
CAS MONOGRAPH SERIES
NUMBER 6

A MACHINE-LEARNING APPROACH
TO PARAMETER ESTIMATION
Jim Kunce and Som Chatterjee

CASUALTY ACTUARIAL SOCIETY

With the recent advances in low-cost computing power, the use of machine-learning
techniques to solve insurance problems is now feasible. This paper develops a model, using
any regression based machine-learning algorithm, to analyze the nonlinear relationships
between the parameters of statistical distributions and features that are of interest to
a specific problem, thereby uncovering patterns that are hidden in the historical data.
Unlike traditional stratification and segmentation, our machine-learning approach to
parameter estimation (MLAPE) learns the underlying parameter groups from the data
and uses validation to ensure appropriate predictive power. We present an implementa-
tion of this model for the lognormal distribution utilizing the K-nearest neighbors, kernel
regression, and relevance vector machine algorithms, which incorporate the concepts of
training/testing/validation data sets, parameter sweeps, outlier removal, and Bayesian
maximum a posteriori estimation. We then demonstrate the ability of the machine to
learn different clusters of mu and sigma from a publicly available closed claim data
set. With an understanding of this machine, actuaries will be prepared to incorporate
machine-learning algorithms into their actuarial work product and compete in the era
of “big data.”

Keywords. Machine learning; K-nearest neighbors; K-means clustering; kernel regression;
relevance vector machine; predictive model; generalization error; Bayesian parameter
estimation; lognormal distribution

A MACHINE-LEARNING APPROACH
TO PARAMETER ESTIMATION

Jim Kunce and Som Chatterjee

Casualty Actuarial Society
4350 North Fairfax Drive, Suite 250

Arlington, Virginia 22203
www.casact.org
(703) 276-3100

A Machine-Learning Approach to Parameter Estimation
By Jim Kunce and Som Chatterjee

Copyright 2017 by the Casualty Actuarial Society

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher. For information on obtaining permission for use of
material in this work, please submit a written request to the Casualty Actuarial Society.

Library of Congress Cataloguing-in-Publication Data
Kunce, Jim
Chatterjee, Som
A Machine-Learning Approach to Parameter Estimation
ISBN 978-0-9968897-4-2 (print edition)
ISBN 978-0-9968897-5-9 (electronic edition)
1. Actuarial science. 2. Predictive modeling. 3. Insurance—Mathematical models.
I. Kunce, Jim II. Chatterjee, Som

1. Introduction .. 1

2. Problem ... 3

3. MLAPE (Machine-Learning Approach to Parameter Estimation) 6

4. MLAPE Application .. 30

5. Discussion ... 43

6. Conclusion .. 48

References ... 49

Appendix I .. 51

Appendix II ... 53

Appendix III ... 54

Contents

Jim Kunce is Senior Vice President and Chief Actuary at MedPro Group. He holds B.S.
degrees in Physics and Astronomy from the University of Kansas and a M.S. in Applied
Computer Science from Purdue University. He is a Fellow of the Casualty Actuarial
Society and a Member of the American Academy of Actuaries. Jim began his actuarial
career in 1994 and has also held positions at Kemper Insurance and GE Insurance
Solutions. While at GE Insurance, he earned his Master Black Belt certification in
Six Sigma Quality and was issued a patent for methods and structure for improved
interactive statistical analysis.

Som Chatterjee is President and CEO of 121 Mapping Inc., a Delaware company
focused on building analytics launch-pads and mobilizing data assets to better predict
outcomes and prescribe actions for insurance carriers and intermediaries globally. He
holds a bachelor’s in statistics from the Indian Statistical Institute. He is a Fellow of
the Casualty Actuarial Society and a Member of the American Academy of Actuaries.
Som began his actuarial career in 2004 and has held positions at Genpact and MedPro
Group. Som can be reached via email at som.chatterjee@121mapping.com, or visit
www.121mapping.com.

About the Authors

Ali Ishaq, editor in chief
Emmanuel Theodore Bardis
Brendan P. Barrett
Craig C. Davis
Edward W. Ford
Glenn G. Meyers, consultant
Frances G. Sarrel, liaison

2017 CAS Monograph Editorial Board

Like other intellectual domains where pattern recognition and feature extraction is
central, with the growth of machine power and machine speed, the use of machine
learning in actuarial science is accelerating. And as our “mind children” (as Hans Moravec,
an AI pioneer, called machines) become more capable, they can help us do things that
we might not otherwise be able to do.

Parameter estimation, especially over multiple dimensions, has long been as much
of an art as a science. Judgment and intuition, useful as they are, are vulnerable to the
human biases that everyone is susceptible to. In addition, subjective methods, as Kunce
and Chatterjee point out, fail to test for and thus may not optimize, generalization and
predictive power. Machine learning can help us reduce biases and maximize predictive
power while avoiding overgeneralization.

Traditionally we have used distributions with tractable mathematical forms to model
the relationships between variables. The non-parametric nature of machine learning can
allow us to forego these distributional assumptions and enable the shape of the model
to emerge from the data. By selecting a (lognormal) distributional form and then using
machine learning algorithms to generate and generalize the parameter estimates, Kunce and
Chatterjee build a bridge between the traditional and machine learning approaches. Thus,
A Machine-Learning Approach to Parameter Estimation is the first monograph published
by the CAS that shows how to use machine learning to enhance traditional ratemaking.

The goal of the authors was to balance goodness-of-fit with parsimonious feature
selection and optimal generalization from sparse data. They used three related machine
learning algorithms: K-nearest neighbor (KNN), kernel regression, and relevance vector
machines (RVM) to first estimate parameter sets and then to simplify the model by
clustering the parameter estimates. For the sake of computational speed, the authors
separate the available data for training and validation from that for testing, but, as
they describe, if computational speed were not a constraint, cross-validation could be
employed to further optimize this analysis. In addition, the authors, by casting parameter
estimation in terms of segmentation, point to the broader scope for this technique.

This monograph lays a foundation for future development in the application of
machine learning in actuarial applications and should serve as a valuable resource for
students and actuarial practitioners. The CAS Monograph Editorial Board thanks the
authors for this valuable contribution to the actuarial literature.

Ali Ishaq
Chairperson

Monograph Editorial Board

Foreword

Casualty Actuarial Society 1

1. Introduction

The problem of searching for patterns in insurance data is fundamental to the actuarial
profession and has an extensive literature going back many decades. Regardless of the
context, many of the solutions reduce to one of parameter estimation. Whether the
needed solution is to estimate parameters of a loss distribution, a regression model, or
a loss-development process, the basic problem of searching for patterns remains the
same. A key decision as part of that analysis is how to segment the data. If we estimate
the parameters for the entire population, the fitted model loses predictive power due to
lack of specificity. Likewise, if we estimate the parameters for every possible slice of
the data, the fitted model loses predictive power due to over-fitting. Regardless of
the problem or the industry, the modeler must find a balance between these two
extremes. While our actuarial world approaches the segmentation issue with credibility
and contextual solutions, the machine-learning domain within the computer science
discipline has been developing algorithms to estimate any type of parameter regardless
of context. Unlike statistical modeling, which designs the relationship between variables
using a mathematical equation provided by the modeler, machine learning is a type of
algorithm that can learn from data, without an explicit relationship structure between
variables. This shift of focus from defining a structure that adequately models the
relationship to learning the structure regardless of its functional form provides the
ability to infer many complex and non-linear relationships. This is also what gives
the “black box” appearance to machine-learning algorithms, so extra efforts need to
be made to demystify how the machine works. Combining the advances in machine
learning with the foundations of actuarial science offers a new approach to the
segmentation issue and the possibility for improved accuracy over standard techniques.
In the last century, reliance on algorithmic learning versus domain expertise was infeasible
due to computational limitations. However, algorithmic learning replacing domain
expertise is a reality today that the actuarial profession faces and needs to embrace for
the future.

In this paper, we introduce a number of machine-learning parameter estimation
approaches and demonstrate how the integration of these techniques into a specific
parameter estimation problem increases the predictive power of the solution. The practical
value of this paper will equip the student and practicing actuary with refined techniques
that can enhance domain knowledge. The interested practitioner can then survey other
existing machine-learning literature to develop a broader understanding, while using
this paper as a springboard in their exploration.

2 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

The motivation for the MLAPE (pronounced as “em-lape”) method is an improved
solution to the segmentation problem, so in Section 2 we state the specific problem we
are trying to solve, the traditional approach to solving this problem, and the MLAPE
approach. We also note the challenges under each of the approaches. We end the
section with a set of reading options for the remainder of the paper depending on the
background of the reader. In Section 3, we introduce the MLAPE method. The section
starts with the general segmentation problem’s mathematical form and notations, which
will assist in the readability of the R and Matlab code. We then provide a description of
the key concepts needed to use MLAPE. We end the section with the detailed algorithm,
which brings the pieces together. In Section 4, we provide a real-world application of
MLAPE on the Texas Closed Claims Database. We provide extensive diagnostic tools
to measure performance and results. In Section 5, we discuss the potential applications
to insurance. We conclude in Section 6 with a recap of major findings.

Casualty Actuarial Society 3

2. Problem

In order to provide a practical demonstration of the MLAPE method, we use the Texas
Closed Claims Data from http://www.tdi.texas.gov/reports/report4.html. The data has
ten years of historical closed claims data from 2003 to 2012 by policy type, business
class and injury county. We have explained this data set in detail in Section 4. We
focus on the Commercial Auto Liability policy type since it has the most closed claims.
Following are the goals of the insurance problem at hand, the traditional actuarial
approach to solving the problem, and the MLAPE approach.

The goal is to establish Increased Limits Factors and Territory Factors for each
combination of business class and county for the Commercial Auto Liability line. The
factors should be stable, reasonable and ensure rate adequacy for a carrier looking to
write Commercial Auto Liability insurance in Texas. Traditionally, there are many ways
of setting these factors.

There is the data-driven approach where we utilize the aggregated Texas Closed
Claims Data to estimate the ILFs and Territory factors for business classes and counties
where loss data is credible. Following that, we use judgement to make ILF “picks” for
business classes and counties where minimal loss data is available. There are also the
non-data-driven approaches where factors are based on competitor filings or on expert
opinion.

We demonstrate how the MLAPE approach is better when compared to the tradi-
tional data driven approach. First, we present the challenges of the traditional data-driven
approach.

Challenges with the Traditional Approach
There are two methodological challenges with the traditional data-driven approach.

1. Data Sparseness. Not every business class and county combination has losses
that can be utilized to estimate ILFs and Territory factors. When such loss data
is unavailable, which as we shall see later is very common, the traditional data-
driven approach needs to make some adjustments. Typically, there are two types of
adjustments. First, losses from “neighboring” counties and “similar” business classes
can be aggregated together to form credible cohorts using judgment. Second, ILF
and territory factors can be directly picked based on business knowledge and expert
opinion. Regardless of the option, there is a fair amount of subjectivity, which
does not test for acceptable levels of generalization and predictive power. Predictive

4 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

power refers to factors being accurate in their ability to estimate unseen data from
county and business classes, while generalization refers to consistency of prediction
accuracy across the spectrum of predictions.

2. Over-Fitting. Even for counties and business classes where there is enough data
available, there is no guaranty that the resulting indicated factors do not over fit
the data. The use of judgment in aggregating the data may create a model that is
excessively complex. In that case, the model then works well on the data used to
build the model but fails when making predictions on new data. It is important to
be able to select ILFs and territory factors, which are predictive and generalizable,
and the traditional approach does not address this challenge.

MLAPE Approach. The machine-learning approach enhances the traditional data-
driven approach to address sparseness while ensuring the model is not excessively
complex. It does so by deconstructing the problem into two sub goals shown below.

Sub Goal 1. Algorithmically find the parameters underlying the statistical distribution
of losses for each business class and county combination for Commercial Auto Liability.
In our Texas closed claims data example we will use the lognormal distribution with the
(m, s) as its parameters (although the MLAPE method is not limited to this particular
choice of distribution; see Appendix I for details).

Advantage.

Data sparseness: Since every business class and county does not have losses that
can be used to estimate (m, s), we perform feature selection as an objective way to
define similarity between counties and business classes. With feature selection, we
algorithmically determine similarity of business classes and counties, which can then
be used as “proxy” losses. Using proxy losses increases the credibility and homogeneity
of parameter estimates and, in doing so, the sparseness issue is addressed, while the
next sub goal solves the generalization and predictive power issue.

Sub Goal 2. Combine the (m, s) pairs from Sub Goal 1 into clusters, to reduce the
total number of estimated lognormal distributions.

Advantage.

Predictive power. Simplifying the model, by reducing the distinct pairs of (m, s) from
Sub Goal 1 into indicated (m, s) clusters, removes the random noise in parameter
estimation, thereby increasing the predictive power. To measure the improvement in
predictive power we utilize a “parameter sweep” framework to split the data into three
sets. Set-1 is used to build the algorithm, Set-2 is used to tune the parameters, and
Set-3 is used to test the performance. This framework lets us gauge the generalization
power of competing candidate models and pick the one set of ILFs and territory
factors which best balances predictive and generalization requirements.

In the remainder of the paper, we will not discuss the traditional approach. There
are many excellent papers on that topic in the existing body of actuarial literature on

Casualty Actuarial Society 5

A Machine-Learning Approach to Parameter Estimation

ratemaking, Increased Limits Factors, territorial analysis techniques, etc. Instead, we
will focus on the MLAPE approach and demonstrate how to use it as a standalone,
balanced method for achieving the goal of parameter estimation.

The reader may skip some sections in the remainder of the paper depending on
their individual machine-learning exposure and overall objective. We present some
suggested reading orders in Figure 1.

• TX Closed Claim application = Assumes prior machine learning exposure and reader
is only interested in full MLAPE application to one real-life example.

• MLAPE Recipe = Assumes prior machine learning exposure and reader is interested
in general MLAPE recipe and full application to one real-life example.

• Machine-learning concepts = Assumes no prior machine learning exposure and
reader is interested in general MLAPE recipe and full application to one real-life
example.

• Mathematical rigor = Assumes no prior machine-learning exposure and reader is
interested in general MLAPE recipe and full application to one real-life example
plus the mathematical rigor for generalization and understanding R and Matlab
naming conventions and code.

Reader's Objective 3.1 3.2 3.3
TX Closed Claim Application
MLAPE Recipe
Machine-learning concepts
Mathematical rigor

Section
4 5 6

Figure 1. Suggested Reading Order

6 Casualty Actuarial Society

3. MLAPE (Machine-Learning Approach
to Parameter Estimation)

Section 3 is divided into three parts. Section 3.1 provides the general segmentation
problem and notations. Section 3.2 discusses the key concepts embedded within MLAPE,
including both the process to be followed and an introduction to the selected machine-
learning algorithms. Finally, Section 3.3 provides the step-by-step MLAPE Recipe.

3.1. The General Segmentation Problem and Notations
First, we restate the previously stated goals as the general segmentation problem. While

not needed for the discussion on ILFs and territory factors, doing so serves two purposes.

1. It brings a wider class of insurance parameter estimation problems within the reach
of the MLAPE method.

2. It demonstrates how MLAPE naturally tackles the problems of
a. Identifying similar counties or (m, s) pairs
b. Balancing data sparseness and Credibility
c. Maximizing predictive power.

The General Segmentation Problem
Consider a process dependent on a set of features in a D-dimensional space, which

can give rise to Y (possible) output values. An example is losses originating from a set
of business classes and counties, such as in the Texas Closed Claims Data example. The
losses depend on the characteristics (i.e., the D dimensions) of the business classes
and counties. Examples of business class dimensions are injury rates, employment
metrics, goods vs. service producing, etc. Similarly, dimensions for counties may be
average income, education level, latitude, longitude, etc. These losses are generated
from a set of distributions P(y ∈ Y  pd) where p = {pd  d ∈ D} is the set of parameters.
Each distribution is characterized by parameters pd for a particular segment d. The pd
in our application are the (m , s) pairs. In subsequent notation we will drop the explicit
y and p and use P(d) and P(y  d) interchangeably to imply P(y ∈ Y  pd). Given a set
of losses { yij = j-th loss from i-th segment di}, the goal is to model these distributions.
In the case of modeling using maximum likelihood, the objective becomes find p to
maximize (Kleinberg et al. 2004)

∑∑)()(log .ij iji P y d

Casualty Actuarial Society 7

A Machine-Learning Approach to Parameter Estimation

Restated, it is assumed that the values originate from some unknown but “true”
set of distributions P, and the parameters of P are a function of the unique realizations
in D. At the one extreme, it is not feasible to estimate each P(dn) where n is the total
number of (possible) segments. Estimating parameters for each segment is prohibitive
due to computational effort, implementation costs and lack of accuracy. At the other
extreme, one could assume pd = p for all d, but that would miss relevant segmentations
of the underlying loss data. The optimal solution lies somewhere along the continuum
in between these two extremes. The segmentation problem then becomes given a set
of losses { yij = j-th loss from i-th segment di} and an integer k, find k segments s1, . . . ,
sk ∈ D and parameters q 1, . . . , q k where 1 ≤ k ≤ n to maximize

max log .1 P y sm ky ij m∑ ()≤ ≤

Unfortunately, a direct optimal solution to this objective is intractable and so,
in the case of our algorithm, we turn to machine-learning techniques to provide an
approximate answer. Using these techniques in turn raises additional issues regarding
feature selection, data sparseness, and the selection of k, the number of segments.

First, the “true” dimensionality D of Y is unknown and y is only observable in
a subspace of lower dimensionality. For example, while in reality there are many
considerations involved in defining a good county for commercial auto liability insurance
business, most experts would make a small list of objective, measurable, and practically
verifiable features—demographics, legal environment, business outlook, etc. The list is
small and finite relative to what truly is the causal set and represents a good approximation.
Essentially, they select features in a manner that explains most of the “signal” (which in
this case is the county quality).

Second, the data is also sparse—only y  (which is << Y ) values can be observed (vs.
all possible values  Y ). Some reasons for this sparseness include censoring, truncation,
and the nature of low-frequency lines of business.

Third, while we would like to select a large k and over-parameterize P to fit every
value of y giving us a great fit, it would be a poor generalization for other values in Y.
Any estimation process must take into account this tradeoff—training data fit vs. test
data fit.

The goal of our algorithms is to solve the problem of estimating the parameters of P
while balancing the three main considerations—feature selection, data sparseness and
goodness of fit.

In our implementation, we will assume P is lognormal. There are three considerations
for choosing the lognormal distribution. First, it has historically been the distribution of
choice (see Dropkin (1964) and Bickerstaff (1972)) for many insurance processes, making
it a good candidate for an in-depth case study. Second, the algorithms extend naturally
to any specific choice of P and by making this choice there is no loss of generality (see
Appendix I for the changes to MLAPE needed for the Poisson distribution). Rather, we
exploit the computational simplicity offered by the lognormal closed form solutions. Third,
it creates a good platform for future research to extend our ideas for other choices of P.

8 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

Notations
In order to illustrate the method(s) we introduce a set of notations in addition to

the ones introduced previously.

Fd = {fi 1 ≤ i ≤ D } is the set of all features that are observable (examples are education
level, injury rates etc.). These are the dimensions used to measure similarity or
dissimilarity of business classes and counties. The algorithms will need to “decide”
how many and which features to use.

fi,j is the j-th level of the i-th feature. So, if f1 is average income level of a county then
f1, 3 would be a distinct level at, say, $45,000.

«fi « is the number of distinct levels of fi.
m = P fi  is the number of unique combinations of all levels of all features in Fd. Note

that n << m hence the issue of data sparseness. Furthermore, there is a tradeoff
involved in “deciding” between d (feature selection) and the degree of sparseness.
As d increases, the degree of sparseness increases – “the curse of dimensionality”.

U is an m by d matrix, which is an enumeration of all d features across the columns
and every unique combination of their levels as the rows. The data, observed (n)
and unobserved but possible (N - n), is dependent on U. Each row Ui is assumed
to generate data according to a lognormal distribution with parameters (m i, s i). By
observing the n data values, we will be able to estimate the parameters for some of
the lognormals. The goal of the algorithms is to “map” the other Ui, where we do
not have any data, to one of these lognormals.

We use two types of non-parametric machine-learning methods to do this mapping -
1) A K-nearest neighbor approach (Method A) and 2) kernel based approaches (Kernel
regression and RVM - Relevance Vector Machine) (Method B). Both of these methods
are illustrated as process diagrams in Appendix II and III. We have developed R code
using the diagrams as a blueprint. Our choice of these two methods is because, for a
non-parametric estimation problem, these two approaches are two sides of the same
coin (see Bishop 2006). If the problem is to measure similarity of neighbors, then the
two sides of the coin are (1) how many neighboring points need to vote, or (2) how
big a region should be used to count the votes. Fixing the number of neighbors while
varying the volume around the central point gives rise to the K-nearest neighbor
approach (Method A). Fixing the size of the region and varying the number of
neighbors gives rise to the kernel regression approach (Method B). Our algorithms
will let us evaluate the pros and cons of one method versus the other for a chosen
data set. This is important in the context of the “No Free Lunch” ideas that no one
method will be universally better across all data sets. Therefore, it is important to
develop multiple algorithms and use them in accordance with the situation. In order
to balance over-fitting versus generalization we will split the n observed data values
into training, validation, and test sets and encapsulate each of our Methods A and B
within a K-means clustering algorithm to optimize the number of different lognormals
we finally predict. Both methods using the K-means clustering algorithm will be
compared on the same independent test data set using the negative log-likelihood of
the data and other metrics.

Casualty Actuarial Society 9

A Machine-Learning Approach to Parameter Estimation

3.2. Key Concepts
In this section, we list and describe the key concepts used in the MLAPE procedure.

Providing a full and detailed treatment of these topics is beyond the scope of this work
and this section is intended to be an introduction to these vast and deep topics.

Training and Testing
The running of any machine-learning algorithm can be described as a function f (x).

The exact form of the function f is determined during the training phase (aka the learning
phase). Typically, this phase involves using a set of known data pairs {x, y} to estimate f.
Once the model is trained, it can make predictions on a test set for x that it has not
seen in the training phase. The ability of the model to make accurate predictions for
such unseen x is called generalization. Since most real-world training sets represent
only a small proportion of all observable data, good generalization power is central
to a machine-learning algorithm. In order to achieve this, most machine-learning
exercises begin with splitting the available data into a training set and a test set. Popular
convention is to use between 70% and 90% of the data for the training phase and keep
the remaining for either testing or for validation (described below).

Validation and Parameter Sweeping
Usually the function f (x) will have a set of parameters, which will need to be tuned

for optimal performance. One way to tune such parameters is to use parameter sweeps
on a validation data set. Parameter sweeping is the process of iterating through a
domain of user-defined parameter ranges and measuring the output to pick a suitable
value. The validation set is the set of data on which the results of the parameter sweep
are examined. Once a model is trained using the training data set and parameters are
tuned using the validation set, no more tuning is performed. At this point, the final
model is tested for generalization on the test or holdout set. Common practice uses a
70/20/10 split of the data where 70% is used for training, 20% is used to validate or
tune the parameters, and the final 10% is used to test generalization.

Cost of Data
Splitting the input data into a training, validation, and test set is wasteful in real-

world applications due to the limitations on data availability. Ideally, we would want to
use all the available data to train or learn. One approach to get around this problem is
to use cross-validation. However, cross-validation increases training time exponentially.
In the MLAPE method, we will focus on splitting the data, as discussed previously,
while noting that there is room for improvement with cross-validation, if training time
is of lesser concern.

Key Techniques
In order to understand the key conceptual differences between KNN, kernel

regression, and RVM, we use the following diagram (Figure 2).
The blue point represents the probe, or the x for which we wish to make a prediction.

In the KNN algorithm, we find the closest training data points (red points) and use

10 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

them for prediction. In kernel regression, we overlay a kernel function centered on the
probe and compute weights for the entire training set. We use this weighted average as
the prediction.

In RVM, we use the Bayesian framework to determine the relevant vectors from the
training data and then use the kernel function to make a prediction. Under this conceptual
framework, these three machine-learning algorithms are similar and build on a common
theme. Next, we provide descriptions and key equations of each of the three techniques.

K-Nearest Neighbors
If we can count and compute distances, then we can perform K-nearest neighbor

(KNN) searches. KNN has the ability to make accurate predictions without making
assumptions about the underlying structure of the data, errors, or distributions. In
this sense, it is a non-parametric method. Given a probe, the vector for which we wish to
make a prediction, the KNN algorithm says, make predictions using the k most similar
vectors from the training set. In order to measure similarity, we typically choose the
Euclidean metric. The world of machine-learning considers KNNs to be one of the simplest
machine-learning algorithms. There are many variations to the base theme (see Parvin et al.
2008) using different distance metrics, weighting points to reflect influence, evaluating
measures to select a k. Detailed theoretical descriptions and examples are available to the
interested reader in any standard introductory book on machine learning.

K-Means Clustering
This algorithm finds K clusters within a set of multidimensional data points. It is an

unsupervised learning technique. Fundamental to the K-means clustering algorithm is
an objective function L, which is the sum of squared errors of each point to its assigned
cluster center, times a binary variable rnk ∈ {0,1}, where k = 1, . . . , K describes which
of the K clusters the data point xn is assigned.

m∑∑= −
==

2

11
L r xnk n k

k

K

n

N

Intuitively, a good clustering plan will have tight groupings of points around their
cluster center and hence, a lower objective function value. Using a two-step optimization

Probe

Training Data

KNN (K = 3)

Probe

Training Data

Kernel Regression

Kernel
Function

Probe

Training Data

RVM

Kernel
Function

R
E
L
E
V
A
N
C
E

V
E
C
T
O
R
S

Figure 2. Feature Space Representation

Casualty Actuarial Society 11

A Machine-Learning Approach to Parameter Estimation

process, the K-means clustering converges to a cluster map where each cluster center is
the mean of the points within the cluster. The solutions for rnk and mk are given by:

m
=

= −





1 if arg min

0 otherwise

2

r
k x

nk

j n j

m ∑
∑

=
r x

rk
nk nn

nkn

The first expression says assign the nth data point to the closest cluster center.
The second expression says set the cluster center to be the mean of all the data points
assigned to the cluster, hence the name “K-means.” These equations are used iteratively
until convergence is achieved.

K-means clustering is a popular record reduction technique and has been studied
extensively. Common variations have focused on optimizing the speed of the base
algorithm to eliminate unnecessary distance computations, extensions of the algorithm
to non-Euclidean distance, and guidance on selecting K.

Kernel Regression
Let us digress from the Texas Closed Claims example for a second to understand

how kernel regressions work. Consider a simple data set with seven records and one
feature. The data contains driver class (good and bad) and the number of traffic tickets
the driver has. While we intuitively feel that the more traffic tickets a driver has, the
more likely he or she is a bad driver, that relationship is not exact. There could be
other features which help explain why two drivers with six and seven traffic tickets are
good, but let us assume we do not know those features. The aim is to find a line, which
separates the two driver classes using the only known feature – number of tickets. In
Figure 3, we plot the data in one dimension and represent the good drivers as green
dots and bad drivers as red dots.

Clearly, there is no one straight line which separates the two driver classes. The two
driver classes are said to be linearly inseparable. In addition, we cannot manufacture
new features and append to our data set. However we can transform our data set
and view it in a two-dimensional space. We plot the data in a plane where the x-axis
represents the number of tickets and the y-axis represents the square of the number of
tickets.

0 1 2 3 4 5 6 7 8

of Tickets

Class # of Tickets
Good 1
Good 2
Good 3

4
5

Bad
Bad
Good 6
Good 7

Figure 3. Driver Class Example before Kernel Transform

12 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

Figure 4 shows the plot of this transformed data set. We can now find a line in this
two-dimensional space which separates the driver classes. It is the line which passes
through the points (4, 16) and (5, 25). All good drivers represented by the green dots
lie above this line and all bad drivers represented by red dots lie on this line.

Note that we did not need to create new features or find the true dimensionality
of the driver class data. A linearly inseparable problem in a lower dimension becomes
linearly separable in a higher dimension by a simple transformation of the input space.
Indeed, this concept is at the heart of using kernels in machine-learning algorithms.

Returning to the Texas Closed Claims example now, we see that business classes and
counties are analogous to the driver class above and that features such as education level,
average income, employment rates etc. are analogous to the number of tickets. So for
example, if two counties were not linearly separable based on average income, the kernel
regression may find a transformation of the average income space where the counties
are linearly separable. Next, we provide a formal definition of kernels and their uses.

A kernel is a function which measures similarity between two vectors. In kernel
regression, we take a weighted average using evaluations of the kernel function at
training data points for the prediction for the probe. The benefit of using a kernel is it
eliminates the need to know the true dimensionality of the input space or to list out the
high-dimensional feature vectors. Without kernels and their advantages, many machine-
learning problems, which are not separable in lower dimensions, would continue to be
unsolvable.

Kernels – A kernel is a non-negative real-valued integrable function k that has the
following properties:

x 1.k dx∫ () =−∞
∞

x x xfor all .k k() ()− =

-20

-10

0

10

20

30

40

50

1

Sq
ua

re
 o

f #
 o

f T
ic

ke
ts

2 3 4 5 6 7

of Tickets

Figure 4. Driver Class Example after Kernel Transform

Casualty Actuarial Society 13

A Machine-Learning Approach to Parameter Estimation

Kernels may be stationary (invariant to translations in input space), i.e.,

, , orx x x x1 2 1 2() ()= −k k

they may be homogeneous (radial basis functions), which depend only on the magnitude
of separation between two points, i.e.,

() ()= −k k, .x x x x1 2 1 2

The Gaussian kernel (which is stationary and homogeneous) is

s
() = − −





k x x
x x

1 2
1 2, exp
2

.
2

2

The feature space of the Gaussian kernel has an infinite number of dimensions and
therefore is a popular choice for real-world problems.

Constructing Kernels – A technique for constructing new kernels is to build them out
of simpler kernels as building blocks. This can be done using the following properties.

Given valid kernels k1(x1, x2) and k2(x1, x2), the following are also valid kernels:

x x x x1 2 1 2))((=, ,1k c k

() ()() ()=k f k f, ,1x x x x x x1 2 1 1 2 2

x x x x1 2 1 2)))(((=, ,1k q k

() ()()=k k, exp ,1x x x x1 2 1 2

() () ()= +k k k, , ,1 2x x x x x x1 2 1 2 1 2

() () ()= ∗k k k, , ,1 2x x x x x x1 2 1 2 1 2

() ()() ()= ϕ ϕk k, ,3x x x x1 2 1 2

() =k , Tx x x A x1 2 1 2

where c > 0 is a constant, f (x) is any function, q(x) is a polynomial with non-negative
coefficients, j(x) is function from x to RM, k3 is a valid kernel in RM, and A is a
symmetric positive semi-definite matrix.

The Kernel Trick. The idea behind the kernel trick is if the input feature vector x
enters in the machine-learning algorithm only in the form of scalar products, then we
can replace that scalar product with some other choice of kernel. For example, in the
case of the simple linear regression model, Y = Xa + , with solution a = (XTX)-1XTY,
the feature vector X enters the solution of the parameters as just a scalar product. We

14 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

can then define the linear kernel function K(X1, X2) = X1
TX2 and recast the solution of

the linear regression problem into one where the X’s only enter via the kernel function.
Using this dual representation lets us work directly in terms of kernels while avoiding
the explicit introduction of the feature vector. This implicitly lets us use feature spaces
of high and, in the case of the Gaussian kernel, infinite dimensionality.

Using Kernels in Regression. Consider the general problem of estimating the con-
ditional expectation of a random variable E[Y  X] = M(X) where M is an unknown
function. Once we choose an appropriate kernel function K, the kernel regression
model (also known as the Nadaraya-Watson model) estimates M as

x
x

x
.M

K x y
K x

i i

i

∑
∑

() ()
()

= − ∗
−

Here K is a suitable kernel (such as the Gaussian kernel defined previously) and {xi, yi} are
training pairs. In other words, kernel regression estimates the conditional expectation
of the target around a probe as a weighted average of the training samples where the
weights are calculated using a user-defined kernel function centered on the probe.

Relevance Vector Machines
The relevance vector machine or RVM (Tipping 2001) is a Bayesian sparse kernel

technique, which leads to the algorithmic selection of “relevant vectors” from the
training set to make predictions. This selection of only relevant training data is what
leads to improved performance of the RVMs. Although RVMs select only the relevant
training points, this is not at the cost of prediction accuracy and they have remarkably
similar generalization errors to other machine-learning algorithms. We present the
model and the key update equations that characterize RVMs. The underlying model
for RVMs is

p(Y «X, w, a) = N(M(X), a-1), i.e., the conditional distribution is Gaussian with mean
M(X) and precision = a. The inverse of the variance is the precision.

M(X) = ΣN
n=1 wn * K(x, xn), where wn is the weight of each training data point and K(x)

is a kernel defined previously such as the Gaussian kernel.

So far, this is similar to the model structure of kernel regression. Where RVMs differ
is in the next step where we first introduce a separate hyperparameter a i for each
weight parameter wi and then use the Bayesian framework with a suitable prior to
come up with the posterior distribution of the weights. The form of the prior is
assumed to be

a∏ ()() = −
=w ` 0, .1

1p N ii
N

When we maximize the likelihood, a significant proportion of these hyperparameters
a i go to ∞, and the corresponding weight parameters have posterior distributions that
are concentrated at zero. These are the “irrelevant” training data points, and the RVMs

Casualty Actuarial Society 15

A Machine-Learning Approach to Parameter Estimation

therefore prune out only the relevant vectors. Assuming we have a set of N training
data points {x, y} then the posterior distribution is given by

w y x, , , , .p N` a l S() ()=

Where l = aSKTy, S = (diag(` i) + aKTK)-1 and K is a symmetric (N + 1) × (N + 1)
kernel matrix with elements K (Xn, Xm). Using evidence approximation (or Type-2
maximum likelihood), we have the following update equations:

a g
m

= 2i
new i

i

g
() = −

− Σ
− y Ka l1

2

N
new

i i

where mi is the ith component of l and g i = 1 - a i Σi where Σi is the ith component
of the posterior covariance matrix S. Learning proceeds by choosing initial value
of a and b , evaluating the mean and covariance of the posterior, re-estimating the
hyperparameters, re-estimating the mean and covariance and so on until a suitable
convergence criterion is satisfied.

3.3. MLAPE Recipe
Here we provide the details necessary to construct the MLAPE algorithm. We start

by presenting the overall framework and then provide pseudo-code, required assumptions,
and explanations for each of the component modules.

Overall Framework
Regardless of the exact machine-learning methods, distributions, or assumptions

employed, the MLAPE algorithm follows the same four-step modular framework. Pre-
processing the data is the first step of the framework, which normalizes the features and
organizes the data structure in an efficient manner for training of the machine-learning
model. Machine-learning regression is the second step of the framework. Here, we train
a machine-learning regression model and predict the distribution parameters for each
level in U. Since this process results in a unique set of distribution parameters for each
level of U, which we know over-fits the data and lacks optimal predictive power, the third
step of the framework is clustering. In the clustering step, the individual distribution
parameters are grouped together into k segments using their similarity within the feature
space, Fd. At this point the output is complete, but as previously discussed, the running
of any machine-learning algorithm requires a parameter sweep to tune the model and
find the “best” set of parameters to make predictions. To find this “best” set, the fourth
step of the framework is validation. Here, we test the accuracy of the predictions on data
the model has never seen before and assess how to improve that accuracy by changing
our models or assumptions. These four steps define the MLAPE algorithm and are
repeated until the modeler finds an acceptable set of “best” distribution parameters.

16 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

MLAPE Algorithm

Program Flow

1 PRE-PROCESS the data

2 PERFORM MACHINE LEARNING REGRESSION to predict the distribution parameters

3 CLUSTER the distribution parameters

4 VALIDATE the accuracy of the predictions

5 REPEAT steps 1–4 until the “best” set of distribution parameters is found

Step 1. Pre-Processing
Pre-processing the data is an important first step in any machine-learning algorithm

and, since each of the regression models (KNN, kernel and RVM) use distance as the
key metric for training and predicting, we will take special care to ensure our treatment
of distance is consistent across models. In the case of the MLAPE algorithm, the purpose
of the pre-processing step is four-fold. First, we standardize each of the features so that
each feature contributes equally to the distance measure. Second, we assign weights to
the standardized features to allow the modeler to control the relative importance of each
feature. Third, we calculate revised weights to ensure that the average distance between
all points are consistent between weight sets. Fourth, we split the data into sets for
training, validation, and testing.

Pre-Processing

Program Flow

1 STANDARDIZE the features

2 WEIGHT the standardized features

3 REVISE weights to balance the average distance

4 CREATE training, validation and test sets

Input Required for Parameter Sweep

Feature weights – vector of d weights; one for each feature

Standardizing Features. When using distance-based models, standardizing features
should always be the first order of business. Since the range for one variable may be
larger than another variable by many orders of magnitude, any differences in the first
variable can have a significantly larger effect on a distance measure than the second
variable, giving the first variable a disproportionate impact on the model predictions.
To eliminate this distortion, we standardize each feature to have a mean of zero and a
standard deviation of one using the following Z-score formula:

s
=

−
i,d,Z

, ,

,
X

X Xi d d S

d S

Casualty Actuarial Society 17

A Machine-Learning Approach to Parameter Estimation

where:

 Xi,d = the individual data point i from the d th feature
 X

–
d,S = the sample average of all data points from the dth feature

  sd,S = the sample standard deviation of all data points from the d th feature
 Xi,d,Z = the individual data point i standardized to 1s from the d th feature

The benefit of using the Z-score formula is it produces standardized data where each
point falls in a normal distribution and can be used as an indicator for outliers.

Weighting Features. For the initial exploration of a feature set, we give equal weight
to each of the standardized features in U. We then vary the weights in subsequent
rounds based on the predictive power of the feature assessed during the parameter
sweep. If a weight for a feature is increased, then the models identify more items of that
feature as neighbors, with differences between other features being less important. We
adjust the standardized features with the following formula:

= ∗, , , , ,X w Xi d Z w d i d Z

where:

 wd = the weight given to the dth feature
 Xi,d,Z = the individual data point i standardized to 1s from the d th feature
 Xi,d,Z,w = the weighted individual data point i standardized to 1s from the dth feature

Revising Weights. The use of weights introduces distortions into the distance
calculation since the average distance between all points changes for each weight set. A
normalization procedure is used to compute an “effective” set of weights that provides
equivalent feature discrimination while still resulting in the same average distance as
the set of un-weighted features. The normalization procedure is as follows:

1. Compute the average distance between all pairs of standardized points in U. For
m points, the number of distinct pairs is m(m - 1)/2. This result is d0.

2. Compute the average distance between all pairs of weighted standardized points
in U. This result is dw.

3. Compute the “effective” weights by we = w * (d0/dw) which are then used to compute
the final weighted standardized features.

Since computation of the distance between all pairs of points is computationally
expensive for large m, we use a sampling method demonstrated to be within 0.25% of
the true average.

Step 2. Machine-Learning Regression
Conceptually, the program flow for Step 2 is straightforward. First, estimate the

distribution parameters for each level of the features in the training data. Second, train
a regression model on the distribution parameters using the features. Third, predict the
distribution parameters for each level within U, which in the case of the construction

18 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

of the MLAPE algorithm for this paper, is an estimate of the lognormal mu and sigma.
While any regression technique could be inserted into this step, we chose to implement
three methods here that are widely used in modern machine-learning applications, are
non-parametric, and (for kernel and RVM regression) include a Bayesian element to
address credibility.

Regression Model I. K-Nearest Neighbors (KNN)
KNN is a straightforward and flexible method for performing regression and

classification where one uses the nearest neighbors in the training data to directly predict
the values in the validation and test data. This process is easy to envision. First, select
a probe from the feature set. For the MLAPE algorithm, we send each level of U as
probes to generate predictions. Second, find the k nearest neighbors to the probe in
the training data. For this step, there are both a variety of methods used to search the
training data and a variety of ways to define the distance between two points. These
selections can affect both the running time of the procedure and the accuracy of the
predictions and require the modeler to understand the structure of the data when setting
these inputs. Third, calculate a measure on the k values that serve as the prediction.
In the case of MLAPE, we are predicting distribution parameters so the “calculation”
on the k values is a fitting routine that returns both a point estimate and a confidence
interval for each parameter.

Adjusting for Outliers. As described, the KNN regression is susceptible to distortion
from outlier values. If the k is relatively low and outlier values have been selected as
nearest neighbors, the accuracy of the predictions is diminished. To account for this,
we adjust the training data by selecting an upper limit for the value of outliers and
either remove values from the training data or censor values at the upper limit. The
upper limit and the method of adjustment should be based on both the judgment of
the modeler and tested as part of the parameter sweep.

K-Nearest Neighbors

Program Flow

1 ADJUST the training data for outliers

2 FOR EACH level of features in U

3 FIND the k nearest neighbors in the training data

4 SELECT the k values

5 ESTIMATE the distribution parameters

Input Required for Parameter Sweep

adjusting for outliers – amount at which to either remove or censor training set values

k – the number of nearest neighbors to select

fitting weights – functional form and values

Casualty Actuarial Society 19

A Machine-Learning Approach to Parameter Estimation

Finding Nearest Neighbors. Given a set of training data and a distance function,
a K-nearest neighbor search finds the k closest points in the training data to the
probe. There are many efficient, flexible and freely available K-nearest neighbor
search algorithms in R. Happily, this takes the search method question off the table,
removes the need for the actuary to become an expert in designing super-efficient data
structures with optimized algorithms and allows one to focus on solving the insurance
problem at hand. For the distance function, we use the standard Euclidean function
since we have already accounted for the variability between features during the pre-
processing step. The only requirement we have for the nearest neighbor search is that
it returns both the list of nearest neighbors and their distance from the probe. For our
implementation, we chose the ‘FNN’ package by Beygelzimer et al. (2015), which
meets these requirements.

The key input to the KNN search is the number of k nearest neighbors to find.
There is no set formula to determine the value of k so we will test a range of reasonable
values as part of the parameter sweep to determine the optimal value. The lower
bound and the intervals tested within this range need to be selected by judgment
considering the expected variability of the values being fitted and the running time of
the algorithm. For values with high expected variability, the lower bound should be set
such that extreme losses should not produce estimates for the distribution parameters
that are considered unreasonable. For MLAPE applications where U is large, select
fewer intervals to manage the run time and allow for a broad parameter sweep of the
various settings.

Estimating the Distribution Parameters. Once the k nearest neighbors have been
selected we use those values in a fitting routine to estimate the distribution parameters
for the probe. As mentioned in the problem definition, we are estimating lognormal
parameters considering censoring, truncation and weighting by distance from the probe
using an iterative maximum likelihood technique. Again, we turn to existing packages
to implement this. The R package ‘fitdistrplus’ (see Delignette-Muller et al. 2015)
provides a fitting function which will determine both the estimate and confidence
interval for the mu and sigma of a lognormal distribution considering both censored
and truncated data.

A Gaussian decay function, wi = 1 - F(di)/0.5, is used as the weight for the losses in
the density estimation. Similar to credibility, this has the effect of giving more weight
to closer points and less weight to farther points and affects the width of the confidence
intervals for mu and sigma. Since the weights are not considered explicitly by the fitting
function, we replicate the values in proportion to the weights before estimating the
distribution parameters.

Maximum A Posteriori (MAP) Distribution Parameter Estimates
The KNN methodology guarantees k training data points will be included in

each estimate of the distribution parameters and, as long as we set k high enough, gives
us confidence such estimates meet some credibility standard. Given the fixed volume

20 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

versus fixed count nature of the kernel and RVM regressions, a similar guarantee
cannot be made. To account for this potential variation in sample size, we need to
develop credibility weighted distribution parameter estimates for the regression and
to do so we turn to Bayesian statistics. Both Mayerson (1964) and Meyers (1984)
have demonstrated the equivalency between traditional actuarial credibility and the
MAP estimates resulting from Bayesian statistics. In this section, we will specify the
model underlying the Bayesian MAP estimate and give the distribution parameter
MAP estimates in terms of the parameters of the model. Additionally, we demonstrate
how to use the sequential update process to generate the estimates.

Normal-Gamma Model. As previously mentioned, for this implementation of the
MLAPE algorithm we are estimating the parameters for a lognormal distribution. Let
the values be represented by X1, . . . , Xn  m ,s 2 i.i.d. ~ LN(m ,s 2), where both m and
s 2 are unknown. While a closed solution to the MAP estimate for a lognormal
population is intractable, we can make a simple transformation of the values to a form
that does have a solution. If we define Yi = ln(Xi) then we have Y1, . . . , Yn  m ,s 2 i.i.d.
~ N(m ,s 2), where both m and s 2 are unknown. The MAP estimates for this model are
known and follow the so called normal-gamma distribution. Following the derivation
in Petris et al. (2009), the prior distribution of mu and sigma has four parameters and
consists of

where has the role of the0 0n n “prior sample size”

= +2 10 0a n

- the prior estimate for mu0m

s - the prior estimate for sigma0

With this model we see the likelihood of the distribution parameters is proportional to
an inverse gamma density for the variance and a normal density for the mean given by

s ,
1

where
2

2 1
0

0
0

0
0
2a

b
b

n
sΓ 



 = ∗−

m s s



 , .2

0
0
2

0
N m

n

We then observe q data points with which we will update the parameters for the
posterior distribution by (see Haines 2011)

= +0n n qq

= +
20a a
n

q
q

Casualty Actuarial Society 21

A Machine-Learning Approach to Parameter Estimation

0 0

0
m

n m q y
n qq =

+
+

∑ () ()= + − +
+

−µ
[]∈

b b y y
n q

n q
yq i

i q

1
2

1
20

2

1,

0

0
0

2

With this update, the posterior distribution of mu and sigma is then

s Γ 





−
 ,

12 1 a
bq

q

m s
s





 , .2
2

N m
nq

q

q

With this derivation, we now have the formulas needed to calculate the MAP estimate
for the mu and sigma from a lognormal distribution for the set of values from each
unique level of features in U. In addition to the formulas, we are also required to provide
prior estimates for mu and sigma and n0, which represents the imaginary number of
“prior observations” the mu and sigma prior estimates are based on. The selection of n0 is
arbitrary. If we select a high value then the q observations receive low credibility, while if
we select a low value then the q observations receive high credibility. As such, we will let
the data guide this selection and include n0 as a setting for each scenario in the parameter
sweep. Prior estimates for mu and sigma can either come from previous studies or use
an un-informed prior, which is simply the mu and sigma for the entire training data set.

Sequential Updating. Unfortunately, the normal-gamma formulation provided above
does not take into consideration the censoring and truncation of claims, which again
makes a closed solution intractable. To address this issue we can turn to sequential
updating and a common approach when utilizing Bayesian statistics, Monte Carlo
simulation. Sequential updating is a formulation of the MAP posterior estimates which
asks the question “if I were to take one more observation, yn, how would that change
my posterior estimate?” Petris et al. (2009) provide the following sequential update
formulas for the normal-gamma distribution:

11= +−n nn n

= +−
1
21a an n

()= +
+

−−
−

−
1

11
1

1m m
n

y mn n
n

n n

()= +
+

−−
−

−
−

1
2 11

1

1
1

2b b
n

n
y mn n

n

n
n n

22 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

Since this formulation allows us to add each point individually we can consider the
effects of censoring and truncation before updating the MAP estimates. For truncation,
we adjust the observation to a corresponding value that would come from the same
Z-score of a non-truncated distribution before completing the update. Similarly for
censoring, we will simulate an excess amount from above the censoring limit and add
that to the observation before completing the update. This update process is repeated
for each observed value within each level of U. The final issue needing consideration
with this sequential update approach is the resulting MAP estimate of the distribution
parameters depends on the order the values are included in the update. This comes
from using the interim mu and sigma updates while simulation adjustments are made
for censoring and truncation. To address this issue, we will shuffle the values before
starting the sequential update process and then repeat the process until the cumulative
average estimates for the distribution parameters changes by less than a specified
tolerance after each update.

Normal-Gamma Sequential Update

Program Flow

1 ADJUST the training data for outliers

2 FOR EACH level of features in U

3 SELECT the values from the level

4 ASSIGN prior values for mu and sigma

5 INITIALIZE the Normal-Gamma parameters

6 SHUFFLE the values

7 FOR EACH value in the selection

8 if censored then SIMULATE a value from the tail

9 if truncated then ADJUST for the missing probability

10 UPDATE the Normal-Gamma parameters

11 CALCULATE the cumulative average of the posterior mu and sigma estimates

12 REPEAT step 3 until the change in the cumulative averages is more than a given
tolerance

Input Required for Parameter Sweep

adjusting for outliers – amount at which to either remove or censor training set values

n0 – the number of “prior observations”

tolerance – the min. difference for the updated cumulative average change in both
distribution parameters

Truncated Values. Our treatment of truncated values follows the treatment of a
truncated univariate normal random variable as described by Griffiths (2004). If our
observed value, xi, comes from a normal distribution truncated at a, and given (m , s 2),

Casualty Actuarial Society 23

A Machine-Learning Approach to Parameter Estimation

we can calculate a corresponding value, yi, from the non-truncated distribution with
the following formulas:

m
s

m
s

m
s

=
Φ −





− Φ −





− Φ −





1
T

x a

a

i

m s ()= + Φ−1y T .i

For truncated values within the sequential updating process, we will be using the
observed value and the interim m and s 2 estimates to calculate T, T to calculate
the corresponding value from the non-truncated distribution y, and y to update the
parameters for the normal-gamma distribution.

Censored Values. Censored values do not have a similar closed form solution and
therefore require a Monte Carlo simulation approach. For each censored value, ci, we
utilize the following simulation procedure:

1. Calculate the Z-score at ci using the interim m and s 2.
2. Calculate cumulative normal probability, F(Z).
3. Draw p, a uniform random variate between zero and one, and simulate the

uncensored cumulative normal probability by F′(Z) = F(Z) + p (1 - F(Z)).
4. Calculate the corresponding value from the non-censored distribution, yi, by

yi = m + s F-1 (F(′Z)).

Regression Model II: Kernel Regression
Kernel regression is a non-parametric method for performing regression where, in

the case of the MLAPE algorithm, we use a weighting function (the “kernel”) applied
to the MAP distribution parameter estimates from the training data around a probe
(the “bandwidth”) to directly predict the values in the validation and test data. Varying
both the kernel function and the bandwidth are part of the parameter sweep since
either may affect the accuracy of the predictions. While non-parametric methods can
handle complex data structures better than parametric methods, the modeler should be
cautioned they are much more computationally demanding and may require significant
runtimes.

For the MLAPE algorithm, we have selected the popular Gaussian kernel, otherwise
known as a radial basis function kernel. In this case, the denominator of the kernel,
2s 2, is replaced with the bandwidth, b. The effect of increasing b is to increase the
width of the kernel which increases the number of training points in the predicted
value. Conversely, the effect of decreasing b is to decrease the width of the kernel
which decreases the number of training points in the predicted value. The optimal
value for the bandwidth depends on the feature space and needs to be determined
experimentally through the parameter sweep.

24 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

Kernel Regression

Program Flow

1 TRAIN a kernel regression model using the MAP distribution parameter estimates from
the training data

2 PREDICT the distribution parameters for each level of features in U

Input Required for Parameter Sweep

kernel – the functional form of the weighting function

bandwidth – the ‘size’ of the area to search around the probe

Regression Model III: Relevance Vector Machine (RVM) Regression
RVM regression is a non-parametric method for performing regression where, in

the case of the MLAPE algorithm, we use a weighting function (the “kernel”) applied to
the MAP distribution parameter estimates from the training data to identify “relevant
vectors” around a probe. These vectors directly predict the values in the validation
and test data. Varying both the kernel function and the corresponding kernel hyper-
parameters affects the accuracy of the predictions and the settings for both are part of
the parameter sweep. To implement the RVM regression in R we have utilized the
kernlab package. This package offers a breadth of kernel functions and settings
to perform a RVM regression and we refer the reader to the kernlab vignette by
Karatzoglou, Smola and Hornik (2015) for complete details.

Like the kernel regression, we have selected the Gaussian kernel for the RVM
regression as well. In the RVM case, a value for the denominator of the kernel, s , must
be selected which has a similar interpretation to the bandwidth.

RVM Regression

Program Flow

1 TRAIN a RVM regression model using the MAP distribution parameter estimates from
the training data

2 PREDICT the distribution parameters for each level of features in U

Input Required for Parameter Sweep

sigma – the width of the Gaussian function

Step 3. Clustering
With distribution parameter predictions for each level of U we could immediately

go to the validation step, but that is problematic for two reasons. First, from a
practical standpoint there could be hundreds or thousands of unique estimates for
the distribution parameters, making it difficult to implement on internal systems,
explain to internal parties, or justify with regulators. Second, while the estimates may
be unique, the differences between them may not be materially significant. Therefore,
to reduce the number of estimates to a manageable, explainable, and material level we

Casualty Actuarial Society 25

A Machine-Learning Approach to Parameter Estimation

have employed the K-means clustering procedure. The aim of the K-means procedure
is to partition the m levels of U into k clusters such that each of the levels belongs to
the cluster with the nearest mean. We will do this in the distribution parameter space
and in such a way that produces cluster estimates of the distribution parameters that
are consistent with the underlying values. One of the difficulties of implementing the
K-means procedure is it does not guarantee a globally optimal cluster assignment for
any given k. While various heuristics exist and have been employed within the MLAPE
algorithm to improve the results of the K-means procedure, multiple repetitions of the
procedure are required to ensure a “good” local optimum is found.

K-Means

Program Flow

1 DO N times

2 PERFORM the K-Means clustering procedure

3 CALCULATE the Average Distance to Cluster Center (ADCC)

4 RETURN the cluster set with the lowest ADCC

Input Required for Parameter Sweep

k – the number of clusters to partition

distance function – functional form

Average Distance to Cluster Center. The closer the points are to each of their assigned
cluster centers, the better the separation between clusters and overall coherence. The
quality of the clustering can be measured by the overall average distance to the cluster
center (ADCC) across all points in the data. This measure is defined as

.2
1ADCC x cj ij Ui

k
i

∑∑ ()= −∈=

In fact, it is this amount that the K-means procedure is attempting to minimize. As
mentioned above, K-means is prone to finding local minima and does not guarantee
the resulting clusters are a global optimum. To address this issue we have implemented
a heuristic to refine the initial points and will restart the procedure multiple times to
find the run with the lowest ADCC to use as the final clusters.

K-Means Clustering Procedure. An in-depth review of K-means clustering algorithms
could fill volumes on its own right and we will not go into detail here. Instead, we focus
on the adjustments we have made to the standard form of K-means to customize it for the
MLAPE algorithm.

Figure 5 shows a visual representation of the distribution parameter space to which
the K-means procedure is being applied. In the case of our MLAPE implementation,
this is a two-dimensional space in mu and sigma from the lognormal distribution.

Note that the confidence in the mu and sigma estimates for each element of U
are not the same. Since these confidence intervals are not symmetrical, we need an
approach that allows us to consider both spherical and elliptical cluster shapes. A

26 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

common approach for adjusting the distance measure for the variability of each point is
the so-called Mahalanobis distance (see Mahalanobis 1936). The Mahalanobis distance
is defined as

,1D x c x ck
Mahalanobis

k
T

k∑() ()= − −−

where x represents a point in the space to be clustered, ck represents a cluster center, and
S-1 represents the inverse of the covariance matrix of point x. The Mahalanobis can be
understood as a weighted Euclidean distance where the weighting is proportional to
the inverse of the variance of the sample point, and in the case of uniform variances
along each dimension, the Mahalanobis and Euclidean distances are equivalent. For
the MLAPE algorithm, we have allowed for the option of both distance functions so
the choice of Euclidean vs Mahalanobis may be determined by changing the settings
as part of the parameter sweep.

The standard approach to initializing the K-means routine is to randomly select
points as the starting cluster centers. An improvement over this initialization approach,
called kmeans++, has been proposed by Arthur and Vassilvitskii (2007), which offers
improvements in both speed and accuracy. The basic idea is to choose the initial k
starting points iteratively such that each point selected has the best likelihood of
minimizing the ADCC. The authors found kmeans++ offered improvements of up to
a 90% reduction in running time and improvements in final ADCC as well. For the
MLAPE algorithm, we have implemented this addition to the K-means procedure and
have found improved performance as well.

Clustering the mu and sigma require changes to the standard “average” used by
K-means along each dimension. This results in different formulas for the mean and sigma
of each cluster. Below are the variables and formulas that are utilized:

the number of levels in U−M

the number of clustersK −

the th data point in the th group−x n mn
m

− the total number of data pointsN

Figure 5. Illustration of
Distribution Parameter
Space before Clustering

Casualty Actuarial Society 27

A Machine-Learning Approach to Parameter Estimation

− the total number of data points in levelN mm

− the total number of data points in clusterN kk

− the number of levels assigned to clusterM kk

m ∑= = =Mean of group
1

1m
N

xm
m

n
m

n
Nm

m m∑= = = Mean of cluster
1

1k
N

Nk
k

m mm
Mk

s m∑ ()= = −=Variance of group
12 2

1m
N

xm
m

n
m

mn
Nm

s s m m∑∑ ()= = + −



 −




==  Variance of cluster

1 1
1

.2 2 2
11k

N
N

N
N

N
Nk

k
m m

k
m m nm

M
m
M k

k

kk

Since the mean and variance of the cluster can be expressed completely in terms of
the mean and variance of the component groups, there is no need to revert to the
individual points within the group, which are affected by censoring and truncation,
when calculating the cluster centers.

Step 4. Validation
At this point, we have our final sets of distribution parameters that represent the

best fit on the training data, but we still have to answer the following questions. Did we
select the “best” model and assumptions when running the MLAPE algorithm? Do the
fitted distribution parameters generalize well and provide accurate predictions on new
data? To address these questions, we have held out some of the data from the training
phases (the validation data) and will test the accuracy of the predictions against the
actual values. With this test completed on the validation data, we compare the accuracy
measures across different sets of models and assumptions in the parameter sweep.

Validation

Program Flow

1 FOR EACH value in the validation data

2 CALCULATE the negative log likelihood of the value using the predicted
distribution parameters

3 SUM the negative log likelihood in total and by cluster

4 FOR EACH cluster in the validation data

5 CALCULATE the expected mean using the predicted distribution parameters

6 CALCULATE the actual mean of the values

7 MEASURE the mean square error and number of cluster reversals

28 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

Negative Log Likelihood – The standard definition of a likelihood function is given by

q q q∏() () ()= =
=

L , . . . , , , . . . ,1 1 2
1

x x f x x x f xn n i
i

n

This likelihood function tells us the probability that the final distribution parameters
generated the values being tested. So, in the case of the MLAPE algorithm we want
to maximize this value to find the “best” set of parameters. Due to the potential for
numeric overflow from the product of many very small likelihoods, it is convenient
to take the log of both sides, which converts the equation from a product of factors
into a summation of factors. Further, since the natural logarithm of the individual
likelihoods is negative, it is also convenient to take the negative of both sides of the
equation changing the problem from one of maximizing the likelihood to minimizing
the negative log likelihood. The resulting negative log likelihood equation is

q q∑() ()− = −
=

L , . . . ,1
1

log x x log f xn i
i

n

For each scenario of methods and assumptions in the parameter sweep, we will use this
statistic to measure the accuracy of the fitted distribution parameters on the validation
test set. The goal of our parameter sweep is to find a scenario that minimizes this statistic.
Therefore, if a scenario results in a lower negative log likelihood than previous scenarios,
we consider the changes to the methods and assumptions that led to the improvement
and continue to explore further changes in those directions. While one approach could
be to test many random scenarios in the method and assumption space, each run through
steps one to four can be computationally expensive and requires significant judgment
when evaluating the effect of each scenario on model accuracy. Accordingly, we suggest
selecting a range of reasonable methods and assumptions for the initial runs and then
having a systematic and thorough approach to carefully select further areas to explore.
Finally, the magnitude and absolute value of the negative log likelihood is irrelevant. We
are only looking for changes in the negative log likelihood and the scenario resulting in
the lowest value.

Mean Square Error. To further evaluate scenarios that have minimally different or
identical negative log likelihoods we introduce some additional statistics measuring
the performance of each cluster. If the fitted distribution parameters are robust, the
expected mean for the cluster, using the fitted distribution parameters, would be equal
to the observed mean for the cluster. We measure this robustness for each scenario using
the mean square error across all clusters where lower values indicate tighter coherence
between the model and the actual observations. While MSE measures overall goodness
of fit, we are also concerned about consistency between clusters as well. If the clusters
are sorted in increasing order of expected mean value the observed mean values should
be in increasing order as well. To assess this, we define a cluster reversal as a case
where the sign of the change in the expected mean value between each cluster does not
equal the sign of the change in the observed mean value between clusters. While an

Casualty Actuarial Society 29

A Machine-Learning Approach to Parameter Estimation

ideal model would have a MSE of zero and no cluster reversals, by analyzing both the
MSE and number of cluster reversals for each scenario we are able to facilitate a more
efficient parameter sweep than using negative log likelihood alone.

Step 5. Repeat
We repeat steps one through four for each scenario of the parameter sweep until

the “best” set of fitted distribution parameters for the validation data is found. After
that is complete, it is time to perform the final model assessment using the test data
set. This data has never been seen during the training or validation stages and
demonstrates the true accuracy we can expect for future predictions. To assess this
generalizability, we examine the three following charts:

Negative Log Likelihood by Cluster Chart. This chart graphically represents, by
cluster for the test data set, the difference in negative log likelihood between the MLAPE
model and a set of prior estimates for the distribution parameters. If the MLAPE model
represents an improvement over the prior model, then we expect the bars for each cluster
to be negative.

Lift Chart. A lift chart graphically represents the expected improvement the MLAPE
model provides by cluster and compares that against the actual improvement seen in
the test data. By comparing each of the clusters in the test data on the lift chart,
we can determine if the MLAPE model is better than a random guess, and which
clusters in the data set benefit the most from applying the model’s predictions. Since
our implementation of the MLAPE algorithm involves truncated and censored losses,
we chose the limited expected value (LEV) to measure the model’s performance. To
calculate the percentage lift for each cluster, we took the difference between LEV based
on the distribution parameters for the cluster and the LEV based on the distribution
parameters from all the data and then divided by the later. The same calculations are
performed with the actual test data and then combined on the lift chart. Bars that
range from negative to positive percentages with agreement between the expected
improvement and actual improvement indicate the model generalizes well to new data
and will provide accurate on-going predictions.

Actual-to-Expected Limited Expected Value Chart. A variant of the lift chart is the
actual-to-expected LEV chart. Here, the model LEVs versus the actual LEVs from the
test data by cluster are plotted on a scatter plot. If the MLAPE model generalizes well
to new data and provides accurate predictions, we expect to see a linear relationship
between points that fall randomly both above and below the identity line.

30 Casualty Actuarial Society

4. MLAPE Application

The Data Set. We use the Texas Closed Claims Data from http://www.tdi.texas.
gov/reports/report4.html to demonstrate a full application of the MLAPE method
(Figure 6). The data has ten years of historical closed claims data from 2003 to 2012.
The data includes a file with field descriptions and definitions. A key characteristic of
this data is it excludes claims below $10K. We will address this issue in our MLAPE
algorithm and not assume these are ground-up losses. We first collate the data from the
ten years of unzipped files into one flat file, select the following fields and rename them.

Summarizing the collated data by POLICY_TYPE shows Commercial auto liability
has the most data. We use the 49,905 records from commercial auto liability for the
MLAPE application. We then analyze the data for trend and compute the average
INDEMNITY_AMT by Closed Year. We select an annual trend of 9.47% and trend
each of the 49,905 closed claims to 2012 (Figure 7).

Next, we cap the trended amounts by a limit, which equals the maximum of
LIMIT_PER_PERSON, LIMIT_PER_OCC and LIMIT_CSL. We call the resulting
variable CAPPED_TRENDED_INDEMNITY. This field is the Y we are interested in.
We create a new variable LOSS_CAPPED that is a binary variable and equals one if the
trended indemnity has been censored due to capping and zero, if not.

Data Sparseness. There are 254 counties and 26 business classes resulting in 6,604 pairs
of counties and business classes. We present a cross-tabulation of the 49,905 claims by
business class and county, shown in Figure 8.

We observe that 87% of claims are from five of the 26 business classes and 52%
of the claims are from six of the 254 counties. These 30 pairs of business classes and
counties account for 0.5% of all possible segments (30/6,604) but result in 48% of all
losses (23,912/49,905). A huge proportion of the data is contained in a very dense
section of the possible segments leaving sparse regions with no data to make predictions
on. Such sparseness is common in real world applications. The MLAPE algorithm
overcomes this issue of sparseness. In order to address sparseness, we find “similar”
counties and business classes and use losses from them to make predictions. To define
similarity we need to enrich the counties and business classes with additional features
or dimensions over which we can measure distance.

Augment County and Business Class Features. We enrich the business class feature
with data from http://www.bls.gov. We identify the following seven features based on
the two considerations listed and append these to the 26 business classes in Figure 9.

Casualty Actuarial Society 31

A Machine-Learning Approach to Parameter Estimation

POLICY_TYPE Description # of Records
1 1 - Monoline general liability 10,949
2 2 - Commercial auto liability 49,905
3 3 - Texas commercial multiperil 7,851
4 4 - Medical professional liability 7,948
5 5 - Other professional liability 612

Total 77,265

Original Field Rename
EXTSEQ TDI_NUM

Q1G CLOSE_DATE
Q6B INJURY_COUNTY
Q7A POLICY_TYPE
Q7C BUSINESS_CLASS

Q7D1 LIMIT_PER_PERSON
Q7D2 LIMIT_PER_OCC
Q7D3 LIMIT_CSL
Q12A7 INDEMNITY_AMT

Figure 6. Texas Closed Claims Data Description

Closed
Year

Average
INDEMNITY_AMT

2003 $96,705
2004 $104,889
2005 $112,921
2006 $96,328
2007 $105,101
2008 $121,540
2009 $146,965
2010 $210,064
2011 $190,551
2012 $209,027 $0

$50,000

$100,000

$150,000

$200,000

$250,000

2003 2004 2005 2006 2007 2008

Commercial auto liability - Average INDEMNITY_AMT vs. Closed Year

y = 78991e0.0947x

2009 2010 2011 2012

Figure 7. Texas Closed Claim Auto Liability Trend Analysis

102 57 220 15 109 227 Other Sum
7 4,586 2,547 1,100 933 738 556 8,811 19,271

26 1,978 1,299 641 634 430 388 4,475 9,845
8 1,376 941 475 463 290 286 3,059 6,890

14 1,092 689 452 452 182 247 2,486 5,600
6 469 238 157 130 71 71 901 2,037

Other 735 343 294 200 369 141 4,180 6,262 13%

Sum 10,236 6,057 3,119 2,812 2,080 1,689 23,912
48%

87%

52%

INJURY_COUNTY

BU
SI

N
ES

S_
CL

A
SS

49,905

Figure 8. Texas Closed Claims Data Sparseness

Selected Business Class Features Consideration
1 Fatal Injury Rate
2 Injury Away Work Rate
3 Transport Injury Away Work Rate
4 Non-fatal Injury Rate
5 Non-fatal Days off Injury Rate
6 Days off Ratio
7 Goods vs. service producing Societal value

Injury
Incidence

Rates

Figure 9. MLAPE Business Class
Feature Selections

32 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

Next, we enrich the county feature with county-level information from the U.S.
Census. A quick look at http://factfinder.census.gov shows a large number of features
that can be added at the county level. In a real-world application this step may
be guided by expert opinion on what features are relevant to differentiate between
counties. Our goal, though, is not exactness, but rather to show one way of enriching
the county data. Therefore, we will limit our focus to five county-level features to
demonstrate the MLAPE application. There are three considerations on why we choose
the five features shown in Figure 10.

With no insights into the dynamics of the commercial automobile liability insur-
ance market and class-plan and armed only with actuarial reasoning, we ask what
characteristics make counties similar or dissimilar to each other with respect to claim costs.
We identify three considerations—cost of living, rural or urban and spatial proximity or
distance to other counties. We then use judgment to select the five features that support
each of the three considerations and append these five features to the 254 counties.

Once we append the seven business class and five county features we end up with
49,435 claims, since the initial 49,905 claims had 470 records from county code = 299
(Not in Texas) and are excluded. We place a data key on each claim for record-keeping
purposes. It is an integer ID staring at one and ending at 49,435. We split the data into
three files to be used as inputs into the MLAPE algorithm, shown in Figure 11.

The Univ_01.csv file represents the 6,604 pairs of counties and business classes.
The goal of the MLAPE algorithm is to produce (m , s) pairs for each of these county and
business class combinations which characterize the respective lognormal distributions
for those segments. The MLAPE algorithms will determine how many such distinct
pairs of (m , s) need to be output. Regardless of the number of pairs of (m , s), our results
will demonstrate that it is superior to using one (m , s) based on all claims. As a result,
the MLAPE algorithm would address the general segmentation problem provided in

Selected County Features Consideration
1 Percent bachelor's degree or higher
2 Median household income (dollars)
3 Agriculture_Pct Rural/Urban
4 Latitude
5 Longitude

Spatial

Cost of Living

Figure 10. MLAPE County Feature Selections

Filename Data_01.csv Filename Data_key.csv Filename Univ_01.csv
Rows 49435 Rows 49435 Rows 6604

Columns 15 Columns 3 Columns 14
1 Data_Key 1 Data_Key 1 County Code
2 Capped_Trended_Indemnity 2 County Code 2 Business Class Number
3 Loss_Capped 3 Business Class Number 3 to 9 Business class features

4 to 10 Business class features 10 to 14 County features
11 to 15 County features

Figure 11. MLAPE Data Inputs

Casualty Actuarial Society 33

A Machine-Learning Approach to Parameter Estimation

the introduction. It is still not an optimal solution in the statistical sense, but it is an
improvement over using all the data to estimate one lognormal distribution or using
data for each segment to estimate 6,604 lognormal distributions.

Program Flow. Our MLAPE application is implemented as a series of R scripts that
run through the steps of the algorithm. A master control script runs each of the steps
and tests each of the scenarios in the parameter sweep. Results from each script are
saved as comma-delimited text files, which allows the results to be analyzed both during
and after the parameter sweep process. Figure 12 shows the scripts and the order in
which they are run for both the KNN and Kernel/RVM versions. For those seeking a
deeper understanding of the MLAPE implementation, detailed comments have been
included in each of the scripts.

In addition to the MLAPE data input files, the user must also specify each of the
parameter sweep inputs which is comprised of settings for each of the procedures, an
a priori distribution parameter file, and a feature weights file. The settings for each of
the procedures were described in the MLAPE recipe section and are specified directly
in the R code as arrays. The range of values for each setting should be based on both
some initial experimental testing and judgment. This is an iterative process subject to
local minima and, as such, we suggest setting ranges around values where the model
is giving good results as well as scenarios that have random perturbations. The a priori
distribution parameter file has a set of distribution parameters for each element in U,
which in the case of this example application is the 6,604 pairs of counties and business
classes. These a priori distribution parameters serve two purposes. First, for the normal-
gamma sequential update, they will be the Bayesian prior. Second, during the validation
stage, they will be the benchmark from which to measure improvements in the negative
log likelihood. Typically, when one is first running the MLAPE algorithm, it is being
compared against a prior review and one would set the a priori distribution parameters

KNN_CONTROL.R

PERMUTE.R

PREPROCESS.R

KNN_FITS.R

KMEANS_CLUSTERING.R MLAPE_KMEANS.R

SCENARIO_VALIDATE.R

KR_CONTROL.R

PERMUTE.R

KR_PREPROCESS.R

MAP_EST.R

KMEANS_CLUSTERING.R MLAPE_KMEANS.R

SCENARIO_VALIDATE.R

NG_SEQ_UPDATE.R

REG_KERNEL.R REG_RVM.M

Figure 12. MLAPE R Application Script Order

34 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

to those resulting from the last analysis. In our case, we did not have a prior study of
the Texas commercial auto closed claims to incorporate so we chose the mu and sigma
measured on the training set as the a priori distribution parameters. Last, the feature
weights files controls how much influence each of the features has in the distance
measure. This comma-delimited text file has one row for each of the combinations we
want to test. These weights may also be set to zero to ignore a given feature.

Parameter Sweep Settings and Results. The process we used for selecting the param-
eter sweep settings involved some initial experimentation and establishing boundaries for
what we considered reasonable values. The factors to evaluate during the initial runs are:
Will the procedure even run? And is the MLAPE algorithm providing some variation
in the estimates of the distribution parameters? Since KNN, kernels and RVM are
smooth ing techniques, it becomes evident quickly when settings have smoothed away
all variation. The opposite is also true. If the parameter sweep settings provide minimal
smoothing, the training data will be over fit and the predictive capability of the model on
the validation data will be poor. We wish to avoid these settings. Accordingly, below are
each of the settings we tested for each of the machine-learning procedures. Note, that due
to the iterative nature of a parameter sweep we did not test all combinations of the values
tested. Some values were added during the parameter sweep based on regions showing
negative log likelihood improvement while some were discarded for poor performance.

K-Nearest Neighbors

Setting Values Tested

Number of Nearest Neighbors 50, 100, 250, 500, 750, 1000, 1250, 1500, 1750, 2000,
2250, 2500, 3000, 4000

Number of Clusters 2, 4, 6, 8, 9, 10, 11, 12, 15

Kernel Regression

Setting Values Tested

Number of Prior Observations 2, 3, 10, 30, 50, 100

Band Width 0.000000005, 0.00000005, 0.0000005, 0.000005,
0.00005, 0.0005, 0.005, 0.05

Number of Clusters 2, 4, 6, 8, 9, 10, 11, 12, 15

RVM Regression

Setting Values Tested

Number of Prior Observations 2, 3, 10, 30, 50, 100

Sigma 0.000000005, 0.00000005, 0.0000005, 0.000005,
0.00005, 0.0005, 0.005, 0.05, 0.5, 5, 50, 100, 500

Number of Clusters 2, 4, 6, 8, 9, 10, 11, 12, 15

Casualty Actuarial Society 35

A Machine-Learning Approach to Parameter Estimation

For the a priori distribution parameters, we estimated the mu and sigma on the training
data only. We did not include the validation or test data in this measurement in order
to determine the true potential for improvement by using the MLAPE algorithm.
In this way, the final evaluation of measuring the negative log likelihood on the test
data will demonstrate if the MLAPE algorithm has the power to predict unseen data
better than the prior does. Based on the 34,609 observations in the training data, the
estimated mu was 10.7226 and the estimated sigma was 1.4738.

For the feature weights, we started by testing each of the features individually.
Next, we added feature weight scenarios, bringing in equally weighted combinations
of the better performing features from both the business class and county features.
Finally, once the better combinations began to emerge, we tested varying the weights
as well.

For this monograph, our parameter sweep included testing 5,646 probes from com-
binations of methods, settings, and feature weights. The results are shown in Figure 13.
Here, the negative log likelihood as calculated on the training data using the MLAPE
algorithm is shown as the blue series and measured on the primary y-axis and the
negative log likelihood as calculated on the validation data using the MLAPE algorithm
is shown as the gray dashed series and measured on the secondary y-axis.

Examining this chart can provide a number of insights into the parameter sweep
process. First, there is general agreement between the patterns for both the training and
validation data. This indicates that the structure the MLAPE algorithm was finding in
the training data was generalizing well in the validation data. If the MLAPE algorithm
had no predictive power, the validation data would have shown a random pattern instead.
Second, there are some regions of the chart where the variation in validation data is

Negative Log Likelihood by Probe Order

430

431

432

433

434

435

436

437

438

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501
Probe Order

T
ra

in
in

g
D

at
a

N
LL

 (0
00

's)

124

125

126

V
al

id
at

io
n

D
at

a
N

LL
 (0

00
's)

Training Data Validation Data

Figure 13. Negative Log Likelihood in Parameter Sweep Order

36 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

relatively greater than the training data (between 3000 and 3500) and other regions
where improvement in the training data does not correspond to improvements in the
validation data (between 3500 and 4000). These represent regions where the parameter
sweep settings had resulted in over-fitting. Subsequently, those settings were removed
from further parameter sweeps. Last, note that, in general, there is a decreasing trend
in the negative log likelihood for both the training and validation data. This is to be
expected since we are trying to minimize this result and our parameter sweep is guided
to find this minima. While we could continue to tune the parameter sweep indefinitely
and find decreases in the training data, the decreasing trend in the validation data
cannot continue indefinitely. At some point, the model will begin to over-fit the training
data and the error on the validation set will begin to rise. This is seen in Figure 13 at
the 5,500th probe. It is at that point we concluded our parameter sweep and selected
our best set of distribution parameters. As mentioned in the valida tion section of the
recipe, the selection of the “best” set considered the negative log likelihood, a MSE
measuring the actual versus expected by cluster and a count of the number of reversals
on the validation data set. Figure 14 shows the model settings and weights generating
the best answer and Figure 15 shows the estimates for the distribution parameters.

Model Evaluation on Training/Validation Data. Once we have the final set of
distribution parameters we can examine the model performance on the training and
validation data sets. First, we examine the lift chart for the training set. To create the

Setting Best Value

Machine Learning Procedure KNN

of Nearest Neighbors 1,750

Number of Clusters 8

Feature and Selected Weights

Fatal Injury Rate 0

Injury Away Work Rate 1

Transport Injury Away Work Rate 0

Non-Fatal Injury Rate 1

Non-Fatal Days Off Injury Rate 0

Days Off Ratio 1

Goods vs. Service Producing 0

Percent Bachelor’s Degree or Higher 1

Median Household Income ($) 1

Agriculture Percentage 0

Latitude 1

Longitude 1

Nearest Prior Validation Data
Type Neighbors Weight Set Clusters NLL NLL Log(MSE) Reversals
KNN 1750 26 8 125660 125280 18.959 0

MLAPE Validation Data

Figure 14. Best Configuration of Settings from Parameter Sweep

Casualty Actuarial Society 37

A Machine-Learning Approach to Parameter Estimation

lift chart, we calculate the actual LEV for each cluster and divide each cluster’s LEV
by the LEV for the entire data set less one. Therefore, bars on the lift chart that have
negative values are clusters that have LEVs that are less than the average while bars on
the lift chart that have positive values are clusters that have LEVs that are greater than
the average. Next, we calculate the same set of ratios using the expected LEVs resulting
from the MLAPE algorithm’s mu and sigma. These results are shown in Figure 16.
Here we see the MLAPE algorithm has found clusters that provide materially significant
segmentation of the loss data, ranging from 43% below the average to 66% above
the average, a range of more than 100%. Further, this same segmentation has been
predicted by the MLAPE algorithm as seen by the agreement between the two sets
of bars. Of course, we should expect this result, given this is the data the model was
trained on, but it is promising nonetheless.

Second, we create an Actual versus Expected LEV chart. Here we plot the expected
LEVs resulting from the MLAPE algorithm’s mu and sigma on the x-axis and the actual
LEVs on the y-axis. An Identity line is added to confirm the relationship between
the two values falls around this line and does not have any bias across the prediction

Cluster mu sigma Count
1 10.825 0.9665 1458
2 10.514 1.3084 12253
3 10.811 1.2695 2212
4 10.731 1.4799 8173
5 10.958 1.4765 2172
6 10.868 1.6757 2931
7 11.048 1.6053 2794
8 11.253 1.5348 2616

Figure 15. Estimates for
the Distribution Parameters

-60%

-40%

-20%

0%

20%

40%

60%

80%

1 2 3 4 5 6 7 8
Cluster

LE
V

 D
iff

er
en

ce

MLAPE Model

Actual

Figure 16. Lift Chart for the Best MLAPE Model
on the Training Data

38 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

range. This chart provides the modeler with a way to assess the magnitude of the values
being predicted and benchmark them against previous studies. The results are shown
in Figure 17. Here again we see excellent agreement between the actual data and the
MLAPE predictions and no apparent bias with the projected values.

Finally, we examine the negative log likelihoods for each cluster and see the MLAPE
distribution parameters perform better than the a priori distribution parameters by
having a lower value. To create this chart we subtract the negative log likelihood using
the a priori from the negative log likelihood using the MLAPE algorithm and plot the
differences by cluster. The results are shown in Figure 18. Here for the training data

50,000

75,000

100,000

125,000

150,000

175,000

200,000

225,000

250,000

A
ct

ua
l L

E
V

MLAPE Model

Actual

50,000 75,000 100,000 125,000 150,000 175,000 200,000 225,000 250,000
MLAPE Model LEV

Figure 17. Actual vs. Expected LEV for the Best MLAPE Model
on the Training Data

Model vs. Prior Negative Log Likelihood Difference

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

50

1 2 3 4 5 6 7 8
Cluster

Figure 18. NLL Difference by Cluster for the Best
MLAPE Model on the Training Data

Casualty Actuarial Society 39

A Machine-Learning Approach to Parameter Estimation

-60%

-40%

-20%

0%

20%

40%

60%

80%

LE
V

 D
iff

er
en

ce

MLAPE Model

Actual

1 2 3 4 5 6 7 8
Cluster

Figure 19. Lift Chart for the Best MLAPE Model
on the Validation Data

we see that for all clusters it is more likely that the actual data came from distributions
defined by the MLAPE algorithm than the a priori estimates.

The combination of these three charts brings it all together. We can conclude for
the training data that the MLAPE algorithm identifies significant segmentations of the
data, provides accurate unbiased predictions across the prediction space, and performs
better than our a priori assumptions. Now we turn to see if the same conclusions hold
for the validation data as well.

Figure 19 shows the corresponding lift chart for the validation data. Same as the
lift chart for the training data, the clusters from the MLAPE algorithm provide clear
segmentation of the Texas loss data. Almost identical to the training data results, the
differences range from 40% below average to 65% above average. We are seeing that
the MLAPE algorithm has generalized well to data beyond the training set with tight
agreement between actual versus predicted LEVs and no reversals.

Figure 20 shows the corresponding Actual versus Expected LEV chart for the
valida tion data. Here again we see agreement between the actual data and the MLAPE
predictions. While in this case there is a tendency for the MLAPE predictions to under-
state the actual LEVs, the linear relationship still holds.

Last, Figure 21 shows the negative log likelihood differences for the validation
data. The results are again similar to the training data where the MLAPE algorithm has
outperformed the a priori distribution parameters across all clusters. So, here again, we
can conclude for the validation data the MLAPE algorithm has identified significant
segmentations of the data; provides accurate, although potentially low, predictions
across the prediction space; and performs better than our a priori assumptions.

Model Evaluation on Test Data. The examination of the model on the training and
validation data was as expected. The MLAPE algorithm performed well on all three

40 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

tests, as it should have, since both sets were used to pick the best configuration of
settings. To truly evaluate a model, one needs to evaluate the same metrics on data the
model has never seen before, the test set. It is this evaluation that determines if we can
achieve reliable segmentation on a go-forward basis and provide meaningful differences
within our pricing and reserving analyses.

Figure 22 shows the lift chart for the test data. Convincingly, the clusters from the
MLAPE algorithm provide clear segmentation for data it has never seen before. The

50,000

75,000

100,000

125,000

150,000

175,000

200,000

225,000

250,000

50,000 75,000 100,000 125,000 150,000 175,000 200,000 225,000 250,000
MLAPE Model LEV

A
ct

ua
l L

E
V

MLAPE Model

Actual

Figure 20. Actual vs. Expected LEV for the Best MLAPE Model
on the Validation Data

Model vs. Prior Negative Log Likelihood Difference

-120

-100

-80

-60

-40

-20

0

20

1 2 3 4 5 6 7 8
Cluster

Figure 21. NLL Difference by Cluster for the Best MLAPE
Model on the Validation Data

Casualty Actuarial Society 41

A Machine-Learning Approach to Parameter Estimation

differences range from 38% below average to 60% above average. This range of 98%
is only seven to eleven points below that of the training/validation data. We see the
MLAPE algorithm has lost very little predictive power, and we see similar agreement
between actual versus predicted LEVs and only one reversal.

Figure 23 shows the actual versus expected LEV chart for the test data. Again,
convincingly, we see agreement between the actual data and the MLAPE predictions
with no bias across the prediction space.

-60%

-40%

-20%

0%

20%

40%

60%

80%

LE
V

 D
iff

er
en

ce

MLAPE Model

Actual

1 2 3 4 5 6 7 8
Cluster

Figure 22. Lift Chart for the Best MLAPE Model
on the Test Data

50,000

75,000

100,000

125,000

150,000

175,000

200,000

225,000

250,000

A
ct

ua
l L

E
V

MLAPE Model

Actual

50,000 75,000 100,000 125,000 150,000 175,000 200,000 225,000 250,000
MLAPE Model LEV

Figure 23. Actual vs. Expected LEV for the Best MLAPE Model
on the Test Data

42 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

Figure 24 shows the negative log likelihood differences for the test data. The results
are again convincing where the MLAPE algorithm has outperformed the a priori
distribution parameters.

As stated in the problem statement, the goal of our MLAPE algorithm is to
solve the problem of estimating the parameters of P while balancing the three main
con siderations – data sparseness, feature selection and goodness of fit. We have dem­
onstrated with this sample implementation that the MLAPE algorithm achieves
those goals. By including test data from all county and business class regions, it has
demonstrated predictions are extensible to areas of data sparseness. The feature selection
process has shown how the best configuration of model settings improves the likelihood
the losses were generated from the MLAPE clusters versus an uninformed prior. Finally,
with the goodness of fit evaluation on the test data, we conclude that the MLAPE
algorithm identifies significant segmentations of the data, provides accurate predictions
across the prediction space, and performs better than our a priori assumptions. With
this achievement, the MLAPE algorithm offers a new tool for actuaries to provide the
next level of accuracy and insights from our work product.

Model vs. Prior Negative Log Likelihood Difference

-50

-40

-30

-20

-10

0

10

1 2 3 4 5 6 7 8
Cluster

Figure 24. NLL Difference by Cluster for the Best MLAPE
Model on the Test Data

Casualty Actuarial Society 43

5. Discussion

The machine-learning domain lies at the boundary of many disciplines – computer
science, statistics, mathematics, and engineering. This is both an asset and a drawback.
It is an asset because it draws from the best of all these disciplines. Its drawback, which
is source of much of its criticism, is that it seems like a black box of algorithms, drawing
on seemingly unrelated concepts and techniques, and assembling a machine at the end
of it. In this paper, we did the same – pieced together different concepts and algorithms
into a machine. This machine, MLAPE, had to solve a specific problem—estimate
parameters—and we have shown that it succeeds with little supervision and domain
knowledge. We now shift our focus and discuss three related questions. First, what is the
insurance applicability of such a machine? Second, can we gain insights which are in line
with traditional actuarial analysis by observing the output of this machine? And finally,
how can the actuary apply this tool within the Actuarial Standards of Practice?

To answer the first question, we observe that the MLAPE machine performs in a
space where data is sparse. Such environments are all too common in the insurance
domain. We present two such environments. The first is for a new insurer in the
marketplace. Typically, the new entrant does not have much line of business specific
data of its own from which it can learn. Either it can use data from its existing but
other lines of business, which may be good proxies, or it may have access to aggregated
data for the specific line of business it wants to enter, such as the one from the Texas
closed claims database. In both scenarios, the MLAPE machine is the bridge, which
it can use to learn from, in addition to experts of its own. The benefit is that such a
machine, much like experts, only improves its performance with time and more data.
This approach eases the process of entry into an unknown business where data is sparse
or potentially monopolized by few large incumbents. The second such environment is
for an existing carrier trying to expand its business. It may have a wealth of in-house
data for the specific line of business. Often this data is “chunky” – few pockets have
most of the data, leaving vast segments with little or no data of its own. We saw this
in the Texas closed claims data as well when analyzing the combinations of business
class and county. Business segments rarely are a fine enough mesh for data. Again, the
MLAPE machine is the bridge between the lines that have data and those that do not.

To answer the second question, we will use two traditional actuarial analysis – ILFs
and Territorial analysis. In Figure 25, we present the $200K to $1M increased limit
factors by cluster, sorted in increasing order of ILF. Along with the point estimate of
the ILF, we also show the range of ILFs for points included in the cluster.

44 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

We observe that although there are eight clusters, the MLAPE machine suggests
four distinct levels of ILFs denoted by gray ovals. These four levels, shown in Figure 26,
can be cluster 1 (ILF = 1.15), clusters 2 and 3 (ILF = 1.33), clusters 4 and 5 (ILF = 1.55),
and clusters 6, 7 and 8 (ILF = 1.95). If we assume that the average statewide ILF is 1.5,
which is a simple average of the four ILFs, we have a range that varies between 23% less
than the statewide average to 30% greater than the statewide average. Reflecting such
a variation in pricing tiers is of tremendous value and protects long-term profitability.

In order to gain insights into territorial structure, we focus on business classes 7,
26 and 8. As shown in Figure 8, these classes represent the top three business classes
with data. In Figure 27, we present two maps of Texas. The map on the left represents
the ratio of the predicted ILF from the MLAPE machine for a county, to the statewide
average ILF for business class 7. Since the MLAPE machine provides a clustered output,
there are six distinct predicted ILFs for business class 7. We group the ratios resulting
from these six ILFs into three groups represented by the three colors. The H-1 (yellow)
group represents counties with a predicted business class 7 ILF that is 2% or 4% higher
than the statewide average. The H-2 (lighter green) group represents counties with

1
1.0

1.2

1.4

1.6

$2
00

K
 to

 $
1M

 I
LF

1.8

2.0

2.2

2 3 4 5 7 8 9
Cluster

Figure 25. $200K to $1M ILF by Cluster

ILF Level Cluster ILF % of Avg.
1 1.15 -23%
2 1.33 -11%
3 1.55 4%
4

1
2,3
4,5

6,7,8 1.95 30%

Average 1.50

Figure 26. Grouping of Clusters
by ILF

Casualty Actuarial Society 45

A Machine-Learning Approach to Parameter Estimation

a predicted business class 7 ILF that is 8% or 13% lower than the statewide average.
The H-3 (darker green) group represents counties with a predicted business class 7 ILF
that is 27% or 37% lower than the statewide average. We observe that the vast majority
of counties are in the H-1 category, which is at or slightly above the statewide average.

We observe that the low ILF regions (H-2, H-3), are the areas around Dallas,
Austin, San Antonio and Houston, with the exception of the area around the Big
Bend National Park. Without knowing the dynamics of the commercial auto liability
industry, we ask why we should expect this pattern. We note that we have used Injury
County in the MLAPE machine. If more severe injuries indeed happen in rural counties
represented by H-1, then the most probable cause is vehicles that operate further away
from business centers and cities. Such commercial vehicles probably represent complex
business operations or are heavy vehicles. Whatever the actual reason, the class of vehicles
operating in the city centers are fundamentally different from those operating in the H-1
areas and result in materially lower levels of injury. This is what the MLAPE machine
recognizes as signal. Not only does this assist in territorial analysis but we can also use this
to recognize loss drivers while underwriting new commercial auto liability businesses.
For example, assume we want to underwrite two businesses centered in the same city.
The former operates within the city while the latter operates in vast rural areas. Based
on Figure 27 and the subsequent discussion, we should expect a significantly higher
premium for the latter.

In Figure 28, we provide similar charts for business classes 26 and 8 on the left and
right respectively. Eight distinct levels of ILF for business class 26 are output from the

Texas County Map

Business Class = 7

H-1
H-2
H-3

Figure 27. ILF Difference by County
for Business Class 7

46 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

MLAPE machine. These eight ILFs result in eight ratios to the statewide average ILF
for business class 26. The H-1 category represents the ratios 8%, 7%, and 6% higher
than the statewide average. The H-2 category represents the ratios 4% and 9% lower
than the statewide average. The H-3 categories represent the ratios 20%, 24%, and
30% lower than the statewide average ILF. The definitions of the H-1, H-2, and H-3
categories for the business class 8 map on the right are 10%, 8%, and 7% higher, 3%
and 8% lower and 19%, 23%, and 33% lower than statewide average for H-1, H-2 and
H-3 respectively. We observe that although the definitions of the H-1, H-2, and H-3
categories are not one-to-one between the charts for business classes 7, 26, and 8, they
represent similar ranges and so are close enough for discussion. We see the enhanced
impact of urban areas on ILFs as we go from business class 7 to 26 to 8. We see many
more counties classified as H-2 and H-3. This is due to the leveraged effect of the
rural/urban phenomenon on some business classes compared to others. The MLAPE
machine’s task was to learn this multi-dimensional interaction between business
class and county. This discussion shows how the machine’s performance is not a
black box when observed in light of some long-standing traditional actuarial analysis
techniques.

With the promise for advancement in insurance analysis from these new tech-
niques, it is up for debate as to who is most qualified to apply them—computer scientists,
data scientists, or actuaries. We argue that actuaries, with our deep contextual under-
standing of insurance risk combined with our rigorous statistics training, are uniquely
qualified to provide the best expert direction for these models and should take the
lead on bringing this solution to the insurance field. Of course, we need to ensure
incorporating this specialized knowledge meets the Actuarial Standards of Practice as

Texas County Map

Business Class = 26

Texas County Map

Business Class = 8

H-1
H-2
H-3 H-1

H-2
H-3

Figure 28. ILF Difference by County for Business Classes 26 (left) and 8 (right)

Casualty Actuarial Society 47

A Machine-Learning Approach to Parameter Estimation

promulgated in ASOP No. 38 “Using Models Outside The Actuary’s Area of Expertise
(Property and Casualty),” which recommends:

When using such a model, the actuary should do all of the following:
a. determine appropriate reliance on experts;
b. have a basic understanding of the model;
c. evaluate whether the model is appropriate for the intended application;
d. determine that appropriate validation has occurred; and
e. determine the appropriate use of the model.

In the machine-learning domain, there exists a wealth of journals and textbooks
deriving these algorithms and presenting the underlying assumptions from which we as
actuaries can establish appropriate reliance on experts. From studying these materials,
the actuary can develop an understanding of the model and assess the appropriateness
of the application. For validation, following a process as described by the MLAPE
methodology provides objective measures as to the models’ predictive performance. The
actuary can be confident that following such a process provides appropriate validation
as to the consistency and reasonableness of the results and that the sensitivity of the
model has been tested by the parameter sweep. Last, transforming the model output
to create specific pricing or reserving factors (as we did with the ILF and Territory
examples) allows the actuary to use professional judgement and assess the appropriate
use of the model results. We hope that by presenting the MLAPE model more actuaries
see the applicability of machine-learning techniques and the profession continues to
adopt more of these advanced algorithms as we head into the era of big data.

48 Casualty Actuarial Society

6. Conclusion

In this paper, we presented the MLAPE machine. We began by setting the stage with
the general segmentation problem in parameter estimation. Since that general problem
is intractable, we restated it into a learnable case. We presented a simple thought
example to assist the reader in transitioning into the full application. We introduced
the various parts of the MLAPE machine and provided theory and equations. We
provided a recipe of pseudo-codes and demonstrated how to assemble the machine using
the different parts. We then took the machine out for a test drive on the Texas Closed
Claims Database and provided views of how the machine went about its task at different
stages. Finally, we provided an insurance context in addition to the output. Stated simply,
we have shown how machine-learning algorithms can be assembled together in a sequence,
to gain knowledge about an insurance process that lacks data and/or experts. In an ideal
world, such a machine will coexist, learn, and drive decisions in addition to actuaries
and experts, refining and evolving with additional data (experience) and tuning (direction)
just like any other business professional.

Casualty Actuarial Society 49

References

Arthur, David, and Sergei Vassilvitskii. 2007. “k-means++: The Advantages of Careful
Seeding.” Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms. Society for Industrial and Applied Mathematics.

Beygelzimer, Alina, Sham Kakadet, John Langford, Sunil Arya, David Mount, and
Shengqiao Li. 2015. “FNN: Fast Nearest Neighbor Search Algorithms and Appli-
cations.” R package version 1.1. http://cran.r-project.org/web/packages/FNN.

Bickerstaff, David R. 1972. “Automobile Collision Deductibles And Repair Cost Groups:
The Lognormal Model.” Proceedings of the Casualty Actuarial Society 59, 68.

Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. Secaucus, NJ:
Springer.

Borchers, Hans Werner. 2015. “Pracma: Practical Numerical Math Functions.” R package
version 1.8.3. http://CRAN.R-project.org/package=pracma.

Delignette-Muller, Marie-Laure, Christophe Dutang, Regis Pouillot, and Jean-Baptiste
Denis. 2015. “Fitdistrplus: Help to Fit of a Parametric Distribution to Non-Censored
or Censored Data.” R package version 1.0-4. http://cran.r-project.org/web/packages/
fitdistrplus.

Dropkin, Lester B. 1964. “Size of Loss Distributions in Workmen’s Compensation
Insurance.” Proceedings of the Casualty Actuarial Society 51, 198.

Genz, Alan, Frank Bretz, Tetsuhisa Miwa, Xuefei Mi, Friedrich Leisch, Fabian Scheipl,
and Torsten Hothorn. 2014. “Mvtnorm: Multivariate Normal and t Distributions.”
R package version 1.0-2. URL http://CRAN.R-project.org/package=mvtnorm.

George, E. I., U. E. Makov, and A. F. M Smith. 1993. “Conjugate Likelihood Dis-
tributions.” Scandinavian Journal of Statistics 20:2, 147–156.

Griffiths, William. 2004. “A Gibbs’ Sampler for the Parameters of a Truncated Multi-
variate Normal Distribution.” Contemporary Issues in Economics and Econometrics:
Theory and Application 75–91.

Haines, Tom S. F. 2011. “Gaussian Conjugate Prior Cheat Sheet.” https://www.haniotika-
nea.gr/media/2013/08/GaussianConjugatePriorCheatSheet.pdf.

Karatzoglou, Alexandros, Alex Smola, Kurt Hornik. 2015. “Kernlab: Kernel-Based
Machine Learning Lab.” R package version 0.9-20. http://cran.r-project.org/web/
packages/kernlab.

Kleinberg, Jon, Christos Papadimitriou, and Prabhakar Raghavan. 2004 “Segmentation
Problems.” Journal of the ACM.

50 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

Mahalanobis, Prasanta Chandra. 1936. “On the Generalised Distance in Statistics.”
Proceedings of the National Institute of Sciences of India 2:1, 49–55.

Mayerson, Allen L. 1964. “A Bayesian View of Credibility.” Proceedings of the Casualty
Actuarial Society 51, 65.

Meyers, Glenn G. 1984. “Empirical Bayesian Credibility For Workers’ Compensation
Classification Ratemaking.” Proceedings of the Casualty Actuarial Society 63, 96.

Parvin, Hamid, Hosein Alizadeh, and Behrouz Minaei-Bidgoli. 2008. “MKNN:
Modified K-Nearest Neighbor.” Proceedings of the World Congress on Engineering
and Computer Science.

Petris, Giovanni, Sonia Petrone, and Patrizia Campagnoli. 2009. Dynamic Linear Models
with R. New York: Springer-Verlag.

Revolution Analytics and Steve Weston. 2014. “DoParallel: Foreach Parallel Adaptor
for the Parallel Package.” R package version 1.0.8. http://CRAN.R-project.org/
package=doParallel.

Tipping, Michael E. 2001. “Sparse Bayesian Learning and the Relevance Vector Machine.”
Journal of Machine Learning Research 1, 211–244.

Vanhatalo, Jarno, Kaakko Riihimaki, Jouni Hartikainen, and Aki Vehtari. 2013.
“Bayesian Modeling with Gaussian Processes using the MATLAB Toolbox GP-stuff.”
1175–1179.

Casualty Actuarial Society 51

Appendix I. Adaptation of MLAPE for
the Poisson distribution

As we noted in the paper, the MLAPE model extends naturally to any specific choice
of P and by choosing the lognormal distribution there is no loss of generality. In this
appendix, we will discuss the necessary changes to each step of the recipe to adapt
MLAPE for the widely used Poisson distribution. While the Poisson distribution has
one parameter, again note that the MLAPE model handles distributions with any number
of parameters.

Step 1. Pre-process
There are no changes needed to this step as it involves processing the underlying data

and concerns only the feature space and output variable.

Step 2. Perform machine learning regression
In the case of the Poisson distribution, we have a one parameter probability density

function where

l() =
−λ

!
f x

e
x

x

and both the mean and variance of x is given by l. For the K-Nearest Neighbors
regression model, we have utilized the maximum likelihood estimate of the distribution
parameters from the K nearest points as our predicted parameters. So, to change the
MLAPE model for the Poisson here, we would replace the lognormal fitting routine,
predicting mu and sigma, with the average of the selected K output values, predicting
lambda. Note that, in addition to the point estimates for the distribution parameters,
confidence intervals are also required by the MLAPE model and we leave this as an area
of future investigation.

For the Kernel regression and RVM regression models, we incorporated the Bayesian
MAP estimates of the parameters and need to introduce the conjugate prior for the
Poisson distribution, which is the gamma distribution. As shown in George et al. (1993),
if our data xi, . . . , xn are IID Poisson(l), then a gamma(a , b) prior on l is a conjugate

52 Casualty Actuarial Society

A Machine-Learning Approach to Parameter Estimation

prior whose posterior distribution is gamma(Sx + a , n + b). As a result, the posterior
mean for l is

l a
b b

a
b b

b
b
a
b

∑ ∑ ∑= +
+

=
+

+
+

=
+











 +

+












x
n

x
n n

n
n

x
n n

i i i

Here we see that, similar to the selection of n0 for the normal-gamma MAP calculation,
b serves as the number of prior observations and a /b is the prior estimate for l and
would be tested as part of the parameter sweep.

Step 3. Cluster
While the K-Means Clustering algorithm is a dynamic clustering algorithm designed

to work in any n-dimensional space without changes to the algorithm, we had modified,
specific to the lognormal, the “average” used to determine the cluster centers. This will
need to be given consideration based on the selected distribution and, in the case of the
Poisson distribution, a standard weighted average of the l’s may be used.

Step 4. Validate
In the validation step, we proposed using the negative log-likelihood and mean

square error as metrics to measure the predictive accuracy of the best model. These
measures are equally valid regardless of the selected distribution and the only required
change is to replace the lognormal expected value and probability density functions
with the Poisson.

Casualty Actuarial Society 53

Appendix II. Method A – K-Nearest
Neighbor Based Lognormal
mu/sigma Estimation Process

Control
Script to run the K-Nearest Neighbor based procedures

Permute
Creates a file with random indices of the data for consistent validation

Preprocess
Pre-processes the data
Standardize features, Weight features, Balance average distance, Create
Training, Validation & Test sets

K-Means Clustering
Run KMeans clustering until 500 iterations show no ADCC improvement
Iterations, Random restarts

Control

Permute

Preprocess

K-NN Fits

K-Means Clustering MyKMeans

Validation

K-NN Fits
For each combination of feature levels in the universe, find the Nearest
Neighbors in the data and perform Lognormal MLE
Handle Outliers, KNN search, Gaussian distance weights for fitting, Weighted
& Capped Lognormal MLE

MyKMeans
KMeans algorithm specific to clustering mu/sigma pairs
KMeans EM, Mahalanobis distance, kmeans++ initialization, weighted
averages, law of total variance

Validation
Procedure to validate training results with validation data set
minimize negative log likelihood

54 Casualty Actuarial Society

Appendix III. Method B – Regression
Based Lognormal mu/sigma
Estimation Process

Control
Script to run the Regression procedures

Preprocess
Pre-processes the data
Standardize features, Weighted and Un-Weighted features, Balance average
distance, Train/Validate/Test sets

Normal Gamma Sequential Update
Estimate mu/sigma based on the Normal-Gamma distribution using a
sequential process
Normal-Gamma, Sequential updating, Capped values, Iterations, Monte Carlo
simulation of tail & prior, Shuffle data

Control

Permute

Preprocess

Posterior Estimation

K-Means Clustering MyKMeans

Validation

Posterior Estimation
For each unique combination of features in the data calculate the
posterior estimates of mu/sigma and sample from the posterior
Handle outliers, Prior lookup, Call Normal-Gamma, Sample distribution

Kernel Regression
For each combination of feature levels in the universe, estimate
mu/sigma using a Kernel regression of the posterior estimates
Gaussian kernel, bandwidth, Mixture of Gaussians for projections, CI search

Normal Gamma
Sequential Update

Kernel Regression

Relevance Vector Machine

Relevance Vector Machine
For each combination of feature levels in the universe, estimate
mu/sigma using a RVM regression of the posterior estimates
Relevance Vector Machine regression, bandwidth

ABOUT THE SERIES:
CAS monographs are authoritative, peer-reviewed, in-depth works focusing
on important topics within property and casualty actuarial practice. For
more information on the CAS Monograph Series, visit the CAS website at
www.casact.org.

www.casact.org

	14654-00a_Cover-2ndPgs
	14654-00b_FM_2ndPgs
	14654-01_CH01-2ndPgs
	14654-02_CH02-2ndPgs
	14654-03_CH03-2ndPgs
	14654-04_CH04-2ndPgs
	14654-05_CH05-2ndPgs
	14654-06_CH06-2ndPgs
	14654-07_References-2ndPgs
	14654-08_AppI-2ndPgs
	14654-09_AppII-2ndPgs
	14654-10_AppIII-2ndPgs

