of the ultimate loss estimate for 
incurred losses.

The Changing Settlement Rate (CSR) Model

1. logelr ∼ normal(-0.4, 10).
2.	 aw ∼ normal(0, 10) for w = 2, . . . , 10. Set a1 = 0.
3. βd ∼ normal(0, 10) for d = 1, . . . , 9. Set β10 = 0.
4. γ ∼ normal(0, 0.05).
5. ai ∼ uniform(0, 1) for i = 1, . . . , 10.
6. Set sd

2 = ∑10
i=d ai for d = 1, . . . , 10. Note that this forces s1

2 > . . . > s10
2 

.

7. Set µw,d = log(Premiumw) + logelr + aw + βd • (1 – γ)w-1.
8. Then Cw,d ∼ lognormal(µw,d, sd).

The difference between the CSR and the CRC models is seen in line 7 of  
the above model description. If γ is positive the “log-development factors”, i.e.,  
βd • (1 – γ)w-1, move toward zero for each d as w increases. This indicates a speedup in 
the claim settlement rate over time. Conversely, a negative γ indicates a slowdown in 
the claim settlement rate over time.

Note that the CSR model reduces to the CRC model when γ ≡ 0.
Table 7.1 shows a parameter summary of the CSR model applied to the illustra-

tive insurer. The mean of the γ parameter is 0.0446 indicating a speedup in claim 
settlement. Figure 7.1 shows the posterior distribution of the γ parameter. Figure 7.2 
shows that a speedup in claim settlement rates is fairly common in our set of  
200 loss triangles. As we should expect, the estimated ultimate loss for the CSR 
model in Table 7.2 is less than the ultimate estimated ultimate loss for the CRC 
model in Table 5.3. Note that since β10 = 0, the calculations of the estimates and 
outcome percentile are identical to that for the CRC model.
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Table 7.1.  CSR Model Parameter Summary for the Paid 
Illustrative Loss Triangle

Mean Std. Dev. Mean Std. Dev.

logelr -0.3956 0.0246

a1 0.0000 0.0000

a2 -0.2541 0.0272

a3 0.1188 0.0308

a4 0.2089 0.0373

a5 -0.0002 0.0445

a6 -0.0581 0.0617

a7 0.3881 0.0787

a8 -0.1097 0.1166

a9 0.0462 0.1914

a10 0.0645 0.3467

β1 -1.3794 0.1667

β2 -0.6479 0.0989

β3 -0.3032 0.0670

β4 -0.0928 0.0549

β5 -0.0608 0.0483

β6 -0.0151 0.0440

β7 -0.0057 0.0409

β8 -0.0041 0.0396

β9 -0.0062 0.0381

β10 0.0000 0.0000

γ 0.0446 0.0282

s1 0.2817 0.0980

s2 0.1893 0.0497

s3 0.1277 0.0342

s4 0.0920 0.0271

s5 0.0714 0.0236

s6 0.0568 0.0214

s7 0.0467 0.0194

s8 0.0382 0.0175

s9 0.0299 0.0154

s10 0.0201 0.0128
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Figure 7.1.  CSR Posterior Distribution of f for the 
Paid Illustrative Loss Triangle
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Figure 7.2.  CSR Posterior Mean f for the Set of 200 Loss Triangles

Table 7.2.  CSR Model Output for the Paid Illustrative Loss Triangle

w Premium Estimate SE CV Outcome Percentile

1 5812 3912 0 0.0000 3912

2 4908 2566 113 0.0440 2527

3 5454 4139 189 0.0457 4274

4 5165 4292 215 0.0501 4341

5 5214 3516 192 0.0546 3583

6 5230 3332 235 0.0705 3268

7 4992 4971 426 0.0857 5684

8 5466 3323 407 0.1225 4128

9 5226 3756 742 0.1976 4144

10 4962 3790 1416 0.3736 4139

Total 52429 37597 2401 0.0639 40000 86.26
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Table 7.3.  Model Comparison 
Statistics for the Paid Illustrative 
Loss Triangle

Model elpd�loo ploo LOOIC

CSR-Paid 49.76 15.09 -99.53

CRC-Paid 47.80 14.97 -95.60

Table 7.3 show that the �elpdloo statistic favors the CSR model over the CRC model 
for the illustrative insurer. The CSR model is favored for 105 of our set of 200 loss 
triangles. One would expect the CRC model to be favored for those insurers that are 
not changing their claim settlement rate.

If one looks closely, one will see that the standardized residual Box plot for the CSR 
modelin Figure 7.3 is slightly better than that of the CRC model in Figure 5.3.

A comparison of the p-p plot of the CSR model, Figure 7.4, with that of the CRC 
model, Figure 5.1, indicates that the CSR model gives a better fit to the holdout data 
in the lower triangles for our 200 loss triangles. That is to say, it has a better reputation.

Let’s now introduce the use of the elpd statistic on test, i.e., lower triangle, data.  
If x is a vector containing outcome data that was not used in fitting the model, then 
the test statistic

� ∑∑ ( )= θ








==
elpd

S
p xtest i j

j

J

i

N
log 1 (7.1)
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can be used to compare models.

1
0

2
3 3

–3
–1

–2

1 3 5 7 9

Accident Year

1
0

2
–3

–1
–2

1 3 5 7 9

Development Year

Figure 7.3.  CSR Standardized Residual Box 
Plots for the Paid Illustrative Loss Triangle
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Figure 7.4.  p-p Plots for the CSR Model on Paid Loss Triangles

For actuaries seeking to post a loss reserve liability, such a statistic cannot be 
used on current data since the lower triangle test data is what they are trying to 
predict. However we can use that statistic to our set of 200 triangles to compare the 
performance for each model to provide another indicator of a model’s reputation. In 
pairwise comparisons, the more often the elpd statistic favors a model, the better its 
reputation.

Note that if it turns out there is not a significant change in the claim settlement 
rate, one should not expect the CSR model to have a better �elpdloo statistic.
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Table 7.4 counts the number of times that the 
�
elpd  statistic favors the CSR model 

for both the “loo” (upper triangle) and the test (lower triangle) statistics. This table 
indicates that a significant change in the claim settlement rate occurs fairly often in all 
four lines of insurance.

The �elpdtest  statistic and the p-p plots offer two different perspectives of a model’s 
reputation. This statistic looks at a model’s fit to the entirety of the lower triangle’s data 
and provide a metric to compare one model with another. The p-p plots examine only 
the sum of the last column of the lower triangles data. But, as in the case of the CRC 
model on paid data, they provides hints about the model’s shortcomings. Namely that 
the paid CRC model was biased upward.

Table 7.4.  elpd Pairwise Comparisons

Line CSR > CRC(loo) CSR > CRC(test)

CA 27 27

PA 26 30

WC 27 30

OL 26 32

Total 106 119



Casualty Actuarial Society 37

8. The Correlated Accident Year Model

We have seen in Figure 3.2 for the Mack model, and in Figure 5.2 for the CRC model, 
that these models predict a tail that is too light when applied to incurred losses. One 
way to thicken the tail is to allow for some correlation between the accident years. If it 
turns out that the correlation is positive, the tails should thicken.

The Correlated Accident Year (CAY) Model

1. logelr ∼ normal(-0.4, 10).
2. aw ∼ normal(0, 10) for w = 2, . . . , 10. Set a1 = 0.
3. βd ∼ normal(0, 10) for d = 1, . . . , 9. Set β10 = 0.
4. Set r = 2 • rpos - 1, where rpos ∼ beta(2,2). Note that this allows r to take on any 

value in the interval (-1,1).
5. ai ∼ uniform(0,1) for i = 1, . . . , 10.
6. Set sd

2 = ∑10
i=d ai for d = 1, . . . , 10. Note that this forces s1

2 > . . . > s10
2 .

7. Set µ1,d = log(Premium1) + logelr + βd.
8. Set µw,d = log(Premiumw) + logelr + aw + βd + r • (log(Cw–1,d) – µw–1,d) for w > 1.
9. Then Cw,d ∼ lognormal(µw,d, sd).

Note that the CAY model reduces to the CRC model when r ≡ 0. Including the  
r parameter in the model creates a correlation between successive accident years.

Proposition: Corr[log(Cw,d), log(Cw–k,d)] = r / (1 + r2) if k = 1 and is equal to 0 if k > 1.10

Proof. Without loss of generality, we can ignore the βds and refer to sd as s. Also, 
refer to log(Cw,d) as cw, log(Premiumw) + logelr + aw as aw, and let Zw be a unit indepen-
dent normally distributed random variable.

i

i

i

i i

( )

µ = α

= µ + σ

= α + σ

µ = α + ρ −µ

= α + ρ σ

c Z

Z

c

Z

1 1

1 1 1

1 1

2 2 1 1

2 1

10 This proposition and its proof were communicated privately to me by John Major.
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When k = 1, the second term of Equation 8.2 is equal to r • s2. Since Zw and Zw-k 
are independent, the remaining terms are equal to zero. When k > 1, all terms are equal 
to zero.

From Equation 8.1 we have that Var[cw] = s2 • (1 + r2). Thus

c c k

k

w w kCorr ,
1

when 1

0 when 1 (8.3)

2[ ] = ρ
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= >

−

We can obtain the predictive distribution of the loss outcomes at development 
year 10, by accident year and in total for all the accident years by the following simula-
tion for each of the 10,000 parameter vectors:

1. Set µ1,10 = log(Premium1) + logelr (Note that a1 = β10 = 0).
2. Set µ2,10 = log(Premium2) + logelr + a2 + r • (log(C1,10) – µ1).
3. Simulate �C2,10 ∼ lognormal(µ2,10, s10).
4. Set µw,10 = log(Premiumw) + logelr + aw + r • (log( �Cw–1,10) – µw–1) for w = 3, . . . , 10.
5. Simulate �Cw,10 ∼ lognormal(µw,10, s10) for w = 3, . . . , 10.
6. Calculate �CTot,10 = C1,10 + ∑10

w=2 �Cw,10.

Table 8.1 shows a parameter summary of the CAY model applied to the illustra-
tive insurer. The mean of the r parameter is 0.1709 indicating a positive correlation 
between accident years. Thus it should come as no surprise that the standard error 
of the ultimate loss estimate of the illustrative insurer in Table 8.2 is larger than that 
produced by the CRC model in Table 5.3. However, one should note that Figure 8.2 
indicates a fairly wide posterior distribution of the r parameter. When we look at the 
LOOIC statistics in Table 9.4 we see that the CRC model is favored over the CAY 
model for the Illustrative Loss Triangle.

This Box plot shows a slightly better fit than that of the CRC model in Figure 5.4.7.
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Table 8.1.  CAY Model Parameter Summary for the Incurred 
Illustrative Loss Triangle

Mean Std. Dev. Mean Std. Dev.

logelr -0.3945 0.0150

a1 0.0000 0.0000

a2 -0.2619 0.0156

a3 0.1105 0.0213

a4 0.2124 0.0253

a5 0.0083 0.0308

a6 -0.0586 0.0401

a7 0.4499 0.0521

a8 0.0248 0.0819

a9 0.1601 0.1453

a10 0.1779 0.2984

β1 -0.5976 0.1212

β2 -0.1896 0.0699

β3 -0.0993 0.0476

β4 -0.0268 0.0353

β5 -0.0121 0.0301

β6 -0.0008 0.0281

β7 0.0017 0.0269

β8 0.0050 0.0254

β9 -0.0013 0.0237

β10 0.0000 0.0000

r 0.1709 0.2071

s1 0.2632 0.1002

s2 0.1511 0.0439

s3 0.0905 0.0280

s4 0.0586 0.0211

s5 0.0442 0.0178

s6 0.0357 0.0154

s7 0.0295 0.0135

s8 0.0243 0.0117

s9 0.0190 0.0100

s10 0.0128 0.0083

Table 8.2.  CAY Model Output for the Incurred Illustrative Loss Triangle

w Premium Estimate SE CV Outcome Percentile

1 5812 3917 0 0.0000 3917

2 4908 2547 65 0.0255 2532

3 5454 4107 127 0.0309 4279

4 5165 4308 144 0.0334 4341

5 5214 3547 133 0.0375 3587

6 5230 3329 152 0.0457 3268

7 4992 5285 296 0.0560 5684

8 5466 3790 323 0.0852 4128

9 5226 4180 621 0.1486 4144

10 4962 4183 1373 0.3282 4181

Total 52429 39193 1859 0.0474 40061 73.24
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Now let’s examine some statistics calculated over the set of 200 loss triangles. Fig-
ure 8.3 shows that the positive mean rs are in the overwhelming majority of the tri-
angles. Figure 8.4 shows that the CAY model tends to increase the standard error of the 
estimates. The p-p plots for the CAY model in Figure 8.5 show a noticeable improve-
ment over the p-p plots for the CRC model in Figure 5.2 for the CA, PA and WC lines 
of business. The p-p plots for OL line of are almost identical for each figure.

The �elpd  comparisons are given in Table 8.4. When comparing individual 
triangles with the model selection statistics, It turns out that, with the �elpdloo  statistic, 
the CAY model is favored over the CRC model in only 26 of the 200 loss triangles we 
examined. But with the �elpdtest  statistic, the CAY models is favored for 121 out of the 
200 loss triangles. It would appear that the relatively wide posterior distribution of r 
like that pictured in Figure 8.2 makes it difficult to distinguish between the CAY and 
the CRC models. However, in the test data, there are many instances that favor the 
CAY model. This backs up what we see in the p-p plots in Figure 8.5.

Thus, it appears that a choice to use the CAY model rests mainly with its reputation.
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Table 8.3.  Model Comparison Statistics 
for the Incurred Illustrative Loss Triangle

Model elpd�loo ploo LOOIC

CAY-Incurred 68.65 15.64 -137.30

CRC-Incurred 70.97 15.07 -141.93
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Figure 8.5.  p-p Plots for the CAY Model on Incurred Loss Triangles

Table 8.4.  elpd Pairwise Comparisons

Line CAY > CRC(loo) CAY > CRC(test)

CA 5 31

PA 7 28

WC 11 38

OL 3 24

Total 26 121



Casualty Actuarial Society 43

9. Combining the CAY and CSR Models11

Of the models we have considered, the previous sections made the case that the CSR 
model performs best on the paid data, and the CAY performs best on the incurred 
data. As one considers the structure of these models, they will notice that the logelr and 
the aw parameters have the same interpretation, and possibly the same values, in both 
models. One should expect the remaining parameters to be different as each model 
is fit to a different, but related, set of losses. This section investigates the relationship 
between the two models with the idea that there may be some synergy that we can 
exploit to make more accurate estimates.

A model that does this is specified below. Notice that

• Steps 1 and 2 are the same as in the CSR and CAY model.
• Steps 4 to 8 are the same as in the CSR model, with the prefix “P” denoting the 

parameters specific to the paid data.
• Steps 9 to 15 are the same as steps 3 to 9 in the CAY model, with the prefix “I” 

denoting the parameters specific to the incurred data.

Step 3 in this model differs from the corresponding step in the CSR model in that 
the requirement that pβ10 = 0 is dropped. This reduces any distortion caused by the 
logelr parameter for the paid loss triangle being significantly different from the logelr 
parameter for the incurred loss triangle. This frequently occurs in the Workers’ 
Compensation line of business with our data.

The Integrated Paid and Incurred (IPI) Model

1. logelr ∼ normal(-0.4, 10).
2. aw ∼ normal(0, 10) for w = 2, . . . , 10. Set a1 = 0.
3. pβd ∼ normal(0, 10) for d = 1, . . . , 10.
4. γ ∼ normal(0, 0.05).
5. pai ∼ uniform(0, 1) for i = 1, . . . , 10.
6. Set psd

2 = ∑10
i=d pai for d = 1, . . . , 10. Note that this forces ps1

2 > . . . > ps2
10.

7. Set pµw,d = log(Premiumw) + logelr + aw + pβd • (1 – γ)w-1.
8. Then pCw,d ∼ lognormal(pµw,d, psd).

11 The motivation for this section arose out of a series of conversations I had with Ned Tyrrell, FCAS. Mr. Tyrrell’s 
insight was that the estimates obtained by using both paid and incurred data would have lower variability.
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9. Iβd ∼ normal(0, 10) for d = 1, . . . , 9. Set Iβ10 = 0.
10. Set r = 2 • rpos - 1, where rpos ∼ beta(2,2). Note that this allows r to take on any 

value in the interval (-1,1).
11. Iai ∼ uniform (0,1) for i = 1, . . . , 10.
12. Set Isd

2 = ∑10
i=d Iai for d = 1, . . . , 10. Note that this forces Is1

2 > . . . > I s2
10.

13. Set Iµ1,d = log(Premium1) + logelr + Iβd.
14. Set Iµw,d = log (Premiumw) + logelr + aw + Iβd + r • (log(ICw–1,d) – Iµw–1,d) for w > 1.
15. Then ICw,d ∼ lognormal(Iµw,d, Isd).

Table 9.1 gives the logelr and the aw parameters for the IPI model with the data 
from the Illustrative Loss Triangle, and for reference, the corresponding parameters 
for the CSR and CAY models. The parameters are very similar for the earlier accident 
years, with some divergence in the last few accident years. What is interesting to note  
is that the standard deviations of the logelr and the aw parameters are noticeably smaller 
for the IPI model. These lower standard deviations translate into lower standard errors 
of the estimates, as noted in Table 9.2 when compared with Table 7.2, and Table 9.3 
when compared with Table 8.2.

This reduction in the standard errors extends to almost all of the set of 200 loss 
triangles as can be seen in Figure 9.3.

The standardized residual Box plots for Illustrative loss triangle with the IPI paid 
and incurred losses in Figures 9.1 and 9.2 are slightly worse than the corresponding 
plots for the CSR and CAY model, but they are still reasonable in that zero is within 
the interquartile range of the standardized residuals for all accident years.

Table 9.1.  Summary of the logelr and `w Parameters for the Illustrative 
Loss Triangle

CSR Model CAY Model IPI Model

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

logelr -0.3956 0.0246 -0.3945 0.0150 -0.3951 0.0109

a1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

a2 -0.2541 0.0272 -0.2619 0.0156 -0.2618 0.0090

a3 0.1188 0.0308 0.1105 0.0213 0.1157 0.0119

a4 0.2089 0.0373 0.2124 0.0253 0.2140 0.0153

a5 -0.0002 0.0445 0.0083 0.0308 0.0091 0.0186

a6 -0.0581 0.0617 -0.0586 0.0401 -0.0657 0.0263

a7 0.3881 0.0787 0.4499 0.0521 0.4319 0.0383

a8 -0.1097 0.1166 0.0248 0.0819 -0.0207 0.0619

a9 0.0462 0.1914 0.1601 0.1453 0.1248 0.1056

a10 0.0645 0.3467 0.1779 0.2984 0.1571 0.1947
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Table 9.2.  IPI Model Output for the Paid Illustrative Loss Triangle

w Premium Estimate SE CV Outcome Percentile

1 5812 3912 0 0.0000 3912

2 4908 2543 58 0.0228 2527

3 5454 4124 98 0.0238 4274

4 5165 4309 111 0.0258 4341

5 5214 3544 97 0.0274 3583

6 5230 3299 109 0.0330 3268

7 4992 5180 223 0.0431 5684

8 5466 3612 234 0.0648 4128

9 5226 4009 429 0.1070 4144

10 4962 3986 796 0.1997 4139

Total 52429 38518 1253 0.0325 40000 88.50

Table 9.3.  IPI Model Output for the Incurred Illustrative Loss Triangle

w Premium Estimate SE CV Outcome Percentile

1 5812 3912 0 0.0000 3917

2 4908 2545 44 0.0173 2532

3 5454 4126 81 0.0196 4279

4 5165 4311 95 0.0220 4341

5 5214 3546 87 0.0245 3587

6 5230 3301 103 0.0312 3268

7 4992 5183 216 0.0417 5684

8 5466 3613 231 0.0639 4128

9 5226 4012 429 0.1069 4144

10 4962 3987 795 0.1994 4181

Total 52429 38541 1225 0.0318 40061 89.66
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Figure 9.1.  IPI Standardized Residual Box 
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To calculate the model comparison statistics for the IPI model, we first calculate 
the 55 × 10,000 log-likelihood matrices given the parameters specific to the paid, and then 
the incurred, data. We then use the “loo” package to get the model selection statistics. As 
we will not introduce any more models in this monograph, the following table gives 
the model selection statistics for each of the MCMC models considered above.

Now let’s examine the �elpd  comparisons over the set of 200 triangles. The following 
tables provide comparisons for all the models given in this monograph.

Tables 9.5–9.8 identify several instances where the IPI model has a better fit than 
the corresponding CSR, CAY or CRC models. The IPI model’s advantage is stronger 
for the paid models than the incurred models.

0
20

40
Fr

eq
ue

nc
y

0.0 0.5 1.0 1.5 2.0
Ratio of IPI Paid to CSR Standard Errors of the Estimate

0
20

40
60

Fr
eq

ue
nc

y

0.0 0.5 1.0 1.5 2.0
Ratio of IPI Incurred to CAY Standard Errors of the Estimate

Figure 9.3.  Standard Error Reductions by the IPI Model

Table 9.4.  Model Comparison Statistics 
Illustrative Loss Triangles

Model elpd�loo ploo LOOIC

IPI-Paid 63.54 -127.08

CSR-Paid 49.76 15.09 -99.53

CRC-Paid 47.80 14.97 -95.60

SCC-Paid -5.14 8.75 10.28

IPI-Incurred 78.36 -156.72

CAY-Incurred 68.65 15.64 -137.30

CRC-Incurred 70.97 15.07 -141.93

SCC-Incurred -2.85 9.13 5.69
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Table 9.5.  elpdloo Paid Model Pairwise Comparisons

Line IPI > CSR IPI > CRC CSR > CRC CRC > SCC

CA 46 45 26 50

PA 41 42 27 50

WC 18 22 25 50

OL 41 40 23 50

Total 146 149 100 200

Table 9.6.  elpdtest Paid Model Pairwise Comparisons

Line IPI > CSR IPI > CRC CSR > CRC CRC > SCC

CA 43 44 27 49

PA 42 44 30 47

WC 32 40 30 48

OL 39 42 32 47

Total 156 170 119 191

Table 9.7.   elpdloo Incurred Model Pairwise Comparisons

Line IPI > CAY IPI > CRC CAY > CRC CRC > SCC

CA 17 15 6 50

PA 31 29 7 50

WC 37 37 10 50

OL 22 23 3 50

Total 107 104 26 200

Table 9.8.  elpdtest Incurred Model Pairwise Comparisons

Line IPI > CAY IPI > CRC CAY > CRC CRC > SCC

CA 25 31 31 48

PA 35 34 28 50

WC 22 25 38 48

OL 29 31 24 46

Total 111 121 121 192
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Figure 9.4.  p-p Plots for the IPI Model on Paid Loss Triangles

Figures 9.4 and 9.5 give the p-p plots for the paid and incurred IPI models. While 
seven of the eight p-p plots fall within the Kolmogorov-Smirnov critical values, the Work-
ers’ Compensation plot indicates that the models tend to be light-tailed. It might be worth 
noting that the Workers’ Compensation line of business frequently provides benefits in 
the form of long-term annuities and it is more likely that significant differences between 
the incurrred and the and paid losses remain after 10 years. See Figure 9.6.

This completes the set of models that are considered in this monograph. We  
now turn to making use of these models to post a loss reserve liability. The current 
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Figure 9.5.  p-p plots for the IPI Model on Incurred Loss Triangles

consensus under IFRS 17 is that the liability should represented a discounted “best 
estimate” and a risk margin. To fulfill the discounting requirement, we need a model 
that estimates the payout pattern. To fulfill the risk margin requirement, we need a 
stochastic model. This monograph will turn to demonstrating how to use the CSR and 
the IPI models to address these needs.

An important issue with the risk margin is that of diversification. So, before dis-
cussing risk margins, we need to address the issue of dependencies between lines of 
insurance.
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10.  Dependencies Between Lines 
of Insurance12

As actuaries fit their stochastic loss reserve models to the various lines of insurance 
underwritten by their insurance company, they will ultimately be given the task of 
posting a single loss reserve liability for that company. An important consideration in 
evaluating this liability is that of diversification. To quantify the effect of diversification, 
we first need to address the issue of correlation, or to be more general, dependencies 
between lines of insurance.

Of interest are the dependencies that remain after a model has been fit to our data. 
Let’s begin with the preliminary observation that dependencies are model dependent. 
A simple example illustrating this is in Figure 10.1. If one fits the correct parabolic 
model to each of the dependent y1 and y2 variables, we have uncorrelated residuals. 
But if one fits the incorrect constant model, the residuals are correlated. A similar 
point is made by Avanzi, Taylor and Wong (2016). To quote their abstract, “We show 
with some real examples that, sometimes, most (if not all) of the correlation can be 
‘explained’ by an appropriate methodology.”

Prior to considering dependencies, our models have taken the form:

∼ ( )( ) µ σCw d w d
j

d
jlog normal , (10.1), ,

for each w and d, with j being one of J = 10,000 simulations. The transformed 
parameters µw,d and sd can come from any of the paid SCC, CSR or IPI models. 
For a given simulation j, we can then propose the bivariate model for lines of 
insurance X and Y
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12 An earlier version of this section is in Meyers (2017).
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where rj is a single parameter representing the coefficient of correlation between the two 
lines for the simulation j. So, to get a “posterior” distribution13 one proceeds as follows.

1. Use Bayesian MCMC to obtain a sample,

{ }µ σ µ σ
=X w d

j
X d

j
Y w d

j
Y d

j
j

, , ,, , 1

10,000

from the posterior distributions for lines of insurance X and Y.
2. For each j use Bayesian MCMC to take a sample of size one from the posterior 

distribution of

ρ µ σ µ σj
X w d

j
X d

j
Y w d

j
Y d

j, , ,, ,

This process is fairly time consuming.14 But it produces 10,000 equally likely simu-
lations for Equation 10.2.
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Figure 10.1.  Model Dependency Illustration

13 The term “posterior” is put in quotes to distinguish it from a one-step MCMC model with all parameters  
r j, Xµ j

w,d, X sd
j, Yµ j

w,d, and Y sd
j. See Meyers (2017) for a discussion of this one-step approach.

14 While the first step runs in less than a minute on my quad core laptop, the second step takes about 12 minutes, 
making use of R parallel package and compiling the Stan script in advance.
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Figures 10.2–10.4 summarize the posterior distributions for the illustrative 
insurer using the CSR, IPI and SCC models. These figures consist of a histogram of 
the posterior distribution of r and side-by-side accident year standard residual Box 
plots. Here are some of the highlights of these figures.

• The posterior distribution of r is fairly wide, and the point r = 0 is not close to the 
tails of the distributions.

• One can see the effect of model dependence as we progress from the CSR model to 
the SCC model. The CSR model does the best at capturing the accident year effect, 
and the IPI model captures it nearly as well. The SCC model does not adequately 
capture the accident year effects. In the side-by-side accident year Box plots, the 
six of the corresponding medians for each line of insurance are on opposite sides 
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Figure 10.2.  Summary Correlation Plots
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Figure 10.3.  Summary Correlation Plots

of zero. For the other four, they are fairly close to zero. This results in the posterior 
mean of r being negative.

Now let’s turn to comparing the fits of the dependent assumption, specified 
by Equation 10.2 with the independent assumption specified by setting r = 0 
in Equation 10.2 with the �elpdloo statistic. To do this, we need to calculate the 
log-likelihoods of each observation in the upper triangle using the parameters

{ }ρ µ σ µ σ
=

j
X w d

j
X d

j
Y w d

j
Y d

j
j

, , , ,, , 1

10,000

and Equation 10.2.



56 Casualty Actuarial Society

Stochastic Loss Reserving Using Bayesian MCMC Models

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10
Accident Year

CA in Gray OL in Black

Mean = –0.309 Percentile of 0 = 91.49

–3
–2

–1
0

1
2

3

Standardized Residual Box Plots

SCC Model Correlations for Group 353 CA and PA

Fr
eq

ue
nc

y
0

50
0

10
00

15
00

–0.8 –0.6 –0.4 –0.2 0.0 0.2 0.4 0.6
ρ

Figure 10.4.  Summary Correlation Plots

In our set of 200 loss triangles, there are 119 lines of insurance pairs within the 
same insurer. I calculated the �elpdloo statistics under the dependent and independent 
assumptions, with the result that for the CSR and IPI models, the independent assump-
tion was favored in all 119 cases. for the SCC model, the independent assumption was 
favored in all but one of the 119 cases — Insurer 715 for CA and PA. A close call, where 
the independent assumption was barely favored, Insurer 5185 for CA and OL has an 
interesting and informative summary correlation plot. See Figures 10.5–10.7.

• As we saw with the illustrative insurer, the posterior distribution of the r parameter 
is quite wide. The strength of the positive correlation for this insurer decreases with 
the ability of the model to capture the accident year effect.

• Ignoring the accident year effect in the SCC model completely flipped the 
correlation from positive to negative. In looking at the standardized residual Box 
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Figure 10.5.  Summary Correlation Plots

plots, we see that the two lines of insurance appear to be counter-cyclical if we fail 
to recognize the accident year effect.

At this point, we drop any additional examination of the SCC model.
There was a reversal when comparing the �elpdtest  statistics on the lower triangle 

data. The dependent assumption was favored over the independent assumption in  
75 and 73 out of the 119 pairs of lines for the CSR and IPI models respectively.15 
I spent a fair amount of time looking for an explanation, but found none. The only 
conclusion I could draw was that there were some unknown variables influencing the 

15 In many cases the differences were smaller than the differences for the �elpdtest  statistics. I did a bootstrap analysis 
of the MCMC sampling error and found that many of the differences were too large to be explained by that error.
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lower triangle data that were not captured by the CSR and IPI models when fit to the 
upper triangle data.

While it is tempting to justify the independent assumption with �elpdloo statistics, 
in light of the �elpdteststatistics, I do not think that is prudent at this time. However, we 
can do some sensitivity tests to see how bad things can get.

Figure 10.8 summarizes the posterior mean of r and the effect of the correlation of 
the standard error of the estimated ultimate loss.16 It turns out that the risk of a gross 
understatement of the standard error is fairly small for both models.
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Figure 10.6.  Summary Correlation Plots

16 Because of the skewness of the lognormal distribution, one should not always expect a positive r to increase the 
standard error.
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Figure 10.7.  Summary Correlation Plots

In summary, it turns out that dependencies between lines of business are very hard 
to detect given only the data in the upper triangle. The main source of dependency 
identified in this section is the failure to recognize the accident year effect. There may 
be other external effects. A plot similar to the side-by-side standardized residual plot 
along a different variable may help find other causes of dependency. If such a variable 
can be found, it should be included in the stochastic loss reserve model.
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Table 10.1.  q ∏ Coefficient 
of Correlation

r Coefficient of Correlation

0.0 0.000

0.1 0.060

0.2 0.125

0.3 0.205
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11. Risk Margin17

Now that we have covered a variety of models that attempt to describe a predictive 
distribution of possible outcomes, we now turn to a principal reason for fitting such a 
model—posting a liability on an insurer’s balance sheet for unpaid claims.

There is a growing consensus, supported by IFRS 17,18 emerging in the insur-
ance industry that the liability should consist of the expected present value of the 
unpaid claims, plus a risk margin. One expression of this consensus can be found in 
the “technical provisions” of the European Solvency II directive.19 This directive was 
first published in 2009, and, after a number of amendments, was finally put into effect 
on January 1, 2016.

These technical provisions refer to the insurer’s liability for unpaid losses.  
Specifically:

1. “The value of the technical provisions shall be equal to the sum of a best estimate and 
a risk margin.”

2. “The best estimate shall correspond to the probability-weighted average of future 
cash flows, taking account of the time value of money using the relevant risk-free 
interest rate term structure.”

3. “The risk margin shall be calculated by determining the cost of providing an 
amount of eligible own funds equal to the Solvency Capital Requirement necessary 
to support the insurance obligations over the lifetime thereof.”

4. “Insurance undertakings shall segment their insurance obligations into homogeneous 
risk groups, and as a minimum by lines of business, when calculating the technical 
provisions.”

This section illustrates a way to implement the principles expressed in the above 
provisions of the act. While the act goes on to provide some specific recommendations 
on how to implement those provisions, the scope of this section is more to show how to 
implement the principles underlying Solvency II using the Bayesian MCMC technology.

A Bayesian MCMC stochastic loss reserve model provides an arbitrarily large number 
of equally likely simulations that enable one to simulate future cash flows of the liability. 
From these simulations, it is possible to describe any future state in the model’s time 

17 An earlier version of this section is in Meyers 2018.
18 See the International Actuarial Association (2018) publication on risk adjustments.
19 The provisions quoted here are stated in Section 2, Article 77 and Article 80, of Chapter VI of the act, p. 222. 

http://register.consilium.europa.eu/pdf/en/09/st03/st03643-re01.en09.pdf.
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horizon, including those states necessary to calculate the technical provisions. That is 
what this section will do.

As the focus of this monograph is on the stochastic features of estimating loss 
liabilities, it makes simple assumptions about other relevant parameters, such as the 
solvency criteria, interest rates and the timing of loss payments.

Here is a high-level description of that cash flow.

1. At the end of the current calendar year (call this time t = 0), the insurer posts 
its best estimate of the liability. The insurer also posts the amount of capital, K0, 
needed to contain the uncertainty in this estimate. It invests K0 in a fund that earns 
income at the risk-free interest rate i.

2. At the end of the next calendar year, at time t = 1, the insurer uses its next year of 
loss experience to reevaluate its liability.20 It then posts its updated estimate of the 
liability and the capital, K1, needed to contain the uncertainty in this estimate. The 
difference between K0 • (1 + i) and K1 is returned to the investor. If that difference is 
negative, as it occasionally will be, the investor is expected to contribute an amount 
to make up that difference.

3. The process continues for future calendar years, t, with the amount,

i ( )+ −−K i Kt t1 ,1

being returned to (or being contributed by) the investor.
4. At some time t = u, the loss is deemed to be at ultimate, i.e., no significant changes 

in the loss is anticipated and so we set Kt = 0 for t > u. For the examples in this 
section, u = 9.

The present value, discounted at the risky rate r, of the amount returned is equal to

i
∑ ( )
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Since r > i, this present value will be less than the initial capital investment of K0. To 
adequately compensate the investor for taking on the risk of insuring policyholder 
losses, the difference can be made up at time t = 0 by what we now define as the cost 
of capital risk margin, RCOC.
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with the second equality coming after some algebraic manipulations.21

20 As the risk margin is for the current liability, the risk margin does not consider new business in future calendar 
years.

21 Note that RCOC is similar to, but not identical to, the Solvency II risk margin: i∑( )
( )

≡ −
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i

SII
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This monograph’s proposed risk margin repeats this calculation for each of  
the 10,000 MCMC simulations produced by the CSR and IPI models. The posted 
risk margin will be the arithmetic average of the risk margins calculated for each 
cash flow.

The examples that follow assume that the risk-free rate, i = 4% and the risky rate, 
r = 10%.

The problem that now needs to be addressed is the calculation of the Kts for each 
simulated cash flow. A straightforward way to project a future cash flow for this process 
would be to take a fitted Bayesian MCMC model and simulate an additional calen-
dar year of losses for t = 1. Then fit another Bayesian MCMC model to the original  
data and the simulated data to get the loss estimate and capital requirements for t = 1. 
Then continue this process for t = 2, . . . , u.

While the execution speed of Bayesian MCMC software has significantly increased 
in recent years, repeating this for 10,000 simulated future cash flows would 
undoubtedly strain the patience of most practicing actuaries. This section will propose 
a faster way to simulate the future cash flows to calculate the capital requirements for 
this process.

Now that we have defined the cost of capital risk margin, here is an outline of the 
remainder of this section.

• First we show how to use the Bayesian MCMC simulations to calculate the cash 
flows and corresponding loss estimates implied by the model.

• Then we show how to calculate the best estimate and the risk margins from the 
cash flows.

• We then investigate the effect of insurer size and line of business on risk margins.
• Then we address the effect of diversification by line of business.
• The calculations above assume that the required capital was calculated for what 

one might call an “ultimate” time horizon. In the final part of this section, we 
show how to incorporate a one-year time horizon into the calculations.

The examples will use the CSR model and the parameters of the IPI model  
that describe paid losses. What is relevant is that, given the loss triangle, T0, the 
model uses Bayesian MCMC to obtain a sample of 10,000 equally likely log-
normal, {µ j

w,d, sd
j}j=1

10,000, simulations from the posterior distribution, {µw,d, sd |T0}. 
This section uses these simulations to describe a sample from the set of possible 
future cash flows.

With these simulations we can calculate the best estimate of the liability, as speci-
fied by Solvency II, as the probability weighted average of the present value of expected 
future cash flows. Recalling that the mean of a lognormal distribution is equal to eµ+s2/2, 
this will be equal to the expected value of the differences in the cumulative payments. 
To be specific we define the expected payment during development year d for simula-
tion j as:

= − =( ) ( )µ + σ µ + σ− −P e e dw d
j w d

j
d
j

w d
j

d
j

for 2, . . . ,10,
2 2,

2
, 1 1

2
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When using the IPI model,22 we anticipate that the expected incurred loss at 
d = 10 will be different from the expected paid loss. So we define = ( )µ + σP ew

j I w
j

I
,11

2,10 10
2

− ( )µ + σe w
j 2,10 10

2

.
For simulation j the present value of the liability for the CSR (IPI) model is equal to
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Then, since all simulations, j, are equally likely, the “probability-weighted average of 
future cash flows, taking account of the time value of money” is

∑=
=
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j

j

1
10,000

(11.3)
1

10,000

This calculation assumes that the losses are paid one half-year before the end of 
future calendar year t = w + d - 11.

For the scope of this paper, let’s also select the ultimate loss, Uj, associated with the 
jth simulation set to be the sum of the expected values of the losses for d = 10 over all 
the accident years.23 I.e.,
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For the lower triangle of { �C j
w,d}j=1

10,000, define the simulated loss trapezoid for future 
calendar year t that includes the upper loss triangle, T0, and the first t diagonals of from 
the lower loss triangle, i.e.,
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where �C j
w,d is simulated from a lognormal distribution with parameters µ j

w,d and sd
j.

In practice, all we have is an observed loss trapezoid, Tt. Then using Bayes’ Theorem 
and the fact that, initially, all j are equally likely, the probability that the simulation 
index is equal to j given Tt, for t > 0, is given by
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where φ is the probability density function for the normal distribution.

22 When the parameters in this section come from an incurred model, we use the left subscript “I” before the µ and 
s parameters. There will be no left subscript if the parameters come from a paid model.

23 For the CSR model, paid µw, 10 and sw, 10. For the IPI model we use incurred Iµw,10 and Isw,10.
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At this point, there are a number of options one can choose to calculate the various 
statistics that are of interest to insurer risk managers. For example, given Tt, one could 
calculate the ultimate loss estimate, Et as

i∑ ∑ [ ]≡ 





= =
= =

E E C T J j T Ut w t
w

t
j

jPr . (11.7),10
1

10

1

10,000

If one accepts that the Bayesian MCMC output is representative of all future  
scenarios, Equation 11.7 is exactly the right calculation for the loss estimate given Tt. 
But let’s consider what one should do to calculate, say, the 99.5th percentile. First one 
should sort the MCMC simulations in order of increasing Uj. It is not uncommon 
to find a case where there is a simulation, j, with Pr [J ≤ j |T9] = 0.9900 and Pr[J ≤ j + 
1|T9] = 0.9960.

To deal with this, I decided to calculate the statistics of interest by first taking a 
random sample of size 10,000 (with replacement), {St}, of the Ujs with sampling prob-
abilities Pr[J = j |Tt] . It was easy to implement and surprisingly fast in R. This is subject 
to an additional simulation error, but it should be small.

The “statistics of interest” for risk margin are, for t = 0, . . . , 9:

1. The mean, Et, which is equal to the arithmetic average of {St}.
2. The Tail Value-at-Risk at the a level (TVaR@a), which is equal to the arithmetic 

average of the (1 – a) • 10,000 highest values of {St}.24

Let’s denote the total required capital by Kt ≡ TVaR@a – Et.
We summarize the above in Algorithm 1.

24 While this section does not use the Value-at-Risk (VaR) in its examples, one could calculate the VaR@a as the 
(1 – a) • 10,000th highest value of {St}.

Algorithm 1.  Calculate Capital Simulations

1: for k = 1, . . . , 10,000 do
2:   for t = 0, . . . , 9 do
3:      Simulate cash flows {Tt

k} using the {(µk
w,d, sd

k)}
4:      Use Equation 11.6 to calculate Pr[J = j |Tt

k] for each j  = 1, . . . , 10,000 
5:       Take a random sample of size 10,000 with replacement, {St

k}, of {Uj}j=1
10,000 with 

sampling probabilities Pr[J = j |Tt
k]. 

6:      Set Et
k equal to the arithmetic average of {St

k}.
7:      Set Kt

k equal to the arithmetic average of the highest (1 – a) • 10,000 highest values 
of {St

k}, minus Et
k.

8:   end for
9: end for

The examples in this paper use a = 97%.
Calculating Et

j for t = 0, . . . , 9 yields the jth path that the loss estimate takes as it 
moves toward its ultimate value. Of interest for what follows is the set of possible paths 
that the loss estimate can take. Figures 11.1 and 11.2 show the paths for the paths 
that contain the 100th, the 300th, . . . , and the 9,900th highest E9

js of the illustrative 
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insurer for the CSR and IPI models. These figures illustrate that the Et
js tend to become 

more certain over time. These figures also show the best estimate.
Also of interest are the paths of the required capital, K t

j, for t = 0, . . . ,9.  
Figures 11.3 and 11.4 show the paths of K t

j that correspond to the paths taken by Et
j 

in Figures 11.1 and 11.2. These figures illustrate that as the estimates of the Et
js become 

more more certain, the required capital, K t
j, tends to decrease over time.

What stands out in these figures is the significant reduction in the necessary  
capital that result from using the more accurate IPI model. Do not be distracted by 
the increase in the best estimate for this particular example. Note that the estimated 
ultimate loss produced by the IPI model is closer to the actual outcome of 40,000.

We now apply the cost of capital risk margin formula, given by Equation 11.2,  
to each of the required capital paths, {K 0

j, . . . , K 9
j} j=1

10,000. Recall that the formula defined 
the cost of capital risk margin as the present value of the capital released as the loss 
reserve liability becomes more certain. Figures 11.5 and 11.6 show the paths of released 
capital that correspond to the paths taken by the K t

js in Figures 11.3 and 11.4. In general, 
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Figure 11.3.  CSR Model
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Figure 11.4.  IPI Model
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these figures show that most of the capital gets released early on, and that occasionally 
it is necessary to add capital. Figures 11.7 and 11.8 show the recommended posted risk 
margin calculation for each model.

Of interest is the ratio of the risk margin and the size of the best estimate. To investi-
gate, I calculated the risk margins for all 200 loss triangles in our data. After some explor-
atory analysis, I concluded that: (1) there are significant differences by line of business; and  
(2) there is an approximate linear relationship between the log of the risk margin and the 
log of the best estimate. Figure 11.9 shows the plots of the log(RCOC) against log(EBest), along 
with the coefficients and their standard errors of an ordinary linear regression of the form

i( ) ( )= +R a b ECOC Bestlog log (11.8)

We can rewrite Equation 11.8 in the form

i ( )= −R
E

e ECOC

Best

a
Best

b (11.9)1
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Note from Figure 11.8 that b < 1 for all four lines of insurance. This implies 
that the risk margin to best estimate ratio decreases as the best estimate increases. As 
Figure 11.10 shows, the ratio can be quite high for insurers with small best estimates. 
Some insurers might object, especially if the line with the high ratio is a small part of 
the insurer’s book of business.

As noted earlier, the EU Solvency II provision states explicitly that “Insurance 
undertakings shall segment their insurance obligations into homogeneous risk groups, 
and as a minimum by lines of business, when calculating the technical provisions.” 
This means that the total risk margin for a multiline insurer is the sum of the risk 
margins over its individual lines of business.

Longtime observers of the insurance business have recognized that multiline insurers 
benefit from the diversification of their risk of loss. This being the case, they might well 
want to reflect the benefits of diversification in their risk margins. The problem with a 
formal recognition of diversification is that the benefits have been difficult to quantify. 
What many are afraid of is the possibility that significant losses from the different lines 
of business could happen at the same time. This possibility is often referred to as the 
“dependency problem.”

As such, the Solvency II non-recognition of diversification may appear to some to 
be prudent. But to others, especially in light of the results in the last section, it may seem 
like overkill. If there is some dependency, it is likely to be noticeably less severe than 
what the Solvency II directive specifies. So let’s look at a possible compromise approach.
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25 The standalone risk margins will differ slightly from those calculated using Algorithm 1. They were calculated using 
the uniformly distributed pl

ks that came from the copula used by the other calculations in Tables 11.1 and 11.2.

Mathematical tools that can be used to describe dependency have been available for 
quite some time. See, for example, Frees and Valdez (1998) and Wang (1998). The main 
tool described in these papers is called a copula, which is a multivariate distribution on an 
L-dimensional unit hypercube in which the marginal distributions have a uniform(0,1) 
distribution. Given a copula C and samples { lS t}, (see Algorithm 1) for each line l of L lines 
of business, one begins to calculate RCOC by first executing Algorithm 2.

Use the output of this algorithm to calculate {TS t
k} for t = 1, . . . , 9. Then place 

{TS t
k} into Step 5 of Algorithm 1.
There are seven insurer groups with loss triangles in each line of insurance in our 

set of loss triangles. Table 11.1 shows the effect of diversification for each of the seven 
groups.25 The combined risk margin for selected correlation coefficients, r, was calcu-
lated using the Algorithm 2 sample, TS t

k, inserted into Algorithm 1.
One can see from Table 11.1 that the diversification effect can vary significantly by 

insurer. The effect depends on the line mix of the insurer. This can be best seen in the 
case of Insurance Group 1767, a very large personal lines insurer. This insurer’s book 
of business is dominated by the Personal Auto. To see the effect of an individual line of 
insurance, I calculated marginal risk margin by subtracting the combined risk margin 
for all other lines, from the all-line combined risk margin. I then allocated the all-line 
risk margin to the individual line in proportion to the marginal risk margin. The results 
of this calculation are in Table 11.2.

Here we see that the dominant Personal Auto line gets allocated a very small diver-
sification credit, whereas the minor Worker’s Compensation line gets allocated a very 
large diversification credit.

To close out this section, we address the issue of time horizon. Required capital, 
as dictated by Solvency II, is determined by the value-at-risk at the 99.5th percentile 
of the ultimate loss estimate after one year. To change from the TVaR criteria used in 
this monograph to a value-at-risk criteria is a minor input adjustment to the input of 
the R-scripts. It is the change to the one-year time horizon that requires some work.

A high-level description of the methodology is to use a Bayesian MCMC model 
to obtain 10,000 equally likely scenarios that represent the future evolution of the line 
of business that produced the loss triangle. Then, as new losses come in, it uses Bayes’ 

Algorithm 2.  Calculate Samples for Dependent Lines

1: for k = 1, . . . , 10,000 do
2:   for t = 1, . . . , 9 do
3:      Simulate an L-tuple vector {pl

k}L
l=1 of uniform(0,1) numbers from the normal copula C 

with coefficient of correlation, r.
4:     For each line of business, l, select lQt

k to be the {pl
k} • 10,000 highest value of {lSt

k }.
5:   end for
6:   Set the total ultimate loss sample TSt

k = 1Qt
k + . . . + LQt

k.
7: end for



Table 11.1.  Diversification Effect—CSR Model

Group Risk Margin Amount Diversification Credit%

715 Standalone Total 5519 —

— Combined r = 0.0 2825 48.8

— Combined r = 0.1 3171 42.6

— Combined r = 0.2 3491 36.9

— Combined r = 0.3 3798 31.6

1538 Standalone Total 3964 —

— Combined r = 0.0 2150 45.8

— Combined r = 0.1 2372 40.3

— Combined r = 0.2 2582 35.2

— Combined r = 0.3 2782 30.3

1767 Standalone Total 315085 —

— Combined r = 0.0 236532 24.9

— Combined r = 0.1 245264 22.4

— Combined r = 0.2 253632 19.9

— Combined r = 0.3 261936 17.4

3240 Standalone Total 6256 —

— Combined r = 0.0 4405 29.6

— Combined r = 0.1 4615 26.4

— Combined r = 0.2 4821 23.4

— Combined r = 0.3 5022 20.3

5185 Standalone Total 6363 —

— Combined r = 0.0 3357 47.2

— Combined r = 0.1 3736 41.4

— Combined r = 0.2 4091 36.0

— Combined r = 0.3 4426 30.9

13439 Standalone Total 913 —

— Combined r = 0.0 510 44.1

— Combined r = 0.1 552 39.6

— Combined r = 0.2 595 35.2

— Combined r = 0.3 639 30.6

14176 Standalone Total 3986 —

— Combined r = 0.0 2196 44.9

— Combined r = 0.1 2404 39.8

— Combined r = 0.2 2608 34.8

— Combined r = 0.3 2809 30.1
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Theorem to update the probability of each scenario. From these updated probabilities, 
one then calculates the statistics that are needed to calculate the risk margin.

Under a one-year time horizon capital requirement, the capital is determined  
by the estimate of the ultimate losses after one more calendar year of loss experience.  
A key step in this methodology is to determine the ultimate loss estimate associated  
with each MCMC simulation. For the ultimate time horizon it is simply Uj, given by 
Equation 11.4. However, as Figures 11.1 and 11.2 illustrate, with only one year of  
losses from a given MCMC simulation, there may be several MCMC simulations with 
a significant positive probability.

To get a good estimate, Ot,j, of the expected ultimate loss for the jth MCMC simu-
lation, one can simulate future loss experience, given the jth MCMC simulation, and 
calculate the ultimate loss estimate M times. Then set Ot,j equal to the average of those 
estimates. The details are in Algorithm 3.

Both the accuracy of the estimate of Ot,j and the computer run time increase with M.  
I experimented with different values of M and found that M = 12 obtained results that were 
sufficiently accurate given the intrinsic variation of the underlying MCMC simulations.

Algorithm 3.  Calculate Ot,j Estimates by Calendar Year

 1: for m = 1, . . . , M do
 2:   for j = 1, . . . , 10,000 do
 3:      for t = 1, . . . , 9 do
 4:        Simulate Tt using the parameters (µj

w,d, sj
d).

 5:        Use Equation 11.6 to calculate {Pr[J = j|Tt]} j=1
10, 000.

 6:        Use Equation 11.7 to calculate the ultimate loss estimate, Om
t,k.

 7:      end for
 8:      Set Om

10,j = Om
9,k

 9:    end for
10:  end for
11: for j = 1, . . . , 10,000 do
12:   for t = 1, . . . , 10 do
13:      Set Ot,j = mean (Om

t,k).
14:    end for
15:  end for

Table 11.2.  Diversification Effect By Line for Group 1767—  
CSR Model, q = 0

Line Best Estimate

Risk Margin

Div. CreditMarginal Allocate Standalone

CA 336,301 660 927 6,985 86.7%

PA 10,280,570 147,566 207,448 215,633 3.8%

WC 238,395 114 161 5,676 97.2%

OL 909,123 19,915 27,996 86,791 67.7%

Total 11,764,389 168,255 236,532 315,085 24.9%
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Use Algorithm 4 to calculate the risk margin for the one-year time horizon. In this 
algorithm, one simply substitutes Ot+1, j for Uj in the 5th step of Algorithm 1. Given the 
output of Algorithm 4, one then calculates risk margins for each MCMC simulation by 
using Equation 11.2. The posted risk margin will then be the unweighted average of the 
risk margins for each simulation. Figures 11.11 to 11.16 are analogous to Figures 11.3 to 
11.8 for the ultimate time horizon.
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Figure 11.11.  CSR Model
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Figure 11.12.  IPI Model

Algorithm 4.  Calculate Capital Scenarios for a One-Year Time Horizon

1: for k = 1, . . . , 10,000 do
2:   for t = 0, . . . , 9 do
3:      Simulate cash flows {Tk

t } using {(µk
w,d, sd

k)}
4:      Use Equation 11.6 to calculate Pr[J = j |Tt

k] for each j = 1, . . . , 10,000.
5:      Take a random sample of size 10,000 with replacement, {St

k }, of the {Ot+1,j}j=1
10,000 with 

sampling probabilities Pr[J = j |Tt
k ].

6:      Set Et
k equal to the arithmetic average of {St

k}.
7:      Set Ct

k  equal to the arithmetic average of the highest (1 – a) • 10,000 highest values 
of {St

k }, minus Et
k .

8:   end for
9: end for
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Figure 11.13.  CSR Model
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Figure 11.14.  IPI Model
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Figure 11.15.  CSR Model
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Figure 11.16.  IPI Model

Note that initial IPI capital and the IPI risk margin are higher for the one-year time 
horizon than for the ultimate time horizon for the illustrative insurer, showing that  
we cannot automatically assume that the one-year time horizon will produce lower  
risk margins.
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12. Summary and Conclusions

The main ideas behind this monograph are as follows.

• It implements the idea of large-scale retrospective testing of stochastic loss reserve 
models on real data. The goal is not to comment on the reserves of individual 
insurers. Instead, the goal is to test the predictive accuracy of specific models.

• As shortcomings in existing models are identified, it proposes new Bayesian 
MCMC models that attempt to overcome these shortcomings.

• It proposes prospective tests of Bayesian MCMC models that can be used to choose 
between competing models when estimating current liabilities.

• Finally, it shows how to use the output of a Bayesian MCMC model to calculate a 
cost of capital risk margin.

The data used in this study comes from the CAS Loss Reserve Database. It consists 
of hundreds of paid and incurred loss triangles that Peng Shi and I obtained from a 
proprietary database maintained by the NAIC. We are grateful that the NAIC allowed 
us to make these data available to the public. The data we used to build the models 
came from the 1997 NAIC Annual Statements. The outcomes came from subsequent 
statements. I selected 50 loss triangles from each of four lines of insurance. Details on 
how I selected the loss triangles for this study are in the Appendix.

There were two ways that we retrospectively tested a model. First, we used a 
model to predict a distribution of outcomes that we will observe in the future. When 
we do observe outcomes for a large number of predictions, we expect the percentiles 
of the outcomes to be uniformly distributed. Testing a set of percentiles for unifor-
mity is a standard statistical procedure. We used p-p plots as a graphical test, and the 
Kolmogorov-Smirnov test statistic in this monograph.

The second retrospective test for comparing models was to calculate the expected 
log posterior density, �elpdtest , on the lower triangle data. While this test is not mean-
ingful in isolation, it does provide a way to compare the performance of different 
models.

There were two prospective tests in this monograph. The first test is graphical. It 
consists of standardized residual Box plots using parameters from a sample of MCMC 
simulations from the posterior distribution. These plots were done separately for each 
accident year and the development year. All Bayesian MCMC models discussed in 
this monograph performed fairly well for the plots by development year. What distin-
guished the models were the Box plots by accident year.

3RD PAGES
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The second prospective test consisted of the “leave one out” cross-validation test 
statistic, �elpdloo, described by Vehtari et. al. (2017) as the expected log predictive den-
sity when each data point is left out. Like the �elpdtest  statistic, it is used to compare the 
performance of different models.

Here is a high-level summary of the results obtained with these data using two 
currently popular models.

• The Mack model on incurred loss triangles, when tested by p-p plots, tended to 
under-predict the variability of the outcomes.

• Both the Mack and overdispersed Poisson (ODP) models on paid loss triangles, 
when tested by p-p plots, tended to over-predict the outcomes.

Moving on to some Bayesian MCMC models, here is a summary of results.

• The CRoss-Classified (CRC) by accident and development year model performed 
very similarly to the Mack and ODP models on incurred and paid loss triangles. 
It tended to under-predict the variability of the outcomes for incurred losses and 
tended to over-predict the outcomes for the paid losses.

• The Stochastic Cape Cod (SCC) model, a Bayesian MCMC version of the 
Bühlmann-Stanard Cape Cod model, performed very poorly on all prospective 
and retrospective tests. The standardized residual Box plot was the most revealing, 
indicating problems with the assumption of a constant expected loss ratio.

• The Changing Settlement Rate (CSR) model on paid loss triangles adjusts the 
development year parameters to account for a changing claim settlement rate. The 
result was that the CSR model performed better than the CRC model in over half 
the cases according to the �elpdloo and �elpdtest  statistics. One should expect the CRC 
model to perform better if the insurer did not actually change its settlement rate. 
The p-p plots indicated an excellent fit to the lower triangle data.

• The Correlated Accident Year (CAY) model on incurred loss triangles adjusts, on 
the log scale, the expected loss for the current year as a multiple of the prior year’s 
residual. This adjustment usually generates a positive correlation between the losses 
of adjacent accident years.26 Prospectively, the �elpdloo statistic favors the CAY over the 
CRC model for a relatively small number of loss triangles. As was the case above, the 
correlation is not necessarily present in all loss triangles. But then, the CAY is favored 
over the CRC model for over half the the loss triangles using the �elpdtest  statistic. The 
p-p plots look noticeably better for the CAY model than they do for the CRC model.

• The Integrated Paid and Incurred (IPI) model assumes that the accident year 
parameters are the same for both the paid and incurred loss triangles. If true, 
this allows for more accurate estimates, as there is more data contributing to the 
estimation of the accident year parameters. For the development year parameters, 
it uses the CSR model assumptions for the paid data, and the CAY model 
assumptions for the incurred data. The idea works. The standard errors of the loss 
estimates almost always reduced by a significant amount. The �elpdloo and �elpdtest 

26 The model does not automatically favor the sign of the correlation parameter.
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statistics favor the IPI model over the corresponding CSR and CAY models over 
half the time. While the p-p plots for each line of insurance are all within the 95% 
Kolmogorov-Smirnov critical values, the IPI model works best for the auto liability 
lines of insurance where the paid and incurred losses are almost equal by the tenth 
development year. The model works less well for Workers’ Compensation where a 
large portion of the losses remain unpaid after 10 years.

While the focus of the preceding analyses was to evaluate the predictive accuracy 
of various models, the prospective tests described above can be used to evaluate models 
proposed for setting an insurer’s current loss reserve liability. Here is how I envision a 
loss reserve analysis might proceed with current data.27

1. Start by fitting the Mack model using the R “ChainLadder” package for both the 
paid and the incurred loss data. Use the “plot” function in that package to visually 
check that the triangle data is reasonable.

2. Fit each of the following models.28 Initially, I suggest using wide prior distributions 
as described in Section 5 in order to see if any surprises are lurking.
 – The CRC and CSR models for paid data.
 – The CRC and CAY models for incurred data.

3. Create the standardized residual Box plots for each model.
4. Calculate the �elpdloo statistics for each model.
5. Based on the standardized residual Box plots and the �elpdloo statistics, select both a 

paid, and an incurred loss model.
6. At this point, one might want to consider changing the prior distributions to match 

their true prior expectations, or make other model modifications. Some examples 
of a modification would be to:
 – Tighten the prior distributions for the logelr and the aw parameters.
 – Force the last few βd parameters to increase toward zero.
 – Allow the r parameter to exponentially move toward zero with increasing d in 

the CAY model.
 – Allow the γ parameter to change linearly with increasing w in the CSR model.

7. Redo the standardized residual Box plots and recalculate the �elpdloo statistics.
8. Examine the fit of the modified model in light of the diagnostics in Step 7. If one 

sees a bias in the standardized residual plots and/or the �elpdloo statistic decreases, 
when compared to the model in Step 5, one might want to reconsider the changes 
made in Step 6.

9. With the paid and incurred models deemed satisfactory, and in close agreement 
as to the ultimate loss, use these models as part of an IPI model to obtain a more 
accurate estimate of the ultimate liability.

27 Before trying this, I suggest that you run the companion scripts that accompany this monograph for the various 
models. They should run as is, with the necessary R packages installed and with the CAS Loss Reserve Database 
downloaded.

28 These models are my current favorites. Note that favorites can change over time. If one has other models in mind, 
they could, of course, substitute their own favorites.
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As part of an ongoing loss reserving practice, one should retain the MCMC model 
fits and retrospectively test new data from future years with the standardized residual 
Box plots and the �elpdtest  statistics as the data comes in.

Having completed an evaluation of some Bayesian MCMC stochastic loss reserve 
models, the focus of the monograph turns to calculating risk margins that were moti-
vated by the principles underlying Solvency II and IFRS 17. The general idea behind 
the risk margin is that an insurer posts an amount of capital that is sufficient to support 
the business. As time goes on, claims are settled and the insurer’s investors receive a 
cash flow consisting of capital reductions due to the decreased risk. The cost of capital 
risk margin is defined as the initial capital, minus the present value of that cash flow.

As we are talking about present values, the models we use for risk margins are the 
CSR model and the parameters of the IPI model that apply to paid losses.

When considering risk margins, the issue of diversification arises. So before address-
ing risk margins, the monograph addresses dependency between lines of insurance.

Given the predictive distributions of the parameters of each of two lines of insurance, 
the monograph shows how use Bayesian MCMC to obtain the predictive distribution of 
correlation coefficients between the losses, on the log scale, of the two lines of insurance. 
The results are surprising. Prospectively, the �elpdloo statistics overwhelmingly favor a model 
that assumes independence. But retrospectively, the �elpdtest  statistic favors a model that 
allows for dependency in a solid majority of the cases. This suggests that some unknown 
variables may be driving the dependency in the later holdout time period.

This being the case, it seems prudent to allow for some degree of correlation 
between lines of insurance when calculating the diversification credits for risk margins.

The risk margin calculation for individual lines of insurance was done for all  
200 loss triangles in our data. It was done for both the CSR and IPI models under 
a range of dependency assumptions. The IPI risk margins were noticeably less than 
the CSR risk margins.

There were seven insurers that have loss triangles in all four lines. Diversification 
credits were calculated for these insurers under a set of reasonable, in light of the results 
obtained for dependencies, correlation coefficients.

In preparing this monograph I have made every effort to adhere to the “open 
source” philosophy. The data is publicly available. The software is publicly available 
for free. The R and Stan scripts used in creating these models are to be made publicly 
available. I have purposely restricted my methods to widely used software (R, Stan and 
RStudio) in order to make it easy for others to duplicate and improve on these results.

The models proposed in this monograph are offered as demonstrated improve-
ments over current models. I expect to see further improvements over time.  
The Bayesian MCMC methodology offers a flexible framework with which one can 
make these improvements.

Finally, it was the presence of the CAS Loss Reserve Database that made this 
monograph possible. As conditions change over time, I strongly recommend that the 
Casualty Actuarial Society sponsors a study such as this from time to time.
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Appendix—The Data Selection Process

When selecting the loss triangles to use in this monograph, my overriding consideration 
was that the process should be mechanical and well defined. There are two potential 
mistakes one can make in selecting the insurers to analyze.

• If one were to take all the insurers in the database, or randomly select the insurers, 
there could be some insurers who made significant changes in their business 
operations that could violate the assumptions underlying the models.

• If one is too selective, one runs the risk of selecting only those data that best fits a 
chosen model. For example, let’s suppose that I wanted the CAY model to fit the 
incurred data even better than it does. As an extreme case, noting that the CAY 
model still appears to be a bit light in the tails, I could have replaced some of the 
insurers that have outcomes in the tail, with other insurers that have outcomes in 
the middle.

While I did not have inside information on any changes in the business opera-
tions, Schedule P provides some hints in their reporting of both net and direct earned 
premium by accident year. Both of these data elements are in the CAS Loss Reserve 
Database.

• If an insurer makes significant changes in its volume of business over the ten-year 
period covered by Schedule P, a change in business operation could be inferred.

• If an insurer makes significant changes in its net to direct premium ratio over the 
ten-year period, a change in its reinsurance strategy could be inferred.

To carry out an analysis of this sort, I needed a large number of insurers. After 
looking at the quality and consistency of the data available in the CAS Loss Reserve 
Database, I decided to use 50 insurers in each of four major lines of insurance —  
Commercial Auto, Personal Auto, Worker’s Compensation, and Other Liability. Early 
on I concluded that there was an insufficient number of insurers in the Products Liability 
and the Medical Malpractices lines to obtain an adequately sized selection.

To implement these considerations, after preliminary exploration I decided 
to use the loss triangles with lines of business that were “sufficiently large.” This 
included all loss triangles with minimum annual premium of greater than $20,000 
and minimum annual incurred loss of greater than $4,000.29 I then calculated the 

29 The Schedule P entries are in $1,000s.
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coefficients of variation (CV1) for the net earned premiums and CV2 for the net 
to direct premium ratios over the ten available years. By trial and error, I then set 
up limits for CV2, and took the top 50 loss triangles sorted in increasing order of 
CV1. This procedure should have eliminated some of the insurers that changed their  
business operations.

After some provisional testing, I eliminated insurer group 38997. The final 
CV limits are given in Table A.1. The final list of the selected insurer groups are in 
Table A.2.

Table A.2.  Group Codes for Selected Loss Triangles

Commercial 
Auto Personal Auto Workers’ Comp Other Liability

8672 43 13587 86 11347 620 13501

9466 353 13595 337 11703 671 13668

10022 388 13641 353 13439 683 13919

10308 620 13889 388 13501 715 13994

11037 692 14044 671 13528 833 14044

11118 715 14176 715 14176 1252 14176

13420 1066 14257 965 14320 1279 14257

13439 1090 14311 1066 14508 1538 14370

13528 1538 14443 1252 14974 1767 14451

13641 1767 15024 1538 15148 2003 14885

13889 2003 15199 1767 15199 2135 15113

14044 2143 15393 2135 15334 2143 15148

14176 3240 15660 2712 18309 2208 15210

14257 4839 15997 3034 18767 3000 15571

14311 5185 16373 3240 18791 3240 16373

14320 6807 16799 5185 21172 5185 16799

14508 6947 18163 6408 23108 5320 18163

14974 7080 18791 6807 23140 6459 18686

Table A.1.  CV Limits for Insurer Triangles

Commercial Auto Personal Auto Workers’ Comp Other Liability

CV1(Premium) <0.795 <1.003 <0.772 <0.628

CV2(Net/Direct) <0.125 <0.125 <0.300 <0.15
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15024 8427 23574 7080 26433 6947 26797

15199 8559 23876 8559 27529 7625 27065

18163 10022 25275 8672 30589 10657 28550

18767 13420 26808 9466 34576 11126 30139

18791 13439 27022 10385 37370 11150 30651

19020 13501 27065 10699 38687 11231 32875

19780 13528 27499 11126 38733 13439 34606

Table A.2.  Group Codes for Selected Loss Triangles (Continued)

Commercial 
Auto Personal Auto Workers’ Comp Other Liability
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