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There are many papers that describe the over-dispersed Poisson (ODP) bootstrap 
model, but these papers are either limited to the basic calculations of the model or 
focus on the theoretical aspects of the model and always implicitly assume that the 
ODP bootstrap model is perfectly suited to the data being analyzed. In order to use 
the ODP bootstrap model on real data, the analyst must first test and review the 
assumptions of the model and may need to consider various modifications to the basic 
algorithm in order to put the ODP bootstrap model to practical use. This monograph 
starts by gathering the evolutionary changes from different papers into a complete ODP 
bootstrap modeling framework using a standard notation. Then it generalizes the basic 
model into a more flexible framework. Next it describes the adjustments or enhancements 
required for practical use and addresses the diagnostic testing of the model assumptions. 
While this monograph is focused on the ODP bootstrap model, we must recognize that 
it is a special subset of a larger framework of models and that there are a wide variety of 
other stochastic models that should also be considered. However, since no single model 
is perfect we also explore ways to combine or credibility weight the ODP bootstrap model 
results with various other models in order to arrive at a “best estimate” of the distribution, 
similar to how a deterministic best estimate is generally derived in practice. Finally, the 
monograph will also extend the model to illustrate the GLM Bootstrap and the model 
output to address other risk management issues and suggest areas for future research.

Keywords. Bootstrap, Over-Dispersed Poisson, Reserve Variability, Reserve Range, 
Distribution of Possible Outcomes, Generalized Linear Model, Best Estimate.

Availability of Excel workbooks. In lieu of technical appendices, several 
companion Excel workbooks are included that illustrate the calculations described in this 
monograph. The companion materials are summarized in the Supplementary 
Materials section and are available at https://www.casact.org/sites/default/
files/2021-02/practitionerssuppl-shaplandmonograph04.zip. Other sources of ODP 
bootstrap modeling software that could be used for educational purposes would include 
working parties and other industry groups in North America and Europe, including 
but not limited to models freely available in the R statistical software package.

https://www.casact.org/sites/default/files/2021-02/practitionerssuppl-shaplandmonograph04.zip
https://www.casact.org/sites/default/files/2021-02/practitionerssuppl-shaplandmonograph04.zip
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The concept of bootstrapping generally invokes the idea that once a process has been 
started, it can replicate without additional external input. Disciplines from biology and 
physics to business and statistics use bootstrapping to analyze numerous processes. For 
example, in statistics, bootstrapping involves starting with one sample and using it to 
derive many more subsamples drawn from the original sample. A specialized applica-
tion within actuarial science involves derivation of a distribution of possible outcomes 
for each step in the loss development process.

Considerable literature has been developed over the past twenty-plus years regarding 
bootstrapping as it relates to actuarial science and the loss reserving process. In this work, 
Mr. Shapland collects the research from this vast literature base and frames it in one 
comprehensive presentation. The result is a complete over-dispersed Poisson (ODP) 
bootstrap model. At the same time, those who have worked with ODP bootstrapping 
know that these models have limitations when using real-world data. Mr. Shapland’s work 
also proposes modifications and enhancements that allow more practical application of 
the ODP bootstrap model. In addition, he provides details on generalized linear models, 
of which the ODP bootstrap is one form.

With the knowledge that model risk is a real risk—no single model is perfect—
Mr. Shapland further explores ways to combine the results of ODP bootstrapping with 
other types of models in an effort to determine a true “best estimate” of the distribution.

A set of illustrative Excel files, along with detailed instructions on how to use them, 
complements this monograph. With these files, the reader can follow through, step by 
step, the theory presented in monograph.

This monograph provides a one-stop shop for practical application of bootstrapping 
for the loss reserving process. The Monographs Editorial Board thanks the author for a 
valuable contribution to the casualty actuarial literature.

Leslie R. Marlo
Chairperson

Monograph Editorial Board

Foreword
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The term “bootstrap” has a colorful history that dates back to German folk tales of  
the 18th century. It is aptly conveyed in the familiar cliché admonishing laggards to 
“pull oneself up by their own bootstraps.” A physical paradox and virtual impossibility, 
the idea has nonetheless caught the imagination of scientists in a broad array of fields, 
including physics, biology and medical research, computer science, and statistics.

Bradley Efron (1979), Chairman of the Department of Statistics at Stanford Uni­
versity, is most often associated as the source of expanding bootstrapping into the realm 
of statistics, with his notion of taking one available sample and using it to arrive at many 
others through resampling.

In actuarial science, the concept of bootstrapping has become increasingly common 
in the process of loss reserving. The most commonly cited examples are England and 
Verrall (1999; 2002), Pinheiro, et al. (2003), and Kirschner, et al. (2008), who combine 
the bootstrap concept with a basic chain ladder model. These papers detail a form of 
the model where the incremental losses are modeled as over-dispersed Poisson random 
variables. In this monograph, it is called the over-dispersed Poisson bootstrap model, or 
the ODP bootstrap. The goal of the ODP bootstrap model is to generate a distribution 
of possible outcomes, rather than a point estimate, providing more information about 
the potential results.

At the present time, the vast majority of reserving actuaries in the U.S. are focused on 
deterministic point estimates. This is not surprising as the American Academy of Actuaries’ 
primary standard of practice for reserving, ASOP 36, is focused on deterministic 
point estimates and the actuarial opinion required by regulators is also focused on 
deterministic estimates. However, actuaries are moving towards estimating an unpaid 
claim distribution, encouraged by the following factors:

•	 ASOP 43 defines “actuarial central estimate” in such a way that it could include 
either deterministic point estimates or a first moment estimate from a distribution;

•	 the SEC is looking for more reserving risk information in the 10-K reports filed by 
publicly traded companies;

•	 all of the major rating agencies have built or are building dynamic risk models to 
help with their insurance rating process and welcome the input of company actuaries 
regarding unpaid claim distributions;

•	 companies that use dynamic risk models to help their internal risk management 
processes need unpaid claim distributions;

1.  Introduction
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•	 The Solvency II regime in Europe is moving many insurers towards unpaid claim 
distributions; and

•	 International Financial Accounting Standards, while still being discussed, shows 
actuaries that the future of insurance accounting may rely on unpaid claim 
distributions for booked reserves.

1.1.  Objectives
One objective of this monograph is to provide more practical details on the Generalized 

Linear Model (GLM), of which the ODP bootstrap model1 is a specific form. A GLM 
allows the user to “fit” the model to the data, as illustrated in Figure 1.1. The benefit 
of a GLM is that it can be specifically tailored to the statistical features found in the 
data under analysis. In contrast, consider algorithms that essentially force the data to 
be “fit” to a static method in order to predict the future as illustrated in Figure 1.2.2

If a method does not use parameters or assumptions that fit the statistical features 
of the data then it may not project a reasonable point estimate. Similarly, if model 
assumptions and parameters do not fit the statistical features found in the data then the 
results of a simulation may not be a very good estimate of the distribution of possible 
outcomes. Thus, the modeling framework must be able to adapt to or “fit” the model 
to the data so this point will be elaborated on in later sections.

Another objective of this monograph is to show how the ODP bootstrap modeling  
framework can be used in practice, to help the wider adoption of unpaid claim distribu­
tions. Most of the papers describing stochastic models, including the ODP bootstrap 
model, tend to focus primarily on the theoretical aspects of the model while ignoring 
the data issues that commonly arise in practice. As a result the models can be quite 
elegantly implemented yet suffer from practical limitations such as only being useful 

1	Some authors define a model as having a defined structure and error distribution, so under this more restrictive 
definition bootstrapping would be considered to be a method or algorithm. However, using a less restrictive 
definition of a model as an algorithm that produces a distribution, bootstrapping would be defined as a model.

2	For most deterministic reserving methods diagnostic tools can be used to test assumptions, adjust parameters and 
“fit” the method to the data, but not all assumptions can be adjusted and blindly applying a method is equivalent 
to a static method.

Figure 1.1.    Stochastic Model Diagram
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for complete triangles or only for positive incremental values. Thus, while keeping as 
close to the theoretical foundation as possible, another objective is to illustrate how 
practical adjustments can be made to accommodate common data issues and allow the 
model to “fit” the data. As a practical matter, it is also possible that the model does not 
fit the data very well, or less well than other models, so the process of diagnosing the 
assumptions will inform the actuary’s judgment when considering how much weight, 
if any, to give the model in relation to other models.

Another potential roadblock seems to be the notion that actuaries are still searching 
for the perfect model to describe “the” distribution of unpaid claims, as if imperfections 
in a model remove it from all consideration since it can’t be “the one.” This notion can 
also manifest itself when an actuary settles for a model that seems to work the best or is 
the easiest to use, or with the idea that each model must be used in its entirety or not at 
all. Interestingly, this notion was dispelled long ago with respect to deterministic point 
estimates as actuaries commonly use many different methods, which range from easy to 
complex, and judgmentally weight the results to arrive at their best estimate.

Model risk—the risk that the model you have chosen is not the same as the one that 
generates future losses—is very real and weighting or combining multiple estimates is a 
very practical way of addressing model risk. Thus, another objective of this monograph 
is to show how stochastic reserving can be similar to deterministic reserving when it 
comes to analyzing and using the best parts of multiple models by illustrating how the 
results from an ODP bootstrap model can be weighted together with other models. 
More importantly, the monograph hopes to illustrate the advantage of using a more 
complete set of risk estimation tools (which can include both stochastic models and 
deterministic methods) to arrive at an actuarial best estimate of the distribution of 
possible outcomes, rather than to focus on deterministic methods to select the “mean” 
and then simply “add on” a simple approximation or use only a favorite model to 
turn that selected mean into a distribution.

Figure 1.2.    Static Method Diagram
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2.  Notation

The papers that describe the basic ODP bootstrap model use different notation, 
despite sharing common steps. Rather than pick the notation in one of the papers, the 
notation from the CAS Working Party on Quantifying Variability in Reserve Estimates 
Summary Report (CAS Working Party 2005) will be used since it is intended to serve 
as a basis for further research.

Many models visualize loss data as a two-dimensional array, (w, d ) with accident 
period or policy period w, and development age d (think w = “when” and d = “delay”). 
For this discussion, we assume that the loss information available is an “upper triangular” 
subset for rows w = 1, 2, . . . , n and for development ages d = 1, 2, . . . , n - w + 1. The 
“diagonal” for which w + d equals the constant, k, represents the loss information for 
each accident period w as of accounting period k.3

For purposes of including tail factors, the development beyond the observed data 
for periods d = n + 1, n + 2, . . . , u, where u is the ultimate time period for which any 
claim activity occurs—i.e., u is the period in which all claims are final and paid in full, 
must also be considered.

The monograph uses the following notation for certain important loss statistics:

	 c(w, d ):	 cumulative loss from accident4 year w as of age d.
	 q(w, d ):	 incremental loss for accident year w from d - 1 to d.
	c(w, n) = U(w):	� total loss from accident year w when claims are at ultimate values at 

time n,5 or
	c(w, u) = U(w):	� total loss from accident year w when claims are at ultimate values at 

time u.
	 R(w):	� future development after age d for accident year w, i.e., = U(w) - 

c(w, d ).
	 f (d ):	� factor applied to c(w, d ) to estimate q(w, d + 1) or can be used more 

generally to indicate any factor relating to age d.

3	 For a more complete explanation of this two-dimensional view of the loss information, see the Foundations of 
Casualty Actuarial Science (2001), Chapter 5, particularly pages 210–226.

4	 The use of accident year is used for ease of discussion. All of the discussion and formulas that follow could also 
apply to underwriting year, policy year, report year, etc. Similarly, year could also be half-year, quarter or month.

5	 This would imply that claims reach their ultimate value without any tail factor. This is generalized by changing n 
to n + t = u, where t is the number of periods in the tail.
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	 F(d ):	� factor applied to c(w, d ) to estimate c(w, d + 1) or c(w, n) or can be 
used more generally to indicate any cumulative factor relating to age d.

	 G(w):	� factor relating to accident year w—capitalized to designate ultimate 
loss level.

	 h(k):	 factor relating to the diagonal k along which w + d is constant.6

	 e(w, d ):	 a random fluctuation, or error, which occurs at the w, d cell.
	 E(x):	 the expectation of the random variable x.
	 Var(x):	 the variance of the random variable x.
	 x*:	 a randomly sampled value of the variable x.

What are called factors here could also be summands, but if factors and summands 
are both used, some other notation for the additive terms would be needed. The 
notation does not distinguish paid vs. incurred, but if this is necessary, capitalized 
subscripts P and I could be used.

6	 Some authors define d = 0, 1, . . . , n - 1 which intuitively allows k = w along the diagonals, but in this case the 
triangle size is n × n - 1 which is not intuitive. With d = 1, 2, . . . , n defined as in this monograph, the triangle size  
n × n is intuitive, but then k = w + 1 along the diagonals is not as intuitive. A way to think about this which helps 
tie everything together is to assume the w variables are the beginning of the accident periods and the d variables 
are at the end of the development periods. Thus, if we are using years then cell c(n, 1) represents accident year n 
evaluated at 12/31/n, or essentially 1/1/n + 1.
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3. The Bootstrap Model

Although many variations of a bootstrap model framework are possible, this monograph 
will focus on the most common example which reproduces the basic chain ladder 
method—the ODP bootstrap model. Let’s briefly review the assumptions of the basic 
chain ladder method, because these assumptions are important in understanding the 
distribution created by the ODP bootstrap model.

Start with a triangle array of cumulative data:

d

1 2 3 . . . n–1 n

w 1 c(1, 1) c(1, 2) c(1, 3) . . . c(1, n-1) c(1, n)

2 c(2, 1) c(2, 2) c(2, 3) . . . c(2, n-1)

3 c(3, 1) c(3, 2) c(3, 3) . . .

. . . . . . . . .

n–1 c(n-1, 1) c(n-1, 2)

n c(n, 1)

A typical deterministic analysis of this data will start with an array of development 
ratios or development factors:

( ) ( )
( )=

−
F w d

c w d
c w d

,
,

, 1
. (3.1)

Then two key assumptions are made in order to make a projection of the known 
elements to their respective ultimate values. First, it is assumed that each accident year 
has the same development factor. Equivalently, for each w = 1, 2, . . . , n:

( ) ( )=F w d F d, .

Under this first assumption, one of the more popular estimators for the development 
factor is the weighted average:

∑
∑

( ) ( )
( )=

−
=
− +

=
− +F d

c w d
c w d

w
n d

w
n d

ˆ ,
, 1

. (3.2)1
1

1
1
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Certainly there are other popular estimators in use, but they are beyond our scope at 
this stage yet most are still consistent with our first assumption that each accident year 
has the same factor. Projections of the ultimate values, or ĉ(w, n) for w = 1, 2, . . . , n are 
then computed using:

∏( ) ( ) ( )= = − += +c w n c w d F i d n wi d
nˆ , , ˆ , for all 1. (3.3)1

This part of the claim projection algorithm relies explicitly on the second assumption, 
namely that each accident year has a parameter representing its relative level. These level 
parameters are the current cumulative values for each accident year, or c(w, n - w + 1). 
Of course variations on this second assumption are also common, but the point is that 
every model has explicit assumptions that are an integral part of understanding the 
quality of that model.

One variation on the second assumption is to assume that the accident years are 
completely homogeneous.7 In this case we would estimate the level parameter of the 
accident years using:

∑ ( )
− +

=
− + c w d
n d

w
n d ,

1
. (3.4)1

1

Complete homogeneity implies that the observations c(1, d ), c(2, d ), . . . ,  
c(n - d + 1, d ) are generated by the same mechanism. Thus, the column averages from 
(3.4) would replace the last actual values along the diagonal to calculate an estimate 
assuming homogeneity of accident years.

Interestingly, the basic chain ladder algorithm treats the processes generating the 
observations as NOT homogeneous8 and effectively that “pooling” of the data does not 
provide any increased efficiency.9 In contrast, it could be argued that the Bornhuetter-
Ferguson (1972) and Cape Cod methods are a “blend” of these two extremes as the 
homogeneity of the future expected result depends on the consistency of the a priori 
loss ratios and decay rate, respectively.

3.1.  Origins of Bootstrapping
Possibly the earliest development of a stochastic model for the actuarial array of 

cumulative development data is attributed to Kremer (1982) and the earliest discussion 
of bootstrapping is in Ashe (1986). The basic model used by Kremer is described by 
England and Verrall (1999) and Zehnwirth (1989), so there will be no further elaboration 
here. It should be noted, however, that this model can be extended by considering 
alternatives which are discussed in Barnett and Zehnwirth (2000) and Zehnwirth 
(1994), Renshaw (1989), Christofides (1990), and Verrall (1991; 2004), among others.

7	 Homogeneous data can have a different meaning in mathematics, but here we are defining it to mean having 
consistent or the same underlying exposures.

8	 Meaning the underlying exposures are changing over time and thus the current cumulative results (observation) 
for each year are more appropriate for projecting an estimate.

9	 For a more complete discussion of these assumptions of the basic chain ladder model see Zehnwirth (1989).
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10	 Generalized Linear Modeling can be done with and without link functions and with a variety of error distributions. 
We are only describing here the particular GLM model that leads to the replication of the chain ladder results. 
For a more complete treatise on Generalized Linear Modeling, see McCullagh and Nelder (1989).

11	 Some authors refer to this as the standard deviation of the posterior distribution.
12	 While over-dispersed Poisson, or ODP, are commonly used terms for this model, it is certainly possible for the 

scale parameter to be less than one and thus “under-dispersed” Poisson would be more technically correct in that 
case. Alternatively, the more general term quasi-Poisson could be used. In addition, we note that the z parameter in 
equation 3.5, and some later formulas, could be removed for simplicity since the primary focus of this monograph is 
the ODP Bootstrap model, but it is included so we do not lose sight of the fact that the ODP Bootstrap model 
is a specialized case of a larger family of models.

3.2. The Over-Dispersed Poisson Model
The genesis of this model into an ODP bootstrap framework originated with 

Renshaw and Verrall (1994) when they proposed modeling the incremental claims 
q(w, d ) directly as the response, with the same linear predictor as Kremer (1982), but 
using a generalized linear model (GLM) with a log-link function and an over-dispersed 
Poisson (ODP) error distribution.10 Then, England and Verrall (1999) discuss how a 
specific form of this model is identical to the volume weighted chain ladder model, and 
use bootstrapping (sampling the residuals with replacement) to estimate a distribution 
of point estimates11 instead of simulating from a multivariate normal distribution for a 
GLM. More formally, the following formulas are used to parameterize the GLM.

[ ] [ ] [ ]( ) ( ) ( )= = φ = φE q w d m Var q w d E q w d mw d w d
z, and , , (3.5), ,

[ ] = ηmw d w dln (3.6), ,

η = + α + β = = α = β =, where: 1, 2, . . . , ; 1, 2, . . . , ; and 0. (3.7), 1 1c w n d nw d w d

In this case the a parameters function as adjustments to the constant, c, level 
parameter and the b parameters adjust for the development trends after the first 
development period. The power, z, is used to specify the error distribution with:

z = 0 for Normal,
z = 1 for Poisson,
z = 2 for Gamma, and
z = 3 for inverse Gaussian.

Thus, the z parameter specifies not only the mean-variance relationship, but the 
whole shape of the distribution, including higher moments. Alternatively, we can 
remove the constant, c, which will cause the a parameters to function as individual 
level parameters while the b parameters continue to adjust for the development trends 
after the first development period:

η = α + β = =, where: 1, 2, . . . , ; and 2, 3, . . . , . (3.8), w n d nw d w d

Standard statistical software can be used to estimate parameters and goodness of fit 
measures. The parameter f is a scale parameter that is estimated as part of the fitting 
procedure while setting the variance proportional to the mean (thus “over-dispersed” 
Poisson for z = 1)12. For educational purposes, the calculations to solve these equations 
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for a 10 × 10 triangle are included in the “Bootstrap Models.xlsm” file, but here, and 
in the “GLM Framework.xlsm” file, the calculations are illustrated for a 3 × 3 triangle 
for ease of exposition. Consider the following incremental data triangle:

1 2 3

1 q(1, 1) q(1, 2) q(1, 3)

2 q(2, 1) q(2, 2)

3 q(3, 1)

In order to set up the GLM model to fit parameters to the data we need to do a 
log-link or transform which results in:

1 2 3

1 ln[q(1, 1)] ln[q(1, 2)] ln[q(1, 3)]

2 ln[q(2, 1)] ln[q(2, 2)]

3 ln[q(3, 1)]

The model, as described in (3.8), is then specified using a system of equations with 
vectors of aw and bd parameters as follows:

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

( )
( )
( )
( )
( )
( )

= α + α + α + β + β
= α + α + α + β + β
= α + α + α + β + β
= α + α + α + β + β
= α + α + α + β + β
= α + α + α + β + β

q
q
q
q
q
q

ln 1,1 1 0 0 0 0
ln 2,1 0 1 0 0 0
ln 3,1 0 0 1 0 0
ln 1, 2 1 0 0 1 0
ln 2, 2 0 1 0 1 0
ln 1, 3 1 0 0 1 1 . (3.9)

1 2 3 2 3

1 2 3 2 3

1 2 3 2 3

1 2 3 2 3

1 2 3 2 3

1 2 3 2 3

Converting this to matrix notation we have:

Y X A (3.10)= ×

Where:

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

( )
( )
( )
( )
( )
( )

=





























Y

ln 1,1

ln 2,1

ln 3,1

ln 1, 2

ln 2, 2

ln 1, 3

, (3.11)

q

q

q

q

q

q
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X

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
0 1 0 1 0
1 0 0 1 1

, and (3.12)=























=

α
α
α
β
β























A . (3.13)

1

2

3

2

3

In this form we can use iteratively weighted least squares or maximum likelihood13 
to solve for the parameters in the A vector (3.13) that minimize the squared difference 
between the Y matrix (3.11) and the solution matrix (3.14):

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

























ln
ln
ln
ln
ln
ln

. (3.14)

1,1

2,1

3,1

1,2

2,2

1,3

m
m
m
m
m
m

After solving the system of equations we will have:

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

= η = α
= η = α
= η = α
= η = α + β
= η = α + β
= η = α + β + β

ln
ln
ln
ln
ln
ln . (3.15)

1,1 1,1 1

2,1 2,1 2

3,1 3,1 3

1,2 1,2 1 2

2,2 2,2 2 2

1,3 1,3 1 2 3

m
m
m
m
m
m

This solution can then be shown as a triangle:

1 2 3

1 ln[m1,1] ln[m1,2] ln[m1,3]

2 ln[m2,1] ln[m2,2]

3 ln[m3,1]

13	 Other methods, such as orthogonal decomposition or Newton-Raphson, can also be used to solve for the parameters. 
Iteratively weighted least squares and maximum likelihood are both illustrated in the companion Excel files.



Casualty Actuarial Society	 11

Using the ODP Bootstrap Model: A Practitioner’s Guide

These results can then be exponentiated to produce the fitted, or expected, incremental 
results of the GLM model:

1 2 3

1 m1,1 m1,2 m1,3

2 m2,1 m2,2

3 m3,1

This monograph will refer to this as the “GLM framework” and it is illustrated for 
a simple 3 × 3 triangle in the “GLM Framework.xlsm” file. While the GLM framework 
is used to solve these equations for the fitted results, the usefulness of this framework 
is that the fitted incremental values (with the Poisson error distribution assumption) 
will equal the incremental values that can be derived from volume-weighted average 
development factors, as shown in the “GLM Framework.xlsm” file.14 That is, it can be 
reproduced by using the last cumulative diagonal, dividing backwards successively by 
each volume-weighted average development factor and subtracting to get the fitted 
incremental results. This monograph will refer to this method as the “simplified GLM” 
or “ODP Bootstrap.” This has three very useful consequences.

First, the GLM portion of the algorithm can be replaced with a simpler development 
factor algorithm while still being based on the underlying GLM framework. Second, 
the use of the development factors serves as a “bridge” to the deterministic framework 
and allows the model to be more easily explainable to others. And, third, for the GLM 
algorithm the log-link process means that negative incremental values can often cause 
the algorithm to not have a solution, whereas using development factors will generally 
allow for a solution.15

With a model fitted to the data, the ODP bootstrap process involves sampling 
with replacement from the residuals. England and Verrall (1999) note that the 
deviance, Pearson, and Anscombe residuals could all be considered for this process, 
but the Pearson residuals are the most desirable since they are calculated consistently 
with the scale parameter. The unscaled Pearson residuals, rw,d, and scale parameter, f, 
are calculated as follows:

( )
=

−,
. (3.16),

,

,

r
q w d m

m
w d

w d

w d
z

∑φ =
−
r

N p
w d . (3.17),
2

14	 Using other than the Poisson assumption (i.e., z ≠ 1), the incremental values may be close to the values from 
the development factors, but they will not be equal.

15	 More specifically, individual negative cell values may not be a problem (by using the negative of the log of the 
absolute value in 3.14). If the total of all incremental cell values in a development column is negative, then the 
GLM algorithm will fail. This situation will not cause a problem fitting the model as a link ratio less than one 
will be perfectly useful. However, this may still cause other problems, e.g., the “GLM framework” and “simplified 
GLM” may not be equivalent, which we will address in Section 4.
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Where N = the number of observations, or incremental data cells in the triangle, 
which is typically equal to n × (n + 1) ÷ 2, and p = the number of parameters, which 
is typically equal to 2 × (n - 1).16 Sampling with replacement from the residuals can 
then be used to create new sample triangles of incremental values using formula 3.18. 
Sampling with replacement assumes that the residuals are independent and identically 
distributed, but it does not require the residuals to be normally distributed. Indeed, this 
is often cited as an advantage of the ODP bootstrap model since whatever distributional 
form the residuals have will flow through to the simulation process. Some authors have 
referred to this as a “semi-parametric” bootstrap model since we are not parameterizing 
the residuals.

= × +* ( , ) * . (3.18), ,q w d r m mw d
z

w d

The sample triangle of incremental values can then be cumulated, new average 
development factors can be calculated for the sample and applied to calculate a point 
estimate for this data, resulting in a distribution of point estimates for some large number 
of samples. In England and Verrall (1999) this is the end of the process, but at the 
end of the appendix they note that you should also adjust the resulting distribution 
by the degrees of freedom adjustment factor (3.19) and the Scale Parameter (3.17), to 
effectively allow for over-dispersion of the residuals in the sampling process and add 
process variance to approximate a distribution of possible outcomes.

=
−

. (3.19)f
N

N p
DoF

Later, in England and Verrall (2002), the authors note that the Pearson residuals 
(3.16) could be multiplied by the degrees of freedom adjustment factor (3.19) to include 
the over-dispersion in the residuals. As calculated in (3.20), these adjusted residuals 
are referred to as scaled Pearson residuals. They also expand the simulation process 
by adding process variance to the future incremental values from the point estimates. 
To add this process variance, they assume that each future incremental value mw,d is 
the mean and the mean times the scale parameter, fmw,d, is the variance of a gamma 
distribution.17 This revised model could now be described as estimating a distribution 
of possible outcomes, which incorporates process variance and parameter variance in the 
simulation of the historical and future data.18

16	 The number of data cells could be less than n × (n + 1) ÷ 2 and the number of parameters could be less than  
2 × (n - 1). For example, if the incremental values are zeros for the last three columns in a triangle then these cells 
would not be included in the total for N and there will be three fewer b parameters since none are needed to fit 
to these zero values as the development process is completed already.

17	 The Poisson distribution could be used to remain more consistent with the underlying theory of the GLM 
framework, but it is considerably slower to simulate, so gamma is a close substitute that performs much faster in 
simulation although it can be more skewed than the Poisson. Indeed, other distributions could be used as well to 
better approximate the observed “skewness” of the residuals from the diagnostics.

18	 Some authors refer to this as the full predictive distribution of the cash flows.
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( )
=

−
×

,
. (3.20),

,

,

r
q w d m

m
fw d

S w d

w d
z

DoF

However, Pinheiro et al. (2001; 2003) noted that the bias correction for the residuals 
using the degrees of freedom adjustment factor (3.20) does not create standardized 
residuals, which is an important step for making sure that the residuals all have the 
same variance. In order to have standardized Pearson residuals, the GLM framework 
requires the use of a hat matrix adjustment factor (3.23).

( )= − . (3.21)1H X X WX X WT T

First, the hat matrix (3.21) is calculated using matrix multiplication of the design 
matrix (3.12) and the weight matrix (3.22).

=



























0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

(3.22)

1,1

2,1

3,1

1,2

2,2

1,3

W

m
m

m
m

m
m

=
−

1
1

. (3.23),
,

f
Hw d

H

i i

The hat matrix adjustment factor (3.23) uses the diagonal of the hat matrix (3.21). In 
Pinheiro et al. (2003) the authors note two important points about the ODP bootstrap 
process as described by England and Verrall (1999; 2002). First, the sampling of the 
residuals should not include any zero-value residuals, which are typically in the corners of 
the triangle.19 The exclusion of the zero-value residuals is accounted for in the hat matrix 
adjustment factor (3.23), but another common explanation is that the zero-value cells 
will have some variance but we just don’t know what it is yet so we should sample from 
the remaining residuals but not the zeros. Second, the hat matrix adjustment factor (3.23) 
is a replacement for, and an improvement on, the degrees of freedom factor (3.19).20

Thus, the scaled Pearson residuals (3.20) should be replaced by the standardized 
Pearson residuals:

( )
=

−
×

,
. (3.24),

,

,
,r

q w d m

m
fw d

H w d

w d
z w d

H

19	 Technically, the two “corner” residuals are zero because they each have a parameter that is unique to that incremental 
value which causes the fitted incremental value to exactly equal the actual incremental value.

20	 This second point was not addressed clearly in Pinheiro et al. (2001), but as the authors updated and clarified the 
monograph in Pinheiro et al. (2003) this issue was more clearly addressed.
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However, the scale parameter (3.17) is still calculated as before, although the 
standardized Pearson residuals could be used to approximate the scale parameter as 
follows:

∑( )φ = . (3.25),
2r

N
H w d

H

At this point we have a complete basic “ODP bootstrap” model, as it is often 
referred to. It is also important to note that the two key assumptions mentioned 
earlier, each accident year has the same development factor and each accident year has 
a parameter representing its relative level, are equally applicable to this model.

In order for the reader to test out the different “combinations” of this modeling 
process the “Bootstrap Models.xlsm” file includes options to allow these historical 
algorithms to be simulated. The purpose for describing this evolution of the ODP 
bootstrap model framework is threefold: first, to allow the interested reader to better 
understand the details of the algorithm and how these papers and their authors have 
contributed to the evolution of this model framework; second, to illustrate the value of 
collaborative research via different published papers and the contributions of different 
authors; and, third, to provide a solid foundation for continuing the evolutionary 
process and to discuss practical adjustments.

3.3. Variations on the ODP Model
When estimating insurance risk it is generally considered desirable to focus on the 

claim payment stream in order to measure the variability of the actual cash flows that 
directly affect the bottom line. Clearly, changes in case reserves and IBNR reserves 
will also impact the bottom line, but to a considerable extent the changes in IBNR are 
intended to counter the impact of the changes in case reserves. To some degree, then, 
the total reserve movements can act to mask the underlying changes due to cash flows. 
On the other hand, the case reserves contain valuable information about potential 
future payments so we should not ignore them and use only paid data.

3.3.1.  Bootstrapping the Incurred Loss Triangle
The ODP bootstrap model can be used to model both paid and incurred loss data. 

Using incurred data incorporates case reserves, thus perhaps improving the ultimate 
estimates. However, the resulting distribution from using incurred data will be possible 
outcomes of the IBNR, not a distribution of the unpaid.21 There are two possible 
approaches for modeling an unpaid loss distribution using incurred loss data: modeling 
incurred data and convert the ultimate values to a payment pattern, or, modeling paid 
and case reserves separately.

Using the first approach, a convenient way of converting the results of an incurred 
data model to a payment stream is to run the paid data model in parallel with the 

21	 Using incurred data will also create issues in weighting the results of different models which will be discussed in 
Section 6.
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incurred data model, and use the random payment pattern from each iteration from 
the paid data model to convert the ultimate values from each corresponding iteration 
from the incurred data to a payment pattern for each iteration (for each accident year 
individually). The “Bootstrap Models.xlsm” file illustrates this concept. It is worth 
noting, however, that this process allows the “added value” of using the case reserves 
to help predict the ultimate results to work its way into the calculations, thus perhaps 
improving the ultimate estimates, while still focusing on the payment stream for 
measuring risk. In effect, it allows a distribution of IBNR to become a distribution of 
IBNR and case reserves. This process could be made more sophisticated by correlating 
some part of the paid and incurred models (e.g., the residual sampling and/or process 
variance portions), but that is beyond the scope of this monograph.

The second approach could be accomplished by applying the ODP bootstrap to 
the Munich chain ladder model. This has the advantage over the first approach of not 
modeling the paid losses twice, and of explicitly measuring and imposing a framework 
around the correlation of the paid and outstanding losses. Since it is so well detailed in 
Liu and Verrall (2010), it will not be discussed in detail here.

3.3.2.  Bootstrapping the Bornhuetter-Ferguson  
and Cape Cod models

Another common issue with using the ODP bootstrap model is that the distribution 
for the most recent accident years can produce results with more variance than you 
would expect when compared to earlier accident years. This is usually because more 
development factors are used to extrapolate the sampled values for the most recent 
accident years which, when coupled with random samples of incremental values, can 
result in more extreme fluctuations in point estimates. This is analogous to one of 
the weaknesses of the deterministic paid chain ladder method—a low, or high, initial 
observation can lead to an abnormally low, or high, projected ultimate, respectively.

To help alleviate this problem, the Bornhuetter-Ferguson (1972) or generalized 
Cape Cod (Struzzieri and Hussian 1998) deterministic methods can be worked into 
the underlying ODP bootstrap model, and the deterministic assumptions of these 
methods can also be converted to stochastic assumptions. For example, instead of 
using deterministic a priori loss ratios for the Bornhuetter-Ferguson model, the a priori 
loss ratios can be simulated from a distribution. Similarly, the Cape Cod algorithm can 
be applied to every ODP bootstrap model iteration to produce a stochastic Cape Cod 
projection that reflects the unique characteristics of each sample triangle.22

The “Bootstrap Models.xlsm” file also illustrates these Bornhuetter-Ferguson and 
Cape Cod ODP bootstrap models.23

22	 In addition to being consistent between paid and incurred data, to the extent there is commonality with 
deterministic methods the assumptions should also be consistent. For example, it would not make sense to use 
one set of a priori loss ratio assumptions for a deterministic Bornhuetter-Ferguson method and a different set of 
mean assumptions for a modified ODP bootstrap model.

23	 More complex implementations of these models could include modifying the underlying assumptions of the 
GLM framework which would result in a completely different set of residuals, but that is beyond the scope of 
this monograph.
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3.4. The GLM Bootstrap Model
Two limitations of the chain-ladder model, and hence the ODP bootstrap of the 

chain-ladder model, is that it does not measure or adjust for calendar-year effects, and 
it includes a significant number of parameters and many would argue that it over-fits 
the model to the data.

Another approach is to go back to the original GLM framework. Returning to 
formulas (3.5) to (3.8), the GLM framework does not require a certain number of 
parameters so we are free to specify only as many parameters as we need to get a robust 
model, which can address the over-fitting issue. Indeed, it is ONLY when we specify 
a parameter for EVERY accident year and EVERY development year and specify a 
Poisson error distribution that we end up exactly replicating the volume weighted 
average development factors that allow us to substitute the deterministic algorithm 
instead of solving the GLM fit.

Thus, using the original GLM framework, which this monograph will refer to as 
the “GLM Bootstrap” model, we can specify a model with only a few parameters, but 
there are two drawbacks to doing so.24 First, the GLM must be solved for each iteration 
of the bootstrap model (which may slow down the simulation process) and, second, the 
model is no longer directly explainable to others using development factors.25 While 
the impact of these drawbacks should be considered, the potential benefits of using the 
GLM bootstrap can be much greater.

First, having fewer parameters will help avoid over-parameterizing the model.26 For 
example, if we use only one accident year parameter then the model specified using a 
system of equations is as follows (which is analogous to formula 3.9):

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

( )
( )
( )
( )
( )
( )

= α + β + β
= α + β + β
= α + β + β
= α + β + β
= α + β + β
= α + β + β

q
q
q
q
q
q

ln 1,1 1 0 0
ln 2,1 1 0 0
ln 3,1 1 0 0
ln 1, 2 1 1 0
ln 2, 2 1 1 0
ln 1, 3 1 1 1 (3.26)

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

In this case we will only have one accident year parameter and n - 1 develop-
ment trend parameters, but it will only be coincidence that we would end up with the 
equivalent of average development factors. Interestingly, this model parameterization 
moves us away from one of the common basic assumptions (i.e., each accident year has 
its own level) and substitutes the assumption that all accident years are homogeneous.

24	 Using the GLM framework allows for many other variations in the specification of models and then bootstrapping 
as described in more detail in England and Verrall (1999; 2002) and others, but this monograph will focus on 
variations consistent with the framework underpinning the ODP bootstrap model.

25	 However, age-to-age factors could be calculated for the fitted data to compare to the actual age-to-age factors and 
used as an aid in explaining the model to others.

26	 Over-parameterization will be addressed more completely in Section 5.
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Another example of using fewer parameters would be to only use one development 
year parameter (while continuing to use an accident-year parameter for each year), 
which would equate to the system of equations in (3.27).

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

( )
( )
( )
( )
( )
( )

= α + α + α + β
= α + α + α + β
= α + α + α + β
= α + α + α + β
= α + α + α + β
= α + α + α + β

q
q
q
q
q
q

ln 1,1 1 0 0 0
ln 2,1 0 1 0 0
ln 3,1 0 0 1 0
ln 1, 2 1 0 0 1
ln 2, 2 0 1 0 1
ln 1, 3 1 0 0 2 (3.27)

1 2 3 2

1 2 3 2

1 2 3 2

1 2 3 2

1 2 3 2

1 2 3 2

In this example the model parameterization moves away from the other common 
basic assumption (i.e., each accident year has its own level, but the same development 
parameter is used for all periods), and again it would be pure coincidence to end up 
with the equivalent of average development factors.27 It is also interesting to note that 
for both of these two examples there will be one additional non-zero residual that can 
be used in the simulations because in each case one of the incremental values no longer 
has a unique parameter—i.e., for (3.26) q(3, 1) is no longer uniquely defined by a3, 
and for (3.27) q(1, 3) is no longer uniquely defined by b3.

Of course we can take this simplification to its logical extreme and use a model 
with only one accident year parameter and one development year parameter, which 
would result in the system of equations in as shown in (3.28).

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

( )
( )
( )
( )
( )
( )

= α + β
= α + β
= α + β
= α + β
= α + β
= α + β

q
q
q
q
q
q

ln 1,1 1 0
ln 2,1 1 0
ln 3,1 1 0
ln 1, 2 1 1
ln 2, 2 1 1
ln 1, 3 1 2 (3.28)

1 2

1 2

1 2

1 2

1 2

1 2

In this example the model parameterization moves away from both of the common 
basic assumptions (i.e., each accident year has its own level, and the different development 
parameter is used for all periods), and again it would be pure coincidence to end up 
with the equivalent of average development factors. In this most “basic” model it is 
interesting to note that both of the “zero residuals” will now be non-zero and can be 
used in the simulations because both corners no longer have a unique parameter.

This flexibility allows the modeler to use enough parameters to capture the 
statistically relevant level and trend changes in the data without forcing a specific 
number of parameters.28

27	 While we have only one parameter to describe the development period trends, if we convert these to development 
factors there will be a different factor for each period.

28	 How to determine which parameters are statistically relevant will be discussed in Section 5.
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The second benefit, and depending on the data perhaps the most significant, is 
that this framework affords us the ability to add parameters for calendar-year trends. 
Adding diagonal, or calendar year trend, parameters to (3.8) we now have:

η = α + β + γ = =
=

w n d n
k n

w d w d k , where: 1, 2, . . . , ; 2, 3, . . . , ;
and 2, 3, . . . , . (3.29)

,

A complete system of equations for the (3.29) framework would look like the 
following:

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

( )
( )
( )
( )
( )
( )

= α + α + α + β + β + γ + γ
= α + α + α + β + β + γ + γ
= α + α + α + β + β + γ + γ
= α + α + α + β + β + γ + γ
= α + α + α + β + β + γ + γ
= α + α + α + β + β + γ + γ

q
q
q
q
q
q

ln 1,1 1 0 0 0 0 0 0
ln 2,1 0 1 0 0 0 1 0
ln 3,1 0 0 1 0 0 1 1
ln 1, 2 1 0 0 1 0 1 0
ln 2, 2 0 1 0 1 0 1 1
ln 1, 3 1 0 0 1 1 1 1 (3.30)

1 2 3 2 3 2 3

1 2 3 2 3 2 3

1 2 3 2 3 2 3

1 2 3 2 3 2 3

1 2 3 2 3 2 3

1 2 3 2 3 2 3

However, there is no unique solution for a system with seven parameters and six 
equations, so some of these parameters will need to be removed. A logical starting 
point would be to start with a “basic” model with one accident year (level) parameter, 
one development trend parameter and one calendar trend parameter and then add 
or remove parameters as needed.29 The system of equations for this basic model is as 
follows:

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

( )
( )
( )
( )
( )
( )

= α + β + γ
= α + β + γ
= α + β + γ
= α + β + γ
= α + β + γ
= α + β + γ

q
q
q
q
q
q

ln 1,1 1 0 0
ln 2,1 1 0 1
ln 3,1 1 0 2
ln 1, 2 1 1 1
ln 2, 2 1 1 2
ln 1, 3 1 2 2 (3.31)

1 2 2

1 2 2

1 2 2

1 2 2

1 2 2

1 2 2

A third benefit of the GLM bootstrap model is that it can be used to model data 
shapes other than triangles. For example, missing incremental data for the first few 
diagonals would mean that the cumulative values could not be calculated and the 
remaining values in those first few rows would not be useful for the ODP bootstrap. 
However, since the GLM bootstrap uses the incremental values the entire trapezoid 
can be used to fit the model parameters.30

29	 A simple algorithm to add and/or remove parameters in a search for the “optimal” set of parameters is included 
in the “Bootstrap Models.xlsm” file, but more complex algorithms are outside the scope of this monograph. 
We focus on the “mechanical” aspects of searching for the “optimal” set of parameters in Section 5 in order to 
enhance the educational benefits.

30	 This issue will be examined in more detail in Section 4.



Casualty Actuarial Society	 19

Using the ODP Bootstrap Model: A Practitioner’s Guide

It should also be noted that the GLM bootstrap model allows the future expected 
values to be directly estimated from the parameters of the model for each sample 
triangle in the bootstrap simulation process. However, we must solve the GLM within 
each iteration for the same parameters as we originally set up for the model rather than 
using development factors to project future expected values (which is a way of fitting 
the model to each sample triangle).

The additional modeling power that this flexible GLM bootstrap model adds to 
the actuary’s toolkit cannot be overemphasized. Not only does it allow one to move 
away from the two basic assumptions of a deterministic chain ladder method, it allows 
for the ability to match the model parameters to the statistical features you find in the 
data, rather than “force” the data to fit the model, often with far fewer parameters and 
to extrapolate those features. For example, modeling with fewer development trend 
parameters means that the last parameter can be assumed to continue past the end of 
the triangle which will give the modeler a “tail” of the incremental values beyond the 
end of the triangle without the need for a specific tail factor.

While the monograph continues to illustrate the GLM bootstrap with a 3 × 3 
triangle, also included in the companion Excel files are a set of “GLM Bootstrap 
6___.xlsm” files that illustrate the calculations for these different models using a 6 × 
6 triangle. Also, the “Bootstrap Models.xlsm” file contains a “GLM bootstrap” model 
for a 10 × 10 triangle that can be used to specify any combination of accident year, 
development year, and calendar year parameters, including setting parameters to zero. 
The GLM bootstrap model is akin to the incremental log model described in Barnett 
and Zehnwirth (2000), so we will leave it to the reader to explore this flexibility by 
using the Excel file.
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4.  Practical Issues

Now that the basic ODP bootstrap model has been expanded in a variety of ways, it 
is important to address some of the key assumptions of the ODP model and some 
common data issues.

4.1.  Negative Incremental Values
As noted in Section 3.2, because of the log-link used in the GLM framework 

the incremental values must be greater than zero in order to parameterize a model. 
However, a slight modification to the log-link function will help this common 
problem become a little less restrictive. If we use (4.1) as the log-link function, then 
individual negative values are only an issue if the total of all incremental values in 
a development column is negative, as the GLM algorithm will not be able to find a 
solution in that case.

[ ]

[ ]

{ }

( ) ( )
( )

( ) ( )

>
=

− <

ln , for , 0,
0 for , 0,

ln , for , 0. (4.1)

q w d q w d
q w d

abs q w d q w d

Using (4.1) in the GLM bootstrap will help in many situations, but it is quite 
common for entire development columns of incremental values to be negative, especially 
for incurred data. To give the GLM framework the ability to solve for a solution in this 
case we need to make another modification to the basic model to include a constant. 
Whenever a column or columns of incremental values sum to a negative value, we can 
find the largest negative31 in the triangle, set y equal to the largest negative and adjust 
the log-link function by making all the incremental values positive.

[ ]
( ) ( )
( ) ( )
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Using the adjusted log-link function (4.2) we can solve the GLM using formulas 
(3.7), (3.8), or (3.27). Then we use (4.3) to adjust the fitted incremental values  

31	 The largest negative value can either be the largest negative among the sums of development columns (in which 
case there may still be individual negative values in the adjusted triangle) or the largest negative incremental value 
in the triangle.
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and the constant y is used to reduce each fitted incremental value by the largest 
negative.

m mw d w d= + ψ+ (4.3), ,

The combination of formulas (4.2) and (4.3) allow the GLM bootstrap to handle 
all negative incremental values, which overcomes a common criticism of the ODP 
bootstrap. Incidentally, these formulas can also be used to allow the incremental log 
model described by Barnett and Zehnwirth (2000) to handle negative incremental 
values. As long as these formulas are used sparingly, the author believes that the resulting 
distribution will not be adversely affected.

When using the ODP bootstrap simulation process, the solution to negative incremental 
values needs to focus on the residuals and sampled incremental values since a development 
factor less than 1.00 will create negative incremental values in the fitted values. More 
specifically, we need to modify formulas (3.16) and (3.18) as follows: 32
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While the fitted incremental values and residuals using the development factor 
simplification (ODP bootstrap) will generally not match the GLM framework solution 
using (4.1) or (4.2) and (4.3) they should be reasonably close. While the purists may 
object to these practical solutions, we must keep in mind that every model is an 
approximation of reality so our goal is to find reasonably close models that replicate the 
statistical features in the data rather than only restrict ourselves to “pure” models. After 
all, the assumptions of the “pure” models are themselves approximations.

4.1.1.  Negative Values During Simulation
Even though we have solved problems with negative values when parameterizing 

a model, negative values can still affect the process variance in the simulation process. 
When each future incremental value (using mw,d as the mean and the mean times the 
scale parameter, fmw,d, as the variance) is sampled from a gamma distribution to add 
process variance, the parameters of a gamma distribution must be positive. In this case 
we have two options for using the gamma distribution to simulate from a negative 
incremental value, mw,d.

Gamma abs m abs mw d w d[ ]{ } { }− φ, (4.6), ,

Gamma abs m abs m mw d w d w d[ ]{ } { }φ +, 2 (4.7), , ,

32	 The use of other types of residuals, as noted in Section 3.2, may also help address the issue of negative incremental 
values, but their exposition is left to the interested reader.



22	 Casualty Actuarial Society

Using the ODP Bootstrap Model: A Practitioner’s Guide

Using formula (4.6) is more intuitive as we are using absolute values to simulate 
from a gamma distribution and then changing the sign of the result. However, since 
the gamma distribution is skewed to the right, the resulting distribution using (4.6) 
will be skewed to the left. Using formula (4.7) is a little less intuitive, but seems more 
logical since adding twice the mean, mw,d, will result in a distribution with a mean of 
mw,d while keeping it skewed to the right (since mw,d is negative).

Negative incremental values can also cause extreme outcomes. This is most 
prevalent when resampled triangles are created with negative incremental losses in the 
first few development periods, causing one column of cumulative values to sum close 
to zero and the next column to sum to a much larger number and, consequentially, 
produce development factors that are extremely large. This can result in one or more 
extreme iterations in a simulation (for example, outcomes that are multiples of 1,000s 
of the central estimate). These extreme outcomes cannot be ignored, even if the high 
percentiles are not of interest, because they may significantly affect the mean of the 
distribution.

In these instances, you have several options. You can 1) remove these iterations 
from your simulation and replace them with new iterations, 2) recalibrate your model, 
or 3) limit incremental values to a minimum of zero (or some other minimum value).

The first option is to identify the extreme iterations and remove them from your 
results. Care must be taken that only truly unreasonable extreme iterations are removed, 
so that the resulting distribution does not understate the probability of extreme 
outcomes.

The second option is to recalibrate the model to fix this issue. First you must 
identify the source of the negative incremental losses. The most theoretically sound 
method to deal with negative incremental values is to consider the source of these 
losses. For example, it may be from the first row in your triangle, which was the first year 
the product was written, and therefore exhibit sparse data with negative incremental 
amounts. One option is to remove this row from the triangle if it is causing extreme 
results and does not improve the parameterization of the model. Or, if they are caused 
by reinsurance or salvage and subrogation, then you can model the losses gross of 
salvage and subrogation, model the salvage and subrogation separately, and combine 
the iterations assuming the values are correlated.

The third option is to constrain the model output by limiting incremental losses to a 
minimum of zero, where any negative incremental is replaced with a zero incremental.33 
For each of these options, keep in mind that this is a form of diagnosing a model 
by reviewing the simulated results and then searching for a practical solution before 
abandoning a model altogether. This does not mean that you should never abandon 
a model in favor of a practical adjustment. Indeed, the higher the frequency of the 
underlying issue (negative incremental values in this case) the more likely that the 
model does not really fit the data.

33	 While zero is a convenient minimum or lower bound, a small positive number could also be used, in which case 
any values less than the minimum are changed to the minimum.
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4.2.  Non-Zero Sum of Residuals
The standardized residuals that are calculated in the ODP bootstrap model are 

essentially error terms, and should in theory be independent and identically distrib-
uted with a mean of zero. However, the residuals are random observations of the true 
residual distribution, so the average of all the residuals is usually non-zero. If signifi-
cantly different than zero, then the fit of the model should be questioned. If the average 
of the residuals is close to zero, then the question is whether they should be adjusted so 
that their average is zero. For example, if the average of the residuals is positive, then 
re-sampling from the residual pool will not only add variability to the resampled incre-
mental losses, but may increase the resampled incremental losses such that the average 
of the resampled loss will be greater than the fitted loss.

It could be argued that the non-zero average of residuals is a characteristic of the 
data set, and therefore should not be removed. For example, standardized residuals 
implies a normal distribution with zero mean, but skewness in the residuals does not 
necessarily imply an average of zero. However, if a zero residual average is desired, then 
one option is the addition of a single constant to all non-zero residuals, such that the 
sum of the shifted residuals is zero.

4.3.  Using an N-Year Weighted Average
It is quite common for actuaries to use weighted averages that are less than all years 

in their chain-ladder and related methods. Similarly, both the ODP bootstrap and the 
GLM bootstrap can be adjusted to only consider the data in the most recent diagonals. 
For the GLM framework (and the GLM bootstrap model), we can use only the most 
recent L + 1 diagonals (since an L-year average uses L + 1 diagonals) to parameterize 
the model. The shape of the data to be modeled essentially becomes a trapezoid instead 
of a triangle, the excluded diagonals are given zero weight in the model and we have 
fewer calendar year trend parameters if we are using formula (3.29). When running 
the GLM bootstrap simulations we will only need to sample residuals for the trapezoid 
that was used to parameterize the model as that is all that will be needed to estimate 
parameters for each iteration.

For the ODP bootstrap model, we can calculate L-year average factors instead of 
all-year factors and only have residuals for the most recent L + 1 diagonals. However, 
when running the ODP bootstrap simulations we would still need to create a whole 
resampled triangle so that we can calculate cumulative values.34 But, for consistency, 
we would want to use L-year average factors for projecting the future expected values 
from these resampled triangles.

The calculations for the GLM bootstrap are illustrated in the companion “GLM 
Bootstrap 6 with 3yr avg.xlsm” file. Note that because the GLM bootstrap estimates 
parameters for the incremental data, the fitted values will no longer match the fitted 
values from the ODP bootstrap using volume-weighted average development factors. 

34	 The fitted values for the “unused” diagonals would be calculated using the L-year average ratios, but the 
corresponding residuals for those diagonals are all excluded from the sampling process.
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Depending on the data, the fitted values from the simplified GLM (ODP bootstrap) may 
or may not be a reasonable approximation to the GLM framework (GLM bootstrap).

Note that this discussion of using L-year average factors assumes volume weighted 
averages to be consistent with the GLM framework. This also assumes that all of the 
diagnostic tests will be adjusted to reflect the use of the last L + 1 diagonals, although 
this is beyond the scope of the monograph. Finally, other types of averages could be 
used (i.e., straight average, average excluding high & low, etc.) to be more consistent 
with what actuaries might use in a deterministic analysis, but these typically move 
further away from the GLM framework and are beyond the scope of this monograph.

4.4.  Missing Values
Sometimes the loss triangle will have missing values. For example, values may be 

missing from the middle of the triangle, or a triangle may be missing the oldest diago-
nals, if loss data was not kept in the early years of the book of business.

If values are missing, then the following calculations will be affected:

•	 Loss development factors
•	 Fitted triangle—if the missing value lies on the most recent diagonal
•	 Residuals
•	 Degrees of freedom

There are several solutions. The missing value may be estimated using the surrounding 
values. Or, the loss development factors can be modified to exclude the missing values, 
and there will not be a corresponding residual for those missing values. Subsequently, 
when triangles are resampled, the simulated incremental corresponding to the 
missing value should still be resampled so that the cumulative values in those rows can 
be calculated, but they would still be excluded from the projection process (i.e., not 
included with the sample age-to-age factors) to reproduce the uncertainty in the original 
dataset.

If the missing value lies on the most recent diagonal, the fitted triangle cannot 
be calculated in the usual way. A solution is to estimate the value, or use the value in 
the second most recent diagonal to construct the fitted triangle. These are not strictly 
mathematically correct solutions, and judgment will be needed as to their effect on the 
resulting distribution. Of course for the GLM bootstrap model, the missing data only 
reduces the number of observations used in the model.

4.5.  Outliers
There may be a few extreme or incorrect values in the original triangle dataset that 

could be considered outliers. These may not be representative of the variability of the 
dataset in the future and, if so, the modeler may want to remove their impact from 
the model.

There are several solutions. These values could be removed, and dealt with in the 
same manner as missing values. Another alternative is to identify outliers and exclude 
them from the average development factors (either the numerator, denominator, or 
both) and residual calculations, as when dealing with missing values, but re-sample the 
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corresponding incremental when re-sampling triangles. In this case we have removed 
the extreme impact of the incremental cell, but we still want to include a non-extreme 
variability, which is different from a missing data cell since in that case the additional 
uncertainty of that missing data can be included by continuing to exclude that cell in 
the projection process.

The calculations for the GLM bootstrap are illustrated in the companion “GLM 
Bootstrap 6 with Outlier.xlsm” file. Again the GLM bootstrap fitted values will no 
longer exactly match the fitted values from the ODP Bootstrap using volume weighted 
average development factors, but they should normally be close.

If there are a significant number of outliers, then this could be an indication that 
the model is not a good fit to the data. With the GLM bootstrap, new parameters 
could be chosen, or the distribution of the error term can be changed (i.e., change the 
z parameter). Under the ODP bootstrap model, an L-year weighted average could be 
used, instead of an all year weighted average, which may provide a better fit to the data, 
or, heteroscedasticity may exist. Remember, though, that for the ODP bootstrap model 
there is no distribution assumption for the residuals so a significant number of residual 
outliers could just mean that the residuals are quite skewed. One of the nice features 
of the ODP bootstrap is that the skewness in the residuals will be reflected in the 
simulation process which will result in a skewed distribution of possible outcomes.35 
Thus, removing any outliers (i.e., giving them zero weight) should be done with caution 
and would most commonly be done only after understanding the underlying data.

4.6.  Heteroscedasticity
As noted earlier, the ODP bootstrap model is based on the assumption that 

the standardized Pearson residuals are independent and identically distributed. It is  
this assumption that allows the model to take a residual from one development  
period/accident period and apply it to the fitted loss in any other development period/ 
accident period, to produce the sampled values. In statistical terms this is referred to 
as homoscedasticity (the residuals have the same variance) and it is important that 
this assumption is validated.

A common problem is when some development periods have residuals that appear 
to be more variable than others—i.e., they appear to have different variances. This is 
referred to as heteroscedasticity. With heteroscedasticity, it is no longer possible to take 
a residual from one development/accident period and deem it suitable to be applied to 
any other development/accident period. In making this assessment, you must account 
for the credibility of the observed differences in variance, and also to note that there 
are fewer residuals as the development years become older, so comparing development 
years is difficult, particularly near the tail-end of the triangle.36

35	 Other methods of handling outliers could also be introduced, e.g., tempering residuals that are further away from 
the interquartile range, but the key to any approach is to understand what the residuals represent so an explicit 
assumption can be made and the “best” solution can be used.

36	 Section 5 will illustrate how to use residual graphs and other statistical tests to evaluate heteroscedasticity.
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The existence of heteroscedasticity may suggest that the model is not a good fit for 
the data. Under an ODP bootstrap, there are a number of ad-hoc adjustments that can 
be made to address heteroscedasticity, but they may or may not improve the fit of the 
model to the data. They also often result in even more parameters in a model which 
could already be over-parameterized. In contrast, under a GLM bootstrap the flexibility 
of choosing the number of parameters to use, the ability to account for any calendar year 
trends, and the flexibility to choose the distribution of the error term mean that there are 
many ways within the model framework itself to improve the fit to the data. Therefore, 
this flexibility could remove the heteroscedasticity problem or at least reduce it.

Nevertheless, if the ODP bootstrap model is still to be used, then to adjust for 
heteroscedasticity in your data there are at least three options, 1) stratified sampling, 
2) calculating hetero-adjustment (or variance) parameters, or 3) calculate non-constant 
scale parameters. Stratified sampling is accomplished by grouping those development 
periods with homogeneous variances and then sampling only from the residuals in 
each group. While this process is straightforward, some groups may only have a few 
residuals in them, which limits the amount of variability in the possible outcomes 
compared to the other two options and at least partially defeats the benefits of random 
sampling with replacement.

The second option is to group those development periods with homogeneous 
variances and calculate the standard deviation of the residuals in each of the groups. 
Then calculate hi, which is the “hetero-adjustment” factor, for each group, i:
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Now all groups have the same standard deviation and we can sample with replacement 
from among all riH

w,d. The original distribution of residuals has been altered, but this can 
be remedied. When the adjusted residuals are resampled, the residual is divided by the 
hetero-adjustment factor, hi, that applies to the development year of the incremental 
loss, as shown in (4.10).
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By doing this, the heteroscedastic variances we observed in the data are replicated 
when the sample triangles are created, but we are able to freely resample with replacement 
from the entire pool of heteroscedasticity adjusted residuals. Also note that these factors 
are new parameters so it will affect the degrees of freedom, which impacts the scale 
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parameter (3.17) and the degrees of freedom adjustment factor (3.19).37 Finally, the 
hetero-adjustment factors should also be used to adjust the variance by development 
period when simulating the future process variance.

The third option is to modify the formula for the scale parameter (3.17) so that 
we have a different scale parameter for each hetero group, as illustrated in (4.11) and 
(4.12).38 In (4.12) ni is the number of residuals in each hetero group.
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For this option, the different scale parameters also amount to new parameters so 
the degrees of freedom adjustment factor would likewise be impacted. In this case, 
the scale parameters adjust the future process variance, but we also need to calculate 
parameters to adjust the residuals as shown in (4.13). These hetero-adjustment factors, 
hi, can also be used to adjust the residuals in (4.9) and used in calculating the resampled 
loss in (4.10), similar to the second option.

hi
i

= φ
φ

(4.13)

While the hetero-adjustment factors in (4.13) are a bit more theoretically sound, 
in practice the factors in (4.8) are likely to be very close so the differences are not likely 
to have much impact. Both of these options are illustrated in the “Bootstrap Models.
xlsm” file.

Of course no matter which formula is used, care needs to be exercised as hetero 
groups are used toward the tail of the triangle where fewer and fewer observations 
stretch the credibility of the resulting factors.39 Finally, while use of the GLM bootstrap 
should reduce the need for hetero factors, the same three options could also be used 
for that model too.

4.7.  Heteroecthesious Data
The basic ODP bootstrap model requires both a symmetrical shape (e.g., annual 

by annual, quarterly by quarterly, etc. triangles) and homoecthesious data (i.e., similar 

37	 Some authors have suggested adding a factor for each development period to insure homoscedasticity. However, 
this adds many more parameters to a model that can already suffer from the criticism of over-parameterization. 
Thus, a balance between the need for hetero parameters and parsimony is appropriate. This will be discussed in 
more detail in Section 5.

38	 For a more detailed development of this third option see England and Verrall (2006). In particular, see Appen-
dix A.1 on pages 266–268.

39	 In the discussion of diagnostics in Section 5 it will be noted that the use of the AIC and BIC statistics will 
effectively reflect the credibility of the development periods.
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exposures).40 As discussed above, using an L-year weighted average in the ODP 
bootstrap model or adjusting to a trapezoid shape allow us to “relax” the requirement 
of a symmetrical shape. Other non-symmetrical shapes (e.g., annual × quarterly data) 
can also be modeled with either the ODP bootstrap or GLM bootstrap, but they will 
not be discussed in detail in this monograph.

Most often, the actuary will encounter heteroecthesious data (i.e., incomplete 
or uneven exposures) at interim evaluation dates, with the two most common data 
triangles being either a partial first development period or a partial last calendar period. 
For example, with annual data evaluated as of June 30, partial first development period 
data would have all development periods ending at 6, 18, 30, etc. months, while 
partial last calendar period data would have development periods as of 12, 24, 36, etc. 
months for all of the data in the triangle except the last diagonal, which would have 
development periods as of 6, 18, 30, etc. months. In either case, not all of the data in 
the triangle has full annual exposures—i.e., it is heteroecthesious data.

4.7.1.  Partial First Development Period Data
For partial first development period data, the first development column has a dif-

ferent exposure period than the rest of the columns (e.g., in the earlier example the first 
column has six months of development exposure while the rest have 12). In a determin-
istic analysis this is not a problem as the development factors will reflect the change in 
exposure. For parameterizing an ODP bootstrap model, it also turns out to be a moot 
issue, since the Pearson residuals use the square root of the fitted value to make them all 
“exposure independent.”

The only adjustment for this type of heteroecthesious data is the projection of 
future incremental values. In a deterministic analysis, the most recent accident year 
needs to be adjusted to remove exposures beyond the evaluation date. For example, 
continuing the previous example the development periods at 18 months and later are 
all for an entire year of exposure whereas the six month column is only for six months 
of exposure. Thus, the 6–18 month development factor will effectively extrapolate the 
first six months of exposure in the latest accident year to a full accident year’s exposure. 
Accordingly, it is common practice to reduce the projected future payments by half to 
remove the exposure from June 30 to December 31.41

The simulation process for the ODP bootstrap model can be adjusted similarly to 
the way a deterministic analysis would be adjusted. After the development factors from 
each sample triangle are used to project the future incremental values the last accident 
year’s values can be reduced (in the previous example by 50%) to remove the future 
exposure and then process variance can be simulated as before. Alternatively, the future 
incremental values can be reduced after the process variance step.

40	 To the author’s knowledge, the terms homoecthesious and heteroecthesious are new. They are a combination of 
the Greek homos (or ÓμÓς) meaning the same or hetero (or έτερο) meaning different and the Greek ekthesë (or 
έκθεση) meaning exposure.

41	 Reduction by half is actually an approximation since we would also want to account for the differences in 
development between the first and second half years.



Casualty Actuarial Society	 29

Using the ODP Bootstrap Model: A Practitioner’s Guide

4.7.2.  Partial Last Calendar Period Data
For partial last calendar period data, most of the data in the triangle has annual 

exposures and annual development periods, except for the last diagonal which, con-
tinuing our example, only has a 6-month development period. For a deterministic 
analysis, it is common to exclude the last diagonal when calculating average develop-
ment factors, then interpolate those factors to project the future values. Similarly to the 
adjustments for partial first development period data, we can adjust the calculations 
and steps in the ODP bootstrap model. Instead of ignoring the last diagonal during the 
parameterization of the model, an alternative is to adjust or annualize the exposures in 
the last diagonal to make them consistent with the rest of the triangle. The fitted tri-
angle can be calculated from this annualized triangle to obtain residuals.

During the ODP bootstrap simulation process, development factors can be 
calculated from the fully annualized sample triangles and interpolated. Then, the last 
diagonal from the sample triangle can be adjusted to de-annualize the incremental 
values in the last diagonal—i.e., reversing the annualization of the original last diagonal. 
The new cumulative values can be multiplied by the interpolated development factors 
to project future values. Again, the future incremental values for the last accident year 
must be reduced (in the previous example by 50%) to remove the future exposure.42

4.8.  Exposure Adjustment
Another common issue in real data is exposures that have changed dramatically 

over the years. For example, in a line of business that has experienced rapid growth or 
is being run off. If the earned exposures exist for this data, then a useful option for the 
ODP bootstrap model is to divide all of the claim data by the exposures for each 
accident year—i.e., effectively using pure premium development instead of total loss 
development. This may improve the fit of the model to the data.

During the ODP bootstrap simulation process, all of the calculations would be 
done using the exposure-adjusted data and only after the process variance step has been 
completed would you multiply the results by the exposures by year to restate them in 
terms of total values again.

When adjusting the GLM bootstrap for exposure, the model is fitted to exposure 
adjusted losses, similar to the ODP bootstrap model using exposure. However, under 
the GLM, the fit to the exposure adjusted losses are also exposure-weighted. That is, 
exposure adjusted losses with higher exposure are assumed to have lower variance. For 
more details, see Anderson et al. (2007).

For the GLM bootstrap, exposure adjustment could allow fewer accident year 
parameter(s) to be used.

4.9. Tail Factors
One of the most common data issues is that claim development is not complete within 

the loss triangle and tail factors are commonly used to extrapolate beyond the end of 

42	 These heteroecthesious data issues are not illustrated in the “Bootstrap Models.xlsm” file.
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the data triangle. There are many common methods for calculating tail factors and a 
useful reference in this regard is the CAS Tail Factor Working Party Report (2013). Tail 
factors can be added to the ODP bootstrap algorithm and converted from deterministic 
to stochastic by assuming that the tail factor parameter follows a distribution. Once 
this is added, other considerations such as process variance, hetero-adjustment factors, 
etc. can all be extended to include the tail factors.

A key ingredient for all of these considerations is to verify that the simulations in 
the tail are reasonable. For example, the tail factor itself represents the accumulation of 
incremental factors (i.e., an age-to-ultimate factor) and using just a single factor may 
not produce appropriate incremental results so the “extrapolation” of “incremental tail 
factors” may be more appropriate. In the “Bootstrap Models.xlsm” file, the tail factors 
can be extrapolated for up to 5 years so that one possibility for how these concepts can 
be implemented is included in the companion files.

A rough rule of thumb for the tail factor standard deviation is 50% or less of 
the tail factor minus one (assuming the tail factor is greater than one). However, this 
should be compared to the standard deviations of the age-to-age factors leading up to 
the tail in both the actual data triangle and in the simulated results.

As noted at the end of Section 3.4, for the GLM bootstrap model the last development 
parameter can continue to apply past the end of the data triangle until the trend results 
in no further claim activity, thus indirectly creating a tail factor. In addition to the last 
development parameter, the last calendar period parameter would also extend past the 
end of the tail until the combination of the two trends resulted in no further claim 
activity.

4.10.  Fitting a Distribution to ODP Bootstrap Residuals
Because the number of data points used to parameterize the ODP bootstrap model 

are limited (in the case of a 10 × 10 triangle to 55 data points or 53 residuals), it is hard 
to determine whether the most extreme observation is a one-in-100 or a one-in-1,000 
event (or simply, in this example, a one-in-53 event). Of course, the nature of the 
extreme observations in the data will also affect the level of extreme simulations in the 
results. Judgment is involved here, but the modeler will either need to be satisfied with 
the level of extreme simulations in the results or modify the ODP bootstrap algorithm.

One way to overcome a lack of extreme residuals for the ODP bootstrap model 
would be to fit a distribution to the residuals and sample from the distribution instead of 
from the residuals themselves (e.g., use a normal distribution if the residuals are found 
to be normally distributed). This option is beyond the scope of the companion Excel 
files, but this could be referred to as parametric bootstrapping of the ODP bootstrap 
model. Note however, that as there are a wide variety of other types of models that can 
be bootstrapped, either with or without residuals, parametric bootstrapping can be 
done in other ways.
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The quality of any model depends on the quality of the underlying assumptions. When 
a model fails to “fit” the data, it cannot produce a good estimate of the distribution of 
possible outcomes.43 However, a balance must be considered for parsimony of parameters 
and the goodness-of-fit. Over-parameterization may cause the model to be less predictive 
of future losses. On the other hand, no model will perfectly “fit” the data, so the best 
you can hope for with any model is that it reasonably represents the data and your 
understanding of the processes that impact the data. Therefore, diagnostically evaluating 
the assumptions underlying a model is important for evaluating whether it will produce 
reasonable results or not and whether it should stay in your selected group of reasonable 
models which could receive some weight.

The CAS Working Party, in the third section of their report on quantifying variability 
in reserve estimates (2005), identified 20 criteria or diagnostic tools for gauging the 
quality of a stochastic model. The Working Party also noted that, in trying to determine 
the optimal fit of a model, or indeed an optimal model, no single diagnostic tool or 
group of tools can be considered definitive. Depending on the statistical features found 
in the data, a variety of diagnostic tools are necessary to best judge the quality of the 
model assumptions and to adjust the parameters of the model. This monograph will 
discuss some of these tools in detail as they relate to the ODP bootstrap and the GLM 
bootstrap models.

The key diagnostic tests are designed for three purposes: to test various assumptions 
in the model, to gauge the quality of the model fit to the data, and/or to help guide 
the adjustment of model parameters. Some tests are relative in nature, enabling results 
from one set of model parameters to be compared to those of another, for a specific 
model, allowing a modeler to improve the fit of the model. For the most part, however, 
the tests can’t be used to compare different models. The objective, consistent with the 
goals of a deterministic analysis, is not to find the one best model, but rather a set of 
reasonable models.

Some diagnostic measures include statistical tests, providing a pass/fail determination 
for some aspects of the model assumptions. This can be useful even though a “fail” does 
not necessarily invalidate an entire model; it only points to areas where improvements can 
be made to the model or its parameterization. The goal is to find the sets of models 

43	 While the examples are different, significant portions of Sections 5 and 6 are based on Milliman (2014) and IAA 
(2010).
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and parameters that will yield the most realistic, most consistent simulations, based on 
statistical features found in the data.

To illustrate some of the diagnostic tests for the ODP bootstrap model we will consider 
data from England and Verrall (1999).44

5.1.  Residual Graphs
The ODP bootstrap model does not require a specific type of distribution for the 

residuals, but they are assumed to be independent and identically distributed. Because 
residuals will be sampled with replacement during the simulations, this requirement is 
important and thus it is necessary to test this assumption. Graphing residuals is a good 
way to do this.

Going clock-wise, and starting from the lower-left-hand corner, the graphs in 
Figure 5.1 show the residuals (blue and red dots45) by calendar period, development 
period, and accident period and against the fitted incremental loss (in the lower-right-
hand corner). In addition, the graphs include a trend line (in green) that highlights the 
averages for each period.

At first glance, the residuals in the graphs appear reasonably random, indicating 
the model is likely a good fit of the data. But a closer look may also reveal potential 
features in the data that may indicate ways to improve the model fit.

44	 The data triangle was originally used by Taylor and Ashe (1983) and has been used by other authors. This data is 
included in the “Bootstrap Models.xlsm” file.

45	 In the graphs that follow, the red dots are outliers as identified in Figure 5.7.

Figure 5.1.    Residual Graphs Prior to Heteroscedasticity Adjustment
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The graphs in Figure 5.1 do not appear to indicate issues with un-modeled trends 
by accident period or development period (that is, the green “average” lines appear flat 
at zero). That’s because the ODP bootstrap specifies a parameter for every accident and 
development period. The development-period graph does, however, reveal a potential 
heteroscedasticity issue associated with the data—i.e., different variances. Note how 
the upper left graph appears to show a variance of the residuals in the first three periods 
that differs from those of the middle four or last two periods.

Adjustments for heteroscedasticity can be made with the “Bootstrap Models.xlsm” 
file, which enables us to recognize groups of development periods and then adjust the 
residuals to a common standard deviation value, as described in Section 4.6. As an aid 
to visualizing how to group the development periods into “hetero” groups, graphs of 
the standard deviation and range relativities can be developed. Figure 5.2 represents 
pre-adjusted relativities for the residuals shown in Figure 5.1 (i.e., prior to adjustment 
for factors calculated using either formulas 4.8 or 4.13 and 4.9).

The relativities illustrated in Figure 5.2 help to clarify the changing variability. 
However, further testing will be required to assess the optimal groups, which can be 
performed using the other diagnostic tests noted below.

The residual plots in Figure 5.3 originate from the same data model after adjusting 
for heteroscedasticity using the third option described in Section 4.6 (i.e., using 
formulas 4.13 and 4.9). The “hetero” groups chosen are for the first three, middle four, 
and last two development periods, respectively. Determining whether this adjustment 
has improved the model will require review of other diagnostic tests.

Comparing the residual plots in Figures 5.1 and 5.3 shows that the residuals now 
appear to exhibit the same standard deviation, or homoscedasticity. More consistent rela
tivities may also be seen in a comparison of the residual relativities in Figures 5.2 and 5.4.

5.2.  Normality Test
The ODP bootstrap model does not depend on the residuals being normally 

distributed, but even so, comparing residuals against a normal distribution remains 
a useful test, enabling comparison of parameter sets and gauging skewness of the 
residuals. This test uses both graphs and calculated test values. Figure 5.5 is based on 
the data used earlier, before and after the adjustment for heteroscedasticity.

Figure 5.2.    Residual Relativities Prior to Heteroscedasticity Adjustment
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Figure 5.3.    Residual Graphs After Heteroscedasticity Adjustment

Figure 5.4.    Residual Relativities After Heteroscedasticity Adjustment

Figure 5.5.    Normality Plots Prior to and After Heteroscedasticity Adjustment

N = 55 P-Value = 19.1% R2 = N = 55 P-Value = 14.6% R2 =
Normal:  MU = 1.11,  Sigma = 224.08 AIC = 592.2, BIC = 474.2 Normal:  MU = 1.43,  Sigma = 224.07 AIC = 601.3, BIC = 487.3
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Even before the heteroscedasticity adjustment, the residual plots appear close to 
normally distributed, with the data points tightly distributed around the diagonal 
line. The P-value, a statistical pass-fail test for normality, came in at 19.1%, which 
exceeds the value generally considered a “passing” score of the normality test, which is 
greater than 5.0%.46 The graphs in Figure 5.5 also show N (the number of data points) 
and the R2 test. After the hetero adjustment, the P-value and R2 get slightly worse, 
which indicates that the heteroscedasticity adjustment has not improved the results 
of the diagnostic tests.

While the P-value and R2 tests assess the goodness of fit of the model to the data, 
they do not penalize for added parameters. Adding more parameters will almost always 
improve the fit of the model to the data, but the goal is to have a good fit with as few 
parameters as possible. Two other tests, the Akaike Information Criteria (AIC) and 
the Bayesian Information Criteria (BIC), address this limitation, using the difference 
between each residual and its normal counterpart from the normality plot to calculate 
the Residual Sum Squared (RSS) and include a penalty for additional parameters, as 
shown in (5.1) and (5.2), respectively.47

AIC
RSS

.= × + × × ×



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+



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2
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BIC
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
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+ × ( )n
n

p nln ln ( )5 2

A smaller value for the AIC and BIC tests indicate residuals that fit a normal 
distribution more closely, and this improvement in fit overcomes the penalty of adding 
a parameter.

In our example, with some trial and error, a better “hetero” grouping was found with 
the diagnostic results shown in Figure 5.6.48 For the new “hetero” groups, all of the 
statistical tests improved significantly.

While it might be tempting to add a hetero group for each development column to 
improve normality, in general normality can be improved with far fewer groups which 
also helps keep the model from being over-parameterized. As an example, if we use  
9 hetero groups for the Taylor and Ashe (1983) data the P-value is 14.3%, which is 
worse than no groups and only slightly better than the original 3 groups, but the AIC 
and BIC increase significantly.

46	 Remember that this doesn’t indicate whether the ODP bootstrap model itself passes or fails—the ODP bootstrap 
model doesn’t require the residuals to be normally distributed. While not included in the “Bootstrap Models.
xlsm” file, as discussed in Section 4.10 it could be used to determine whether to switch to a parametric bootstrap 
process using a normal distribution.

47	 There are different versions of the AIC and BIC formula from various authors and sources, but the general idea 
of each version is consistent. Other similar formulas could also be used.

48	 In the “Bootstrap Models.xlsm” file the Taylor & Ashe data was entered as both paid and incurred. The first set 
of “hetero” groups are illustrated for the “paid” data and the second set of “hetero” groups are illustrated for the 
“incurred” data. The “best” groups were found using the optimization tool shown in the “Groups” sheet.
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5.3.  Outliers
Identifying outliers in the data provides another useful test in determining model 

fit. Outliers can be represented graphically in a box-whisker plot, which shows the 
inter-quartile range (the 25th to 75th percentiles) and the median (50th percentile) 
of the residuals—the so-called box. The whiskers then extend to the largest values 
within three times this inter-quartile range.49 Values beyond the whiskers may generally 
be considered outliers and are identified individually with a point.

Figure 5.7 shows an example of the residuals for the second set of “hetero” groups 
(Figure 5.6). A pre-hetero adjustment plot returns four outliers (red dots) in the data 
model, corresponding to the two highest and two lowest values in the previous graphs 
in Figures 5.1, 5.3, 5.5, and 5.6.

Even after the hetero adjustment, the residuals still appear to contain one outlier. 
Now comes a very delicate and often tricky matter of actuarial judgment. If the data 
in those cells genuinely represent events that cannot be expected to happen again, 
the outlier(s) may be removed from the model (by giving it/them zero weight). But 
extreme caution should be taken even when the removal of outliers seems warranted. 
The possibility always remains that apparent outliers may actually represent realistic 
extreme values, which, of course, are critically important to include as part of any sound 
analysis.

Additionally, when residuals are not normally distributed a significant number of 
outliers tend to result, which may only be an artifact of the distributional shape of the 
residuals. In this case it is preferable to let these stand in order to enable the simulation 
process to replicate this shape. Finally, a significant number of residuals can also mean 
the underlying model is not a good fit to the data so other models should be used (see 
Section 4.5 for a discussion) or this model given less weight (see Section 6).

49	 Various authors and textbooks use widths for the whiskers which tend to span from 1.5 to 3 times the inter-
quartile range. Changing the multiplier will therefore make the box-whisker plot more or less sensitive to 
outliers. It is also possible to illustrate “mild” outliers with a multiplier of 1.5 and the more “extreme” outliers 
with a multiplier of 3 using different colors and/or symbols in the graphs. Of course the actual multipliers can be 
adjusted based on personal preference.

Figure 5.6.    Normality Plots Prior to and After Heteroscedasticity Adjustment

N = 55 P-Value = 19.1% R2 = N = 55 P-Value = 89.2% R2 =
Normal:  MU = 1.11,  Sigma = 224.08 AIC = 592.2, BIC = 474.2 Normal:  MU = 1.28,  Sigma = 224.08 AIC = 537.9, BIC = 426.0
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While the three diagnostic tests shown above demonstrate techniques commonly 
used with most types of models, they are not the only tests available.50 Next, we’ll take 
a look at the flexibility of the GLM bootstrap and some of the diagnostic elements of 
the simulation results. For a more extensive list of other tests available, see the report, 
CAS Working Party on Quantifying Variability in Reserve Estimates (2005).

5.4.  Parameter Adjustment
As noted in Section 5.1 the relatively straight average lines in the development and 

accident period graphs are a reflection of having a parameter for every accident and 
development period. In most instances, this is also a strong indication that the model 
may be over-parameterized. Using the “GLM Bootstrap” model in the “Bootstrap 
Models.xlsm” file we can illustrate the power of removing some of the parameters.

Starting with a “basic” model which includes only one parameter for accident, 
development and calendar periods (i.e., only one a, b and g parameter), and adding 
vertical brown bars to signify a parameter and vertical red lines to signify no parameter 
(i.e., parameter of zero), the residual graphs for the “GLM Bootstrap” model are shown 
in Figure 5.8.

The brown bars in the basic model residual graphs represent the parameters and 
statistics shown in Table 5.1.

Now for this “basic” model the green average lines show trends in the underlying 
data that are not yet captured by the model as well as a parameter for calendar year trend 
that is not significant. For example, the overall development period trend parameter 
is -11%, but the underlying data shows a positive trend for the first 2 or 3 periods 
followed by a stronger negative trend for the remaining development periods. Another 
way to see that this basic model does not yet provide a good fit to the underlying data 
is to compare the implied development pattern with that of the ODP bootstrap model, 
as shown in Figure 5.9.

50	 For example, see Venter (1998).

Interquartile Range = [-147.44, 147.04] Median = Interquartile Range = [-150.62, 175.14] Median = 
Outliers = 4 Outliers = 1

-22.04-26.64
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Box-Whisker Plot (Prior to Hetero)

-700 -500 -300 -100 100 300 500 700

Box-Whisker Plot (After Hetero)

Figure 5.7.    Box-Whisker Plots Prior to and After Heteroscedasticity Adjustment



38	 Casualty Actuarial Society

Using the ODP Bootstrap Model: A Practitioner’s Guide

Figure 5.8.    Residual Graphs for “Basic” GLM Bootstrap Model

Table 5.1.    Parameters and Statistics for “Basic” GLM Bootstrap Model

Parm Value Exp(Value) t-Stat Periods

a1 13.44 686,938 73.92 Accident Years 2006–2015

b1 (0.11) (3.19) Development Periods 12–132

g1 0.03 1.08 Calendar Years 2006–2015

ODP Bootstrap Model “Basic” GLM Bootstrap Model

Figure 5.9.    Implied Development Patterns



Casualty Actuarial Society	 39

Using the ODP Bootstrap Model: A Practitioner’s Guide

With a little trial and error we can find a reasonably good fit to the data using only 
five accident, three development and no calendar parameters as shown in Figure 5.10.51

In addition to checking the remaining trends in the data with the green average 
lines, t-statistics for each new parameter can be checked to make sure each parameter 
is statistically significant.52 The final parameters and statistics for the GLM Bootstrap 
model are shown in Table 5.2.

Using the “optimal” set of “hetero” groups we can also check the normality graphs 
and statistics in Figure 5.11 and outliers in Figure 5.12.53 Comparing the statistics to the 
ODP bootstrap values shown in Figures 5.6 and 5.7, most values improved while some 
did not, yet the GLM Bootstrap model is far more parsimonious.

51	 In the “Bootstrap Models.xlsm” file the optimization tool in the “GLM” sheet can be used to help find a good fit 
for the parameters of the GLM bootstrap. The algorithm for this tool starts with the ODP bootstrap parameters 
and then removes the least significant parameters until only significant parameters remain. Then, if there are 
few enough Alpha and Beta parameters, the Gamma parameters are added and removed if not significant. The 
tool does not test to see if a parameter should be zero, so some improvements can sometimes occur by forcing 
parameters to equal zero (e.g., compare the parameters from Figure 5.10 to the parameters in the optimization 
tool). Finally, it is possible to have a better model fit (i.e., lower AIC and/or BIC) with more parameters 
even though some of the parameters may not be significant, so judgment is still appropriate for selection of 
parameters.

52	 The t-statistic indicates that a parameter is statistically significant if the absolute value is greater than 2.
53	 When using the GLM bootstrap, any selected outliers and hetero groups used for the ODP bootstrap should be 

reset and then re-evaluated as they will likely be different for the GLM bootstrap. For the “after hetero” portions 
of Figures 5.11 and 5.12 the optimization tool in the “Groups” sheet was used.

Figure 5.10.    Residual Graphs for GLM Bootstrap Model
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Table 5.2.    Parameters and Statistics for GLM Bootstrap Model

Parm Value Exp(Value) t-Stat Periods

a1 12.48 264,036 79.26 Accident Year 2006

a2 12.82 368,718 2.48 Accident Years 2007–2008

a3 12.76 347,009 2.11 Accident Years 2009–2011

a4 12.86 385,644 2.35 Accident Year 2012

a5 12.93 414,414 3.29 Accident Years 2013–2015

b1 0.98 7.88 Development Periods 12–24

— 0.00 Development Periods 24–48

b2 (0.58) (4.88) Development Periods 48–60

b3 (0.20) (3.29) Development Periods 60–132

— 0.00 Calendar Year 2006–2015

N = 55 P-Value = 10.0% R2 = N = 55 P-Value = 64.5% R2 =
Normal:  MU = 0.68,  Sigma = 219.32 AIC = 579.5, BIC = 439.5 Normal:  MU = -12.61,  Sigma = 218.95 AIC = 535.9, BIC = 399.9
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Figure 5.11.    Normality Plots for GLM Bootstrap Model

Interquartile Range = [-138.48, 129.11] Median = Interquartile Range = [-156.62, 119.43] Median = 
Outliers = 4 Outliers = 3
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Figure 5.12.    Box-Whisker Plots for “GLM Bootstrap” Model
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As one final check on the trends in this GLM bootstrap model, we can compare a 
graph of the implied development patterns with the patterns from the chain ladder in 
the ODP bootstrap model, as shown in Figure 5.13. Because the chain ladder model 
used a parameter for each development period the implied development pattern can 
appear a bit jagged, which is why it is often “smoothed” out in practice by selecting 
development factors. Interestingly, the GLM bootstrap model looks quite similar, 
yet with much smoother trends in the development patterns. As noted earlier, the 
last GLM bootstrap development (and calendar trend) parameter can be assumed to 
extend until the projected model incremental values equal zero which could then be 
compared to tail factors used in the ODP bootstrap model.54

5.5.  Model Results
Once the parameter diagnostics have been reviewed, simulations should be run for 

each model. These simulation results provide an additional diagnostic tool to aid in 
evaluation of the model, as described in Section 3 of CAS Working Party (2005). As an 
example, we will review the results for the Taylor and Ashe (1983) data using the ODP 
bootstrap model. The estimated-unpaid results shown in Figure 5.14 were simulated 
using 10,000 iterations with the hetero adjustments from Figure 5.6.

5.5.1.  Estimated-Unpaid Results
It’s recommended to start a diagnostic review of the estimated unpaid results with 

the standard error (standard deviation) and coefficient of variation (standard error 
divided by the mean), shown in Figure 5.14. Keep in mind that the standard error should 
increase when moving from the oldest years to the most recent years, as the standard 
errors (value scale) should follow the magnitude of the mean of unpaid estimates. In 
Figure 5.14, the standard errors conform to this pattern. At the same time, the standard 
error for the total of all years should be larger than any individual year.

54	 Results for the GLM bootstrap model, as illustrated in Figures 5.9 through 5.12, are shown in Appendix E, 
although no extrapolation was included to be consistent with the ODP bootstrap results.

Figure 5.13.    Implied Development Patterns

ODP Bootstrap Model “Basic” GLM Bootstrap Model
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Also, the coefficients of variation should generally decrease when moving from the 
oldest years to the more recent years and the coefficient of variation for all years combined 
should be less than for any individual year. With the exception of the 2014 and 2015 
accident years, the coefficients of variation in Figure 5.14 seem to also conform, 
although some random fluctuations may be seen.

The main reason for the decrease in the coefficient of variation has to do with the 
independence in the incremental claim-payment stream. Because the oldest accident 
year typically has only a few incremental payments remaining, or even just one, the 
variability is nearly all reflected in the coefficient. For more current accident years, 
random variations in the future incremental payment stream may tend to offset one 
another, thereby reducing the variability of the total unpaid loss.55

While the coefficients of variation should go down, they could also start to rise 
again in the most recent years, as seen in Figure 5.14 for 2014 and 2015. Such reversals 
are from a couple of issues:

•	 With an increasing number of parameters used in the model, the parameter 
uncertainty tends to increase when moving from the oldest years to the more recent 
years. In the most recent years, parameter uncertainty can grow to overpower process 
uncertainty, which may cause the coefficient of variation to start rising again. At 
a minimum, increasing parameter uncertainty will slow the rate of decrease in the 
coefficient of variation.

•	 The model may be overestimating the uncertainty in recent accident years if the 
increase is significant. In that case, another model algorithm (e.g., Bornhuetter-
Ferguson or Cape Cod) may need to be used instead of a chain-ladder model.

Keep in mind also that the standard error or coefficient of variation for the total 
of all accident years will be less than the sum of the standard error or coefficient of 
variation for the individual years. This is because the model assumes that accident years 
are independent.

55	 To visualize this reducing Coefficient of Variation, recall that the standard deviation for the total of several 
independent variables is equal to the square root of the sum of the squares.

Figure 5.14.    Estimated Unpaid Model Results

Taylor & Ashe Data
Accident Year Unpaid

Paid Chain Ladder Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 -                  -                  -                  -                  -                  -                  -                  -                  
2007 94,649            96,571            102.0% (119,298)         541,054          71,176            147,232          278,360          374,056          
2008 473,619          199,302          42.1% (25,494)           1,217,544       454,644          590,676          830,916          1,018,835       
2009 714,763          250,044          35.0% 140,156          1,642,391       684,461          882,486          1,146,017       1,396,652       
2010 981,305          271,726          27.7% 324,024          2,062,359       951,467          1,148,872       1,475,857       1,731,112       
2011 1,414,007       364,527          25.8% 468,645          2,829,838       1,392,288       1,642,974       2,059,339       2,349,855       
2012 2,173,552       489,442          22.5% 806,008          4,293,160       2,142,306       2,489,525       3,033,205       3,345,364       
2013 3,969,749       768,637          19.4% 1,655,462       6,369,285       3,913,503       4,501,100       5,307,862       5,989,765       
2014 4,317,349       887,688          20.6% 1,874,779       7,677,306       4,260,113       4,898,209       5,844,560       6,516,905       
2015 4,703,420       2,176,343       46.3% 445,056          13,859,166     4,493,023       6,127,676       8,500,947       10,529,157     

Totals 18,842,414     2,902,735       15.4% 11,312,275     29,464,222     18,594,140     20,734,478     23,885,153     26,388,103     
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Minimum and maximum results are the next diagnostic element in our analysis of 
the estimated unpaid claims in Figure 5.14, representing the smallest and largest values 
from all iterations of the simulation. These values will need to be reviewed in order 
to determine their veracity. If any of them seem implausible, the model assumptions 
would need to be reviewed. Their effects could materially alter the mean indication. 
Sometimes implausible extreme iterations are the result of negative incremental values 
in those “rare” iterations and the limiting incremental value options discussed in 
Section 4.1 can be used to constrain the model simulation process.

5.5.2.  Mean, Standard Deviation and CoV of Incremental Values
The mean, standard deviation and coefficients of variation for every incremental 

value from the simulation process also provide useful diagnostic results, enabling us 
to dig deeper into potential coefficient of variation issues that may be found in the 
estimated unpaid results. Consider, for example, the mean, standard deviation and 
coefficient of variation results shown in Figures 5.15, 5.16 and 5.17, respectively.

The mean values in Figure 5.15 appear consistent throughout and support the 
increases in estimated unpaid by accident year that are shown in Figure 5.14. In fact, 
the future mean values, which lay beyond the stepped diagonal line in Figure 5.15, 
sum to the results in Figure 5.14. The standard deviation values in Figure 5.16 also 

Taylor & Ashe Data
Accident Year Incremental Values by Development Period

Paid Chain Ladder Model

Accident Mean Values
Year 12 24 36 48 60 72 84 96 108 120+
2006 278,309          678,678          706,559          769,219          414,449          296,763          266,301          182,021          270,614          66,922            
2007 380,244          940,173          979,875          1,076,297       588,887          408,707          372,144          251,228          381,983          94,649            
2008 376,488          936,096          971,651          1,038,686       584,856          405,028          367,109          256,617          379,226          94,393            
2009 358,750          918,068          955,061          1,023,741       565,152          405,626          367,359          249,479          372,693          92,592            
2010 328,119          837,454          881,193          941,139          514,722          373,168          332,243          226,148          339,996          82,918            
2011 353,894          879,226          924,325          986,018          540,281          386,069          348,473          234,329          357,224          87,913            
2012 386,915          980,382          1,016,136       1,104,983       595,138          436,918          393,002          267,350          389,062          92,083            
2013 477,460          1,175,498       1,227,022       1,334,527       739,306          511,050          461,997          320,655          480,476          121,737          
2014 396,237          973,510          1,023,124       1,106,316       597,274          431,428          390,159          264,060          404,885          100,103          
2015 342,385          875,509          913,011          977,993          539,429          389,906          344,466          230,160          347,729          85,218            

Figure 5.15.    Mean of Incremental Values

Taylor & Ashe Data
Accident Year Incremental Values by Development Period

Paid Chain Ladder Model

Accident Standard Error Values
Year 12 24 36 48 60 72 84 96 108 120+
2006 132,756          127,296          126,502          280,755          159,020          136,284          105,608          84,429            104,410          50,555            
2007 154,318          150,888          145,947          329,237          187,519          159,277          117,183          101,220          122,902          96,571            
2008 151,882          147,943          153,986          332,283          193,190          160,114          121,272          101,681          167,482          98,760            
2009 146,220          150,178          149,690          327,782          186,733          158,176          119,597          125,035          171,497          98,042            
2010 145,531          138,894          144,262          300,660          178,639          151,920          139,437          118,041          156,163          87,924            
2011 146,339          141,271          148,740          317,044          185,534          183,768          145,838          122,161          155,734          95,224            
2012 153,454          152,178          153,054          338,980          242,220          199,497          163,440          139,434          168,716          97,719            
2013 173,003          165,002          168,993          447,745          261,465          215,809          165,965          141,086          201,662          121,867          
2014 156,130          151,172          235,610          410,825          235,604          210,647          163,372          131,985          177,616          103,507          
2015 142,319          418,523          436,805          577,315          322,537          254,332          205,111          153,930          222,174          98,010            

Figure 5.16.    Standard Deviation of Incremental Values
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appear consistent, although the future periods seem to have larger standard deviations 
than historical periods. But the standard deviations can’t be added because the standard 
deviations in Figure 5.14 represent those for aggregated incremental values by accident 
year, which are less than perfectly correlated.

The differences between the future and historical coefficients of variation in 
Figure 5.17 help clarify any issues with the model results. For example, notice how 
the differences by development period are more significant in the bottom two rows in 
Figure 5.17. This is consistent with the increases in the accident year 2014 and 2015 
coefficients of variation noted in Figure 5.14, so they can be used to diagnose the 
causes noted above when compared to the same results for different models.

Taylor & Ashe Data
Accident Year Incremental Values by Development Period

Paid Chain Ladder Model

Accident Coefficient of Variation Values
Year 12 24 36 48 60 72 84 96 108 120+
2006 47.7% 18.8% 17.9% 36.5% 38.4% 45.9% 39.7% 46.4% 38.6% 75.5%
2007 40.6% 16.0% 14.9% 30.6% 31.8% 39.0% 31.5% 40.3% 32.2% 102.0%
2008 40.3% 15.8% 15.8% 32.0% 33.0% 39.5% 33.0% 39.6% 44.2% 104.6%
2009 40.8% 16.4% 15.7% 32.0% 33.0% 39.0% 32.6% 50.1% 46.0% 105.9%
2010 44.4% 16.6% 16.4% 31.9% 34.7% 40.7% 42.0% 52.2% 45.9% 106.0%
2011 41.4% 16.1% 16.1% 32.2% 34.3% 47.6% 41.9% 52.1% 43.6% 108.3%
2012 39.7% 15.5% 15.1% 30.7% 40.7% 45.7% 41.6% 52.2% 43.4% 106.1%
2013 36.2% 14.0% 13.8% 33.6% 35.4% 42.2% 35.9% 44.0% 42.0% 100.1%
2014 39.4% 15.5% 23.0% 37.1% 39.4% 48.8% 41.9% 50.0% 43.9% 103.4%
2015 41.6% 47.8% 47.8% 59.0% 59.8% 65.2% 59.5% 66.9% 63.9% 115.0%

Figure 5.17.    Coefficient of Variation of Incremental Values



Casualty Actuarial Society	 45

6.  Using Multiple Models

So far we have focused only on one model. In practice, multiple stochastic models 
should be used in the same way that multiple methods should be used in a deterministic 
analysis. First the results for each model must be reviewed and finalized, after an 
iterative process of diagnostic testing and reviewing model output to make sure the 
model “fits” the data, has reasonable assumptions and produces reasonable results. 
Then these results can be combined by assigning a weight to the results of each model.

Two primary methods exist for combining the results for multiple models:

•	 Run models with the same random variables. For this algorithm, every model uses 
the exact same random variables. In the “Bootstrap Models.xlsm” file, the random 
values are simulated before they are used to simulate results, which means that this 
algorithm may be accomplished by reusing the same set of random variables for 
each model. At the end, the incremental values for each model, for each iteration 
by accident year (that have a partial weight), can be weighted together.

•	 Run models with independent random variables. For this algorithm, every 
model is run with its own random variables. In the “Bootstrap Models.xlsm” file 
the random values are simulated before they are used to simulate results, which 
means that this algorithm may be accomplished by simulating a new set of random 
variables for each model.56 At the end, the weights are used to randomly select a 
model for each iteration by accident year so that the result is a weighted “mixture” 
of models.

Both algorithms are similar to the process of weighting the results of different 
deterministic methods to arrive at an actuarial best estimate. The process of weighting 
the results of different stochastic models produces an actuarial best estimate of a 
distribution. In practice it is also common to further “adjust” or “shift” the weighted 
results by year after considering case reserves and the calculated IBNR. This “shifting” 
can also be done for weighted distributions, either additively to maintain the exact 
shape and width of the distribution by year or multiplicatively to maintain the exact 
shape of the distribution but adjusting the width of the distribution.

56	 In general, in order to simulate new random values a new seed value must be selected, otherwise the same random 
values will be simulated. In the “Bootstrap Models.xlsm” file the seed value is incremented for each model and 
data type so that different seed values are being used as long as new random numbers are generated for each 
model and data type.
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The second method of combining multiple models will be illustrated using 
combined Schedule P data for five top 50 companies.57 Data for all Schedule P lines  
with 10 years of history may be found in the “Industry Data.xlsm” file, but this 
example will be confined to Parts A, B, and C. For each line of business ODP bootstrap 
models were run for paid and incurred data (labeled Chain Ladder), as well as paid 
and incurred data for the Bornhuetter-Ferguson and Cape Cod models described in  
Section 3.3 and the GLM bootstrap model described in Section 3.4.58 For this section, 
only the results for Part A (Homeowners/Farmowners) will be reviewed.59

By comparing the results for all eight models (or fewer, depending on how many are 
used)60 a qualitative assessment of the relative merits of each model may be determined. 
Bayesian methods can be used to determine weighting based on the quality of each 
model’s forecasts. The weights can be determined separately for each year. The table in 
Figure 6.1 shows an example of weights for the Part A data.61 The weighted results are 
displayed in the “Best Estimate” column of Figure 6.2. As a parallel to a deterministic 
analysis, the means from the eight models could be used to derive a reasonable range from 
the modeled results (i.e., from $4,099 to $5,650) as shown in Figure 6.3. Alternatively, 
if we only consider results by accident year which are given some weight when deriving 
the best estimate, then the “weighted range” may be a more representative view of the 
uncertainty of the actuarial central estimate.62

When selecting weights for stochastic models, the standard deviations should also 
be considered in addition to the means by model since the weighted best estimate 
should reflect the actuary’s judgments about the entire distribution not just a central 

57	 The five companies represent large, medium and smaller companies that have been combined to maintain 
anonymity. For each Part, a unique set of five companies were used.

58	 An additional benefit of converting the incurred data models to a random payment stream as discussed in 
Section 3.3.1 is that they can be combined with other model results.

59	 Only selected weighted results are displayed and discussed in Section 6. A more complete set of results, including 
results for each model, are included in Appendix A.

60	 Other models in addition to the ODP bootstrap and GLM bootstrap models could also be included in the 
weighting process as long as the simulated results are in the form of random incremental payment streams.

61	 For simplicity, the weights are judgmental and not derived using Bayesian methods.
62	 The “modeled range” in Figure 6.3 is derived using each model that is given at least some weight for any accident 

year—i.e., if the model is used. In contrast, the “weighted range” is derived using only the models given weight 
for each accident year, which are highlighted in grey in Figure 6.2 and 6.4.

Accident Model Weights by Accident Year
Year Paid CL Incd CL Paid BF Incd BF Paid CC Incd CC Paid GLM Incd GLM TOTAL
2006 50.0% 50.0% 100.0%
2007 50.0% 50.0% 100.0%
2008 50.0% 50.0% 100.0%
2009 50.0% 50.0% 100.0%
2010 50.0% 50.0% 100.0%
2011 50.0% 50.0% 100.0%
2012 50.0% 50.0% 100.0%
2013 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 100.0%
2014 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 100.0%
2015 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 100.0%

Figure 6.1.    Model Weights by Accident Year
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estimate. Thus, coefficients of variation by model can be used for this purpose as 
illustrated in Figure 6.4.

With our focus on the entire distribution, the weights by year were used to randomly 
sample the specified percentage of iterations from each model. A more complete set 
of the results for the “weighted” iterations can be created similar to the tables shown 
in Section 5. The companion “Best Estimate.xlsm” file can be used to weight eight 
different models together in order to calculate a weighted best estimate. An example 
for Part A is shown in the table in Figure 6.5.

As one final check of the weighted results it would be common to review the 
implied IBNR to make sure there are no issues as shown in Figure 6.6. By reviewing 
this reconciliation, and perhaps also comparing it to deterministic results, additional 
adjustments could be made to various assumptions. For example, from year 2006 in 
Figure 6.6 it may be more realistic to revisit the tail factor assumption so that the 
unpaid estimate is more consistent with the case reserves. Finally, after the interactive 
process of reviewing results and adjusting assumptions is complete, it may still be 

Figure 6.2.    Summary of Mean Results by Model

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Summary of Results by Model

Mean Estimated Unpaid
Accident Chain Ladder Bornhuetter Ferguson Cape Cod GLM Bootstrap Best Est.

Year Paid Incurred Paid Incurred Paid Incurred Paid Incurred (Weighted)
2006 -                  -                  -                  -                  -                  -                  -                  -                  -                  
2007 3                     3                     2                     2                     3                     3                     9                     12                   3                     
2008 41                   42                   28                   27                   32                   33                   27                   27                   41                   
2009 45                   46                   37                   39                   43                   45                   40                   45                   46                   
2010 63                   62                   60                   59                   66                   71                   62                   73                   64                   
2011 103                 103                 96                   98                   109                 115                 106                 113                 103                 
2012 222                 226                 169                 168                 191                 199                 213                 169                 224                 
2013 294                 306                 327                 334                 373                 385                 280                 307                 335                 
2014 679                 723                 722                 753                 835                 871                 646                 650                 752                 
2015 3,851              3,912              2,660              2,885              3,225              3,430              3,738              4,255              3,742              

Totals 5,300              5,422              4,099              4,366              4,878              5,151              5,120              5,650              5,308              

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Summary of Results by Model

Ranges
Accident Best Est. Weighted Modeled

Year (Weighted) Minimum Maximum Mininum Maximum
2006 -                  
2007 3                     3                     3                     2                     12                   
2008 41                   41                   42                   27                   42                   
2009 46                   45                   46                   37                   46                   
2010 64                   62                   63                   59                   73                   
2011 103                 103                 103                 96                   115                 
2012 224                 222                 226                 168                 226                 
2013 335                 294                 385                 280                 385                 
2014 752                 679                 871                 646                 871                 
2015 3,742              3,225              4,255              2,660              4,255              

Totals 5,308              4,674              5,992              4,099              5,650              

Figure 6.3.    Summary of Ranges by Accident Year
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Summary of Results by Model

Coefficient of Variation
Accident Chain Ladder Bornhuetter Ferguson Cape Cod GLM Bootstrap

Year Paid Incurred Paid Incurred Paid Incurred Paid Incurred
2006
2007 264.9% 309.9% 310.2% 318.6% 276.2% 326.5% 86.4% 91.5%
2008 74.7% 101.0% 89.2% 109.3% 86.1% 95.6% 177.0% 184.0%
2009 65.5% 93.2% 69.7% 93.5% 69.2% 89.0% 119.3% 118.9%
2010 49.4% 75.6% 52.2% 78.0% 47.2% 72.7% 78.5% 78.1%
2011 34.9% 62.4% 35.7% 64.6% 33.5% 59.5% 51.3% 50.9%
2012 26.1% 49.5% 31.3% 51.4% 28.1% 50.2% 33.6% 41.5%
2013 27.3% 57.5% 26.9% 59.3% 23.3% 56.2% 27.9% 34.9%
2014 18.9% 48.8% 21.8% 51.0% 17.1% 46.7% 20.3% 26.3%
2015 9.2% 39.2% 14.4% 40.5% 8.0% 39.4% 9.0% 16.0%

Totals 8.4% 29.0% 11.1% 28.9% 7.9% 27.5% 8.7% 13.3%

Figure 6.4.    Summary of CoV Results by Model

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000’s)

Reconciliation of Total Results
Best Estimate (Weighted)

Accident Paid Incurred Case Estimate of Estimate of
Year To Date To Date Reserves IBNR Ultimate Unpaid
2006 5,234 5,237 3 (3) 5,234 -
2007 6,470 6,479 9 (6) 6,473 3
2008 7,848 7,867 19 23 7,890 41
2009 7,020 7,046 26 20 7,066 46
2010 7,291 7,341 50 13 7,355 64
2011 8,134 8,225 91 12 8,237 103
2012 10,800 11,085 285 (61) 11,023 224
2013 7,522 7,810 288 46 7,856 335
2014 7,968 8,703 735 17 8,720 752
2015 9,309 12,788 3,478 263 13,051 3,742

Totals 77,596 82,580 4,984 324 82,905 5,308

Figure 6.6.    Reconciliation of Total Results (weighted)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Unpaid
Best Estimate (Weighted)

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 -                  -                  -                  -                  -                  -                  -                  -                  
2007 3                     9                     292.0% -                  173                 0                     1                     17                   42                   
2008 41                   37                   88.6% -                  391                 32                   57                   111                 168                 
2009 46                   37                   81.0% 1                     522                 36                   60                   114                 175                 
2010 64                   41                   63.6% 4                     537                 55                   81                   139                 205                 
2011 103                 50                   48.8% 10                   636                 94                   125                 193                 276                 
2012 224                 89                   40.0% 36                   917                 211                 266                 382                 529                 
2013 335                 148                 44.3% 25                   1,460              315                 401                 594                 865                 
2014 752                 293                 39.0% 106                 2,881              725                 873                 1,265              1,789              
2015 3,742              982                 26.2% 1,094              10,700            3,654              4,118              5,392              7,059              

Totals 5,308              1,044              19.7% 2,116              12,445            5,224              5,758              7,074              8,675              
Normal Dist. 5,308              1,044              19.7% 5,308              6,013              7,026              7,738              
logNormal Dist. 5,309              1,034              19.5% 5,211              5,935              7,158              8,164              
Gamma Dist. 5,308              1,044              19.7% 5,240              5,971              7,135              8,035              
TVaR 6,035              6,593              8,140              10,091            
Normal TVaR 6,142              6,636              7,463              8,092              
logNormal TVaR 6,121              6,691              7,780              8,733              
Gamma TVaR 6,137              6,688              7,689              8,516              

Figure 6.5.    Estimated Unpaid Model Results (weighted)
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prudent to make adjustments to the best estimate of the unpaid by shifting the results 
as noted earlier in this section. For example, since all of the models estimated the 
unpaid for 2012 to be less than the case reserves, if other studies show that the case 
reserves are not likely to be redundant then the actuary may decide to shift the unpaid 
for 2012 so that it is at least 285.

6.1.  Additional Useful Output
Three rows of percentile numbers for the normal, lognormal, and gamma distribu-

tions, which have been fitted to the total unpaid-claim distribution, may be seen at the 
bottom of the table in Figure 6.5. The fitted mean, standard deviation, and selected 
percentiles are in their respective columns; the smoothed results can be used to assess 
the quality of fit, parameterize a DFA model, or used to smooth the estimate of extreme 
values,63 among other applications.

Four rows of numbers indicating the Tail Value at Risk (TVaR), defined as the 
average of all of the simulated values equal to or greater than the percentile value, may 
also be seen at the bottom of Figure 6.5. For example, in this table, the 99th percentile 
value for the total unpaid claims for all accident years combined is 8,675, while the 
average of all simulated values that are greater than or equal to 8,675 is 10,091. The 
Normal TVaR, Lognormal TVaR, and Gamma TVaR rows are calculated similarly, 
except that they use the respective fitted distributions in the calculations rather than 
actual simulated values from the model.

An analysis of the TVaR values is likely to help clarify a critical issue: if the actual 
outcome exceeds the X percentile value, by how much will it exceed that value on 
average? This type of assessment can have important implications related to risk-based 
capital calculations and other technical aspects of enterprise risk management. But it is 
worth noting that the purpose of the normal, lognormal, and gamma TVaR numbers 
is to provide “smoothed” values—that is, that some of the random statistical noise is 
essentially prevented from distorting the calculations.

6.2.  Estimated Cash Flow Results
A model’s output may also be reviewed by calendar year (or by future diagonal), 

as shown in the table in Figure 6.7. A comparison of the values in Figures 6.5 and 
6.7 indicates that the total rows are identical, because summing the future payments 
horizontally or diagonally will produce the same total. Similar diagnostic issues (as 
discussed in Section 5) may be reviewed in the table in Figure 6.7, with the exception of 
the relative values of the standard errors and coefficients of variation moving in opposite 
directions for calendar years compared to accident years. This phenomenon makes sense 
on an intuitive level when one considers that “final” payments, projected to the furthest 
point in the future, should actually be the smallest, yet relatively most uncertain.

63	 A random instance of an extreme percentile can be quite erratic compared to the same percentile of a distribution 
fitted to the simulated distribution. This random noise for extreme percentiles could be cause for increasing the 
number of iterations, but if the same percentiles for the fitted distributions are stable perhaps they can be used 
in lieu of more iterations. Of course the use of the extreme values assumes that the models are reliable.
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6.3.  Estimated Ultimate Loss Ratio Results
Another output table, Figure 6.8, shows the estimated ultimate loss ratios by 

accident year. Unlike the estimated unpaid and estimated cash-flow tables, the values 
in this table are calculated using all simulated values, not just the values beyond the end 
of the historical triangle. Because the simulated sample triangles represent additional 
possibilities of what could have happened in the past, even as the “squaring of the 
triangle” and process variance represent what could happen as those same past values 
are played out into the future, we are in possession of sufficient information to enable us 
to estimate the variability in the loss ratio from day one until all claims are completely 
paid and settled for each accident year.64

Reviewing the simulated values indicates that the standard errors in Figure 6.8 should 
be proportionate to the means, while the coefficients of variation should be relatively 
constant by accident year. In terms of diagnostics, any increases in standard error and 
coefficient of variation for the most recent years would be consistent with the reasons 

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000’s)

Calendar Year Unpaid
Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2016 3,475 754 21.7% 1,297 8,420 3,414 3,797 4,730 5,948
2017 865 208 24.0% 293 2,148 843 982 1,224 1,483
2018 403 118 29.4% 115 1,298 387 467 614 740
2019 204 67 32.7% 56 654 194 240 325 412
2020 140 50 35.9% 40 539 132 165 233 297
2021 90 43 47.4% 12 611 82 112 169 229
2022 70 44 63.2% 6 409 60 91 152 215
2023 51 58 112.2% - 735 36 75 151 253
2024 10 15 146.5% - 199 4 15 41 67

Totals 5,308 1,044 19.7% 2,116 12,445 5,224 5,758 7,074 8,675

Figure 6.7.    Estimated Cash Flow (weighted)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000’s)

Accident Year Ultimate Loss Ratios
Best Estimate (Weighted)

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 67.7% 28.5% 42.1% 0.4% 220.8% 66.1% 71.1% 130.9% 158.2%
2007 79.3% 30.2% 38.1% 8.2% 262.2% 77.8% 83.1% 145.5% 178.5%
2008 90.5% 31.2% 34.5% 16.9% 261.3% 89.0% 94.6% 159.9% 188.9%
2009 72.8% 26.8% 36.7% 10.2% 215.6% 71.4% 76.1% 131.7% 180.4%
2010 65.3% 23.3% 35.7% 10.2% 225.0% 63.8% 68.0% 116.1% 139.7%
2011 64.1% 21.2% 33.1% 13.0% 190.0% 63.2% 67.0% 111.8% 130.5%
2012 80.5% 24.0% 29.9% 25.0% 234.6% 79.0% 83.7% 132.9% 154.6%
2013 54.7% 18.8% 34.4% 9.9% 157.7% 53.9% 57.4% 96.2% 115.1%
2014 58.0% 19.2% 33.0% 13.0% 164.8% 57.1% 60.6% 99.8% 118.8%
2015 88.2% 21.5% 24.4% 30.9% 232.5% 85.5% 92.5% 127.9% 158.7%

Totals 71.3% 7.4% 10.4% 46.6% 112.7% 70.8% 75.7% 84.4% 91.7%

Figure 6.8.    Estimated Loss Ratio (weighted)

64	 If we are only interested in the “remaining” volatility in the loss ratio, then the values in the estimated unpaid 
table (Figure 6.5) can be added to the cumulative paid values by year and divided by the premiums.
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previously cited in Section 5.4 for the estimated unpaid tables. Risk management-wise, 
the loss ratio distributions have important implications for projecting pricing risk—
the mean loss ratios can be used to view any underwriting cycles and help inform the 
projected mean for the next few years, while the coefficients of variation can be used to 
select a standard deviation for the next few years.65

6.4.  Estimated Unpaid Claim Runoff Results
Figure 6.9, shows the runoff of the total unpaid claim distribution by future calendar 

year. Like the estimated unpaid and estimated cash-flow tables, the values in this table 
are calculated using only future simulated values, except that future diagonal results are 
sequentially removed so that we are left with the remaining unpaid claims at the end of 
future calendar periods. These results are quite useful for calculating the runoff of the 
unpaid claim distribution when calculating risk margins using the cost of capital method.

6.5.  Distribution Graphs
A final model output to consider is a histogram of the estimated unpaid amounts 

for the total of all accident years combined, as shown in the graph in Figure 6.10. The 
histogram is created by counting the number of outcomes within each of 100 “buckets” 
of equal size spread between the minimum and maximum outcome. To smooth the 
histogram a kernel density function is often used, which is the green bars in Figure 6.10.

Another useful strategy for graphing the total unpaid distribution may be accom-
plished by creating a summary of the eight model distributions used to determine the 
weighted “best estimate” and distribution. An example of this graph using the kernel 
density functions is shown in Figure 6.11 and dots for the mean estimates, which 
would represent a traditional range,66 are also included.

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000’s)

Calendar Year Unpaid Claim Runoff
Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2015 5,308 1,044 19.7% 2,116 12,445 5,224 5,758 7,074 8,675
2016 1,834 365 19.9% 746 4,128 1,797 2,030 2,459 2,957
2017 969 218 22.5% 336 2,316 946 1,088 1,353 1,627
2018 566 146 25.8% 159 1,393 548 647 828 1,004
2019 362 114 31.5% 79 1,171 347 424 565 718
2020 222 92 41.4% 35 956 207 269 386 524
2021 132 76 57.6% 6 863 117 166 268 394
2022 62 59 96.3% (0) 745 46 84 166 269
2023 10 15 146.5% (0) 199 4 15 41 67

Figure 6.9.    Estimated Unpaid Claim Runoff (weighted)

65	 The coefficients of variation measure the variability of the loss ratios, given the movements by year. Without this 
information, it is common to base the future standard deviation on the standard deviation of the historical mean 
loss ratios, but this is not ideal since the variability of the mean loss ratios is not the same as the possible variation 
in the actual outcomes given movements in the means.

66	 A traditional range would use deterministic point estimates instead of means of the distributions, but the intent 
is consistent. While the points would technically have an infinitesimal probability and should therefore sit on the 
x-axis, they are elevated above the zero probability level purely for illustration purposes.
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000’s)

Total Unpaid Distribution
Best Estimate (Weighted)
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Figure 6.10.   Total Unpaid Claims Distribution

Figure 6.11.    Summary of Model Distributions

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000’s)

Summary of Model Distributions
(Using Kernel Densities)
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67	 For Part B and Part C, tail factors were used to illustrate the results when extrapolated beyond just squaring the 
triangle. This also flows through to the Aggregate results in Appendix D.

68	 This section assumes the reader is familiar with correlation.
69	 It is possible to use this process with a parametric ODP bootstrap model, as described in Section 4.10, but that is 

beyond the scope of the monograph.
70	 For a useful reference see Kirschner, et al. (2008).
71	 For example, in the “Bootstrap Models.xlsm” file the locations of the sampled residuals are shown in Step 15, 

which could be replicated iteration by iteration for each business segment.
72	 It is possible to fill in “missing” residuals in another segment using a randomly selected residual from elsewhere 

in the triangle, but in order to maintain the same amount of correlation the selection of the other residual would 
need to account for the correlation between the residuals, which complicates the process.

The corresponding tables and graphs for the Part B and Part C results are shown in 
Appendices B and C, respectively.67

6.6.  Correlation
Results for an entire business unit can be estimated, after each business segment 

has been analyzed and weighted into best estimates, using aggregation. This represents 
another area where caution is warranted. The procedure is not a simple matter of 
adding up the distributions for each segment. In order to estimate the distribution of 
possible outcomes for a company as a whole, a correlation of results between segments 
must be used.68

Simulating correlated variables is commonly accomplished with a multivariate 
distribution whose parameters and correlations have been previously specified. This 
type of simulation is most easily applied when distributions are uniformly identical and 
known in advance (for example, all derived from a multivariate normal distribution). 
Unfortunately, these conditions do not generally exist for the ODP bootstrap model 
(or other models), as quite often the modeling process does not allow us to know 
the characteristics of overall distributions in advance or combining distributions from 
different types of models is by definition not uniformly identical and known in advance. 
Indeed, as the shapes of different distributions are usually slightly different, another 
approach will be needed.69

Two useful correlation processes for the ODP bootstrap model are location mapping 
(or synchronized bootstrapping) and re-sorting.70

With location mapping, each iteration will include sampling residuals for the first 
segment and then going back to note the location in the original residual triangle of 
each sampled residual.71 Each of the other segments is sampled using the residuals at 
the same locations for their respective residual triangles. Thus, the correlation of the 
original residuals is preserved in the sampling process.

The location-mapping process is easily implemented in Excel and does not require 
the need to estimate a correlation matrix. There are, however, two drawbacks to this 
process. First, it requires all of the business segments to use data triangles that are  
precisely the same size with no missing values or outliers when comparing each location 
of the residuals.72 Second, the correlation of the original residuals is used in the model, 
and no other correlation assumptions can be used for stress testing the aggregate results.
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73	 For a useful reference see Iman and Conover (1982) or Mildenhall (2006). In the “Aggregate Estimate.xlsm” file 
the Iman-Conover algorithm is used to “Generate Rank Values” on the Inputs sheet.

74	 While judgment is clearly appropriate, the typical threshold is a P-value of 5%—i.e., a P-value of 5% or less 
indicates the correlation is significantly different than zero, while a P-value greater than 5% indicates the 
correlation is not significantly different than zero.

The second correlation process, re-sorting, can be accomplished with algorithms 
such as Iman-Conover73 or Copulas, among others. The primary advantages of re-sorting 
include:

•	 The triangles for each segment may have different shapes and sizes,
•	 Different correlation assumptions may be employed, and
•	 Different correlation algorithms may also have other beneficial impacts on the 

aggregate distribution.

For example, using a t-distribution Copula with low degrees of freedom rather 
than a normal-distribution Copula, will effectively “strengthen” the focus of the 
correlation in the tail of the distribution, all else being equal. This type of consideration 
is important for risk-based capital and other risk modeling issues.

To induce correlation among different segments in the ODP bootstrap model, a 
calculation of the correlation matrix using Spearman’s Rank Order and use of re-sorting 
based on the ranks of the total unpaid claims for all accident years combined may be 
done. The calculated correlations for Parts A, B, and C based on the paid residuals after 
hetero adjustments may be seen in the table in Figure 6.12. A second part of Figure 6.12 
are the P-values for each correlation coefficient, which are an indication of whether a cor-
relation coefficient is significantly different than zero as the P-value gets close to zero.74

By reviewing the correlation coefficients for each “pair” of segments, along with 
the P-values, from different sets of correlations matrices (e.g., from paid or incurred 
data before or after the hetero adjustment) judgment can be used to select a correlation 
matrix assumption. As noted above, caution is warranted as these calculated correlation 
matrices are limited to the data used in the calculation and the impact of other systemic 
issues, such as contagion, may also need to be considered.

Using these correlation coefficients, the “Aggregate Estimate.xlsm” file, and the 
simulation data for Parts A, B, and C, the aggregate results for the three lines of business 

Rank Correlation of Residuals after Hetero Adjustment - Paid
LOB 1 2 3

1 1.00 0.37 0.19
2 0.37 1.00 0.24
3 0.19 0.24 1.00

P-Values of Rank Correlation of Residuals after Hetero Adjustment - Paid
LOB 1 2 3

1 0.00 0.01 0.17
2 0.01 0.00 0.07
3 0.17 0.07 0.00

Figure 6.12.    Estimated Correlation and P-values
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were calculated and summarized in the table in Figure 6.13. A more complete set of 
tables for the aggregate results is shown in Appendix D.

Note that using residuals to correlate the lines of business (or other segments), as 
in the location mapping method, and measuring the correlation between residuals, as 
in the re-sorting method, both tend to create correlations that are close to zero. For 
reserve risk, the correlation that is desired is between the total unpaid amounts for 
two segments. The correlation that is being measured is the correlation between each 
incremental future loss amount, given the underlying model describing the overall 
trends in the data. This may or may not be a reasonable approximation.

While not the direct measure we are hoping for, keep in mind that some level of 
implied correlation between lines of business will naturally occur due to correlations 
between the model parameters—e.g., similarities in development parameters, so 
correlation based on the correlation between the remaining random movements in 
the incremental values given the model parameters (i.e., residuals) may be reasonable. 
However, an example of an issue not particularly well suited to measurement via 
residual correlation is contagion between lines of business—i.e., single events that 
result in claims in multiple lines of business. To account for this, and to add a bit 
of conservatism, the correlation assumption can be easily changed based on actuarial 
judgment.

Correlation is often thought of as being much stronger than “close to zero”, but 
in this case the correlation being considered is typically the loss ratio movements by 
line of business. For pricing risk, the correlation that is desired is between the loss ratio 
movements by accident year between two segments. This correlation is not as likely to 
be close to zero, so correlation of loss ratios (e.g., for the data in Figure 6.7) is often 
done with a different correlation assumption compared to reserving risk.

Five Top 50 Companies
Aggregate Three Lines of Business

Accident Year Unpaid

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 67 25 37.9% 0 186 66 83 110 130
2007 107 30 28.1% 25 295 105 126 158 185
2008 199 49 24.8% 67 622 194 226 285 342
2009 298 56 18.8% 123 800 293 331 395 457
2010 480 69 14.3% 248 959 475 522 599 668
2011 862 106 12.3% 503 1,561 860 923 1,041 1,135
2012 1,666 187 11.2% 383 2,555 1,662 1,771 1,985 2,148
2013 3,070 333 10.8% 1,808 6,522 3,066 3,249 3,649 3,928
2014 5,632 703 12.5% 2,435 8,555 5,632 6,075 6,801 7,326
2015 13,270 1,788 13.5% 5,217 22,660 13,262 14,348 16,180 18,011

Totals 25,650 2,080 8.1% 16,952 36,085 25,616 26,949 29,088 30,991
Normal Dist. 25,650 2,080 8.1% 25,650 27,053 29,072 30,490
logNormal Dist. 25,650 2,088 8.1% 25,566 27,006 29,222 30,885
Gamma Dist. 25,650 2,080 8.1% 25,594 27,021 29,165 30,736

Figure 6.13.    Aggregate Estimated Unpaid
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7.  Model Testing

Work on testing stochastic unpaid claim estimation models is still in its infancy. Most 
papers on stochastic models display results, and some even compare a few different 
models, but they tend to be void of any statistical evidence regarding how well the 
model in question predicts the underlying distribution. This is quite understandable 
since we don’t know what the underlying distribution is, so with real data the best 
we can hope for is to retrospectively test a very old data set to see how well a model 
predicted the actual outcome.75

Testing a few old data sets is better than not, but ideally we would need many simi-
lar data sets to perform meaningful tests. One recent paper authored by the General 
Insurance Reserving Oversight Committee (GI ROC) in their papers for the General 
Insurance Research Organizing (GIRO) conference in 2007 titled “Best Estimates and 
Reserving Uncertainty” (ROC/GIRO 2007) and their updated paper in 2008 titled 
“Reserving Uncertainty” (ROC/GIRO 2008) took a first step in performing more 
meaningful statistical testing of a variety of models.

A large number of models were reviewed and tested in these studies, but one of the 
most interesting portions of the studies were done by comparing the unpaid liability 
distributions created by the Mack and ODP bootstrap model against the “true” arti-
ficially generated unpaid loss percentiles. To accomplish these tests, artificial datasets  
were constructed so that all of the Mack and ODP bootstrap assumptions, respectively, 
are satisfied. While the artificial datasets were recognized as not necessarily realistic, the 
“true” results are known so the Working Parties were able to test to see how well each 
model performed against datasets that could be considered “perfect.”

7.1.  Bootstrap Model Results
To test the ODP bootstrap model, incremental losses were simulated for a 10 × 

10 square of data based on the assumptions of the ODP bootstrap model. For the 30,000 
datasets simulated, the upper triangles were used and the OPD bootstrap model from 
England and Verrall (1999; 2002) were used to estimate the expected results and various 
percentiles. The proportion of simulated scenarios in which the “true” outcome exceeded 
the 99th percentile of the ODP Bootstrap method’s results was around 2.6–3.1%. For the 
Mack method, the “true” outcome exceeded the 99th percentile around 8–13%.

75	 For example, data for accident years 1994 to 2004 could be completely settled and all results known as of 2014. 
Thus, we could use the triangle as it existed at year end 2004 to test how well a model predicted the final results.
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Thus, the ODP bootstrap model performed better than the Mack model for “per-
fect” data, even though the results for both models were somewhat deficient in the 
sense that they both seem to under-predict the extremes of the “true” distribution. In 
fairness, it should be noted however, that the ODP bootstrap model that was tested did 
not include many of the “advancements” described in Section 3.2.

7.2.  Future Testing
The testing done for GIRO was a significant improvement over simply looking at 

results for different models, without knowing anything about the “true” underlying dis-
tribution. The next step in the testing process will be to test models against “true” results 
for realistic data instead of “perfect” data. The CAS Loss Simulation Model Working 
Party (2011) has created a model that will create datasets from the claim transaction 
level up. The goal is to create thousands of datasets based on characteristics of real data 
that can be used for testing various models.
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8.  Future Research

With testing of stochastic models in its infancy, much work in the area of future research 
is needed. Only a few such areas are offered here.

•	 Expand testing of the ODP bootstrap model with realistic data using the CAS loss 
simulation model.

•	 Research on how the adjustments to the ODP bootstrap and GLM bootstrap sug-
gested in this monograph perform relative to realistic data—i.e., is there a significant 
improvement in the predictive power of the model given the different model con-
figurations and adjustments.

•	 Expand or change the ODP bootstrap model in other ways, for example use of the 
Munich chain ladder (Quarg and Mack 2008) or Berquist-Sherman (1977) method 
with an incurred/paid set of triangles, or the use of claim counts and average severi-
ties. Other examples could include the use of different residuals, such as deviance or 
Anscombe residuals noted in Section 3.2.

•	 Research the use of a Bayesian or other approach to selecting weights for different 
models by accident year to improve the process of combining multiple models dis-
cussed in Section 6.

•	 Research other risk analysis measures and how the ODP bootstrap model can be 
used for enterprise risk management.

•	 Research how the ODP bootstrap model can be used for Solvency II requirements 
in Europe and the International Accounting Standards.

•	 Research into the most difficult parameter to estimate: the correlation matrix.
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9.  Conclusions

While this monograph endeavored to show how the ODP bootstrap model can be 
used in a variety of practical ways, and to illustrate the diagnostic tools the actuary 
needs to assess whether the model is working well, it should not be assumed that the 
ODP bootstrap model is well suited for every data set. However, it is hoped that the  
ODP bootstrap and GLM bootstrap “toolsets” can become an integral part of  
the actuaries regular estimation of unpaid claim liabilities, rather than just a “black 
box” to be used only if necessary or after the deterministic methods have been used 
to select a point estimate. Finally, the modeling framework allows the actuary to “fit” 
the model to the data instead of simply accepting the model as is and essentially forcing 
the data to “fit” the model.
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T here are several companion files designed to give the reader a deeper understanding of 
the concepts discussed in the monograph. T  he files are all in the “A Practitioners 
Guide. zip” file at https://www.casact.org/sites/default/files/2021-02/
practitionerssuppl-shaplandmonograph04.zip T he files are:

Model Instructions.pdf—this file contains a written description of how to use the primary 
bootstrap modeling files.

Primary bootstrap modeling iles:
Industry Data.xls—this file contains Schedule P data by line of business for the entire 
U.S. 

industry and five of the top 50 companies, for each LOB that has 10 years of data. 
Bootstrap Models.xlsm—this file contains the detailed model steps described in this 
monograph as well as various modeling options and diagnostic tests. Data can 
be entered and simulations run and saved for use in calculating a weighted best 
estimate.

Best Estimate.xlsm—this file can be used to weight the results from eight different 
models to get a “best estimate” of the distribution of possible outcomes.

Aggregate Estimate.xlsm—this file can be used to correlate the best estimate results 
from 3 LOBs/segments.

Correlation Ranks.xlsm—this file contains examples of ranks used to correlate results 
by LOB/segment.

Simple example calculation files:
GLM Framework.xlsm—this file illustrates the calculation of the GLM bootstrap 

model (framework) and the corresponding ODP bootstrap model for a simple  
3 × 3 triangle using (3.8).

GLM Framework C.xlsm—this file illustrates the calculation of the GLM bootstrap 
model (framework) and the corresponding ODP bootstrap model for a simple 
3 × 3 triangle using (3.7).

GLM Framework 6.xlsm—this file illustrates the calculation of the GLM bootstrap 
model (framework) and the corresponding ODP bootstrap model for a simple 
6 × 6 triangle using (3.8).

GLM Framework 6C.xlsm—this file illustrates the calculation of the GLM bootstrap 
model (framework) and the corresponding ODP bootstrap model for a simple 
6 × 6 triangle using (3.7).

Supplementary Materials

https://www.casact.org/sites/default/files/2021-02/practitionerssuppl-shaplandmonograph04.zip
https://www.casact.org/sites/default/files/2021-02/practitionerssuppl-shaplandmonograph04.zip
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GLM Bootstrap 6 with Outlier.xlsm—this file illustrates how the calculation of the 
GLM bootstrap for a simple 6 × 6 triangle is adjusted for an outlier. It includes 
different options for adjusting the ODP bootstrap model to remove an outlier.

GLM Bootstrap 6 with 3yr avg.xlsm—this file illustrates how the calculation of the 
GLM bootstrap for a simple 6 × 6 triangle is adjusted to only use the equivalent of 
a three-year average (i.e., the last four diagonals).

GLM Bootstrap 6 with 1 Acc Yr Parameter.xlsm—this file illustrates the calculation of 
the GLM bootstrap using only one accident year (level) parameter, a development 
year trend parameter for every year and no calendar year trend parameter for a simple 
6 × 6 triangle.

GLM Bootstrap 6 with 1 Dev Yr Parameter.xlsm—this file illustrates the calculation of 
the GLM bootstrap using only one development year trend parameter, an accident 
year (level) parameter for every year and no calendar year trend parameter for a simple 
6 × 6 triangle.

GLM Bootstrap 6 with 1 Acc Yr & 1 Dev Yr Parameter.xlsm—this file illustrates the 
calculation of the GLM bootstrap using only one accident year (level) parameter, 
one development year trend parameter and no calendar year trend parameter for a 
simple 6 × 6 triangle.

GLM 6 Bootstrap with 1 Acc Yr 1 Dev Yr & 1 Cal Yr Parameter.xlsm—this file illus-
trates the calculation of the GLM bootstrap using only one accident year (level) 
parameter, one development year trend parameter and one calendar year trend 
parameter for a simple 6 × 6 triangle.
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Appendix A—Schedule P, Part A Results

In this appendix the results for Schedule P, Part A (Homeowners/Farmowners) are shown.

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000’s)

Total Unpaid Distribution
Paid Chain Ladder Model
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Figure A.2.   Total Unpaid Claims Distribution (Paid Chain Ladder)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Unpaid
Paid Chain Ladder Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 - - - - - - - -
2007 3 7 264.9% - 81 0 2 17 33
2008 41 31 74.7% - 204 35 59 100 131
2009 45 30 65.5% 7 209 38 61 104 137
2010 63 31 49.4% 15 213 56 80 118 161
2011 103 36 34.9% 36 286 96 122 170 213
2012 222 58 26.1% 93 497 216 258 328 376
2013 294 80 27.3% 126 671 285 342 440 513
2014 679 128 18.9% 366 1,190 675 758 894 1,003
2015 3,851 356 9.2% 2,675 5,051 3,831 4,075 4,496 4,790

Totals 5,300 447 8.4% 4,132 6,907 5,282 5,579 6,056 6,421
Normal Dist. 5,300 447 8.4% 5,300 5,602 6,036 6,341
logNormal Dist. 5,300 448 8.4% 5,282 5,591 6,067 6,426
Gamma Dist. 5,300 447 8.4% 5,288 5,595 6,057 6,396

Figure A.1.    Estimated Unpaid Model Results (Paid Chain Ladder)
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000’s)

Accident Year Unpaid
Incurred Chain Ladder Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 - - - - - - - -
2007 3 9 309.9% - 93 0 1 17 48
2008 42 42 101.0% - 306 30 56 126 189
2009 46 42 93.2% 1 325 33 57 135 205
2010 62 47 75.6% 4 355 52 83 149 253
2011 103 64 62.4% 12 473 89 129 231 338
2012 226 112 49.5% 43 984 202 276 435 587
2013 306 176 57.5% 36 1,449 271 384 621 860
2014 723 353 48.8% 109 2,452 664 884 1,418 1,842
2015 3,912 1,534 39.2% 1,306 10,236 3,694 4,523 6,708 9,175

Totals 5,422 1,575 29.0% 1,981 12,631 5,217 6,144 8,197 10,612
Normal Dist. 5,422 1,575 29.0% 5,422 6,485 8,013 9,086
logNormal Dist. 5,423 1,569 28.9% 5,209 6,307 8,305 10,076
Gamma Dist. 5,422 1,575 29.0% 5,271 6,386 8,246 9,741

Figure A.3.    Estimated Unpaid Model Results (Incurred Chain Ladder)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000’s)

Total Unpaid Distribution
Incurred Chain Ladder Model
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Figure A.4.   Total Unpaid Claims Distribution (Incurred Chain Ladder)
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000’s)

Accident Year Unpaid
Paid Bornhuetter-Ferguson Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 - - - - - - - -
2007 2 6 310.2% - 48 0 0 10 33
2008 28 25 89.2% - 188 21 40 71 115
2009 37 26 69.7% 5 152 30 51 87 115
2010 60 31 52.2% 11 186 53 76 127 153
2011 96 34 35.7% 32 274 89 114 163 194
2012 169 53 31.3% 60 367 161 201 269 308
2013 327 88 26.9% 115 804 319 384 483 573
2014 722 157 21.8% 332 1,314 708 826 997 1,129
2015 2,660 383 14.4% 1,689 3,887 2,645 2,908 3,340 3,659

Totals 4,099 456 11.1% 2,835 5,789 4,096 4,392 4,849 5,218
Normal Dist. 4,099 456 11.1% 4,099 4,407 4,850 5,161
logNormal Dist. 4,099 458 11.2% 4,074 4,392 4,894 5,280
Gamma Dist. 4,099 456 11.1% 4,082 4,397 4,877 5,235

Figure A.5.    Estimated Unpaid Model Results (Paid Bornhuetter-Ferguson)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000’s)

Total Unpaid Distribution
Paid Bornhuetter-Ferguson Model
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Figure A.6.   Total Unpaid Claims Distribution (Paid Bornhuetter-Ferguson)
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Unpaid
Incurred Bornhuetter-Ferguson Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 - - - - - - - - 
2007 2 7 318.6% - 67 0 1 13 41 
2008 27 30 109.3% - 234 18 37 84 142 
2009 39 36 93.5% 1 263 28 50 114 180 
2010 59 46 78.0% 4 397 47 78 149 214 
2011 98 63 64.6% 9 473 84 123 221 302 
2012 168 86 51.4% 30 659 152 210 340 443 
2013 334 198 59.3% 34 2,310 304 412 690 972 
2014 753 384 51.0% 111 3,131 688 919 1,513 1,883 
2015 2,885 1,168 40.5% 921 7,678 2,699 3,449 5,198 6,483 

Totals 4,366 1,260 28.9% 1,873 9,804 4,224 5,048 6,860 8,182 
Normal Dist. 4,366 1,260 28.9% 4,366 5,216 6,438 7,297 
logNormal Dist. 4,367 1,272 29.1% 4,193 5,083 6,704 8,143 
Gamma Dist. 4,366 1,260 28.9% 4,246 5,137 6,624 7,817 

Figure A.7.    Estimated Unpaid Model Results (Incurred Bornhuetter-Ferguson)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)
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Incurred Bornhuetter-Ferguson Model
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Figure A.8.   Total Unpaid Claims Distribution (Incurred Bornhuetter-Ferguson)
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Unpaid
Paid Cape Cod Model

2006 - - - - - - - - 
2007 3 7 276.2% - 59 0 1 17 38 
2008 32 28 86.1% - 178 25 45 89 125 
2009 43 30 69.2% 6 259 36 59 97 137 
2010 66 31 47.2% 16 225 59 85 122 166 
2011 109 36 33.5% 43 283 102 130 176 213 
2012 191 54 28.1% 74 401 184 226 288 337 
2013 373 87 23.3% 156 719 366 424 525 600 
2014 835 143 17.1% 407 1,520 832 921 1,082 1,192 
2015 3,225 258 8.0% 2,384 4,098 3,227 3,389 3,659 3,855 

Totals 4,878 384 7.9% 3,823 6,174 4,871 5,116 5,528 5,836 
Normal Dist. 4,878 384 7.9% 4,878 5,137 5,510 5,772 
logNormal Dist. 4,878 385 7.9% 4,863 5,128 5,536 5,841 
Gamma Dist. 4,878 384 7.9% 4,868 5,132 5,527 5,816 

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile

Figure A.9.    Estimated Unpaid Model Results (Paid Cape Cod)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)
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Figure A.10.   Total Unpaid Claims Distribution (Paid Cape Cod)
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Unpaid
Incurred Cape Cod Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 - - - - - - - - 
2007 3 10 326.5% - 117 0 1 17 50 
2008 33 31 95.6% - 213 24 46 91 148 
2009 45 40 89.0% 1 317 33 61 122 184 
2010 71 52 72.7% 3 375 58 91 174 251 
2011 115 68 59.5% 16 512 102 146 242 366 
2012 199 100 50.2% 31 933 181 252 388 499 
2013 385 216 56.2% 46 1,629 343 477 812 1,081 
2014 871 407 46.7% 132 3,029 802 1,049 1,658 2,191 
2015 3,430 1,352 39.4% 1,074 9,190 3,253 3,977 5,946 7,972 

Totals 5,151 1,417 27.5% 2,424 11,216 4,972 5,790 7,785 9,512 
Normal Dist. 5,151 1,417 27.5% 5,151 6,107 7,482 8,448 
logNormal Dist. 5,150 1,404 27.3% 4,969 5,953 7,719 9,264 
Gamma Dist. 5,151 1,417 27.5% 5,022 6,023 7,682 9,007 

Figure A.11.    Estimated Unpaid Model Results (Incurred Cape Cod)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)
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Figure A.12.   Total Unpaid Claims Distribution (Incurred Cape Cod)
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Unpaid
Paid GLM Bootstrap Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 - - - - - - - - 
2007 9 8 86.4% 0 53 7 13 24 32 
2008 27 47 177.0% 0 436 12 24 109 253 
2009 40 48 119.3% 2 537 27 44 117 270 
2010 62 49 78.5% 11 525 51 69 136 287 
2011 106 54 51.3% 31 559 94 117 202 347 
2012 213 72 33.6% 79 731 201 242 333 455 
2013 280 78 27.9% 100 707 271 325 418 507 
2014 646 131 20.3% 337 1,368 634 730 871 979 
2015 3,738 335 9.0% 2,696 4,939 3,731 3,953 4,307 4,583 

Totals 5,120 447 8.7% 3,766 6,807 5,090 5,411 5,877 6,293 
Normal Dist. 5,120 447 8.7% 5,120 5,422 5,856 6,161 
logNormal Dist. 5,120 446 8.7% 5,101 5,409 5,886 6,246 
Gamma Dist. 5,120 447 8.7% 5,107 5,415 5,878 6,218 

Figure A.13.    Estimated Unpaid Model Results (Paid GLM)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)
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Paid GLM Bootstrap Model
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Figure A.14.   Total Unpaid Claims Distribution (Paid GLM)
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Unpaid
Incurred GLM Bootstrap Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 - - - - - - - - 
2007 12 11 91.5% 0 66 8 16 34 48 
2008 27 51 184.0% 0 520 12 25 111 262 
2009 45 54 118.9% 3 678 31 52 117 268 
2010 73 57 78.1% 11 892 59 85 150 301 
2011 113 57 50.9% 30 771 101 128 215 360 
2012 169 70 41.5% 53 712 153 198 288 415 
2013 307 107 34.9% 93 1,550 293 362 491 615 
2014 650 171 26.3% 280 2,713 630 743 928 1,057 
2015 4,255 682 16.0% 2,581 6,888 4,216 4,670 5,413 6,295 

Totals 5,650 751 13.3% 3,707 8,639 5,586 6,137 6,960 7,650 
Normal Dist. 5,650 751 13.3% 5,650 6,157 6,886 7,398 
logNormal Dist. 5,650 749 13.3% 5,601 6,123 6,960 7,616 
Gamma Dist. 5,650 751 13.3% 5,617 6,137 6,940 7,543 

Figure A.15.    Estimated Unpaid Model Results (Incurred GLM)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)
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Figure A.16.   Total Unpaid Claims Distribution (Incurred GLM)
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Accident Model Weights by Accident Year
Year Paid CL Incd CL Paid BF Incd BF Paid CC Incd CC Paid GLM Incd GLM TOTAL
2006 50.0% 50.0% 100.0%
2007 50.0% 50.0% 100.0%
2008 50.0% 50.0% 100.0%
2009 50.0% 50.0% 100.0%
2010 50.0% 50.0% 100.0%
2011 50.0% 50.0% 100.0%
2012 50.0% 50.0% 100.0%
2013 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 100.0%
2014 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 100.0%
2015 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 100.0%

Figure A.17.    Model Weights by Accident Year

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Summary of Results by Model

Mean Estimated Unpaid
Accident Chain Ladder Bornhuetter-Ferguson Cape Cod GLM Bootstrap Best Est.

Year Paid Incurred Paid Incurred Paid Incurred Paid Incurred (Weighted)
2006 - - - - - - - - - 
2007 3 3 2 2 3 3 9 12 3 
2008 41 42 28 27 32 33 27 27 41 
2009 45 46 37 39 43 45 40 45 46 
2010 63 62 60 59 66 71 62 73 64 
2011 103 103 96 98 109 115 106 113 103 
2012 222 226 169 168 191 199 213 169 224 
2013 294 306 327 334 373 385 280 307 335 
2014 679 723 722 753 835 871 646 650 752 
2015 3,851 3,912 2,660 2,885 3,225 3,430 3,738 4,255 3,742 

Totals 5,300 5,422 4,099 4,366 4,878 5,151 5,120 5,650 5,308 

Figure A.18.    Estimated Mean Unpaid by Model

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Summary of Results by Model

Ranges
Accident Best Est. Weighted Modeled

Year (Weighted) Minimum Maximum Mininum Maximum
2006 - 
2007 3 3 3 2 12 
2008 41 41 42 27 42 
2009 46 45 46 37 46 
2010 64 62 63 59 73 
2011 103 103 103 96 115 
2012 224 222 226 168 226 
2013 335 294 385 280 385 
2014 752 679 871 646 871 
2015 3,742 3,225 4,255 2,660 4,255 

Totals 5,308 4,674 5,992 4,099 5,650 

Figure A.19.    Estimated Ranges



74	 Casualty Actuarial Society

Using the ODP Bootstrap Model: A Practitioner’s Guide

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Reconciliation of Total Results
Best Estimate (Weighted)

Accident Paid Incurred Case Estimate of Estimate of
Year To Date To Date Reserves IBNR Ultimate Unpaid
2006 5,234 5,237 3 (3) 5,234 - 
2007 6,470 6,479 9 (6) 6,473 3 
2008 7,848 7,867 19 23 7,890 41 
2009 7,020 7,046 26 20 7,066 46 
2010 7,291 7,341 50 13 7,355 64 
2011 8,134 8,225 91 12 8,237 103 
2012 10,800 11,085 285 (61) 11,023 224 
2013 7,522 7,810 288 46 7,856 335 
2014 7,968 8,703 735 17 8,720 752 
2015 9,309 12,788 3,478 263 13,051 3,742 

Totals 77,596 82,580 4,984 324 82,905 5,308 

Figure A.20.    Reconciliation of Total Results (Weighted)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Unpaid
Best Estimate (Weighted)

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 - - - - - - - - 
2007 3 9 292.0% - 173 0 1 17 42 
2008 41 37 88.6% - 391 32 57 111 168 
2009 46 37 81.0% 1 522 36 60 114 175 
2010 64 41 63.6% 4 537 55 81 139 205 
2011 103 50 48.8% 10 636 94 125 193 276 
2012 224 89 40.0% 36 917 211 266 382 529 
2013 335 148 44.3% 25 1,460 315 401 594 865 
2014 752 293 39.0% 106 2,881 725 873 1,265 1,789 
2015 3,742 982 26.2% 1,094 10,700 3,654 4,118 5,392 7,059 

Totals 5,308 1,044 19.7% 2,116 12,445 5,224 5,758 7,074 8,675 
Normal Dist. 5,308 1,044 19.7% 5,308 6,013 7,026 7,738 
logNormal Dist. 5,309 1,034 19.5% 5,211 5,935 7,158 8,164 
Gamma Dist. 5,308 1,044 19.7% 5,240 5,971 7,135 8,035 

Figure A.21.    Estimated Unpaid Model Results (Weighted)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Calendar Year Unpaid
Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2016 3,475 754 21.7% 1,297 8,420 3,414 3,797 4,730 5,948 
2017 865 208 24.0% 293 2,148 843 982 1,224 1,483 
2018 403 118 29.4% 115 1,298 387 467 614 740 
2019 204 67 32.7% 56 654 194 240 325 412 
2020 140 50 35.9% 40 539 132 165 233 297 
2021 90 43 47.4% 12 611 82 112 169 229 
2022 70 44 63.2% 6 409 60 91 152 215 
2023 51 58 112.2% - 735 36 75 151 253 
2024 10 15 146.5% - 199 4 15 41 67 

Totals 5,308 1,044 19.7% 2,116 12,445 5,224 5,758 7,074 8,675 

Figure A.22.    Estimated Cash Flow (Weighted)
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Ultimate Loss Ratios
Best Estimate (Weighted)

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 67.7% 28.5% 42.1% 0.4% 220.8% 66.1% 71.1% 130.9% 158.2%
2007 79.3% 30.2% 38.1% 8.2% 262.2% 77.8% 83.1% 145.5% 178.5%
2008 90.5% 31.2% 34.5% 16.9% 261.3% 89.0% 94.6% 159.9% 188.9%
2009 72.8% 26.8% 36.7% 10.2% 215.6% 71.4% 76.1% 131.7% 180.4%
2010 65.3% 23.3% 35.7% 10.2% 225.0% 63.8% 68.0% 116.1% 139.7%
2011 64.1% 21.2% 33.1% 13.0% 190.0% 63.2% 67.0% 111.8% 130.5%
2012 80.5% 24.0% 29.9% 25.0% 234.6% 79.0% 83.7% 132.9% 154.6%
2013 54.7% 18.8% 34.4% 9.9% 157.7% 53.9% 57.4% 96.2% 115.1%
2014 58.0% 19.2% 33.0% 13.0% 164.8% 57.1% 60.6% 99.8% 118.8%
2015 88.2% 21.5% 24.4% 30.9% 232.5% 85.5% 92.5% 127.9% 158.7%

Totals 71.3% 7.4% 10.4% 46.6% 112.7% 70.8% 75.7% 84.4% 91.7%

Figure A.23.    Estimated Loss Ratio (Weighted)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Calendar Year Unpaid Claim Runoff
Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2015 5,308 1,044 19.7% 2,116 12,445 5,224 5,758 7,074 8,675 
2016 1,834 365 19.9% 746 4,128 1,797 2,030 2,459 2,957 
2017 969 218 22.5% 336 2,316 946 1,088 1,353 1,627 
2018 566 146 25.8% 159 1,393 548 647 828 1,004 
2019 362 114 31.5% 79 1,171 347 424 565 718 
2020 222 92 41.4% 35 956 207 269 386 524 
2021 132 76 57.6% 6 863 117 166 268 394 
2022 62 59 96.3% (0) 745 46 84 166 269 
2023 10 15 146.5% (0) 199 4 15 41 67 

Figure A.24.    Estimated Unpaid Claim Runoff (Weighted)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Incremental Values by Development Period
Best Estimate (Weighted)

Accident Mean Values
Year 12 24 36 48 60 72 84 96 108 120 +
2006 3,776 1,139 218 95 41 21 12 6 25 2 
2007 4,635 1,398 268 115 51 25 15 7 31 3 
2008 5,647 1,701 327 141 61 31 17 9 38 4 
2009 5,065 1,525 294 126 56 28 16 8 34 3 
2010 5,318 1,602 307 132 57 29 17 8 36 3 
2011 5,882 1,774 340 145 64 32 18 9 40 4 
2012 7,909 2,378 457 197 86 43 25 12 53 5 
2013 5,589 1,683 323 156 68 35 20 10 42 4 
2014 6,197 1,870 392 168 73 37 21 10 46 4 
2015 9,615 2,744 521 222 92 53 33 20 47 10 

Figure A.25.    Mean Of Incremental Values (Weighted)
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Incremental Values by Development Period
Best Estimate (Weighted)

Accident Standard Error Values
Year 12 24 36 48 60 72 84 96 108 120 +
2006 1,597 502 119 64 33 11 7 2 23 4 
2007 1,779 550 129 68 36 12 8 3 26 9 
2008 1,960 603 147 77 38 13 8 3 35 10 
2009 1,873 576 139 73 38 13 8 3 34 9 
2010 1,906 596 143 75 38 13 9 3 34 9 
2011 1,952 610 147 76 40 14 9 3 37 10 
2012 2,375 733 173 92 49 17 11 4 44 11 
2013 1,938 599 142 88 45 16 10 4 38 10 
2014 2,054 639 173 90 47 16 10 4 41 11 
2015 2,342 727 178 101 51 20 16 13 57 15 

Figure A.26.    Standard Deviation of Incremental Values (Weighted)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Incremental Values by Development Period
Best Estimate (Weighted)

Accident Coefficients of Variation
Year 12 24 36 48 60 72 84 96 108 120 +
2006 42.3% 44.1% 54.4% 67.8% 80.8% 52.6% 58.8% 43.2% 89.8% 157.5%
2007 38.4% 39.3% 48.2% 59.5% 71.1% 47.7% 52.9% 38.7% 82.4% 292.0%
2008 34.7% 35.5% 44.8% 54.5% 62.5% 43.0% 47.9% 34.9% 92.6% 266.2%
2009 37.0% 37.8% 47.3% 58.1% 68.6% 45.4% 50.3% 37.7% 98.4% 272.2%
2010 35.8% 37.2% 46.5% 56.8% 66.1% 44.8% 52.4% 36.5% 95.5% 279.7%
2011 33.2% 34.4% 43.1% 52.8% 62.4% 42.5% 49.3% 34.0% 92.6% 267.9%
2012 30.0% 30.8% 37.8% 46.6% 57.2% 38.4% 44.6% 30.6% 82.8% 234.2%
2013 34.7% 35.6% 43.9% 56.5% 66.6% 45.8% 51.2% 37.4% 91.1% 250.9%
2014 33.2% 34.2% 44.2% 53.4% 64.1% 43.4% 49.6% 36.0% 88.9% 253.1%
2015 24.4% 26.5% 34.2% 45.3% 55.8% 37.2% 47.4% 66.2% 120.2% 146.5%

Figure A.27.    Coefficient of Variation of Incremental Values (Weighted)

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)
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Figure A.28.   Total Unpaid Claims Distribution (Weighted)
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Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Summary of Model Distributions
(Using Kernel Densities)
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Figure A.29.    Summary of Model Distributions
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In this appendix the results for Schedule P, Part B (Private Passenger Auto Liability) are 
shown.

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Unpaid
Paid Chain Ladder Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 59 23 38.8% - 125 58 75 97 112
2007 90 25 27.3% 26 164 90 107 131 147
2008 135 27 19.9% 64 217 134 153 178 196
2009 214 32 14.8% 128 322 213 237 265 289
2010 339 31 9.2% 252 443 340 361 390 413
2011 586 38 6.6% 459 707 585 610 651 687
2012 1,109 51 4.6% 949 1,281 1,108 1,144 1,191 1,226
2013 2,089 75 3.6% 1,868 2,329 2,090 2,140 2,211 2,252
2014 3,917 127 3.3% 3,457 4,357 3,919 4,002 4,129 4,203
2015 8,033 219 2.7% 7,335 8,667 8,042 8,175 8,399 8,532

Totals 16,573 385 2.3% 15,252 17,728 16,581 16,842 17,192 17,399
Normal Dist. 16,573 385 2.3% 16,573 16,833 17,207 17,469
logNormal Dist. 16,573 386 2.3% 16,569 16,831 17,216 17,491
Gamma Dist. 16,573 385 2.3% 16,570 16,831 17,212 17,482

Figure B.1.    Estimated Unpaid Model Results (Paid Chain Ladder)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)
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Paid Chain Ladder Model
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Figure B.2.   Total Unpaid Claims Distribution (Paid Chain Ladder)
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Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Unpaid
Incurred Chain Ladder Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 58 27 46.8% - 156 56 77 103 131
2007 89 31 34.9% 17 212 87 108 146 170
2008 135 37 27.5% 48 278 133 159 196 226
2009 213 46 21.8% 106 397 210 246 290 326
2010 343 63 18.4% 178 560 342 387 445 492
2011 590 106 18.0% 304 886 590 661 764 823
2012 1,125 196 17.4% 610 2,320 1,133 1,265 1,439 1,502
2013 2,133 370 17.4% 1,167 3,115 2,165 2,404 2,722 2,846
2014 4,025 680 16.9% 2,324 5,470 4,078 4,514 5,076 5,298
2015 8,343 1,369 16.4% 4,886 12,352 8,502 9,290 10,413 10,940

Totals 17,054 1,620 9.5% 11,558 21,439 17,111 18,280 19,534 20,583
Normal Dist. 17,054 1,620 9.5% 17,054 18,147 19,719 20,824
logNormal Dist. 17,055 1,653 9.7% 16,976 18,120 19,902 21,257
Gamma Dist. 17,054 1,620 9.5% 17,003 18,117 19,804 21,048

Figure B.3.    Estimated Unpaid Model Results (Incurred Chain Ladder)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)
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Figure B.4.   Total Unpaid Claims Distribution (Incurred Chain Ladder)
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Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Unpaid
Paid Bornhuetter-Ferguson Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 54 22 40.2% - 126 54 68 91 109
2007 76 22 28.7% 22 157 77 90 112 130
2008 112 24 21.2% 52 189 112 127 154 171
2009 188 30 16.0% 97 295 188 208 238 258
2010 343 36 10.4% 227 472 343 366 404 429
2011 625 50 8.0% 459 819 624 657 709 747
2012 1,162 77 6.7% 910 1,386 1,160 1,212 1,289 1,353
2013 2,217 134 6.1% 1,855 2,666 2,215 2,312 2,450 2,536
2014 3,942 218 5.5% 3,304 4,750 3,937 4,083 4,308 4,444
2015 7,990 441 5.5% 6,885 9,426 7,988 8,271 8,763 9,066

Totals 16,709 562 3.4% 15,239 18,369 16,701 17,096 17,695 18,035
Normal Dist. 16,709 562 3.4% 16,709 17,088 17,633 18,016
logNormal Dist. 16,709 561 3.4% 16,700 17,083 17,648 18,057
Gamma Dist. 16,709 562 3.4% 16,703 17,085 17,644 18,043

Figure B.5.    Estimated Unpaid Model Results (Paid Bornhuetter-Ferguson)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)
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Figure B.6.   Total Unpaid Claims Distribution (Paid Bornhuetter-Ferguson)
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Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Unpaid
Incurred Bornhuetter-Ferguson Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 54 24 45.4% - 155 52 68 97 121
2007 76 25 33.1% 13 181 74 92 120 141
2008 111 30 27.2% 42 213 108 132 165 187
2009 188 42 22.5% 78 337 187 215 261 295
2010 344 68 19.7% 142 577 347 391 455 502
2011 627 116 18.5% 319 979 626 709 816 888
2012 1,167 217 18.6% 614 2,121 1,175 1,309 1,517 1,655
2013 2,234 420 18.8% 1,124 5,710 2,270 2,517 2,855 3,060
2014 3,997 689 17.2% 2,017 5,678 4,025 4,470 5,113 5,363
2015 8,289 1,370 16.5% 2,250 11,646 8,398 9,216 10,412 10,925

Totals 17,088 1,617 9.5% 10,942 22,273 17,177 18,198 19,785 20,539
Normal Dist. 17,088 1,617 9.5% 17,088 18,178 19,747 20,849
logNormal Dist. 17,089 1,648 9.6% 17,010 18,150 19,926 21,277
Gamma Dist. 17,088 1,617 9.5% 17,037 18,149 19,831 21,072

Figure B.7.    Estimated Unpaid Model Results (Incurred Bornhuetter-Ferguson)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)
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Figure B.8.   Total Unpaid Claims Distribution (Incurred Bornhuetter-Ferguson)
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Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Unpaid
Paid Cape Cod Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 55 23 41.2% - 136 55 70 94 108
2007 80 23 28.9% 23 161 79 95 118 133
2008 117 24 20.9% 57 205 117 134 159 175
2009 196 30 15.5% 116 305 195 216 247 270
2010 354 34 9.5% 263 459 353 377 410 436
2011 642 42 6.5% 513 773 642 670 710 738
2012 1,197 54 4.5% 1,042 1,365 1,198 1,234 1,288 1,331
2013 2,292 80 3.5% 2,045 2,553 2,294 2,345 2,424 2,474
2014 4,145 118 2.9% 3,761 4,502 4,145 4,219 4,345 4,439
2015 8,598 172 2.0% 8,057 9,073 8,596 8,711 8,894 8,987

Totals 17,676 376 2.1% 16,428 18,791 17,675 17,929 18,306 18,488
Normal Dist. 17,676 376 2.1% 17,676 17,930 18,295 18,551
logNormal Dist. 17,676 377 2.1% 17,672 17,928 18,302 18,570
Gamma Dist. 17,676 376 2.1% 17,674 17,929 18,300 18,563

Figure B.9.    Estimated Unpaid Model Results (Paid Cape Cod)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)
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Figure B.10.   Total Unpaid Claims Distribution (Paid Cape Cod)
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Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Unpaid
Incurred Cape Cod Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 56 24 43.7% - 133 54 71 96 114
2007 80 27 33.8% 18 175 79 98 126 147
2008 118 32 27.4% 35 230 116 138 175 203
2009 197 44 22.5% 90 351 194 228 271 309
2010 358 69 19.3% 184 544 358 407 474 509
2011 650 115 17.6% 324 953 647 730 843 900
2012 1,201 213 17.7% 675 1,697 1,224 1,352 1,534 1,632
2013 2,308 388 16.8% 1,247 3,598 2,335 2,579 2,939 3,074
2014 4,178 701 16.8% 2,248 5,709 4,247 4,697 5,271 5,516
2015 8,526 1,424 16.7% 4,605 11,643 8,725 9,508 10,707 11,151

Totals 17,672 1,677 9.5% 12,794 21,955 17,649 18,915 20,366 21,243
Normal Dist. 17,672 1,677 9.5% 17,672 18,803 20,430 21,573
logNormal Dist. 17,673 1,706 9.7% 17,591 18,772 20,610 22,008
Gamma Dist. 17,672 1,677 9.5% 17,619 18,772 20,517 21,805

Figure B.11.    Estimated Unpaid Model Results (Incurred Cape Cod)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)
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Figure B.12.   Total Unpaid Claims Distribution (Incurred Cape Cod)
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Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Unpaid
Paid GLM Bootstrap Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 29 15 53.7% 2 106 26 37 58 79
2007 56 23 40.9% 7 158 53 69 98 120
2008 99 29 29.6% 29 223 96 116 151 179
2009 177 33 18.5% 99 317 173 198 233 260
2010 302 32 10.7% 200 450 299 324 356 377
2011 552 34 6.2% 465 740 550 573 613 643
2012 1,071 53 5.0% 914 1,288 1,067 1,107 1,162 1,197
2013 2,053 78 3.8% 1,831 2,295 2,052 2,106 2,180 2,244
2014 3,879 118 3.0% 3,525 4,361 3,875 3,955 4,080 4,177
2015 8,004 229 2.9% 7,329 8,746 7,999 8,165 8,380 8,509

Totals 16,222 369 2.3% 15,169 17,945 16,200 16,473 16,833 17,164
Normal Dist. 16,222 369 2.3% 16,222 16,471 16,829 17,080
logNormal Dist. 16,222 367 2.3% 16,218 16,468 16,834 17,096
Gamma Dist. 16,222 369 2.3% 16,220 16,469 16,833 17,092

Figure B.13.    Estimated Unpaid Model Results (Paid GLM)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)
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Figure B.14.   Total Unpaid Claims Distribution (Paid GLM)
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Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Unpaid
Incurred GLM Bootstrap Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 28 15 55.2% 3 110 25 35 58 76
2007 56 24 42.7% 7 178 53 69 102 138
2008 107 33 30.8% 43 298 101 127 168 200
2009 172 34 19.6% 91 301 169 191 235 263
2010 295 36 12.4% 204 419 290 316 361 394
2011 568 49 8.6% 434 764 565 597 652 702
2012 1,130 90 8.0% 857 1,422 1,126 1,189 1,285 1,332
2013 2,193 168 7.7% 1,738 2,884 2,193 2,307 2,468 2,605
2014 4,058 319 7.9% 3,096 5,040 4,063 4,294 4,573 4,764
2015 8,390 723 8.6% 5,922 10,670 8,375 8,917 9,524 9,986

Totals 16,996 985 5.8% 13,965 19,871 16,965 17,696 18,619 19,079
Normal Dist. 16,996 985 5.8% 16,996 17,660 18,616 19,287
logNormal Dist. 16,996 989 5.8% 16,967 17,645 18,669 19,424
Gamma Dist. 16,996 985 5.8% 16,977 17,649 18,647 19,371

Figure B.15.    Estimated Unpaid Model Results (Incurred GLM)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)
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Figure B.16.   Total Unpaid Claims Distribution (Incurred GLM)
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Accident Model Weights by Accident Year
Year Paid CL Incd CL Paid BF Incd BF Paid CC Incd CC Paid GLM Incd GLM TOTAL
2006 50.0% 50.0% 100.0%
2007 50.0% 50.0% 100.0%
2008 50.0% 50.0% 100.0%
2009 50.0% 50.0% 100.0%
2010 25.0% 25.0% 25.0% 25.0% 100.0%
2011 25.0% 25.0% 25.0% 25.0% 100.0%
2012 25.0% 25.0% 25.0% 25.0% 100.0%
2013 25.0% 25.0% 25.0% 25.0% 100.0%
2014 25.0% 25.0% 25.0% 25.0% 100.0%
2015 25.0% 25.0% 25.0% 25.0% 100.0%

Figure B.17.    Model Weights by Accident Year

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Summary of Results by Model

Mean Estimated Unpaid
Accident Chain Ladder Bornhuetter-Ferguson Cape Cod GLM Bootstrap Best Est.

Year Paid Incurred Paid Incurred Paid Incurred Paid Incurred (Weighted)
2006 59 58 54 54 55 56 29 28 59
2007 90 89 76 76 80 80 56 56 90
2008 135 135 112 111 117 118 99 107 134
2009 214 213 188 188 196 197 177 172 214
2010 339 343 343 344 354 358 302 295 351
2011 586 590 625 627 642 650 552 568 636
2012 1,109 1,125 1,162 1,167 1,197 1,201 1,071 1,130 1,184
2013 2,089 2,133 2,217 2,234 2,292 2,308 2,053 2,193 2,255
2014 3,917 4,025 3,942 3,997 4,145 4,178 3,879 4,058 4,077
2015 8,033 8,343 7,990 8,289 8,598 8,526 8,004 8,390 8,394

Totals 16,573 17,054 16,709 17,088 17,676 17,672 16,222 16,996 17,395

Figure B.18.    Estimated Mean Unpaid by Model

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Summary of Results by Model

Ranges
Accident Best Est. Weighted Modeled

Year (Weighted) Minimum Maximum Mininum Maximum
2006 59 58 59 28 59
2007 90 89 90 56 90
2008 134 135 135 107 135
2009 214 213 214 172 214
2010 351 343 358 295 358
2011 636 625 650 568 650
2012 1,184 1,162 1,201 1,109 1,201
2013 2,255 2,217 2,308 2,089 2,308
2014 4,077 3,997 4,178 3,917 4,178
2015 8,394 8,289 8,526 7,990 8,598

Totals 17,395 17,127 17,720 16,573 17,676

Figure B.19.    Estimated Ranges
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Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Reconciliation of Total Results
Best Estimate (Weighted)

Accident Paid Incurred Case Estimate of Estimate of
Year To Date To Date Reserves IBNR Ultimate Unpaid
2006 11,816 11,863 47 12 11,875 59
2007 12,679 12,752 72 18 12,770 90
2008 13,631 13,743 112 22 13,765 134
2009 14,472 14,687 216 (1) 14,686 214
2010 13,717 14,079 362 (11) 14,068 351
2011 13,090 13,691 600 36 13,726 636
2012 12,490 13,683 1,193 (9) 13,674 1,184
2013 11,598 13,912 2,313 (58) 13,854 2,255
2014 10,306 14,625 4,319 (243) 14,383 4,077
2015 6,357 15,188 8,830 (437) 14,751 8,394

Totals 120,157 138,223 18,066 (671) 137,551 17,395

Figure B.20.    Reconciliation of Total Results (Weighted)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Unpaid
Best Estimate (Weighted)

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 59 25 42.2% - 178 58 75 102 122
2007 90 28 30.8% 17 221 89 109 137 161
2008 134 32 24.0% 41 297 133 156 189 215
2009 214 41 18.9% 73 401 213 240 284 321
2010 351 55 15.6% 160 600 350 383 444 492
2011 636 91 14.2% 314 1,020 636 684 794 867
2012 1,184 157 13.3% (27) 1,857 1,188 1,260 1,465 1,597
2013 2,255 293 13.0% 1,073 5,710 2,267 2,389 2,781 2,982
2014 4,077 616 15.1% 833 6,049 4,097 4,460 5,120 5,398
2015 8,394 1,234 14.7% 980 12,352 8,468 9,175 10,444 10,911

Totals 17,395 1,428 8.2% 10,057 23,150 17,439 18,375 19,729 20,525
Normal Dist. 17,395 1,428 8.2% 17,395 18,358 19,744 20,717
logNormal Dist. 17,395 1,451 8.3% 17,335 18,336 19,879 21,040
Gamma Dist. 17,395 1,428 8.2% 17,356 18,336 19,809 20,889

Figure B.21.    Estimated Unpaid Model Results (Weighted)
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Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Calendar Year Unpaid
Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2016 8,275 715 8.6% 4,501 10,746 8,299 8,761 9,426 9,838
2017 4,072 340 8.4% 2,450 5,608 4,079 4,304 4,621 4,845
2018 2,266 198 8.7% 1,319 3,149 2,267 2,397 2,590 2,718
2019 1,210 109 9.0% 699 1,574 1,210 1,285 1,389 1,461
2020 638 58 9.1% 405 885 638 677 735 778
2021 358 35 9.8% 203 511 358 381 416 439
2022 217 30 13.7% 95 351 216 237 267 291
2023 144 25 17.2% 57 258 144 161 186 205
2024 99 23 23.4% 16 214 98 114 139 157
2025 67 22 33.1% - 157 66 81 106 124
2026 32 13 40.8% - 91 32 41 55 66
2027 16 9 57.3% - 57 15 22 31 38

Totals 17,395 1,428 8.2% 10,057 23,150 17,439 18,375 19,729 20,525

Figure B.22.    Estimated Cash Flow (Weighted)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Ultimate Loss Ratios
Best Estimate (Weighted)

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 75.6% 9.7% 12.9% 38.9% 104.5% 75.8% 77.8% 94.6% 99.4%
2007 82.2% 10.3% 12.5% 43.9% 114.0% 82.4% 84.6% 102.2% 107.6%
2008 83.9% 10.2% 12.1% 45.1% 114.4% 83.9% 86.3% 103.7% 108.6%
2009 79.6% 9.2% 11.6% 45.2% 108.3% 79.7% 81.8% 97.8% 102.7%
2010 69.3% 8.2% 11.9% 37.9% 94.6% 69.1% 71.1% 85.3% 90.1%
2011 66.0% 8.1% 12.3% 35.2% 89.7% 66.0% 67.9% 81.7% 85.9%
2012 66.9% 8.1% 12.1% -1.5% 94.6% 66.9% 68.8% 82.7% 86.8%
2013 66.9% 8.1% 12.2% 35.2% 186.1% 66.9% 68.9% 82.4% 86.3%
2014 71.9% 10.6% 14.7% 14.4% 101.9% 72.7% 78.5% 89.0% 93.5%
2015 73.0% 10.6% 14.5% 8.4% 110.0% 73.9% 79.8% 90.3% 94.2%

Totals 72.9% 3.0% 4.1% 61.6% 90.9% 73.0% 75.0% 77.7% 79.5%

Figure B.23.    Estimated Loss Ratio (Weighted)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Calendar Year Unpaid Claim Runoff
Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2015 17,395 1,428 8.2% 10,057 23,150 17,439 18,375 19,729 20,525
2016 9,120 739 8.1% 5,556 12,446 9,136 9,623 10,325 10,767
2017 5,048 419 8.3% 3,106 6,838 5,054 5,330 5,738 6,000
2018 2,782 243 8.7% 1,709 3,689 2,781 2,945 3,184 3,360
2019 1,572 157 10.0% 902 2,165 1,570 1,675 1,838 1,951
2020 934 117 12.6% 494 1,387 930 1,011 1,131 1,224
2021 576 94 16.3% 247 988 573 638 733 807
2022 359 75 21.0% 104 687 356 408 488 546
2023 214 59 27.6% 30 467 211 252 317 365
2024 115 41 36.0% (0) 283 112 142 188 222
2025 48 20 42.4% (0) 137 47 62 84 101
2026 16 9 57.3% (0) 57 15 22 31 38
2027 (0) 0 -10502.4% (0) 0 (0) 0 0 0

Figure B.24.    Estimated Unpaid Claim Runoff (Weighted)
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Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Incremental Values by Development Period
Best Estimate (Weighted)

Accident Mean Values
Year 12 24 36 48 60 72 84 96 108 120 132 144 156 +
2006 5,232 3,354 1,456 842 457 224 113 58 32 25 30 15 15
2007 5,631 3,608 1,566 907 491 241 121 62 34 27 32 16 16
2008 6,082 3,902 1,691 981 530 261 131 67 37 29 34 17 17
2009 6,480 4,155 1,802 1,043 565 278 139 71 39 31 36 18 18
2010 6,225 3,992 1,732 1,002 543 267 138 71 39 31 36 18 18
2011 6,043 3,876 1,681 974 527 280 141 72 40 31 36 18 18
2012 6,008 3,851 1,671 968 560 274 138 71 39 31 36 18 18
2013 6,046 3,876 1,681 1,051 569 279 140 72 40 31 36 18 18
2014 6,453 4,138 1,821 1,055 572 281 141 72 41 30 32 17 16
2015 6,549 4,261 1,847 1,070 579 284 143 73 41 31 32 17 16

Figure B.25.    Mean of Incremental Values (Weighted)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Incremental Values by Development Period
Best Estimate (Weighted)

Accident Standard Error Values
Year 12 24 36 48 60 72 84 96 108 120 132 144 156 +
2006 677 440 199 115 65 35 15 12 4 3 12 6 6
2007 708 460 207 120 68 36 16 13 4 3 13 7 7
2008 742 484 217 126 70 38 16 13 5 4 14 7 7
2009 756 493 220 129 72 39 17 16 5 4 15 8 8
2010 745 485 218 127 71 38 18 16 5 4 15 8 8
2011 747 486 218 128 71 44 19 16 5 4 15 8 8
2012 729 475 213 124 78 42 18 16 5 4 15 8 8
2013 741 483 218 142 79 43 19 16 5 4 15 8 8
2014 955 618 282 165 92 47 22 18 8 7 17 9 9
2015 966 634 280 166 92 48 22 18 9 7 17 9 9

Figure B.26.    Standard Deviation of Incremental Values (Weighted)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Accident Year Incremental Values by Development Period
Best Estimate (Weighted)

Accident Coefficients of Variation
Year 12 24 36 48 60 72 84 96 108 120 132 144 156 +
2006 12.9% 13.1% 13.6% 13.7% 14.2% 15.5% 13.4% 21.2% 12.9% 12.9% 42.1% 42.2% 42.3%
2007 12.6% 12.7% 13.2% 13.3% 13.8% 15.0% 13.0% 20.6% 12.5% 12.6% 42.0% 42.1% 42.2%
2008 12.2% 12.4% 12.8% 12.8% 13.3% 14.5% 12.6% 19.9% 12.2% 12.3% 42.3% 42.4% 42.5%
2009 11.7% 11.9% 12.2% 12.4% 12.7% 13.9% 12.1% 22.0% 11.7% 11.7% 42.0% 42.1% 42.2%
2010 12.0% 12.2% 12.6% 12.6% 13.1% 14.3% 13.1% 22.5% 12.5% 12.6% 42.5% 42.6% 42.7%
2011 12.4% 12.5% 13.0% 13.1% 13.5% 15.6% 13.4% 22.5% 12.9% 12.9% 42.5% 42.7% 42.8%
2012 12.1% 12.3% 12.8% 12.9% 13.9% 15.3% 13.2% 22.4% 12.6% 12.7% 42.3% 42.5% 42.5%
2013 12.3% 12.5% 13.0% 13.5% 13.9% 15.4% 13.2% 22.3% 12.7% 12.7% 42.0% 42.2% 42.2%
2014 14.8% 14.9% 15.5% 15.7% 16.1% 16.8% 15.4% 24.5% 20.8% 23.7% 52.6% 51.2% 57.5%
2015 14.7% 14.9% 15.2% 15.5% 15.9% 16.7% 15.2% 24.4% 20.6% 23.4% 52.1% 51.1% 57.3%

Figure B.27.    Coefficient of Variation of Incremental Values (Weighted)
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Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Total Unpaid Distribution
Best Estimate (Weighted)
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Figure B.28.   Total Unpaid Claims Distribution (Weighted)

Five Top 50 Companies
Schedule P, Part B -- Private Passenger Auto Liability (in 000,000’s)

Summary of Model Distributions
(Using Kernel Densities)
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Figure B.29.    Summary of Model Distributions
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Appendix C—Schedule P, Part C Results
In this appendix the results for Schedule P, Part C (Commercial Auto Liability) are shown.

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Accident Year Unpaid
Paid Chain Ladder Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 8 4 50.6% - 22 8 10 15 19
2007 11 4 39.9% (0) 28 10 13 18 22
2008 21 5 24.3% 7 43 21 24 29 34
2009 35 6 18.3% 18 66 34 39 46 51
2010 61 10 16.6% 34 97 60 67 80 87
2011 110 22 20.0% 57 195 107 124 150 173
2012 216 33 15.4% 111 359 215 237 273 296
2013 410 39 9.4% 294 550 408 434 474 513
2014 773 52 6.7% 610 946 770 806 863 901
2015 1,103 75 6.8% 872 1,345 1,100 1,152 1,232 1,285

Totals 2,746 122 4.4% 2,357 3,171 2,741 2,830 2,951 3,019
Normal Dist. 2,746 122 4.4% 2,746 2,828 2,946 3,029
logNormal Dist. 2,746 122 4.4% 2,743 2,827 2,951 3,041
Gamma Dist. 2,746 122 4.4% 2,744 2,827 2,949 3,037

Figure C.1.    Estimated Unpaid Model Results (Paid Chain Ladder)

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Total Unpaid Distribution
Paid Chain Ladder Model
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Figure C.2.   Total Unpaid Claims Distribution (Paid Chain Ladder)
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Five Top 50 Companies
Schedule P, Part C -- Commercial Auto Liability (in 000,000's)

Accident Year Unpaid
Incurred Chain Ladder Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 11 12 108.0% - 74 7 16 35 48
2007 15 16 110.1% 0 157 9 22 46 66
2008 31 33 105.0% - 354 23 47 91 127
2009 53 54 102.3% - 533 41 86 144 200
2010 92 103 111.1% - 1,654 69 145 258 369
2011 168 176 104.5% - 1,625 127 264 498 681
2012 328 372 113.3% - 4,031 217 528 963 1,307
2013 623 615 98.7% - 3,767 484 1,049 1,782 2,238
2014 1,223 1,415 115.7% - 21,802 1,019 2,010 3,319 4,335
2015 1,513 1,618 107.0% - 13,830 1,062 2,546 4,356 5,798

Totals 4,056 2,421 59.7% 146 30,092 3,725 5,273 7,786 10,983
Normal Dist. 4,056 2,421 59.7% 4,056 5,689 8,038 9,687
logNormal Dist. 4,168 2,899 69.6% 3,422 5,227 9,616 14,755
Gamma Dist. 4,056 2,421 59.7% 3,586 5,328 8,677 11,670

Figure C.3.    Estimated Unpaid Model Results (Incurred Chain Ladder)

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)
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Figure C.4.   Total Unpaid Claims Distribution (Incurred Chain Ladder)
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Five Top 50 Companies
Schedule P, Part C -- Commercial Auto Liability (in 000,000's)

Accident Year Unpaid
Paid Bornhuetter-Ferguson Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 5 3 54.4% - 16 5 7 10 13
2007 8 3 42.3% 0 22 8 10 14 17
2008 17 4 26.7% 5 32 17 20 25 29
2009 35 7 19.3% 13 64 34 39 46 52
2010 65 11 17.1% 38 110 65 73 84 94
2011 123 25 20.5% 44 211 121 140 167 197
2012 259 40 15.6% 145 420 256 287 327 353
2013 481 52 10.8% 315 658 477 517 565 607
2014 812 76 9.3% 590 1,078 811 860 936 996
2015 1,132 100 8.9% 857 1,480 1,127 1,198 1,300 1,369

Totals 2,936 153 5.2% 2,472 3,474 2,939 3,040 3,180 3,313
Normal Dist. 2,936 153 5.2% 2,936 3,040 3,188 3,293
logNormal Dist. 2,936 154 5.2% 2,932 3,038 3,196 3,312
Gamma Dist. 2,936 153 5.2% 2,934 3,038 3,193 3,305

Figure C.5.    Estimated Unpaid Model Results (Paid Bornhuetter-Ferguson)

Five Top 50 Companies
Schedule P, Part C -- Commercial Auto Liability (in 000,000's)
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Figure C.6.   Total Unpaid Claims Distribution (Paid Bornhuetter-Ferguson)
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Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Accident Year Unpaid
Incurred Bornhuetter-Ferguson Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 7 8 116.0% - 48 4 10 24 34
2007 11 12 110.5% - 61 7 15 36 52
2008 24 23 96.0% - 124 18 37 68 93
2009 49 45 92.9% - 216 38 80 139 165
2010 99 88 88.8% 0 375 82 162 265 318
2011 176 164 93.3% 0 821 134 279 505 630
2012 362 338 93.5% 0 1,547 296 584 1,005 1,228
2013 642 597 93.1% 1 2,344 502 1,066 1,792 2,119
2014 1,118 996 89.1% 0 4,243 980 1,862 2,919 3,447
2015 1,554 1,409 90.6% 0 5,956 1,371 2,626 4,146 4,729

Totals 4,040 1,873 46.4% 387 10,575 3,901 5,304 7,418 8,445
Normal Dist. 4,040 1,873 46.4% 4,040 5,303 7,120 8,397
logNormal Dist. 4,116 2,390 58.1% 3,560 5,120 8,638 12,472
Gamma Dist. 4,040 1,873 46.4% 3,755 5,099 7,530 9,612

Figure C.7.    Estimated Unpaid Model Results (Incurred Bornhuetter-Ferguson)

Five Top 50 Companies
Schedule P, Part C -- Commercial Auto Liability (in 000,000's)
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Figure C.8.   Total Unpaid Claims Distribution (Incurred Bornhuetter-Ferguson)
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Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Accident Year Unpaid
Paid Cape Cod Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 6 3 52.3% - 17 6 8 12 14
2007 9 4 41.0% 0 26 9 11 15 19
2008 18 5 26.1% 7 34 18 22 27 31
2009 36 7 17.9% 20 59 36 41 48 52
2010 67 11 16.1% 39 101 66 74 86 94
2011 124 23 18.8% 67 245 122 138 163 192
2012 258 38 14.8% 166 416 255 283 323 359
2013 481 40 8.4% 363 629 478 509 548 583
2014 827 50 6.0% 684 975 827 858 915 948
2015 1,178 53 4.5% 990 1,348 1,176 1,212 1,268 1,308

Totals 3,004 122 4.0% 2,559 3,428 3,001 3,088 3,204 3,297
Normal Dist. 3,004 122 4.0% 3,004 3,086 3,204 3,286
logNormal Dist. 3,004 121 4.0% 3,001 3,084 3,208 3,297
Gamma Dist. 3,004 122 4.0% 3,002 3,085 3,206 3,294

Figure C.9.    Estimated Unpaid Model Results (Paid Cape Cod)

Five Top 50 Companies
Schedule P, Part C -- Commercial Auto Liability (in 000,000's)
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Figure C.10.   Total Unpaid Claims Distribution (Paid Cape Cod)
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Five Top 50 Companies
Schedule P, Part C -- Commercial Auto Liability (in 000,000's)

Accident Year Unpaid
Incurred Cape Cod Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 8 9 110.7% - 62 5 12 25 36
2007 13 14 108.2% - 98 9 19 43 60
2008 25 25 98.6% 0 185 18 40 76 99
2009 52 51 98.2% 0 481 37 82 145 201
2010 101 98 97.9% 0 1,082 81 160 267 339
2011 183 199 108.7% 0 3,031 140 282 515 644
2012 403 410 101.7% 0 4,350 320 637 1,106 1,514
2013 696 747 107.4% 0 11,739 577 1,110 1,930 2,405
2014 1,287 1,239 96.3% 0 20,322 1,121 2,045 3,306 4,162
2015 1,647 1,748 106.1% 1 31,078 1,408 2,694 4,317 5,401

Totals 4,415 3,174 71.9% 372 72,036 4,089 5,685 8,357 11,920
Normal Dist. 4,415 3,174 71.9% 4,415 6,555 9,635 11,797
logNormal Dist. 4,465 2,906 65.1% 3,743 5,588 9,947 14,914
Gamma Dist. 4,415 3,174 71.9% 3,682 5,956 10,581 14,867

Figure C.11.    Estimated Unpaid Model Results (Incurred Cape Cod)

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)
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Figure C.12.   Total Unpaid Claims Distribution (Incurred Cape Cod)
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Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Accident Year Unpaid
Paid GLM Bootstrap Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 8 5 63.7% (5) 33 7 10 17 23
2007 14 7 52.9% (3) 52 12 18 27 33
2008 23 9 39.9% (1) 72 22 29 39 49
2009 38 12 30.2% 8 90 38 45 58 70
2010 64 13 20.8% 27 112 64 73 88 100
2011 123 17 13.8% 81 178 122 135 152 162
2012 244 25 10.4% 169 331 243 261 286 305
2013 457 37 8.1% 361 577 455 480 520 543
2014 747 53 7.1% 597 926 749 784 831 870
2015 1,063 77 7.3% 851 1,346 1,060 1,112 1,192 1,259

Totals 2,781 188 6.8% 2,234 3,480 2,775 2,904 3,097 3,251
Normal Dist. 2,781 188 6.8% 2,781 2,907 3,090 3,218
logNormal Dist. 2,781 188 6.8% 2,774 2,903 3,100 3,246
Gamma Dist. 2,781 188 6.8% 2,776 2,905 3,097 3,237

Figure C.13.    Estimated Unpaid Model Results (Paid GLM)

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)
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Figure C.14.   Total Unpaid Claims Distribution (Paid GLM)



98	 Casualty Actuarial Society

Using the ODP Bootstrap Model: A Practitioner’s Guide

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Accident Year Unpaid
Incurred GLM Bootstrap Model

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 10 8 81.9% (9) 57 8 13 25 39
2007 17 11 62.4% (5) 65 15 22 39 53
2008 31 17 53.2% (0) 104 29 40 63 82
2009 54 23 43.3% 7 177 50 67 97 119
2010 92 35 38.2% 17 251 88 113 153 184
2011 174 63 36.1% 23 378 171 217 278 333
2012 363 119 32.8% 76 773 360 443 572 648
2013 682 224 32.9% 100 1,490 666 833 1,078 1,211
2014 1,097 366 33.3% 267 2,346 1,084 1,334 1,716 2,055
2015 1,567 555 35.4% 452 4,027 1,515 1,899 2,536 3,071

Totals 4,087 760 18.6% 2,190 6,754 4,018 4,584 5,485 6,034
Normal Dist. 4,087 760 18.6% 4,087 4,599 5,336 5,854
logNormal Dist. 4,087 769 18.8% 4,017 4,555 5,460 6,200
Gamma Dist. 4,087 760 18.6% 4,040 4,570 5,411 6,058

Figure C.15.    Estimated Unpaid Model Results (Incurred GLM)

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)
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Figure C.16.   Total Unpaid Claims Distribution (Incurred GLM)
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Accident Model Weights by Accident Year
Year Paid CL Incd CL Paid BF Incd BF Paid CC Incd CC Paid GLM Incd GLM TOTAL
2006 100.0% 100.0%
2007 100.0% 100.0%
2008 100.0% 100.0%
2009 100.0% 100.0%
2010 33.3% 33.3% 33.3% 100.0%
2011 33.3% 33.3% 33.3% 100.0%
2012 50.0% 50.0% 100.0%
2013 50.0% 50.0% 100.0%
2014 33.3% 33.3% 33.3% 100.0%
2015 33.3% 33.3% 33.3% 100.0%

Figure C.17.    Model Weights By Accident Year

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Summary of Results by Model
Mean Estimated Unpaid

Accident Chain Ladder Bornhuetter-Ferguson Cape Cod GLM Bootstrap Best Est.
Year Paid Incurred Paid Incurred Paid Incurred Paid Incurred (Weighted)
2006 8 11 5 7 6 8 8 10 8
2007 11 15 8 11 9 13 14 17 13
2008 21 31 17 24 18 25 23 31 23
2009 35 53 35 49 36 52 38 54 38
2010 61 92 65 99 67 101 64 92 66
2011 110 168 123 176 124 183 123 174 124
2012 216 328 259 362 258 403 244 363 258
2013 410 623 481 642 481 696 457 682 480
2014 773 1,223 812 1,118 827 1,287 747 1,097 803
2015 1,103 1,513 1,132 1,554 1,178 1,647 1,063 1,567 1,134

Totals 2,746 4,056 2,936 4,040 3,004 4,415 2,781 4,087 2,947

Figure C.18.    Estimated Mean Unpaid By Model

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Summary of Results by Model
Ranges

Accident Best Est. Weighted Modeled
Year (Weighted) Minimum Maximum Mininum Maximum
2006 8 8 8 5 8
2007 13 14 14 8 14
2008 23 23 23 17 23
2009 38 38 38 35 38
2010 66 64 67 61 67
2011 124 123 124 110 124
2012 258 258 259 216 259
2013 480 481 481 410 481
2014 803 773 827 747 827
2015 1,134 1,103 1,178 1,063 1,178

Totals 2,947 2,884 3,018 2,746 3,004

Figure C.19.    Estimated Ranges
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Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Reconciliation of Total Results
Best Estimate (Weighted)

Accident Paid Incurred Case Estimate of Estimate of
Year To Date To Date Reserves IBNR Ultimate Unpaid
2006 1,563 1,577 14 (6) 1,571 8
2007 1,469 1,505 36 (23) 1,482 13
2008 1,387 1,436 49 (26) 1,410 23
2009 1,350 1,417 67 (29) 1,388 38
2010 1,342 1,445 102 (37) 1,408 66
2011 1,198 1,345 147 (24) 1,321 124
2012 1,061 1,339 278 (20) 1,318 258
2013 853 1,327 474 6 1,333 480
2014 645 1,442 797 6 1,448 803
2015 294 1,422 1,128 6 1,428 1,134

Totals 11,162 14,255 3,093 (146) 14,109 2,947

Figure C.20.    Reconciliation of Total Results (Weighted)

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Accident Year Unpaid
Best Estimate (Weighted)

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 8 5 65.8% (8) 35 7 11 18 24
2007 13 7 51.3% (7) 52 13 17 26 33
2008 23 9 39.4% (5) 72 22 28 39 48
2009 38 11 28.9% 7 92 37 45 58 68
2010 66 12 17.8% 30 130 65 73 86 96
2011 124 22 17.6% 59 247 122 137 161 182
2012 258 40 15.4% 140 485 255 284 326 359
2013 480 47 9.8% 311 737 478 509 559 604
2014 803 65 8.1% 580 1,151 802 845 912 967
2015 1,134 83 7.3% 800 1,569 1,138 1,189 1,266 1,327

Totals 2,947 132 4.5% 2,471 3,532 2,947 3,036 3,162 3,257
Normal Dist. 2,947 132 4.5% 2,947 3,036 3,164 3,254
logNormal Dist. 2,947 132 4.5% 2,944 3,035 3,170 3,268
Gamma Dist. 2,947 132 4.5% 2,945 3,035 3,168 3,263

Figure C.21.    Estimated Unpaid Model Results (Weighted)
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Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Calendar Year Unpaid
Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2016 1,156 58 5.0% 937 1,378 1,155 1,194 1,254 1,299
2017 796 53 6.7% 611 993 795 832 886 927
2018 475 42 8.9% 332 668 474 503 547 580
2019 248 38 15.3% 129 410 246 273 315 342
2020 125 23 18.6% 60 260 123 139 165 187
2021 64 11 16.6% 25 110 63 71 82 91
2022 37 6 17.2% 15 71 37 41 48 53
2023 22 5 23.7% 5 52 21 25 30 35
2024 11 4 35.5% (1) 31 10 13 17 21
2025 7 3 43.3% - 28 7 9 13 16
2026 4 2 53.2% - 17 3 5 7 9
2027 2 1 69.8% - 11 2 2 4 6
2028 1 1 95.7% - 9 1 1 3 4

Totals 2,947 132 4.5% 2,471 3,532 2,947 3,036 3,162 3,257

Figure C.22.    Estimated Cash Flow (Weighted)

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Accident Year Ultimate Loss Ratios
Best Estimate (Weighted)

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 88.5% 2.7% 3.0% 79.6% 98.3% 88.5% 90.3% 92.9% 94.7%
2007 82.9% 2.5% 3.0% 73.9% 92.3% 82.9% 84.6% 87.0% 88.6%
2008 74.9% 2.3% 3.1% 65.8% 83.0% 74.9% 76.5% 78.7% 80.3%
2009 60.3% 1.9% 3.2% 52.4% 67.3% 60.4% 61.7% 63.5% 64.7%
2010 55.0% 2.1% 3.9% 47.5% 62.5% 55.0% 56.5% 58.4% 59.7%
2011 54.3% 1.9% 3.5% 46.8% 62.7% 54.4% 55.7% 57.5% 58.7%
2012 51.8% 2.0% 3.9% 44.0% 61.8% 51.8% 53.1% 55.2% 56.7%
2013 54.1% 2.3% 4.2% 46.9% 64.8% 54.1% 55.6% 57.9% 59.8%
2014 58.3% 2.8% 4.9% 48.6% 72.0% 58.3% 60.1% 63.0% 65.1%
2015 59.9% 3.6% 6.1% 45.7% 77.7% 60.1% 62.4% 65.7% 68.3%

Totals 62.4% 0.8% 1.3% 59.1% 65.8% 62.4% 63.0% 63.7% 64.3%

Figure C.23.    Estimated Loss Ratio (Weighted)

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Calendar Year Unpaid Claim Runoff
Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2015 2,947 132 4.5% 2,471 3,532 2,947 3,036 3,162 3,257
2016 1,791 101 5.6% 1,449 2,233 1,790 1,859 1,959 2,027
2017 995 73 7.3% 739 1,286 993 1,043 1,117 1,170
2018 520 52 10.0% 345 712 518 554 608 649
2019 271 31 11.5% 161 415 270 291 325 352
2020 147 18 12.6% 65 246 146 159 178 193
2021 83 13 16.0% 31 156 82 91 106 116
2022 46 10 22.2% 11 97 45 53 63 71
2023 24 7 30.7% 1 65 24 29 37 44
2024 14 5 37.9% (0) 42 13 17 23 27
2025 6 3 45.2% (0) 24 6 8 11 14
2026 3 2 60.2% (0) 13 2 4 6 8
2027 1 1 95.7% (0) 9 1 1 3 4
2028 0 0 19936.0% (0) 0 0 0 0 0

Figure C.24.    Estimated Unpaid Claim Runoff (Weighted)
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Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Accident Year Incremental Values by Development Period
Best Estimate (Weighted)

Accident Mean Values
Year 12 24 36 48 60 72 84 96 108 120 132 144 156 168 +
2006 326 384 355 237 124 55 27 16 10 6 4 2 1 1
2007 328 388 326 218 114 61 27 16 9 6 3 2 1 1
2008 331 356 299 200 125 60 27 16 9 6 3 2 1 1
2009 303 327 274 219 124 60 27 16 9 6 3 2 1 1
2010 290 328 306 218 121 58 27 16 11 4 4 2 1 1
2011 269 323 291 207 115 60 27 15 10 4 4 2 1 1
2012 269 312 281 198 130 62 28 16 11 3 4 2 1 1
2013 266 308 278 229 126 60 27 16 11 3 4 2 1 1
2014 299 346 325 228 126 60 27 15 11 3 4 2 1 1
2015 294 351 317 223 123 59 26 15 11 3 4 2 1 1

Figure C.25.    Mean of Incremental Values (Weighted)

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Accident Year Incremental Values by Development Period
Best Estimate (Weighted)

Accident Standard Error Values
Year 12 24 36 48 60 72 84 96 108 120 132 144 156 168 +
2006 21 23 22 18 13 9 6 5 4 3 3 2 2 1
2007 21 23 21 17 13 9 6 5 4 3 3 2 2 1
2008 21 22 20 17 13 9 6 5 4 3 3 2 2 1
2009 21 21 19 17 13 9 6 5 4 3 3 2 2 1
2010 18 26 23 14 22 15 8 4 4 3 2 2 1 1
2011 18 17 22 15 22 18 8 4 4 3 2 2 1 1
2012 13 14 22 11 30 21 8 4 3 2 2 1 1 1
2013 13 14 22 18 31 21 8 4 3 2 2 1 1 1
2014 13 14 33 18 30 21 8 4 3 2 2 1 1 1
2015 13 26 32 19 30 21 8 4 3 2 2 1 1 1

Figure C.26.    Standard Deviation of Incremental Values (Weighted)

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Accident Year Incremental Values by Development Period
Best Estimate (Weighted)

Accident Coefficients of Variation
Year 12 24 36 48 60 72 84 96 108 120 132 144 156 168 +
2006 6.5% 6.0% 6.2% 7.6% 10.4% 15.9% 22.6% 29.2% 37.6% 49.0% 74.6% 95.5% 122.0% 156.9%
2007 6.4% 5.9% 6.5% 8.0% 11.0% 15.0% 22.4% 28.9% 38.1% 56.2% 73.4% 94.7% 123.1% 157.6%
2008 6.5% 6.2% 6.8% 8.3% 10.4% 15.0% 22.6% 29.3% 41.7% 56.2% 73.4% 95.5% 122.4% 160.6%
2009 6.8% 6.4% 7.1% 7.9% 10.6% 15.2% 22.7% 31.5% 42.2% 56.9% 74.2% 96.8% 121.7% 162.3%
2010 6.1% 7.9% 7.3% 6.3% 18.2% 25.8% 28.6% 26.8% 35.0% 65.1% 63.8% 81.4% 111.5% 113.7%
2011 6.6% 5.4% 7.6% 7.2% 18.7% 30.1% 29.0% 27.1% 34.8% 66.8% 64.0% 82.4% 113.2% 115.9%
2012 4.8% 4.5% 7.8% 5.6% 23.4% 34.1% 30.0% 24.4% 30.1% 60.7% 57.6% 71.7% 93.4% 94.2%
2013 4.8% 4.4% 7.9% 7.9% 24.2% 34.5% 30.4% 24.4% 30.2% 61.4% 58.2% 72.2% 94.5% 94.4%
2014 4.5% 4.2% 10.0% 8.1% 23.6% 34.6% 30.2% 24.7% 30.3% 62.0% 59.4% 73.2% 94.7% 95.6%
2015 4.6% 7.4% 10.0% 8.3% 24.3% 35.0% 31.0% 24.6% 30.6% 61.4% 59.9% 73.5% 97.0% 95.7%

Figure C.27.    Coefficient of Variation of Incremental Values (Weighted)
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Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Total Unpaid Distribution
Best Estimate (Weighted)
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Figure C.28.   Total Unpaid Claims Distribution (Weighted)

Five Top 50 Companies
Schedule P, Part C – Commercial Auto Liability (in 000,000's)

Summary of Model Distributions
(Using Kernel Densities)
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Figure C.29.    Summary of Model Distributions
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Appendix D—Aggregate Results

In this appendix the results for the correlated aggregate of the three Schedule P lines of 
business (Parts A, B, and C) are shown, using the correlation calculated from the paid 
data after adjustment for heteroscedasticity.

Five Top 50 Companies
Aggregate Three Lines of Business

Accident Year Unpaid

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 67 25 37.9% 0 186 66 83 110 130
2007 107 30 28.1% 25 295 105 126 158 185
2008 199 49 24.8% 67 622 194 226 285 342
2009 298 56 18.8% 123 800 293 331 395 457
2010 480 69 14.3% 248 959 475 522 599 668
2011 862 106 12.3% 503 1,561 860 923 1,041 1,135
2012 1,666 187 11.2% 383 2,555 1,662 1,771 1,985 2,148
2013 3,070 333 10.8% 1,808 6,522 3,066 3,249 3,649 3,928
2014 5,632 703 12.5% 2,435 8,555 5,632 6,075 6,801 7,326
2015 13,270 1,788 13.5% 5,217 22,660 13,262 14,348 16,180 18,011

Totals 25,650 2,080 8.1% 16,952 36,085 25,616 26,949 29,088 30,991
Normal Dist. 25,650 2,080 8.1% 25,650 27,053 29,072 30,490
logNormal Dist. 25,650 2,088 8.1% 25,566 27,006 29,222 30,885
Gamma Dist. 25,650 2,080 8.1% 25,594 27,021 29,165 30,736

Figure D.1.    Estimated Unpaid Model Results

Five Top 50 Companies
Aggregate Three Lines of Business

Calendar Year Unpaid

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2016 12,906 1,209 9.4% 8,242 19,475 12,869 13,611 14,897 16,182
2017 5,733 453 7.9% 3,991 7,589 5,727 6,024 6,488 6,836
2018 3,144 257 8.2% 2,132 4,373 3,137 3,310 3,573 3,781
2019 1,663 144 8.6% 1,163 2,415 1,657 1,757 1,906 2,018
2020 903 86 9.5% 617 1,331 900 958 1,050 1,122
2021 512 59 11.5% 319 1,064 508 546 613 678
2022 324 55 16.9% 140 699 317 353 423 484
2023 217 64 29.4% 86 931 205 245 328 431
2024 120 28 23.7% 21 308 118 137 170 197
2025 74 22 30.1% 7 165 73 89 113 131
2026 36 13 37.2% 2 94 35 45 59 70
2027 18 9 51.9% 0 58 17 24 33 41
2028 1 1 95.7% - 9 1 1 3 4

Totals 25,650 2,080 8.1% 16,952 36,085 25,616 26,949 29,088 30,991

Figure D.2.    Estimated Cash Flow
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Five Top 50 Companies
Aggregate Three Lines of Business
Accident Year Ultimate Loss Ratios

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 74.0% 10.7% 14.5% 33.5% 132.5% 73.7% 77.5% 93.7% 109.6%
2007 81.3% 11.5% 14.2% 38.3% 147.1% 81.0% 85.0% 102.0% 121.0%
2008 85.4% 11.8% 13.8% 39.5% 153.1% 85.0% 89.2% 107.7% 123.9%
2009 76.0% 10.2% 13.4% 36.8% 131.0% 75.6% 79.4% 94.7% 111.2%
2010 66.9% 9.3% 13.9% 31.0% 119.9% 66.3% 70.1% 84.1% 97.9%
2011 64.5% 8.9% 13.8% 30.1% 117.2% 64.2% 67.5% 81.1% 91.4%
2012 71.0% 10.1% 14.3% 31.6% 129.3% 70.5% 74.0% 90.5% 104.6%
2013 61.4% 8.5% 13.9% 29.3% 125.5% 61.1% 64.2% 77.3% 88.8%
2014 65.4% 9.7% 14.8% 31.3% 115.9% 65.2% 70.3% 82.2% 94.9%
2015 78.2% 11.5% 14.7% 39.0% 143.2% 77.8% 83.8% 97.6% 113.8%

Totals 71.6% 3.3% 4.6% 59.5% 88.1% 71.5% 73.7% 77.3% 80.3%

Figure D.3.    Estimated Loss Ratio

Five Top 50 Companies
Aggregate Three Lines of Business
Calendar Year Unpaid Claim Runoff

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2015 25,650 2,080 8.1% 16,952 36,085 25,616 26,949 29,088 30,991
2016 12,744 944 7.4% 8,710 17,043 12,733 13,373 14,296 15,047
2017 7,012 536 7.6% 4,664 9,551 7,000 7,368 7,905 8,324
2018 3,868 319 8.2% 2,512 5,388 3,861 4,075 4,406 4,671
2019 2,205 213 9.7% 1,348 3,259 2,196 2,340 2,567 2,762
2020 1,302 158 12.1% 730 2,266 1,292 1,400 1,574 1,733
2021 790 126 15.9% 401 1,697 781 864 1,003 1,145
2022 466 99 21.2% 166 1,272 458 524 636 746
2023 249 62 24.9% 45 533 245 289 359 403
2024 129 42 32.4% 13 294 126 156 202 236
2025 55 21 37.9% 3 141 53 68 90 107
2026 19 9 49.6% 0 60 18 25 34 42
2027 1 1 95.7% (0) 9 1 1 3 4

Figure D.4.    Estimated Unpaid Claim Runoff

Five Top 50 Companies
Aggregate Three Lines of Business

Accident Year Incremental Values by Development Period

Accident Mean Values
Year 12 24 36 48 60 72 84 96 108 120 132 144 156 168 +
2006 9,334 4,878 2,029 1,175 621 300 151 79 67 33 33 17 16 1
2007 10,595 5,394 2,159 1,239 655 327 163 85 75 35 35 18 17 1
2008 12,060 5,959 2,317 1,321 716 352 175 91 84 38 38 19 18 1
2009 11,848 6,007 2,371 1,389 745 365 182 95 83 40 40 20 20 1
2010 11,834 5,923 2,345 1,351 721 354 182 95 85 38 40 20 19 1
2011 12,195 5,972 2,312 1,326 707 372 185 96 90 39 40 20 19 1
2012 14,186 6,541 2,409 1,362 775 380 191 99 103 39 40 20 19 1
2013 11,901 5,868 2,282 1,436 763 374 187 97 93 38 40 20 19 1
2014 12,949 6,354 2,538 1,451 771 378 189 98 98 38 36 19 17 1
2015 16,458 7,356 2,685 1,515 794 395 202 108 99 44 36 19 17 1

Figure D.5.    Mean of Incremental Values
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Five Top 50 Companies
Aggregate Three Lines of Business

Accident Year Incremental Values by Development Period

Accident Standard Deviation Values
Year 12 24 36 48 60 72 84 96 108 120 132 144 156 168 +
2006 1,735 668 233 134 74 37 18 13 23 6 13 7 6 6
2007 1,909 712 244 140 77 39 18 14 26 10 14 7 7 10
2008 2,085 768 264 147 81 41 20 14 35 11 15 8 7 11
2009 2,010 754 260 149 82 41 19 17 34 10 15 8 8 10
2010 2,059 775 264 148 84 43 22 17 35 11 15 8 8 11
2011 2,085 777 261 150 84 49 22 17 37 11 16 8 8 11
2012 2,492 875 277 155 98 50 23 17 44 12 15 8 8 12
2013 2,078 767 261 169 97 51 23 17 39 11 15 8 8 11
2014 2,300 907 341 192 109 55 26 19 42 13 17 9 9 13
2015 2,728 1,087 365 210 116 59 30 23 58 17 17 9 9 17

Figure D.6.    Standard Deviation of Incremental Values

Five Top 50 Companies
Aggregate Three Lines of Business

Accident Year Incremental Values by Development Period

Accident Coefficients of Variation
Year 12 24 36 48 60 72 84 96 108 120 132 144 156 168 +
2006 18.6% 13.7% 11.5% 11.4% 11.9% 12.5% 11.7% 16.8% 35.0% 17.0% 38.4% 38.5% 40.0% 702.6%
2007 18.0% 13.2% 11.3% 11.3% 11.8% 12.0% 11.4% 16.3% 35.1% 27.8% 38.5% 38.6% 40.0% 1216.6%
2008 17.3% 12.9% 11.4% 11.1% 11.3% 11.7% 11.2% 15.7% 42.1% 28.0% 39.1% 39.2% 40.5% 1356.5%
2009 17.0% 12.6% 11.0% 10.7% 11.0% 11.3% 10.7% 17.7% 41.4% 26.2% 38.8% 39.0% 40.2% 1287.1%
2010 17.4% 13.1% 11.3% 11.0% 11.6% 12.2% 11.9% 17.7% 40.5% 27.6% 39.0% 39.4% 40.8% 1164.5%
2011 17.1% 13.0% 11.3% 11.3% 11.9% 13.3% 11.9% 17.5% 41.5% 28.2% 39.2% 39.5% 40.9% 1219.1%
2012 17.6% 13.4% 11.5% 11.4% 12.6% 13.2% 12.0% 16.9% 42.8% 31.6% 38.6% 39.0% 40.6% 1268.9%
2013 17.5% 13.1% 11.4% 11.8% 12.6% 13.6% 12.1% 17.3% 41.9% 29.1% 38.5% 38.9% 40.4% 1214.5%
2014 17.8% 14.3% 13.5% 13.3% 14.2% 14.5% 13.8% 19.0% 43.0% 34.8% 47.6% 46.7% 54.6% 1429.6%
2015 16.6% 14.8% 13.6% 13.8% 14.6% 15.0% 14.9% 21.5% 58.1% 38.8% 47.3% 46.7% 54.4% 1901.0%

Figure D.7.    Coefficient of Variation of Incremental Values

Five Top 50 Companies
Aggregate Three Lines of Business

Indicated Unpaid Claim Risk Portion of Required Capital

Earned Mean 99.0% Value at Risk Allocated Unpaid Premium
LOB / Segment Premium Unpaid Unpaid Capital Capital Ratio Ratio

Schedule P, Part A 15,148 5,308 8,675 3,367 2,642 49.8% 17.4%
Schedule P, Part B 20,467 17,395 20,525 3,130 2,456 14.1% 12.0%
Schedule P, Part C 2,383 2,947 3,257 310 243 8.3% 10.2%
Total 37,997 25,650 32,457 6,807
Aggregate 37,997 25,650 30,991 5,341 5,341 20.8% 14.1%

Figure D.8.    Calculation of Risk Based Capital
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Five Top 50 Companies
Aggregate Three Lines of Business

Total Unpaid Distribution

16.9K 18.8K 20.7K 22.7K 24.6K 26.5K 28.4K 30.4K 32.3K 34.2K 36.1K
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Figure D.9.   Total Unpaid Claims Distribution
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Appendix E—GLM Bootstrap Results

In this appendix the results for the GLM Bootstrap model, as illustrated in Figures 5.9 
through 5.12 using the Taylor and Ashe (1983) data, are shown.

Taylor and Ashe Data
Accident Year Unpaid

Paid GLM Bootstrap Model
Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 - - - - - - - -
2007 201,062 86,944 43.2% 13,857 542,484 186,940 254,238 361,288 438,224
2008 438,222 193,377 44.1% 48,640 1,570,379 405,070 547,131 798,395 996,074
2009 701,223 229,176 32.7% 192,462 1,747,698 679,682 831,657 1,122,868 1,320,964
2010 1,024,913 264,752 25.8% 405,036 2,286,536 1,009,377 1,186,714 1,467,758 1,825,411
2011 1,452,650 315,901 21.7% 619,534 2,544,116 1,424,030 1,660,714 1,996,927 2,261,272
2012 2,181,115 481,962 22.1% 916,307 4,248,064 2,136,166 2,480,213 3,027,607 3,396,995
2013 3,468,030 603,268 17.4% 1,751,033 5,598,537 3,424,738 3,862,292 4,553,992 4,965,982
2014 4,568,990 695,194 15.2% 2,331,572 6,824,685 4,526,036 5,039,460 5,731,706 6,408,694
2015 5,672,877 744,661 13.1% 3,681,244 8,333,062 5,657,952 6,171,074 6,954,411 7,414,615

Totals 19,709,081 2,176,864 11.0% 13,360,401 27,429,908 19,594,207 21,069,822 23,354,466 24,752,422
Normal Dist. 19,709,081 2,176,864 11.0% 19,709,081 21,177,353 23,289,703 24,773,224
logNormal Dist. 19,709,844 2,194,514 11.1% 19,588,799 21,111,651 23,512,537 25,360,134
Gamma Dist. 19,709,081 2,176,864 11.0% 19,628,994 21,130,455 23,421,097 25,123,713

Figure E.1.    Estimated Unpaid Model Results

Taylor and Ashe Data
Calendar Year Unpaid

Paid GLM Bootstrap Model
Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2016 5,367,217 639,639 11.9% 3,363,863 7,428,225 5,343,203 5,770,597 6,447,544 6,986,539
2017 4,312,360 599,300 13.9% 2,363,704 6,455,658 4,279,059 4,673,264 5,338,534 5,922,511
2018 3,310,498 539,509 16.3% 1,993,107 5,419,760 3,288,209 3,657,889 4,209,239 4,690,515
2019 2,245,627 417,764 18.6% 1,078,000 4,088,770 2,221,086 2,510,176 2,948,019 3,475,039
2020 1,676,436 369,916 22.1% 619,943 3,157,564 1,644,779 1,921,249 2,318,054 2,614,635
2021 1,224,109 326,624 26.7% 444,913 2,352,525 1,202,484 1,436,029 1,782,066 2,085,204
2022 838,442 264,751 31.6% 226,969 2,477,444 803,316 991,076 1,302,125 1,532,640
2023 507,334 211,762 41.7% 104,873 1,268,302 480,233 635,243 889,537 1,135,405
2024 227,058 93,270 41.1% 32,667 711,619 213,471 277,710 403,483 498,676
2025 - - - - - - - -

Totals 19,709,081 2,176,864 11.0% 13,360,401 27,429,908 19,594,207 21,069,822 23,354,466 24,752,422

Figure E.2.    Estimated Cash Flow
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Taylor and Ashe Data
Accident Year Ultimate Loss Ratios

Paid GLM Bootstrap Model
Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2006 54.8% 6.4% 11.7% 38.1% 74.0% 54.7% 59.0% 65.7% 70.4%
2007 65.0% 6.4% 9.8% 48.1% 84.1% 65.0% 68.9% 75.7% 80.7%
2008 63.1% 6.4% 10.1% 42.6% 82.0% 63.1% 67.3% 73.4% 78.6%
2009 56.0% 6.2% 11.0% 38.0% 76.4% 55.9% 60.0% 66.2% 71.6%
2010 53.1% 5.9% 11.0% 34.7% 74.7% 52.8% 57.1% 63.1% 66.6%
2011 50.5% 5.6% 11.1% 33.9% 70.0% 50.2% 54.2% 60.0% 63.9%
2012 53.8% 7.6% 14.2% 31.3% 81.3% 53.1% 59.1% 66.8% 72.8%
2013 55.3% 6.9% 12.5% 34.6% 78.4% 55.1% 59.5% 66.9% 73.4%
2014 52.9% 6.8% 12.8% 31.7% 74.5% 52.4% 57.2% 64.5% 70.1%
2015 50.7% 6.5% 12.8% 33.0% 72.4% 50.6% 55.1% 61.6% 65.8%

Totals 55.1% 2.9% 5.2% 46.9% 63.6% 55.1% 57.1% 60.0% 61.7%

Figure E.3.    Estimated Loss Ratio

Taylor and Ashe Data
Calendar Year Unpaid Claim Runoff

Paid GLM Bootstrap Model
Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2015 19,709,081 2,176,864 11.0% 13,360,401 27,429,908 19,594,207 21,069,822 23,354,466 24,752,422
2016 14,341,864 1,839,659 12.8% 8,990,374 21,139,070 14,231,008 15,525,987 17,412,102 19,106,264
2017 10,029,504 1,499,062 14.9% 5,923,686 15,623,104 9,926,619 10,979,472 12,605,655 13,627,923
2018 6,719,006 1,188,158 17.7% 3,317,118 11,201,515 6,612,903 7,438,758 8,841,160 9,734,081
2019 4,473,380 922,335 20.6% 1,884,408 7,436,971 4,366,371 5,040,244 6,143,079 6,968,601
2020 2,796,943 678,192 24.2% 1,137,743 5,050,304 2,740,868 3,192,138 4,018,580 4,623,373
2021 1,572,834 443,756 28.2% 595,162 3,523,942 1,524,022 1,852,397 2,369,545 2,820,528
2022 734,392 257,467 35.1% 204,545 1,654,724 708,577 888,204 1,167,670 1,463,534
2023 227,058 93,270 41.1% 32,667 711,619 213,471 277,710 403,483 498,676
2024 0 0 4017.8% (0) 0 - 0 0 0

Figure E.4.    Estimated Unpaid Claim Runoff

Taylor and Ashe Data
Accident Year Incremental Values by Development Period

Paid GLM Bootstrap Model
Accident Mean Values

Year 12 24 36 48 60 72 84 96 108 120+
2006 260,293 698,693 688,850 704,606 388,809 311,880 258,794 214,532 169,749 142,707
2007 353,111 978,505 972,391 972,627 539,441 447,302 359,572 300,611 234,076 201,062
2008 355,598 975,396 989,087 971,633 541,986 440,002 357,470 297,335 237,981 200,241
2009 343,575 914,108 911,442 913,681 502,676 421,801 335,888 282,854 231,129 187,240
2010 341,295 923,102 914,709 919,809 500,195 420,057 337,719 275,372 224,883 186,939
2011 336,529 924,119 917,372 913,328 503,784 409,092 338,662 284,360 234,436 186,099
2012 381,818 1,028,561 1,036,624 1,025,187 578,558 451,767 374,253 312,453 251,461 212,623
2013 402,258 1,107,072 1,108,427 1,111,762 614,292 501,712 410,170 332,713 265,392 231,989
2014 408,511 1,104,124 1,109,649 1,096,598 616,324 491,960 408,977 338,285 274,715 232,482
2015 406,207 1,098,540 1,104,298 1,121,727 609,668 497,186 407,810 331,738 274,852 227,058

Figure E.5.    Mean of Incremental Values
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Taylor and Ashe Data
Accident Year Incremental Values by Development Period

Paid GLM Bootstrap Model
Accident Standard Error Values

Year 12 24 36 48 60 72 84 96 108 120+
2006 108,496 120,663 181,091 248,062 129,788 119,862 108,476 67,654 126,590 56,408
2007 131,381 142,390 209,358 306,437 159,961 138,486 133,743 80,122 152,143 86,944
2008 127,448 146,072 215,044 306,874 152,841 142,207 122,350 78,132 159,664 86,683
2009 125,340 137,368 201,409 295,530 154,057 138,440 121,788 90,057 156,660 80,901
2010 127,558 139,764 193,891 297,664 152,539 136,999 129,441 88,860 139,515 78,776
2011 125,839 139,522 196,494 285,649 156,869 139,339 128,102 92,988 160,838 81,152
2012 137,400 150,449 208,476 321,223 187,435 156,077 150,736 103,377 165,336 93,178
2013 137,189 150,565 221,025 338,863 195,056 173,394 151,060 103,542 169,356 96,165
2014 132,459 159,062 254,892 329,254 195,407 162,115 149,531 106,739 171,923 94,787
2015 135,172 183,619 247,413 336,959 177,810 163,745 147,122 102,400 167,873 93,270

Figure E.6.    Standard Deviation of Incremental Values

Taylor and Ashe Data
Accident Year Incremental Values by Development Period

Paid GLM Bootstrap Model
Accident Coefficient of Variation Values

Year 12 24 36 48 60 72 84 96 108 120+
2006 41.7% 17.3% 26.3% 35.2% 33.4% 38.4% 41.9% 31.5% 74.6% 39.5%
2007 37.2% 14.6% 21.5% 31.5% 29.7% 31.0% 37.2% 26.7% 65.0% 43.2%
2008 35.8% 15.0% 21.7% 31.6% 28.2% 32.3% 34.2% 26.3% 67.1% 43.3%
2009 36.5% 15.0% 22.1% 32.3% 30.6% 32.8% 36.3% 31.8% 67.8% 43.2%
2010 37.4% 15.1% 21.2% 32.4% 30.5% 32.6% 38.3% 32.3% 62.0% 42.1%
2011 37.4% 15.1% 21.4% 31.3% 31.1% 34.1% 37.8% 32.7% 68.6% 43.6%
2012 36.0% 14.6% 20.1% 31.3% 32.4% 34.5% 40.3% 33.1% 65.8% 43.8%
2013 34.1% 13.6% 19.9% 30.5% 31.8% 34.6% 36.8% 31.1% 63.8% 41.5%
2014 32.4% 14.4% 23.0% 30.0% 31.7% 33.0% 36.6% 31.6% 62.6% 40.8%
2015 33.3% 16.7% 22.4% 30.0% 29.2% 32.9% 36.1% 30.9% 61.1% 41.1%

Figure E.7.    Coefficient of Variation of Incremental Values

Taylor and Ashe Data
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Figure E.8.   Total Unpaid Claims Distribution



Casualty Actuarial Society	 111

References

Anderson, Duncan, Sholom Feldblum, Claudine Modlin, Doris Schirmacher, Ernesto 
Schirmacher, and Neeza Thandi. 2007. “A Practitioner’s Guide to Generalized 
Linear Models,” CAS Exam Study Note, 3rd Edition: 1–116.

Ashe, Frank. 1986. “An Essay at Measuring the Variance of Estimates of Outstanding 
Claim Payments.” ASTIN Bulletin 16:S: 99–113.

Barnett, Glen, and Ben Zehnwirth. 2000. “Best Estimates for Reserves.” Proceedings of 
the Casualty Actuarial Society 87, 2: 245–321.

Berquist, James R., and Richard E. Sherman. 1977. “Loss Reserve Adequacy Testing: A 
Comprehensive, Systematic Approach.” Proceedings of the Casualty Actuarial Society 
64: 123–184.

Bornhuetter, Ronald, and Ronald Ferguson. 1972. “The Actuary and IBNR.” Proceed-
ings of the Casualty Actuarial Society 59: 181–195.

CAS Loss Simulation Model Working Party Summary Report. 2011. “Modeling Loss 
Emergence and Settlement Processes.” Casualty Actuarial Society Forum (Winter) 1: 
1–124.

CAS Working Party on Quantifying Variability in Reserve Estimates. 2005. “The 
Analysis and Estimation of Loss & ALAE Variability: A Summary Report.” Casu-
alty Actuarial Society Forum (Fall): 29–146.

CAS Tail Factor Working Party. 2013. “The Estimation of Loss Development Tail Fac-
tors: A Summary Report.” Casualty Actuarial Society E-Forum (Fall): 1–111.

Christofides, S. 1990. “Regression Models Based on Log-Incremental Payments.” 
Claims Reserving Manual, vol. 2. Institute of Actuaries, London.

Efron, Bradley. 1979. “Bootstrap Methods: Another Look at the Jackknife.” The Annals 
of Statistics 7-1: 1–26.

England, Peter D., and Richard J. Verrall. 1999. “Analytic and Bootstrap Estimates of 
Prediction Errors in Claims Reserving.” Insurance: Mathematics and Economics 25: 
281–293.

England, Peter D., and Richard J. Verrall. 2002. “Stochastic Claims Reserving in Gen-
eral Insurance.” British Actuarial Journal 8-3: 443–544.

England, Peter D., and Richard J. Verrall. 2006. “Predictive Distributions of Out-
standing Liabilities in General Insurance.” The Annals of Actuarial Science 1, 2: 
221–270.



112	 Casualty Actuarial Society

Using the ODP Bootstrap Model: A Practitioner’s Guide

Foundations of Casualty Actuarial Science, 4th ed. 2001. Arlington, Va.: Casualty Actu-
arial Society.

Iman, R., and W. Conover. 1982. “A Distribution-Free Approach to Inducing Rank 
Correlation Among Input Variables.” Communications in Statistics—Simulation and 
Computation 11(3): 311–334.

IAA (International Actuarial Association). 2010. “Stochastic Modeling—Theory 
and Reality from an Actuarial Perspective.” Available from www.actuaries.org/
stochastic.

Kirschner, Gerald S., Colin Kerley, and Belinda Isaacs. 2008. “Two Approaches to 
Calculating Correlated Reserve Indications Across Multiple Lines of Business.” 
Variance 1: 15–38.

Kremer, E. 1982. “IBNR Claims and the Two Way Model of ANOVA” Scandinavian 
Actuarial Journal: 47–55.

Liu, H., and R. Verrall. 2010. “Bootstrap Estimation of the Predictive Distributions of 
Reserves Using Paid and Incurred Claims.” Variance 4: 125–135.

McCullagh, P., and J. Nelder. 1989. Generalized Linear Models, 2nd ed. Chapman 
and Hall.

Mildenhall, Stephen J. 2006. “Correlation and Aggregate Loss Distributions with 
an Emphasis on the Iman-Conover Method.” Casualty Actuarial Society E-Forum 
(Winter): 103–204.

Milliman. 2014. “Using the Milliman Arius Reserving Model.” Version 2.1.
Pinheiro, Paulo J. R., João Manuel Andrade e Silva, and Maria de Lourdes Centeno. 

2001. “Bootstrap Methodology in Claim Reserving.” ASTIN Colloquium: 1–13.
Pinheiro, Paulo J. R., João Manuel Andrade e Silva, and Maria de Lourdes Centeno. 

2003. “Bootstrap Methodology in Claim Reserving.” Journal of Risk and Insur-
ance 70: 701–714.

Quarg, Gerhard, and Thomas Mack. 2008. “Munich Chain Ladder: A Reserving Method 
that Reduces the Gap between IBNR Projections Based on Paid Losses and IBNR 
Projections Based on Incurred Losses.” Variance 2: 266–299.

ROC/GIRO Working Party. 2007. “Best Estimates and Reserving Uncertainty.” Insti-
tute of Actuaries.

ROC/GIRO Working Party. 2008. “Reserving Uncertainty.” Institute of Actuaries.
Renshaw, A. E., 1989. “Chain Ladder and Interactive Modelling (Claims Reserving 

and GLIM).” Journal of the Institute of Actuaries 116 (III): 559–587.
Renshaw, A. E., and R. J. Verrall. 1994. “A Stochastic Model Underlying the Chain 

Ladder Technique.” Proceedings XXV ASTIN Colloquium, Cannes.
Struzzieri, Paul J., and Paul R. Hussian. 1998. “Using Best Practices to Determine a 

Best Reserve Estimate.” Casualty Actuarial Society Forum (Fall): 353–413.
Taylor, Greg, and Frank Ashe. 1983. “Second Moments of Estimates of Outstanding 

Claims.” Journal of Econometrics 23-1: 37–61.
Venter, Gary G. 1998. “Testing the Assumptions of Age-to-Age Factors.” Proceedings of 

the Casualty Actuarial Society 85: 807–47.



Casualty Actuarial Society	 113

Using the ODP Bootstrap Model: A Practitioner’s Guide

Verrall, Richard J. 1991. “On the Estimation of Reserves from Loglinear Models.” 
Insurance: Mathematics and Economics 10: 75–80.

Verrall, Richard J. 2004. “A Bayesian Generalized Linear Model for the Bornhuetter- 
Ferguson Method of Claims Reserving.” North American Actuarial Journal 8-3: 67–89.

Zehnwirth, Ben, 1989. “The Chain Ladder Technique—A Stochastic Model.” Claims 
Reserving Manual vol. 2. Institute of Actuaries, London.

Zehnwirth, Ben. 1994. “Probabilistic Development Factor Models with Applications 
to Loss Reserve Variability, Prediction Intervals and Risk Based Capital.” Casualty 
Actuarial Society Forum (Spring), 2: 447–606.



114	 Casualty Actuarial Society

Selected Bibliography

Björkwall, Susanna. 2009. “Bootstrapping for Claims Reserve Uncertainty in General 
Insurance.” Mathematical Statistics, Stockholm University. Research Report 2009:3,  
Licenciate thesis. http://www2.math.su.se/matstat/reports/seriea/2009/rep3/
report.pdf.

Björkwall, Susanna, Ola Hössjer, and Esbjörn Ohlsson. 2009. “Non-parametric and 
Parametric Bootstrap Techniques for Age-to-Age Development Factor Methods in 
Stochastic Claims Reserving.” Scandinavian Actuarial Journal 4: 306–331.

Freedman, D. A. 1981. “Bootstrapping Regression Models.” The Annals of Statistics 
9-6: 1218–1228.

Hayne, Roger M. 2008. “A Stochastic Framework for Incremental Average Reserve 
Models.” Casualty Actuarial Society E-Forum (Fall): 174–195.

Mack, Thomas. 1993. “Distribution Free Calculation of the Standard Error of Chain 
Ladder Reserve Estimates.” ASTIN Bulletin 23-2: 213–225.

Mack, Thomas. 1999. “The Standard Error of Chain Ladder Reserve Estimates: Recur-
sive Calculation and Inclusion of a Tail Factor.” ASTIN Bulletin 29-2: 361–366.

Mack, Thomas, and Gary Venter. 2000. “A Comparison of Stochastic Models that 
Reproduce Chain Ladder Reserve Estimates.” Insurance: Mathematics and Economics 
26: 101–107.

Merz, Michael, and Mario V. Wüthrich. 2008. “Modeling the Claims Development 
Result For Solvency Purposes.” Casualty Actuarial Society E-Forum (Fall): 542–568.

Moulton, Lawrence H., and Scott L. Zeger. 1991. “Bootstrapping Generalized Linear 
Models.” Computational Statistics and Data Analysis 11: 53–63.

Murphy, Daniel M. 1994. “Unbiased Loss Development Factors.” Proceedings of the 
Casualty Actuarial Society 81: 154–222.

Ruhm, David L., and Donald F. Mango. 2003. A Method of Implementing Myers-Read 
Capital Allocation in Simulation. Casualty Actuarial Society Forum (Fall): 451–458.

Shapland, Mark R. 2007. “Loss Reserve Estimates: A Statistical Approach for Deter-
mining ‘Reasonableness’.” Variance 1: 120–148.

Venter, Gary G. 2003. “A Survey of Capital Allocation Methods with Commentary 
Topic 3: Risk Control.” ASTIN Colloquium.



Casualty Actuarial Society	 115

AIC: Akaike Information Criterion	 ELR: Expected Loss Ratio
APD: Automobile Physical Damage	 ERM: Enterprise Risk Management
BIC: Bayesian Information Criterion	 GLM: Generalized Linear Models
BF: Bornhuetter-Ferguson	 MLE: Maximum Likelihood Estimate
CC: Cape Cod	 ODP: Over-Dispersed Poisson
CL: Chain Ladder	 OLS: Ordinary Least Squares
CoV: Coefficient of Variation	 RSS: Residual Sum Squared
DFA: Dynamic Financial Analysis	 SSE: Sum of Squared Errors

Abbreviations and Notations
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