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The purpose of the monograph is to provide access to generalized linear models for loss 
reserving but initially with strong emphasis on the chain ladder. The chain ladder is 
formulated in a GLM context, as is the statistical distribution of the loss reserve. This 
structure is then used to test the need for departure from the chain ladder model and 
to formulate any required model extensions.

The chain ladder is by far the most widely used method for loss reserving. The chain 
ladder algorithm itself is non-stochastic, but Mack (1993) defined a stochastic version 
of the model and showed how a mean square error of prediction may be associated 
with any loss reserve obtained from this model.

There are, however, two families of stochastic model which generate the chain ladder 
algorithm for the estimation of loss reserve, as discussed in Taylor (2011). They require 
differing treatments for the estimation of mean square error of prediction. Both 
families of model may be formulated as generalized linear models. This is not widely 
appreciated of the Mack model. The monograph commences with the identification of 
these two families and their respective GLM formulations.

GLM formulation naturally invites the use of a bootstrap to estimate prediction error. 
The bootstrap estimates the entire distribution of loss reserve rather than just the mean 
square error of prediction obtainable from Mack’s algorithm. The monograph discusses 
both parametric and semi-parametric forms of the GLM bootstrap.

Emphasis is placed on the use of statistical software to implement the GLM formulation. 
This formulation and the associated software provide the diagnostics for testing the 
validity of the model. This aspect is covered by the existing literature but the monograph 
reviews this material in view of its importance.

Practical applications of the chain ladder often depart from the strict model. There are 
a number of causes but prominent among these are:

• the need to smooth the age-to-age factor tail;

• the need to give greater weight to more recent data than to older.

These two matters are considered within the GLM context. The subject of smoothing 
leads to a discussion of generalized additive models. 

As regards the second point, the GLM structure is used to test whether or not data 
are time-homogeneous (as is required by the strict chain ladder model) and, if not, to 
suggest a procedure for recognising and accommodating time-heterogeneity in the data. 
This may lead to the common practice of discarding all but the last m diagonals of the 
claim triangle, but more general approaches are also be considered.

As time-heterogeneity is not consistent with the chain ladder model, it amounts to 
model failure, and is recognizable from the diagnostics introduced above. Various 
forms of model failure are considered and, in each case, a model extension constructed 
to deal with it.

Finally, extension to several models that go beyond the scope of generalized linear 
models is discussed.



STOCHASTIC LOSS RESERVING USING 
GENERALIZED LINEAR MODELS

Greg Taylor and Gráinne McGuire

Casualty Actuarial Society
4350 North Fairfax Drive, Suite 250

Arlington, Virginia 22203
www.casact.org
(703) 276-3100



Stochastic Loss Reserving Using Generalized Linear Models
By Greg Taylor and Gráinne McGuire

Copyright 2016 by the Casualty Actuarial Society

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or  
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, 
without the prior written permission of the publisher. For information on obtaining permission for use  
of material in this work, please submit a written request to the Casualty Actuarial Society.

Library of Congress Cataloging-in-Publication Data
Taylor, Greg
McGuire, Gráinne
Stochastic Loss Reserving Using Generalized Linear Models / Greg Taylor and Gráinne McGuire
ISBN 978-0-9968897-0-4 (print edition)
ISBN 978-0-9968897-1-1 (electronic edition)
1. Actuarial science. 2. Loss reserving 3. Insurance—mathematical models.
I. Taylor, Greg. II. McGuire, Gráinne.



Foreword ............................................................................................................... vii

Chapter 1  The Chain Ladder Algorithm ............................................................. 1
 1.1 Introduction .........................................................................................1
 1.2 Framework and Notation .....................................................................2
 1.3 Data for Numerical Examples ..............................................................3
 1.4 The Chain Ladder Algorithm ...............................................................4
 1.5 Numerical Example ..............................................................................5
 1.6 Common Chain Ladder Extensions .....................................................6

Chapter 2  Stochastic Models ............................................................................... 8
 2.1 Exponential Dispersion Family .............................................................8
 2.2 Generalized Linear Models (GLMs) ...................................................12

Chapter 3  Stochastic Models Supporting the Chain Ladder ............................ 22
 3.1 Mack Models .....................................................................................22
 3.2 Cross-Classified Models ......................................................................24
 3.3 GLM Representation of Chain Ladder Models ...................................28
 3.4 Minor Variations of Chain Ladder ......................................................33

Chapter 4  Prediction Error ............................................................................... 35
 4.1 Parameter Error and Process Error ......................................................35
 4.2 Mean Square Error of Prediction ........................................................37
 4.3 Information Criteria ...........................................................................38
 4.4 Generalized Cross-Validation .............................................................40
 4.5 Model Error .......................................................................................40

Chapter 5  The Bootstrap ................................................................................... 42
 5.1 Background ........................................................................................42
 5.2 Delta Method .....................................................................................44
 5.3 The Bootstrap .....................................................................................47
 5.4 Numerical Examples ..........................................................................53

Chapter 6  Model Validation .............................................................................. 56
 6.1 Introduction .......................................................................................56
 6.2 Summary of Assumptions and Tests ...................................................57
 6.3 Diagnostic Graphs ..............................................................................58
 6.4 Simulated Data Set and Fitted Models ...............................................64

Contents



iv Casualty Actuarial Society

Contents

 6.5 Analysis of the Goodness-of-Fit ..........................................................65
 6.6 Analysis of the Distribution Assumptions ...........................................69
 6.7 Model Validation for Real Data ..........................................................72

Chapter 7  Model Extensions ............................................................................. 76
 7.1 Chain Ladder Model Revisited ...........................................................76
 7.2 Generalized Additive Models ..............................................................78
 7.3 Accident Year Trend ............................................................................79
 7.4 Development Pattern .........................................................................79
 7.5 Calendar Year Trend ...........................................................................82
 7.6 Interactions ........................................................................................84
 7.7 Tail Smoothing and Extension ............................................................89
 7.8 Exposure-Based Methods ...................................................................90
 7.9 Beyond a Single Triangle ....................................................................91
7.10 Individual Models ..............................................................................92
7.11 Bayesian Models .................................................................................94

Chapter 8  Conclusion ....................................................................................... 96

References ............................................................................................................. 98



Greg Taylor holds an honorary professorial position in Risk and Actuarial Studies at the 
University of New South Wales. He previously spent 44 years in commercial actuarial 
practice and eight years as an actuarial academic. Taylor has published two books on 
loss reserving and numerous articles in mathematics, statistics, and actuarial science. 
He is an Officer of the Order of Australia, and holds a Gold Medal from the Australian 
Actuaries Institute and a Silver Medal from the United Kingdom Institute and Faculty 
of Actuaries.

Gráinne McGuire is a consulting actuary with Taylor Fry, with over 12 years’ experience 
in that role, and has specialized in complex claim modeling and loss reserving using 
GLMs. She has co-authored a number of papers on various topics in loss reserving 
including the use of GLMs, bootstrapping and automatic reserving methods (of which  
one paper, co-authored with Greg Taylor, was awarded the Michelbacher prize in 2004). 
She has also been a member of GIRO working parties examining stochastic loss reserving 
and uncertainty measurement. She holds a Ph.D. in statistics and is a Fellow of the 
Actuaries Institute, Australia.

About the Authors



C. K. “Stan” Khury, Editor in Chief
Emmanuel Bardis
Craig Davis
Richard Fein
Jesse Groman
Ali Ishaq
Leslie Marlo
Sholom Feldblum, consultant
Glenn Meyers, consultant
Katya Prell, consultant

2015 CAS Monograph Editorial Board



The oral tradition of the CAS has it that what we know today as the “chain-ladder 
method” was first used in the 1950s at a small Midwestern insurance company. In fact, 
the method during those early years was named after that small Midwestern mutual 
insurance company. Since that time, its name has evolved variously to the “loss devel-
opment method,” the “chain-ladder method,” and the “link ratio” method. Since those 
early days, its use spread to other companies and ultimately became the most widely 
used actuarial methodology for estimating ultimate losses. This monograph begins at 
that same point, a point that, in effect, saw the chain-ladder method as a heuristic.

In this work, Taylor and McGuire note the evolution of the chain-ladder method 
through its various developmental stages: from the first time the estimate produced 
by the chain-ladder method was recognized as a maximum likelihood estimate of a 
stochastic model (Hachemeister and Stanard, 1975), through the development of a 
non-parametric model that recognized variance in the observations (Mack, 1993), 
and then the development of a collection of models that fit this description (Taylor, 
2011), and on to the recent demonstration that all these models may be represented by 
generalized linear models (Taylor, 2015).

In addition to describing the various formal models for which the chain ladder 
algorithm provides a maximum likelihood estimate of ultimate losses, the authors 
show how the generalized linear model outputs may be used to estimate the associated 
prediction error and thus test whether the chain ladder is a reasonable representation 
of the claim data. The authors also show how adjustments to recognize eccentricities 
in the data could be made within a GLM formulation. The authors introduce two 
variations of the chain-ladder method that could not be contemplated within the 
conventional chain-ladder framework.

The authors conclude by introducing a series of model extensions that deal with a 
variety of conditions that are faced in the daily work of an actuary.

The authors make use of two devices that facilitate the assimilation of the content of 
this monograph: one is that each chapter begins with a brief abstract that describes the 
contents in direct simple terms and the other is that a single data set is used throughout 
the monograph to illustrate the results of various models and their variations. To this 
end, the reader is able to compare outputs and points of sensitivity among the various 
model presentations.

This monograph in effect covers the chain-ladder method from its humble beginnings 
through all the layers that ultimately identify its stochastic parent distributions in their 
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most generalized form. It makes for a complete presentation that practicing actuaries 
can put to good use. The Monograph Editorial Board is grateful to the authors for a 
valuable contribution to the casualty actuarial literature.

C. K. “Stan” Khury
Chairperson

Monograph Editorial Board
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Chapter summary. The claims triangle, and its generalization to arrays of other shapes, 
is introduced, along with notation and a few basic concepts such as that of outstanding 
losses. A data set to be used consistently through a number of numerical examples is 
also introduced.

Next the chain ladder algorithm is introduced, and illustrated by application to the 
example data set. The Bornhuetter-Ferguson and Cape Cod extensions of the chain 
ladder are described.

1.1. Introduction
The chain ladder is the most ubiquitous of loss reserving models. For much of its 

life it existed as an algorithm rather than a model. Here “algorithm” implies a mere 
calculation procedure, not necessarily subject to any rigorous theoretical foundation.

This was remedied by Hachemeister and Stanard (1975) who defined a stochastic 
model of claims data for which chain ladder estimation was found to be maximum 
likelihood (“ML”). Subsequently, the collection of models that fit this description was 
extended, as discussed by Taylor (2011).

It was further shown (Taylor 2015) that all of these models could be represented as 
generalized linear models (“GLMs”), enabling their parameter estimation by means 
of statistical software. The use of this software also returns a good deal of additional 
information about the model, particularly the dispersion of the parameter estimates. 
This may be used as the basis for estimation of the prediction error associated with 
the model.

The purpose of this monograph is to provide a brief account of these matters, 
specifically:

• to describe the various formal models for which the chain ladder algorithm provides 
an ML forecast of loss reserve;

• to discuss how these models may be used to estimate the associated prediction error;
• to discuss how the output of GLM software may be used to test whether the chain 

ladder is indeed a reasonable representation of the claims data; and
• to consider some natural extensions of the chain ladder that are well adapted to the 

GLM framework.

A prior knowledge of the chain ladder as a heuristic loss reserving algorithm, though not 
its theoretical properties, is assumed. Some of the latter will be discussed in Chapter 3. 

1. The Chain Ladder Algorithm
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Although the essentials of GLMs are reviewed, a nodding acquaintance of the reader with 
them would be distinct advantage.

In any event, the purpose of the monograph is not to provide a primer on either 
the chain ladder or GLMs, but rather to show that the former may be placed within the 
context of the latter with many beneficial results. The intention is to provide this in tight, 
minimalist mathematical form.

To venture into a more discursive approach to the intuition of the modeling would 
expand this work considerably, perhaps beyond monograph length. The reader interested 
in a more intuitive approach to GLMs might consult Lindsey (1997).

1.2. Framework and Notation
It will be convenient to follow the framework and notation of Buchwalder, 

Bühlmann, Merz and Wüthrich (2006). They consider a K × J rectangle of claims 
observations Ykj with:

• accident periods represented by rows and labelled k = 1, 2, . . . , K;
• development periods represented by columns and labelled by j = 1, 2, . . . , J ≤ K.

Within the rectangle they identify a development trapezoid of past observations

{ }( )= ≤ ≤ ≤ ≤ − +Y k K j J K kK kj:1 and 1 min , 1

The complement of this subset, representing future observations is

{ }
{ }

( )= ≤ ≤ − + < ≤

= − + < ≤ − + < ≤

Y k K J K k j J

Y K J k K K k j J

K
c

kj

kj

:1 and min , 1

: 1 and 1

Also let

= ∪+
K K K

c

On the d-th diagonal of 𝔇K, k + j - 1 = d, and so the diagonal represents claims 
experience from the d-th calendar period contained in the trapezoid. Diagonals will 
be referred to as experience periods. The final diagonal of 𝔇K is the K-th diagonal, 
consisting of observations Yk,K-k+1, k = K - J + 1, . . . , K.

In general, the problem is to predict 𝔇c
K on the basis of observed 𝔇K.

At this stage the nature of the observations Ykj will be left unspecified. They might 
be defined to be paid losses, reported claim counts, etc. The mathematical structure of 
the chain ladder model does not require stipulation of this.

The usual case in the literature (though often not in practice) is that in which J = K,  
so that the trapezoid becomes a triangle. The more general trapezoid will be retained 
throughout the present monograph.

Define the cumulative row sums

∑=
=

X Ykj ki
i

j

(1-1)
1
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Let Sℛ(k) denote summation over the entire row k of 𝔇K, i.e., Σ ( )
=

− +
j

J K k
1

min , 1
 for fixed k.

Similarly, let S𝒞( j ) denote summation over the entire column j of 𝔇K, i.e., Σ =
− +

k
K j

1
1

for fixed j.
Also define, for k = K - J + 2, . . . , K,

∑= = −
= − +

− +R Y X Xk kj
j K k

J

kJ k K k (1-2)
2

, 1

∑=
=

R Rk
k

K
(1-3)

2

Note that R is the sum of the (future) observations in 𝔇c
K . It will be referred to as the 

total amount of outstanding losses. Likewise, Rk denotes the amount of outstanding 
losses in respect of accident period k. The objective stated earlier is to forecast the  
Rk and R.

1.3. Data for Numerical Examples
A number of the developments described in subsequent chapters will be illustrated 

by numerical example. It will be convenient to relate all examples to the same data 
set. The chosen data set appears as Table 1-1. It will be referred to henceforth as “the 
example data set”.

It is seen that the generic “observations” Ykj of Section 1.2 have now been particu-
larized as incremental paid losses.

The triangle has been obtained from the data base of Meyers and Shi (2011). It 
is in fact the workers compensation triangle of the New Jersey Manufacturers Group. 

Table 1-1.  Triangle of Incremental Paid Losses for Numerical Examples

Accident Year

Incremental Paid Losses in Development Year ($000)

1 2 3 4 5 6 7 8 9 10

1988      1 41821 34729 20147 15965 11285  5924 4775 3742 3435 2958

1989      2 48167 39495 24444 18178 10840  7379 5683 4758 3959

1990      3 52058 47459 27359 17916 11448  8846 5869 5391

1991      4 57251 49510 27036 20871 14304 10552 7742

1992      5 59213 54129 29566 22484 14114 10000

1993      6 59475 52076 26836 22332 14756

1994      7 65607 44648 27062 22655

1995      8 56748 39315 26748

1996      9 52212 40030

1997     10 43962
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The “Accident year” column shows the actual accident year, and then its translated 
version in which the earliest accident year has been re-labelled “1”, as in the general 
framework set out in Section 1.2. This dual notation will be retained through sub-
sequent chapters.

Although remaining chapters will be concerned with just this one type of triangle 
(an “incremental paid loss triangle”), it should be understood that there are many 
other commonly used types, namely:

• “cumulative paid loss triangles”, in which each entry is equal to total payments 
up to and including the relevant development year of the row concerned, i.e., the 
entry in the (k, j) cell is Xkj instead of Ykj as in the above example;

• “incurred loss triangles”, in which the entry in the (k, j) cell is the insurer’s estimate, 
as at the end of development year j, of the total claim cost incurred in accident year 
k, i.e., Xkj plus the insurer’s estimate of the claim cost remaining unpaid at the end 
of development year j.

The incurred loss triangles might reasonably be referred to as “cumulative incurred 
loss triangles”, and one might define “incremental incurred loss triangles”, obtained 
by differencing rows of the cumulative incurred loss triangles.

There are yet other triangles. These include triangles of claim counts, instead of 
claim amounts. These might contain, for example, counts of:

• Reported claims;
• Finalized claims;
• Unfinalized claims.

These data are required by the models explored in Chapter 4 of Taylor (2000).

1.4. The Chain Ladder Algorithm
This section will give a statement of the chain ladder algorithm as it has been used 

in years past. The description below is taken largely from Mack (1993).
Define the following age-to-age factors:

( )= = − = − −+f X X k K j J K kk j k j k j
ˆ , 1,2, . . . , 1; 1,2, . . . ,min 1, (1-4), 1

and the weighted average age-to-age factors:

∑= = −
=

−
f w f j Jj k j k j

k

K j
ˆ ˆ , 1,2, . . . , 1 (1-5)

1

where, for each fixed j, {wkj, k = 1, 2, . . . , K - j} is some set of weights, i.e., wkj ≥ 0 and

∑ =
=

−
wk j

k

K j

1 (1-6)
1
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Suppose the weights are chosen as

∑=
=

−
w X Xk j k j k j

k

K j

(1-7)
1

Then the weighted average age-to-age factors in (1-5) become

∑ ∑= +
=

−

=

−
f X Xj k j

k

K j

k j
k

K j
ˆ (1-8), 1

1 1

Now define the following forecasts of the Xkj corresponding to the Ykj ∈ 𝔇c
K :

= − + − + −X X f fk j k K k K k j
ˆ ˆ . . . ˆ (1-9), 1 1 1

whence, by (1-4), the forecasts of the Ykj are:

( )= −− + − + − −Y X f f fk j k K k K k j j
ˆ ˆ . . . ˆ ˆ 1 (1-10), 1 1 2 1

It follows from (1-5) that outstanding losses Rk are estimated by

( )= − = −− + − + − + −R X X X f fk kJ k K k k K k K k J
ˆ ˆ ˆ . . . ˆ 1 (1-11), 1 , 1 1 1

Finally, denote total (over all accident years) outstanding losses by R and their estimate by

∑=
=

−
R Rk

k

K
ˆ ˆ (1-12)

1

1

As the heading of the current section indicates, the estimation schema (1-8) to (1-12) 
is only an algorithm, not a model. No model has yet been formulated in the sense 
of expressing the observations in terms of a set of parameters. This will be addressed 
in Chapter 3.

1.5. Numerical Example
The development in Section 1.4 provides the necessary background for an explanation 

of the choice of data set in Table 1-1. That triangle has been chosen purposefully rather 
than at random. The reasons for the choice can be seen in Table 1-3. This is constructed 
from Table 1-2, which is the table of cumulative observations Xkj in the notation of 
Section 1.2. The Xkj are obtained from Table 1-1.

Then Table 1-3 is the table of f̂ kj in the notation of Section 1.4. In this table the 
age-to-age factor labelled as belonging to development year j is f̂ kj, defined in (1-4) 
as relating development years j and j + 1.

The averaging of age-to-age factors over a column in (1-5) and (1-8) suggests an 
implicit assumption of random variation of the fkj about a constant parameter for fixed j. 
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This assumption will be made explicit in the model formulation of Section 3.3.1. In the 
meantime, the approximate constancy of the f̂ kj for fixed j in Table 1-3 may be noted.

As a consequence, the chosen data set will be compatible with the formal chain 
ladder models formulated in Chapter 3. The data set has been selected for this reason 
as it is to be used for numerical illustration of various aspects of the chain ladder.

1.6. Common Chain Ladder Extensions
There are a couple of extensions to the chain ladder forecast just described that will 

not be discussed further in this monograph but are integral to loss reserving practices 

Table 1-2.  Triangle of Cumulative Paid Losses

Accident Year

Cumulative Paid Losses to and Including Development Year ($000)

1 2 3 4 5 6 7 8 9 10

1988      1 41821  76550  96697 112662 123947 129871 134646 138388 141823 144781

1989      2 48167  87662 112106 130284 141124 148503 154186 158944 162903

1990      3 52058  99517 126876 144792 156240 165086 170955 176346

1991      4 57251 106761 133797 154668 168972 179524 187266

1992      5 59213 113342 142908 165392 179506 189506

1993      6 59475 111551 138387 160719 175475

1994      7 65607 110255 137317 159972

1995      8 56748  96063 122811

1996      9 52212  92242

1997     10 43962

Table 1-3.  Triangle of Age-to-Age Factors

Accident Year

Age-to-Age Factor for Development Year

1 2 3 4 5 6 7 8 9

1988     1 1.830 1.263 1.165 1.100 1.048 1.037 1.028 1.025 1.021

1989     2 1.820 1.279 1.162 1.083 1.052 1.038 1.031 1.025

1990     3 1.912 1.275 1.141 1.079 1.057 1.036 1.032

1991     4 1.865 1.253 1.156 1.092 1.062 1.043

1992     5 1.914 1.261 1.157 1.085 1.056

1993     6 1.876 1.241 1.161 1.092

1994     7 1.681 1.245 1.165

1995     8 1.693 1.278

1996     9 1.767
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to the extent that they will be related here. Their origins lie in the fact that the chain 
ladder algorithm, at least in its incremental paid loss form, is highly sensitive to the 
amount of claim payments to date.

Note that, by (1-10), all forecasts in respect of accident year k are directly proportional 
to Xk,K-k+1, the total paid losses to date for that accident year. This sensitivity can be 
particularly acute in the case of the more recent accident years. For example, forecasts 
for the most recent accident year K will be directly proportional to the single observation 
Ykj (= Xkj).

Some variations of the chain ladder algorithm seek to reduce this sensitivity by 
relating the estimate ultimate claim cost of an accident year to some kind of budget 
(i.e., prior-to-data estimate) cost.

Let Bk denote a budget ultimate claim cost for accident year k. An estimate of the 
portion of this paid in the future (i.e., after development year K - k + 1), based on the 
age-to age factors (1-8) is obtained by inversion of (1-11) thus:

= − = −








( )

− +
− + −

R B X B
f f

k
B

k k K k k
K k J

ˆ ˆ 1
1

ˆ . . . ˆ (1-13), 1
1 1

There are two common forms of this forecast used in practice, involving different 
budget claim costs:

• Bornhuetter-Ferguson forecast (Bornhuetter and Ferguson, 1972): Bk = Pkpk, 
where Pk denotes earned premium for accident year k, and pk budget loss ratio for 
the accident year; and

• Cape Cod forecast (Straub, 1988): Bk = Pk SK
i=1 wi [(Xi,K-i+1 + R̂i)/Pi]/SK

i=1 wi, with 
wi = 1/f K̂-i+1 . . . f Ĵ-1.

The Bornhuetter-Ferguson forecast uses a budget ultimate claim cost calculated accord-
ing to the budget loss ratio for the relevant accident year. The Cape Cod forecast is 
similar but uses the same budget loss ratio for each accident year. This single loss ratio 
is a weighted average of the loss ratios forecast by the chain ladder for the individual 
accident years.
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2. Stochastic Models

Chapter summary. This chapter provides the theoretical background for GLMs. A 
GLM assumes observations to be subject to a distribution drawn from the Exponen-
tial Dispersion Family. This family, and its properties, are introduced. Important sub-
families, namely the Tweedie sub-family, and the over-dispersed Poisson (nested within 
Tweedie), are identified.

A GLM is then defined and explained. The two types of covariate, categorical and con-
tinuous, are discussed. A number of aspects of goodness-of-fit of a GLM are discussed, 
including deviance and residuals. The use of weights to control heteroscedasticity, and 
to deal with outlying observations, is explained. The use of a GLM to generate forecasts 
is also discussed.

2.1. Exponential Dispersion Family
Subsequent chapters will present the chain ladder models in terms of GLMs, 

which will be defined in Section 2.2. GLMs rest on the family of distributions called 
the exponential dispersion family (“EDF”), which is defined in the present subsection.

2.1.1. The Exponential Dispersion Family in General
The EDF was introduced by Nelder and Wedderburn (1972), and discussed in 

detail in McCullagh and Nelder (1989). It is the family of distributions with probability 
density function (“pdf”) p(y; q, f) of the form

( ) ( )
( ) ( )π θ φ =

θ − θ
φ

+ φln y
y b

a
c y; , , (2-1)

where

y is the value of an observation Y;
q is a location parameter called the canonical parameter;
f is a dispersion parameter, sometimes called the scale parameter;
b(.) is called the cumulant function, and determines the shape of the distribution;
exp c(y, f) is a normalizing factor producing unit total mass for the distribution.

It is assumed that the functions a, b, c are continuous and that b is one-one and twice 
differentiable with first derivative also one-one.

A family of distributions is specified by the selection of a, b, c, and members of this 
family are then characterised by the parameters q, f. A specific member of this family 
will be denoted EDF(q, f; a, b, c).
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The form (2-1) is one which includes a number of the well-known distributions, 
as illustrated in Table 2-1.

The selection of an EDF distribution from this table to be assumed within a model 
will depend on the subject of the model and its properties. For example, the Poisson 
and binomial cases might be suitable for a model of counts; the other cases for amounts.

It may be shown that, when Y is distributed according to (2-1),

[ ] ( )= ′ θE Y b (2-2)

( ) ( )[ ] = φ ′′ θVar Y a b (2-3)

If E [Y ] is denoted by µ, then (2-2) establishes a connection between µ and q:

( ) ( )θ = ′ µ−b (2-4)1

which justifies the above description of q as a location parameter.
The relation (2-4) is one-one and so, with just a slight abuse of notation, one may 

write the pdf of y as p(y; µ, f), as an alternative to p(y; q, f).
Use of (2-2) converts (2-3) to the form:

[ ] ( ) ( )= α φ µVar Y V (2-5)

where

( )( ) ( ) ( )µ = ′′ ′ µ−V b b (2-6)1

and V (µ) is called the variance function.
Note that the somewhat confusingly named variance function is not equal to the 

variance. In fact, (2-5) decomposes the variance into factors that depend on the mean 
and the dispersion parameter respectively. The variance function is the factor dependent 
on the mean.

For all practical purposes, it is sufficient to restrict (2-1) to the special case

( )φ = φa w (2-7)

Table 2-1.  Examples of Distributions from the EDF

Distribution b(q) a(f) c(y, f)

Normal ½q2 f -½[y2/f + ln(2pf)]

Poisson exp q 1 -ln y!

Binomial ln (1 + eq) n -1 ln( n
ny)

Gamma -ln (-q) v -1 v ln(vy) - ln y - ln (Gv)

Inverse Gaussian -(-2q)-½ f -½[ln (2pfy3 + 1/fy)]
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for some constant w, and this restriction will be assumed henceforth. Variation of w from 
one observation to another creates any required variation in a(f), as will be explained 
in Section 2.2.1. However, unless otherwise stated in the following, it will be assumed 
that w = 1.

2.1.2. The Tweedie Sub-Family
The Tweedie sub-family of the EDF was introduced by Tweedie (1984). It is 

obtained from the EDF by restriction of the variance function as follows:

( )µ = µ ≤ ≥V p pp, 0 or 1 (2-8)

So, according to (2-5) and (2-7), Var[Y ] = fµp and variance is proportional to a power 
of the mean.

It may be shown that this form of variance function implies that the cumulant 
function takes the form

[ ]( ) ( ) ( )θ = − − θ−
−
−b p p

p
p2 1 (2-9)1

2
1

and this in turn implies

[ ]( )µ = − θ −p p1 (2-10)
1

1

( ) ( ) ( ) ( )π µ φ = µ
−

− µ
−







φ + φ
− −

ln y
y

p p
c y

p p

; ,
1 2

, (2-11)
1 2

Note that several of the example distributions appearing in Table 2-1 are characterized 
by a cumulant function of the form (2-9). In fact all distributions in that table other 
than binomial satisfy this condition, or at least a limiting version of it, when it is 
recognized that

[ ]( )− θ = θ
↓

−p exp
p

plim 1 (2-12)
1

1
1

( )− θ = θ
↑

− −p ln
p

plim 2 (2-13)
2

1 2

The Tweedie sub-family, which will be denoted Tw(µ, f; p), thus contains these 
distributions, as set out in Table 2-2. It also contains the over-dispersed version of 
the Poisson distribution. The final column here omits the term c(y, f).

It follows from (2-8) that the tail heaviness of Tweedie distributions increases 
with increasing p. The choice of Tweedie member for a model may therefore depend 
on the heaviness of tail indicated by the data. If, for example, a model based on 
index p generates more widely dispersed residuals than are consistent with that model, 
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then consideration might be given to increasing p. This matter is discussed further in 
Section 6.6.

Moreover, it has been shown (Jorgensen and Paes de Souza, 1994) that the cases 
1 ≤ p < 2 can be identified as compound Poisson distributions with gamma severity 
distributions.

2.1.3. The Over-Dispersed Poisson Sub-Family
The over-dispersed Poisson (“ODP”) distribution will play a central role in some 

subsequent chapters, and so is discussed a little further here.
As noted in Table 2-2, it is the Tweedie case p = 1. It may be represented, as a 

family, by Tw(µ, f; 1), which will be abbreviated to ODP(µ, f). From the last column 
of that table, its pdf is

[ ]( ) ( )π µ φ = µ −µ φ + φ = φ φφy exp c y yy; , , , 0, , 2 , etc. (2-14)

with µ = eq.
It may be checked that a unit total probability mass is obtained if

[ ]( ) ( )φ = φ −exp c y y, ! (2-15)1

Substitution of (2-15) in (2-14) yields

( ) ( )
( )π µ φ =

µ −µ φ
φ

= φ φ
φ

y
exp

y
y

y

; ,
!

, 0, , 2 , etc. (2-16)

and this is recognizable as the Poisson distribution

∼ ( )φ µ φY Poiss (2-17)

From this it follows that

[ ] [ ]= φ φ = µE Y E Y (2-18)

Table 2-2.  Some Well-Known Members of the Tweedie Family

Distribution p b(q) µ ln p(y; µ, f)

Normal 0 ½q2 q [yµ - ½µ2]/f

Over-dispersed Poisson 1 exp q exp q [y ln µ - µ]/f

Gamma 2 ln(-q) -1/q [-y/µ - ln µ]/f

Inverse Gaussian 3 -(-2q)½ (-2q)-½ [-(y/2 µ2) + 1/µ]/f
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[ ] [ ]= φ φ = φµVar Y Var Y (2-19)2

Note that (2-18) checks with the definition of µ, and (2-19) checks with (2-5), (2-7) 
and (2-8). Note also that, in the case f = 1, (2-17) reduces to the simple Poisson

∼ ( )µY Poiss (2-20)

Thus, by (2-17)–(2-19), the ODP variate is similar to a Poisson variate but with the 
relation between variance and mean changed by the dispersion parameter f.

An ODP assumption is often a convenient one when little is known of the subject 
distribution. As a simple modification of the Poisson distribution, it retains much of the 
simplicity of that case, but its 2-parameter nature endows it with much more flexibility. 
Nonetheless, as in the case of any other distributional assumption, it requires validation 
by reference to the data (see Section 6.6). Its major relevance to this monograph will 
become apparent in Section 3.3.

2.2. Generalized Linear Models (GLMs)
2.2.1. Definition

For the purpose of the current sub-section, let p(.; µ, f) denote a member of the 
EDF, fixed except that the parameters µ, f remain variable.

Consider a sample of observations Yi, i = 1, 2, . . . , n. Suppose that each Yi is 
associated with a known q-vector (xi1, xi2, . . . , xiq) of predictors (or covariates). Let 
the transpose of this vector be denoted xi. Suppose also that these observations satisfy 
the following conditions:

(1) Yi ~ p(.; µi, fi) with the µi being unknown parameters.
(2) h(µi) = xT

i b, where h(.), known as the link function, is a given one-one function 
with range (-∞, +∞), b is a q-vector of unknown parameters, and the upper T 
denotes vector or matrix transposition.

(3) The observations Yi are stochastically independent.

The structure defined by conditions (1)–(3) is called a generalized linear model 
(“GLM”), discussed in depth by McCullagh and Nelder (1989). The variate Yi is called 
the response and the linear expression xT

i b is called the linear response. The choice of 
link function must be such as to transform the mean of each observation into a linear 
function of the parameter vector b. An example will be given in Section 3.3.2.

The dispersion parameters fi may be known but more commonly it is assumed that

φ = φ wi i (2-21)

with f unknown but the wi (called weights) known.
The GLM is a regression model. Note that, if p(.; µi, fi) = n(.; µi, fi), the normal 

density, and h = identity, then conditions (1) and (2) may be expressed in the form

∼ ( )= β + ε ε φY x Ni i
T

i i iwith 0, (2-22)
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This is recognizable as a weighted linear regression model. Thus a GLM may be 
regarded as a generalization of linear regression in which:

• The relation between observations and covariates may be non-linear;
• Error terms may be non-normal.

It will sometimes be useful to represent condition (2) in vector and matrix notation. 
Let Y denote the vector whose i-th component is Yi, µ denote the vector whose i-th 
component is µi, and let X denote the matrix whose i-th row is xT

i . The matrix X is 
called the design matrix of the regression. Then condition (2) is written as

( )µ = β−h X (2-23)1

where h-1 is understood to operate componentwise on its vector argument.
The parameter vector b is related to the canonical parameters q of (2-1) through 

(2-2) and (2-23). Within the GLM, there will be an n-vector (q1, . . . , qn) of canonical 
parameters, one corresponding to each observation. Let this vector henceforth be 
denoted by q. Then

( )( ) [ ]′ θ = = µ = β−b E Y h xi i i i
T (2-24)1

It is evident from (2-8), (2-24) and the discussion surrounding Table 2-2 that selection 
of a GLM consists of:

• selection of a cumulant function, controlling the model’s assumed error distribution;
• as part of this, selection of index p, which controls the relation between the model 

mean and variance;
• selection of the covariates xT

i , those explanatory variables considered to influence 
the cell mean µi;

• selection of a link function, which specifies the functional relation between the cell 
mean µi and the associated covariates.

Chapter 6 discusses in some detail how diagnostics derived from the data might be 
used to guide these selections.

One way in which the parameters of the GLM may be estimated from data is by 
maximum likelihood estimation (“MLE”). Usually, the MLE solutions are not expressible 
in closed form, and numerical solution is required. The numerical solution is non-
trivial, and specialist software is required.

Well known GLM software packages are SAS, R and Emblem. These use MLE, 
and this form of estimation will be assumed for the remainder of this monograph.

Sections 2.2.2 to 2.2.6 discuss a number of aspects of a GLM that are essential 
to its meaningful formulation. As part of the present chapter, which establishes the 
theoretical background, these sections are abstract in nature. However, many of the 
features discussed are illustrated numerically in Chapter 6.
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2.2.2. Categorical and Continuous Covariates
Some covariates are discrete by nature, possibly non-numerical (e.g., gender). Such 

covariates are usually referred to as categorical in the regression context. Other covariates 
are continuous by nature (e.g., age).

Consider a categorical variate with m possible values (often referred to as levels 
of the variate), denoted x1, . . . , xm. This is represented in the GLM as m distinct 
0–1 variates xk+1, . . . , xk+m, where x1, . . . , xk, xk+m+1, . . . denote the other regression 
covariates. The 0–1 variates are defined as

= ξ

=

+xk r r1 if the categorical variate assumes the value (2-25)

0 otherwise

Note that

∑ =+
=

xk r
r

m
1 (2-26)

1

For example, if one wished to include development year as a covariate in a model, this 
might be done by treatment of development year as a categorical variate x with J levels 
x = j, j = 1, . . . , J, where the associated 0–1 variates are defined as:

= ξ =

=

+x jk j 1 if

0 otherwise

This treatment of categorical variates can sometimes lead to the introduction of 
redundant parameters. This will be illustrated, and the remedy given, in Sections 3.2 
and 3.3.2, where representation of development year as a categorical variate will be 
pursued further.

A continuous variate on the other hand assumes numerical values in a continuous 
range (e.g., age). Such a variate may be represented in a regression as simply itself. 
Alternatively, it may be represented as some transformation of itself.

For example, the function

[ ]( ) ( )= − − <L x min M m max x m m MmM , 0, with (2-27)

is linear with unit gradient between m and M, and constant outside this range, as 
illustrated in Figure 2-1.

Functions of this sort may be used to incorporate linear splines (piecewise linear 
functions) in the regression. For example, the function

∑ ( )β
=

+L xk m m
k

K

k k (2-28)
1

1

is a linear spline with knots at x = m1, . . . , mK+1 and gradient bk for x ∈ [mk, mk+1].
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The functions Lmkmk+1(x) are called basis functions since the spline may be con-
structed as a linear combination of them. If these basis functions are included as 
covariates in a regression, then the regression will return estimates of the gradients 
bk. Splines of higher degree (e.g., cubic splines) may be similarly incorporated in the 
regression model by means of appropriately defined basis functions. Basis functions 
will be central to the development of generalized additive models in Section 7.2.

2.2.3. Goodness-of-Fit and Deviance
Let b̂ denote the MLE of b. The vector

( )= β−Y h Xˆ ˆ (2-29)1

is the MLE of µ and is referred to as the vector of fitted values (c.f. (2-23)).
The principal measure of goodness-of-fit of a GLM is its scaled deviance, defined as

∑

( ) ( )

( ) ( )

( ) = π θ φ − π θ φ 

= π θ φ − π θ φ 

( )

( )

=

D Y Y ln Y ln Y

ln Y ln Y

s

i
s

i
i

n

, ˆ 2 ; ˆ , ; ˆ, (2-30)

2 ; ˆ , ; ˆ,
1

where q is the vector of canonical parameters introduced just before (2-24), q̂ is the 
MLE of q, and q̂(s) is the estimate of q in the saturated model, a model with a parameter 
for every observation so that Ŷ  = Y.

It should be noted that nomenclature differs between authors. For example, 
McCullagh and Nelder refer to (2-30) as the scaled deviance, as is done here, whereas 
other authors refer to just the deviance.

It is evident from a comparison of (2-30) with (2-1) that maximization of likelihood 
is equivalent to minimization of deviance. A smaller scaled deviance indicates improved 
goodness-of-fit. The minimum achievable deviance is zero, when there is no difference 
between observations and fitted values (as in the saturated model).

Calculation of the scaled deviance (2-30) requires computation of a value for f. 
However, it is evident from (2-1) that f will factor out of any minimisation of scaled 
deviance, whence its value is irrelevant to MLE of parameters.

Figure 2-1.  Illustration of the Function LmM(x)
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For this reason it is common to define an unscaled version of the deviance, referred 
to subsequently as just the deviance, as follows:

∑ ( ) ( )( ) = π θ − π θ 
( )

=
D Y Y ln Y ln Yi

s
i

i

n
* , ˆ 2 ; ˆ ,1 ; ˆ,1 (2-31)

1

which, in effect, ignores f. MLE is then carried out by minimization of D*(Y, Ŷ ) with 
respect to q̂, equivalently b̂.

The deviance can be viewed as the logarithm of a likelihood ratio and, by an 
application of Wilks’ theorem, it is asymptotically c2 distributed with n - p as the 
number of degrees of freedom. The usual estimate of the scale parameter f is therefore

( ) ( )φ = −D Y Y n pˆ * , ˆ (2-32)

2.2.4. Residuals
Pearson Residuals

Define the standardized Pearson residual associated with observation Yi as

( )= − σR Y Yi
P

i i i
ˆ ˆ (2-33)

where ŝ2
i is an estimator of s2

i  = Var[Yi ].
If it may be assumed that Ŷi is approximately unbiased as an estimator of µi, and 

that Var[Yi - Ŷi ] differs little from Var[Yi ] (these assumptions are often reasonable), 
then approximately

[ ] [ ]= =E R Var Ri
P

i
P0 and 1 (2-34)

It is in fact possible to correct (2-33) with a further scalar multiplier in order to ensure 
that Var[RP

i ] = 1 but details are not given here.
In this case a plot of the Yi against i will produce a scatter of residuals evenly 

about zero (unbiasedness) and with uniform dispersion as one reads from left to right 
(homoscedasticity). An example appears as Figure 2-2.

In fact the homoscedasticity of Figure 2-2 is only approximate, as is indicated by 
Figure 2-3. This plots the standard deviation of residuals by age group (right-hand 
scale). The standard deviation varies from about 0.8 to about 1.1, indicating mild 
heteroscedasticity. The same figure plots the lower quartile (“p_25”) and upper quartile 
(“p_75”) of the residuals in each age group (left-hand scale).

Routine model validation includes the examination of a separate residual plot 
against each covariate (e.g., age), checking for unbiasedness and homoscedasticity. 
The reason that unbiasedness is sought is obvious. The reason for the requirement of 
homoscedasticity will be discussed in Section 2.2.5.
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Figure 2-2.  Example of Unbiased Approximately Homoscedastic Residual Plot

Figure 2-3.  Example of Biased Homoscedastic Residual Plot
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Deviance Residuals
Although Pearson residuals have a simple intuitive interpretation, they are linear 

transformations of the observations and will reproduce any non-normality that exists in 
them. For this reason it is common to use a different form of residual in the assessment 
of a GLM. This is the standardized deviance residual, defined in relation to the 
observation Yi as

( )( )= − φR sgn Y Y di
D

i i i
ˆ ˆ (2-35)

1
2

where di is the contribution of the i-th observation to the deviance D*(Y, Ŷ ).
As was the case with Pearson residuals, it is possible to correct (2-35) with a 

further scalar multiplier in order to ensure that Var[R D
i ] = 1 but again details are not 

given here.
Pierce and Schafer (1986) showed that deviance residuals are normally distributed 

with error of order m-½, where m is a certain index derived from the specific member of 
the EDF associated with the GLM. As a result of this property, deviance residuals often 
remove much of the non-normality present in Pearson residuals and, in consequence, 
are often more useful.

An example of this is given in Figure 2-4 and Figure 2-5, which plot histograms of 
residuals from a model of individual auto bodily injury claims in one Australian state. 
Individual claims are modeled as gamma distributed with mean value depending on 
various claim characteristics but constant (and large) coefficient of variation, 1.16. 

Figure 2-4.  Histogram of Standardized Pearson Residuals
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Figure 2-5.  Histogram of Standardized Deviance Residuals

Figure 2-4 plots standardized Pearson residuals, and Figure 2-5 plots standardized 
deviance residuals.

In each case the best normal approximation to the histogram, calculated by the 
method of moments, is also shown. The Pearson residuals are seen to be highly skew and 
poorly fit by the normal approximation. The deviance residuals, while still exhibiting 
some degree of non-normality, are seen to be much closer to normal.

2.2.5. Outliers and the Use of Weights
The need for homoscedasticity was discussed in Section 2.2.4. The reason for this 

will be discussed below. However, first a short digression on the use of variance weights 
(or simply weights).

If a residual plot reveals heteroscedasticity, correction may be made by means 
of weights. Consider the following example that is rather exaggerated but illustrates 
the point nonetheless. Suppose a GLM has been formulated on the assumption of 
homo scedasticity, specifically that (see (2-5) and (2-7))

[ ] ( )= φ µVar Y Vi i (2-36)

with f independent of i.
Suppose that standardized Pearson residuals (2-33) have been plotted by age and 

it appears that residuals above age 55 have double the standard deviation of those 
below age 55.
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First use (2-5) and (2-7) to express (2-33) in the form

( ) ( )= − φ µ R Y Y Vi
P

i î
ˆ ˆ (2-37)

1
2

Then the observed heteroscedasticity indicates that the value of f for ages above 
55 is in fact about four times that for lower ages. The heteroscedasticity would be 
removed if the model were adjusted to reflect this variation in f over age. This may 
be achieved by the use of weights. By (2-21) the required result may be achieved 
by setting

 wi = 1 if the i-th observation involves an age below 55
  = ¼ if the i-th observation involves an age above 55

In the default case in which there is no explicit introduction of weights (Section 2.2.5), 
all observations will be equally weighted in parameter estimation. This is appropriate 
if all observations are subject to the same f, but undesirable otherwise. It is intuitively 
obvious that observations of larger variance than this should receive lesser weight than 
those of smaller variance.

Indeed, it can be shown that estimation efficiency will be optimized if each obser-
vation is assigned a weight that is inversely proportional to its f. As noted above, the 
relative values of f for different observations are reflected in the variance of their stan-
dardized residuals.

Thus, in general, if a residual plot displays heteroscedasticity, one adjusts weights 
roughly in inverse proportion with variance of the residuals. A specific example of 
the use of weights in this way is given in Section 6.6 (see particularly Figure 6-15, 
Figure 6-17 and associated text).

A residual plot might also identify isolated observations with very large residuals. 
These are referred to as outliers. Such observations can influence the regression unduly 
by shifting the fitted values away from the main body of observations in favor of the 
outliers, as illustrated in Figure 2-6.

The solid line in the diagram is the result of linear regression using all observations, 
including the outlier at x = 14, whereas the dotted line is the result of linear regression 
excluding this observation.

In the event that a specific observation is identified as an outlier, and its inclusion 
in the regression considered distorting, it may be excluded by assigning it zero weight.

Care must be taken in the exclusion of any data points. For example, if the outlier 
represented a major natural event, whereas the other observations represented attritional 
events, the exclusion of the former from the regression may be appropriate but the cost 
of major natural events would need to be accounted for somewhere.

Moreover, the exclusion of selected observations from parameter estimation will 
have consequences for the estimation of prediction error, as discussed in Sections 5.3.1 
and 5.3.2.
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2.2.6. Forecasts
Recall from Section 2.2.1 that

( )[ ] = µ = β−E Y h xi i i
T (2-38)1

When the GLM is to be used for forecasting, as in loss reserving, the covariate vectors xi 
will typically include information on the time of measurement. They may also contain 
other information. For example, in the case of workers compensation claims, the xi 
may include the type of claim (income replacement, medical only, etc.).

When the model is applied to forecast future observations, those observations will 
be characterized by their own covariate vectors xi. These will be distinct from those in 
the data set in that, to the extent that they include time variates, their values will all 
relate to the future.

It will be convenient to distinguish future observations from the past Yi by the 
notation Y *i , characterised by the covariate vector x*i . In general, the addition of a star 
to a symbol will indicate future values of the variate represented by the corresponding 
unstarred symbol. Thus, for example, Y * will denote the vector of target random 
quantities Y *i  to be forecast, and the relation (2-23) is extended to future values as 
follows:

( )µ = β−h X* * (2-39)1

where X * is the matrix whose rows are the (x*i )T discussed above and may be referred 
to as the forecast design matrix.

A reasonable forecast of Y * is then

( )= µ = β−Y h Xˆ* ˆ* * ˆ (2-40)1
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Figure 2-6.  Illustration of Distortion of Regression by Outlier
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3.  Stochastic Models Supporting  
the Chain Ladder

Chapter summary. This chapter is concerned with the fact that the chain ladder 
algorithm of Chapter  1, known to many actuaries as merely a heuristic device, 
in fact provides the maximum likelihood forecasts of outstanding claims for a 
couple of formal models. Several formal chain ladder models from the literature 
are surveyed.

Two distinctly different stochastic models are defined whose MLEs of future claims 
experience are the same as the predictions of the heuristic algorithm. Moreover, these 
MLEs are also seen to possess certain minimum variance properties. These results are 
summarized in three theorems.

It is shown that these formal stochastic models are expressible as GLMs, and therefore 
estimates and forecasts from these GLMs will match the chain ladder estimates and 
forecasts. This is illustrated by numerical example.

Practical applications of the chain ladder often incorporate various ad hoc adjustments, 
such as omission of older diagonals from the claims triangle or omission of isolated 
observations that are considered rogue. It is shown that such adjustments can be 
accommodated within the GLM formulation, thus maintaining a formal model 
structure in their presence.

3.1. Mack Models
3.1.1. Non-Parametric Mack Model

Mack (1993) introduced a stochastic chain ladder model that has subsequently 
become known as the Mack model. It satisfies the following conditions:

(M1)  Accident years are stochastically independent, i.e., Yk1 j1, Yk2 j2 are independent if 
k1 ≠ k2.

(M2) For each k = 1, 2, . . . , K, the Xkj ( j varying) form a Markov chain.
(M3) For each k = 1, 2, . . . , K and j = 1, 2, . . . , J-1,

(a) E [Xk,j+1|Xkj] = fj Xkj for some parameter fj > 0;
(b) Var[Xk,j+1|Xkj] = s2

j Xkj for some parameter sj > 0.

The model was stochastic in the sense that it considered not only expected values but 
also variances of observations. However, it was non-parametric in the sense that it did 
not consider the distribution of observations.
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Mack derived a number of results from this model, including the following:

Result 1: The conventional chain ladder estimators fĵ of fj according to (1-8) are:
(a) unbiased; and
(b)  minimum variance among estimators that are unbiased linear combi-

nations of the f k̂ j defined by (1-4).
Result 2:  The conventional chain ladder estimator R̂ k of Rk given by (1-11) is  

unbiased.

3.1.2. Parametric Mack Models
A parametric version of the Mack model requires that assumption (M3) be supple-

mented by a distributional assumption. Parametric versions of the Mack model were 
studied by Taylor (2011). The observations Yk,j+1|Xkj were assigned distributions according 
to a member of the EDF, creating the EDF Mack model, defined as follows.

(EDFM1) As for (M1).
(EDFM2) As for (M2).
(EDFM3) For each k = 1, 2, . . . , K and j = 1, 2, . . . , J-1,

(a) Yk,j+1|Xkj ~ EDF(qkj, fkj; a, b, c); and
(b) As for (M3a).

Assumption (EDFM3a) provides the required distributional assumption, with a general 
requirement that conditional observations be distributed according to some specific 
member of the EDF. Assumption (EDFM3b) retains the same form of conditional 
expectation as in the Mack model. No assumption about variance has been made other 
than that inherent in the selected EDF member. So the form of variance allowed in the 
EDF Mack model is more general than in the non-parametric Mack model.

Taylor (2011) also considered the following sub-families of the EDF Mack models:

Tweedie Mack model, in which (EDFM3a) is replaced by Yk,j+1|Xkj ~ Tw(µkj, fkj; p).
ODP Mack model, in which (EDFM3a) is replaced by Yk,j+1|Xkj ~ ODP(µkj, fkj).

Taylor derived the following result.

Theorem 3.1.  Suppose that the data array 𝔇K is a triangle ( J = K ) with observations 
subject to the EDF Mack model defined by assumptions (EDFM1-3).

(a)  If assumption (M3b) also holds, then the model’s MLEs of the fj are the con ventional 
chain ladder estimators fĵ from (1-8). These are in turn unbiased estimators in the 
Mack model (see Result 1 of Section 3.1.1).

(b)  If the EDF Mack model is restricted to an ODP Mack model in Assumption 
(EDFM3a), and if in addition the dispersion parameters fkj are just column 
dependent (fkj = fj) (the condition (M3b) automatically holds in this case), then 
the f ĵ from (1-8) are minimum variance unbiased estimators (“MVUEs”) of the fj.

(c)  Under the same conditions as in (b), the predictors X̂kj, R̂k defined by (1-9) and 
(1-11) are also MVUEs of Xkj, Rk. n

The results of the theorem were also shown to extend to certain cases in which 
the distributions of the Ykj were binomial or negative binomial.



24 Casualty Actuarial Society

Stochastic Loss Reserving Using Generalized Linear Models

The theorem is remarkable because it shows that estimates and forecasts that had 
been introduced to the actuarial literature many years earlier on an entirely heuristic 
basis turn out to be optimal estimators in the MLE and MVUE sense.

This MVUE result is much stronger than that of Mack referred to in Section 3.1.1 
as the estimators here are minimum variance out of all unbiased estimators, not just 
out of the linear combinations of the f k̂ j.

3.2. Cross-Classified Models
Consider a model of 𝔇+

K defined by the following conditions:

(EDFCC1) The random variables Ykj ∈ 𝔇+
K are stochastically independent.

(EDFCC2) For each k = 1, 2, . . . , K and j = 1, 2, . . . , J,
(a) Ykj ~ EDF(qkj, fkj; a, b, c);
(b) E[Ykj] = akbj for some parameters ak, bj > 0; and
(c) ∑ J

j=1 bj = 1.

Models subject to (EDFCC2b) are variously referred to in the literature as cross-
classified, ANOVA, or non-recursive. This model will be referred to here as the EDF 
cross-classified model.

The condition (EDFCC2c) merely removes redundancy from the model’s parameter 
set. If it were absent, all a’s could be doubled and all b’s halved without any substantive 
change to the model. A single restriction on the parameters is required to render their 
values unique. Condition (EDFCC2c) is widely used for this purpose but other constraints 
would serve equally well, e.g., b1 = 1 or a1 = 1.

It is noteworthy that the parameters of the EDF cross-classified model consist of 
both row and column parameters ak and bj respectively, whereas the only parameters 
contained in the Mack models are the column parameters fj. This appears to imply that 
the EDF cross-classified structure is more general.

There was considerable discussion of this around the turn of the century (e.g., Mack 
and Venter, 2000; Verrall, 2000) in which it was pointed out that, although the Mack 
model contains no explicit row parameters, its conditioning on prior observations (see 
(M3a)) in effect plays the same role. The accumulated experience Xk,J-k +1 of row k serves 
as a row parameter in the forecast of future experience of that row.

Just as for the EDF Mack model of Section 3.1.2, Tweedie and ODP sub-families 
of the EDF cross-classified family may be identified. These will be referred to as the 
Tweedie cross-classified family and ODP cross-classified family respectively.

Let âk, b̂j denote MLEs of ak, bj and let Ŷ kj = âkb̂j denote the fitted value associated 
with Ykj ∈ 𝔇K or the forecast of Ykj ∈ 𝔇c

K. The following result was obtained by England 
& Verrall (2002).

Theorem 3.2.  Suppose that the data array 𝔇K is a triangle ( J = K ) with observations 
subject to the ODP cross-classified model defined by assumptions (EDFCC1-2) and 
the following additional conditions:

(EDFCC3a) In (EDFCC2a) Ykj is restricted to an ODP distribution;
(EDFCC3b) The dispersion parameters fkj are identical for all cells in 𝔇+

K (i.e., fk j = f).
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Then the MLE fitted values and forecasts Ŷkj are the same as those given by the conven-
tional chain ladder forecasts from (1-10). n

The same result had been obtained earlier for the special case of the simple Poisson 
distribution (f = 1) by Hachemeister and Stanard (1975) and Renshaw and Verrall 
(1998).

The same results are not true for EDF distributions more general than ODP. In 
fact, the explicit (and different) ML equations for the Tweedie case are given by Peters, 
Shevchenko and Wüthrich (2009) and by Taylor (2009), and for the general EDF case 
by Taylor (2011).

The MLEs Ŷ kj will not be unbiased in general. However, Taylor (2011) obtained 
the following result.

Theorem 3.3.  Suppose that the data array 𝔇+
K is subject to the same conditions as in 

Theorem 3.2. Suppose also that the fitted values and forecasts Ŷ kj and R̂k are corrected 
for bias. Then they are MVUEs of Ykj and Rk respectively. n

Theorems 3.2 and 3.3 together parallel Theorem 3.1 but are even more remarkable. 
First, they state that the forecasts obtained from the ODP Mack and ODP cross-
classified models are identical (and equal to those obtained from the conventional 
chain ladder) despite the very different formulations of the models. Moreover, 
notwithstanding that the cross-classified model is formulated in terms of parameters 
ak, bj, one may obtain forecasts without any consideration of them, but working as if 
the model were ODP Mack.

Numerical Example
It is instructive to illustrate this by reference to the data set in Table 1-1. It is worthy 

of note at the outset that the Mack models apply to cumulative data, whereas the cross-
classified models apply to incremental data.

Commence by applying the chain ladder algorithm of Section 1.4 to the data. 
Average age-to-age factors are obtained by the application of (1-8), yielding the results 
in Table 3-1.

Forecasts are obtained by means of (1-9). For example, the first cell requiring forecast 
for accident year 1996 is that relating to development year 3. The forecast is X̂1996,3 = 
X1996,2 f 2̂ = 92242 × 1.261 = 116312. Hence Ŷ1996,3 = 116312 - 92242 = 24070.

The full set of forecasts is given in Table 3-2, where the bold-face diagonal is merely 
transferred from Table 1-2, and then subsequent cells contain forecasts according to 
(1-9). The final column of the table contains the amounts of estimated outstanding 
losses R̂k, obtained by means of (1-11).

Table 3-1.  Average Age-to-Age Factors

Average Age-to-Age Factor for Development Year

1 2 3 4 5 6 7 8 9

1.815 1.261 1.158 1.088 1.055 1.039 1.030 1.025 1.021
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Now consider MLE within the ODP cross-classified model. The ML equations 
are well known (see any of the authors listed earlier in the present sub-section). They 
are merely marginal sum estimation equations (Schmidt and Wünsche, 1998), which 
means that they equate each row sum of observations with the corresponding sum of 
MLEs, and similarly for column sums. That is,

ℛ
∑ ∑ ∑∑ ∑= α β = α β = α β = α − β





( ) ( ) ( )

=

− +

= − +
Yk j

k

k j k

k

j k j k
j

J kk

j
j J k

J
ˆ ˆ ˆ ˆ ˆ ˆ ˆ 1 ˆ (3-1)

1

1

2

ℛ ℛ

the last equality following from (EDFCC2c). Also

∑ ∑ ∑= α β = β α
( ) ( ) ( )
Yk j

j

k j j

j

k

j
ˆ ˆ ˆ ˆ (3-2)

� � �

It is further known that, for a triangular data set such as in Table 1-1, these equations 
are simply solved in the following order: (3-1) for k = 1, (3-2) for j = J, (3-1) for k = 2, 
(3-2) for j = J - 1, etc. and with repeated use of the constraint (EDFCC2c).

The first step in this procedure yields

∑ ∑= = α β = α( ) ( )Yk j j144781 ˆ ˆ ˆ1
1

1
1ℛℛ

whence â1 = 144781.
The second step yields

∑ ∑= = β α = β α( ) ( )Yk j k2958 ˆ ˆ ˆ ˆ10
10

10 1
10� �

whence b̂10 = 2958/â1 = 0.020.
And so on, resulting in Table 3-3.

Table 3-3.  Parameter Estimates for ODP  
Cross-Classified Model

j or k âk b̂j

1 144781 0.293

2 166301 0.239

3 184501 0.139

4 201845 0.106

5 212151 0.069

6 207340 0.047

7 205725 0.035

8 182904 0.028

9 173225 0.024

10 149836 0.020



28 Casualty Actuarial Society

Stochastic Loss Reserving Using Generalized Linear Models

From these results, one may calculate Ŷ 1996,3 = â9b̂3 = 173225 × 0.139 = 24070, 
in agreement with the estimate from the ODP Mack model. Similarly, all forecasts 
Ŷk j ∈ 𝔇c

K  may be shown to reconcile with the ODP Mack model, indicating that it 
and the ODP cross-classified model yield the same estimates of outstanding losses 
(see Table 3-2).

Indeed, it follows from the identical forecasts of the ODP Mack and ODP cross-
classified models that one may translate between the two by means of one-one relation. 
This relation, proven by Verrall (2000) using a Bayesian argument, is

∑ ∑= β β
=

+

=
f j i

i

j

i
i

jˆ ˆ ˆ (3-3)
1

1

1

or its inverse

∏ ∏( )β = −+
=

−

=

−
f f fj j r

r

j

r
r

Jˆ ˆ 1 ˆ ˆ (3-4)1
1

1

1

1

subject to the convention that P0
r =1 f r̂ = 1. Table 3-1 and Table 3-3 may be reconciled 

by this correspondence.

3.3. GLM Representation of Chain Ladder Models
3.3.1. ODP Mack Model

Consider the ODP Mack model of Section 3.1.2, and particularly the conditions 
(EDFM3a), modified to its ODP form, and (EDFM3b). Together these conditions 
amount to the following:

∼ ( )( )− φ+Y X ODP f Xk j k j j k j k j1 , (3-5), 1

Add the condition

φ = φ kk j j, independent of (3-6)

which was a pre-requisite in Section 3.1.2 for the ODP Mack model to yield the 
conventional chain ladder estimators as MLEs. Then

∼ ( )( )− φ+Y X ODP f Xk j k j j k j j1 , (3-7), 1

Now replace Yk,j+1 here by f k̂ j - 1 = Yk,j +1/Xkj from (1-4). It may be checked that

−  = −E f X fk j k j j
ˆ 1 1 (3-8)

[ ] ( )−  = = φ −+Var f X Var Y X X f Xk j k j k j k j k j j j k j
ˆ 1 1 (3-9), 1

2

The ODP family is known to be closed under scaling, i.e., an ODP variate, divided by a 
constant, produces another ODP variate. Combining this fact with (3-8) and (3-9) yields
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∼ ( )− − φf X ODP f Xk j k j j j k j
ˆ 1 1, (3-10)

This may be formulated as a (rather trivial) GLM by comparison of (3-10) with the 
definition of a GLM in Section 2.2.1. The response vector of the GLM consists of 
the observations f k̂ j - 1|Xkj , listed in some convenient order such as dictionary order. 
The link function is the identity.

The parameter vector b consists of the parameters f1, . . . f9, and the row of the 
design matrix X corresponding to f k̂ j - 1|Xkj is the co-ordinate 9-vector ej, which has 
unity in the j-th position and zeros elsewhere. In the terms usually required by GLM 
software for the specification of a model, this amounts to:

• Specification of development year j (= 1, 2, . . . , 9) as a categorical variate (referred 
to in some software systems as a class variate).

• Specification of the “model”, i.e., the expected value, of each observation as

∑( )−  = − δ
=

E f X fk j k j i
i

ji
ˆ 1 1 (3-11)

1

9

where dji is the Kronecker delta, and the 9 delta functions are the 0–1 variates associated 
with the categorical variate development year, as mentioned in Section 2.2.2.

It is also necessary that the model include the variance structure set out in (3-10), 
and, by (2-21), this requires that observation f k̂ j - 1 be assigned weight Xkj/fj. The 
values of fj are unknown, but the following argument will show that knowledge of 
their values is not required.

Consider MLE of the fj. Commence with the log-likelihood of the claims trap-
ezoid 𝔇K :

� �∑

∑

( )

[ ]( ) ( )( ) ( )

( ) = −

=
− − −

φ
− φ
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− − −

− −
−

≠

f

Y X ln f f
X

ln Y

K k j
j

k j k j j j

j k j
k j j

j

K

K

ˆ 1

1 1
! (3-12)

1

, 1 1 1

1 , 1
1

1

,

,

�
�

where ,(f k̂ j - 1) has been evaluated by substitution of (3-7)–(3-9) into (2-16).
The MLE of fj-1 for a specific j, say j = i, is obtained by differentiating (3-12) with 

respect to fi-1 and setting the result to zero. On differentiation:

• The final member within the braces is eliminated since it does not depend on fi -1.
• The summation over 𝔇K is reduced to a summation over only 𝒞(i) since only this 

column depends on fi -1.

The result is as follows:

� ∑ ( ){ }( ) ( ) ( )∂
∂

=
φ

∂
∂

− − − =
( ) ( )− −

−
−

− − −
∈f

X
f

Y X ln f fK

i i
k i

i
ij k i i i

k i i

1
1 1 0 (3-13)

1 1
, 1

1
, 1 1 1

,

�

The interested reader may complete the calculation to obtain the conventional chain 
ladder estimator (1-8) as the MLE, verifying the result cited in Section 3.1.2. However, 
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all that is necessary for present purposes is to note that fi-1 may be factored out of (3-13), 
in which case it does not enter into the MLE.

This means that the value of fi-1 is arbitrary for the purpose of estimation of fi-1, 
and so it may conveniently be set to unity. This lengthy digression thus shows that the 
above requirement of a weight Xk j /fj (fj unknown) to be associated with observation 
f k̂ j - 1 in the GLM is reduced to a requirement of the simpler weight Xkj.

The ODP Mack model is now fully specified as a GLM. It may therefore be written 
in the general form of a GLM, as set out in Section 2.2.1. Specifically, the response 
vector Y now consists of all observations Yk,j+1/Xkj for all Yk,j+1 in 𝔇K other than its 
first column, and written in some convenient order. The order is unimportant, but 
dictionary order is obvious and convenient: f 1̂1, . . . , f 1̂,J-1, f 2̂1, f 2̂2, . . . , f K̂-2,1, f K̂-2,2, f K̂-1,1,  
and this will be assumed for the purpose of illustration.

Let µ denote the vector of µkj, also in dictionary order, and express it in the GLM 
form (2-23):

( )µ = β−h X (3-14)1

where h, X and b can be determined by reference to (3-11):

 h = identity
	 b = ( f1, f2, . . . , f9)T

�

�
�

}
}

=















































X

1
1

1
1

1
1

1

9 rows

8 rows

2 rows

1 row

3.3.2. ODP Cross-Classified Model
Consider the ODP cross-classified model of Section 3.2, and particularly the con-

ditions (EDFCC2a), modified to its ODP form, and (EDFCC2b). Together these 
conditions amount to the following:

∼ ( )α β φY ODPkj k j k j, (3-15)

Add the further condition

φ = φk j (3-16)
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which was seen in Section 3.2 to be a pre-requisite for ODP cross-classified model to 
yield the conventional chain ladder estimators as MLEs. Then

∼ ( )( )α β φ = µ φY ODP ODPk j k j k j, , (3-17)

where

( )µ = α + βexp ln lnk j k j (3-18)

The final equality here expresses the mean of the (k, j) cell as the exponential of a 
linear function of ln ak and ln bj. Thus (3-17) may be formulated as GLM in which 
the response vector consists of the observations Ykj, the error distribution is ODP, 
the link function is the natural logarithm and the parameter vector takes the form 
(ln a1, . . . , ln a10, ln b1, . . . , ln b10). The scale parameter is unknown but will be 
estimated by the GLM software. Note how the logarithmic link function is pre-
ordained by the multiplicative form of the assumption (EDFCC2b).

Just as in Section 3.3.1, the model may be expressed in the GLM form (2-23). If 
the components of Y are again written in dictionary order, then the design matrix is

… …
… …
�

… …
… …
… …
�
�

… … }

=















































X

1 0 0 1 0 0
1 0 0 0 1 0

1 0 0 0 0 1
0 1 0 1 0 0
0 1 0 0 1 0

0 0 1 1 0 0

10 rows

9 rows

1 row

Section 3.2 noted that the full parameter vector (a1, . . . , a10, b1, . . . , b10) contained 
one degree of redundancy, which was removed by the addition of the constraint 
(EDFCC2c). Likewise, the full parameter vector (ln a1, . . . , ln a10, ln b1, . . . , ln b10) 
of the GLM will contain a degree of redundancy.

In fact, this is no impediment to the fitting of the GLM for most GLM software. 
Most such software will remove redundancy by setting one or more (just one in the 
present case) parameters to zero. These parameters are said to be aliased.

Generally, this will lead to parameter estimates that differ from those obtained under 
condition (EDFCC2c), though the two GLMs are equivalent, simply stated differently. 
This is illustrated as follows.

Suppose that the GLM software chooses to set ln b1 = 0, i.e., b1 = 1. Simply 
replace each estimate b̂j by b̂j/∑10

i=1 b̂i in order to satisfy (EDFCC2c). To compensate 
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for this change, replace each âk by âk ∑10
i=1 b̂i. With these replacements, the fitted value 

associated with Ykj is

∑ ∑= α β  β β  = α β= =Yk j k ii j ii k j
ˆ ˆ ˆ ˆ ˆ ˆ ˆ (3-19)1

10
1

10

In other words, the model fitted values are unaltered by this re-scaling of the parameters 
ak, bj. Similarly for forecasts. In this sense, the alternative statements of the GLM are 
equivalent.

The forecast design matrix, as defined in (2-39), takes the form

… …
… …
… …
�

… …
�

… …

}
}

=

































X *

0 1 0 0 0 0 0 1
0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 1

0 0 0 1 0 1 0 0

0 0 0 1 0 0 0 1

1 row

2 rows

9 rows

3.3.3. Numerical Example
The discussion in Sections 3.3.1 and 3.3.2 is illustrated by reference to the example 

data set. This data set is submitted to the GLM procedure GENMOD in SAS software 
according to both ODP Mack and ODP cross-classified models.

ODP Mack Model
The GLM formulation of the ODP Mack model, as 

described at the end of Section 3.3.1, has been applied 
to the example data set with the results displayed in 
Table 3-4. These results are seen to accord with those 
obtained by application of the chain ladder algorithm 
and set out in Table 3-1.

ODP Cross-Classified Model
The GLM formulation of the ODP cross-classified 

model, as set out in (3-17) and (3-18), has been applied to 
the example data set with the results displayed in Table 3-5. 
The parameter estimates in the columns headed ln ak and 
ln bj have been extracted directly from the GLM output. 
In the next two columns they have been exponentiated, 
and in final two columns re-scaled as described in the 
paragraph preceding (3-19) so that the ∑10

j =1 b̂j = 1. The 
results are seen to agree with those found in Table 3-3 
(subject to a couple of microscopic differences).

Table 3-4.  GLM 
Parameter Estimates 
for ODP Mack Model

j  f̂ j - 1

1 0.815

2 0.261

3 0.158

4 0.088

5 0.055

6 0.039

7 0.030

8 0.025

9 0.021
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3.4. Minor Variations of Chain Ladder
Hitherto the chain ladder model has been presented as containing no flexibility; 

as the non-parametric Mack model, the EDF Mack model, or one of the other 
variations defined earlier in this chapter, but in each case fully defined without any 
scope for variation by the user. In practice, many variations occur. This section will 
consider a few of the common variations and show that they may be easily incorporated 
in a GLM.

3.4.1. Reliance on Only Recent Experience Years
It is common to view only the most recent m experience years as relevant to 

parameter estimation. This would mean in the ODP Mack model (Section 3.3.1), 
for example, that the only observations used would be f k̂ j - 1|Xkj, k = 1, . . . , K - 1, 
 j = 1, . . . , J - 1, K + 1 - m ≤ k + j ≤ K.

This restriction is easily implemented within the GLM defined in Section 3.3.1 by 
simply setting the weight of each observation other than those above to zero, i.e., the 
weight Xkj assigned to observation f k̂ j - 1|Xkj at the end of Section 3.3.1 is modified to 
the following:

( )= + − ≤ + ≤w X I K m k j Kk j k j 1 (3-20)

where I (.) is the indicator function:

( ) =

=

I c c1 if the logical condition is true

0 otherwise (3-21)

Table 3-5.  GLM Parameter Estimates for ODP Cross-Classified Model

j or k

Estimated Directly from GLM Re-normalised

In âk In b̂j âk b̂j âk b̂j 
1 10.657 0.000 42479 1.000 144781 0.293

2 10.795 -0.205 48793 0.815 166301 0.239

3 10.899 -0.747 54133 0.474 184501 0.139

4 10.989 -1.017 59221 0.362 201845 0.106

5 11.039 -1.452 62245 0.234 212151 0.069

6 11.016 -1.833 60834 0.160 207341 0.047

7 11.008 -2.140 60360 0.118 205726 0.035

8 10.891 -2.348 53664 0.096 182905 0.028

9 10.836 -2.513 50824 0.081 173225 0.024

10 10.691 -2.664 43962 0.070 149837 0.020

Total 3.408 1.000
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Consider the likelihood (3-12), omitting the final member within the braces since it 
was seen in Section 3.1.2 to vanish in the likelihood maximization, and set weights 
according to (3-20). The weights are included in the model by means of (2-21). Thus 
log-likelihood (3-12) becomes:

∑

( ) ( ) ( )

( )( ) = + − ≤ + ≤

×
− − −

φ








≠

− − −

− −

� I K m k j K

Y X ln f f
X

K
j

k j k j j j

j k j

K

1

1 1
(3-22)

1

, 1 1 1

1 , 1
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�
�

and the indicator function has the effect of simply selecting the Ykj from the last m 
experience years for inclusion in the log-likelihood.

3.4.2. Outlier Observations
The argument leading to the last result has been phrased in terms specific to the 

ODP Mack model. However, it may be generalized to any model with the conclusion 
that setting the weight of any observation to zero causes that observation, in effect, to 
be deleted from the data set.

It follows that outlier observations may be excluded from the model fitting simply 
by the assignment of zero weights to them.
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4. Prediction Error

Chapter summary. This chapter is concerned with the error contained in a forecast 
derived from a GLM in accordance with Chapter 2, as compared with the actual 
value of the predictand when ultimately observed. This error is decomposed into its 
components: parameter error, process error, and model error.

The properties of parameter and process errors follow from the model, whereas the 
properties of model error do not. For the main part, the chapter deals with the more 
tractable parameter and process errors.

Mean square error of prediction is discussed as a measure of forecast error, and it is 
noted that increased goodness-of-fit of a model does not necessarily imply reduced 
forecast error. Information criteria are introduced as simple rough proxies for forecast 
error to assist in the evaluation of competing models.

The literature on model error is scant, but the subject receives some discussion at the 
end of the chapter.

4.1. Parameter Error and Process Error
4.1.1. Individual Observations

For the purpose of the current chapter the model used for the forecast of outstanding 
losses will not be limited to the chain ladder. The model will be loosely specified as 
follows:

Y u k j Yk j k j k j K( )= θ + ε ∈ +, ; for (4-1)�

for some function u, dependent on a parameter vector q, and centered stochastic error 
ekj, i.e.,

0 (4-2)[ ]ε =E k j

It will be supposed that this model has been calibrated against that data set 𝔇K. The 
means of calibration is left unspecified. It yields parameter estimates q̂. Now define

Y u k j Yk j k j K( )= θ ∈ +ˆ , ; ˆ for (4-3)�

The Ŷkj associated with Ykj ∈ 𝔇K are fitted values, as in (2-29). The Ŷkj associated with 
Ykj ∈ 𝔇c

K are forecasts.
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The prediction error associated with the forecast Ŷkj is

e Y Y u k j u k jk j k j k j k j( )( )= − = θ − θ  + εˆ , ; , ; ˆ (4-4)

where the second equality follows from (4-1) and (4-3).
It may be noted from (4-1) and (4-2) that

E Y u k jk j[ ] ( )= θ, ; (4-5)

and so (4-4) may be represented in the alternative form

e Yk j k j k j k j= µ −  + εˆ (4-6)

where µkj denotes E[Ykj].
The square bracketed term in (4-6) (or (4-4)) is the difference between the true 

(but unknown) mean of the future observation and its forecast, and is referred to as the 
parameter error associated with forecast Ŷkj. The remaining term ekj is noise or, as it is 
usually referred to, process error. It reflects the fact that, even if the model had been 
perfectly calibrated (zero parameter error), a prediction error would still arise from the 
stochastic nature of future observation.

Typically, parameter error and process error may be shown to be stochastically 
independent. Note that Ŷkj, on which parameter error depends, is necessarily some 
function of past data 𝔇K, whereas the ekj are components of the future data 𝔇c

K. If the 
model formulation is such that the past Ykj and the future ekj are independent, then so 
are the parameter and process errors.

This follows very simply in any model, such as the EDF cross-classified model of 
Section 3.2, which specifies that all observations are independent.

The above argument is subject to a substantial qualification that will not be pursued 
in the present volume. The relation (4-5) may indeed be consistent with (4-1), but 
both assume that the model u has been correctly specified.

In fact, it is unlikely that the precise functional form of u will have been correctly 
chosen. As a result, a further component of prediction error arises in practice. This is 
the difference between E[Ykj], as specified by (4-5), and its correct specification, usually 
referred to as model error. It is discussed in greater detail in Section 4.5.

Model error, by its nature, lacks amenability to rigorous statistical treatment. For 
this reason, it is regarded as outside the scope of this monograph. This is by no means 
to suggest that it is insignificant. Indeed, its magnitude may in some cases exceed the 
total of parametric and process errors. The interested reader might consult O’Dowd, 
Smith and Hardy (2005) for a suggested treatment of model error.

4.1.2. Loss Reserves
For notational brevity, it will be convenient to represent the above prediction errors 

in vector terms. Let Y denote the observations Ykj ∈ 𝔇K, assembled into a vector, and  
let Y * denote the observations Ykj ∈ 𝔇c

K, similarly assembled into a vector. The ordering 
of the components of these vectors is immaterial for present purposes.
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Similarly, assemble any other quantity that depends on k, j into a vector and denote 
that vector by the original quantity’s symbol with k and j omitted. Add a star to the 
symbol if it refers to the future. Again, the ordering of components is immaterial, but 
it must be consistent between different vectors, e.g., the ordering of cells of 𝔇c

K must 
be the same in Y * and Ŷ *.

In this notation, (4-6) becomes

e Y= µ −  + ε* * ˆ* * (4-7)

Now consider any linear combination of the components of Y *, represented by rTY *, 
where r denotes some vector and the upper T denotes vector transposition. For example, 
the total amount of outstanding claims is equal to 1TY *, where the vector 1 has all 
components equal to unity. As a second example, the amount of outstanding claims in 
respect of just accident year k is equal to rT

kY *, where the vector rk contains unity in those 
components that refer to accident year k, and zero for all other components.

The prediction error associated with rTY * will be denoted e*(r) and, by (4-7), is

e r e r r Y rr
T T T T= = µ −  + ε( )* * * ˆ* * (4-8)

where the members on the right can be recognized as follows:

rTµ* is the statistical expectation of outstanding losses;
rTŶ* is the forecast of the quantum of these losses;
rTe* is the process error associated with this quantum.

The square-bracketed term in (4-8) can be identified as the parameter error associated 
with the forecast of outstanding losses. If Y and e* are stochastically independent, then, 
by the same argument as in Section 4.1.1, parameter error and process error will be 
independent.

4.2. Mean Square Error of Prediction
4.2.1. Definition

A useful summary measure of the magnitude of prediction error e*(r) is its mean square 
error of prediction, abbreviated to MSEP and denoted MSEP[e*(r)]. It is defined as

MSEP e E er r{ }[ ] [ ]=( ) ( )* * (4-9)2

In the case where parameter and process errors can be established to be stochastically 
independent, substitution of (4-8) into (4-9) yields

MSEP e E e E er r param r proc{ } { }[ ] [ ] [ ]= +( ) ( ) ( )* * * (4-10)2 2

where the following notation has been introduced:

e r r Yr param
T T= µ − =( )* * ˆ* parameter error (4-11)

e rr proc
T= ε =( )* * process error (4-12)



38 Casualty Actuarial Society

Stochastic Loss Reserving Using Generalized Linear Models

4.2.2. Goodness-of-Fit and Prediction Error
The MSEP estimates the tightness of a forecast around its target. A model generating 

a smaller MSEP is generally to be preferred over one generating a larger MSEP.
It is to be noted, however, that improving the goodness-of-fit of a model to a data 

set does not necessarily improve its MSEP. It is evident that an effective model requires 
some degree of goodness-of-fit, but the achievement of this by the inclusion of an 
excessive number of parameters in the model will in fact increase the MSEP.

In short, the inclusion of too many parameters in a model amounts to over-fitting, and 
destabilizes the model’s predictions. The situation is summarized by Figure 4-1 (see, e.g., 
Hastie, Tibshirani and Friedman (2009, pp. 219–223)). The figure considers the effect 
of increased model complexity (number of model parameters) on the model’s predictive 
value.

It is supposed that the available data set is divided into two subsets, a training set 
and a test (or holdout) set. The model is fitted to the training set. Some form of error 
in the fit (“model error” in the figure) of the model to the data, such as squared error, 
deviance, etc., is selected and plotted against model complexity. The fit of the model to 
the data is seen to improve monotonically as model complexity is increased.

However, the value of the model as a predictor of unseen data does not improve 
in the same way. The model error when the model is used to generate fitted values 
corresponding to the test set is also plotted in the figure. It is seen that a model with 
very few parameters produces a poor fit; it represents a weak attempt to extract the 
main characteristics of the training data set.

As complexity is added to the model, it not only fits the training data set better, but also 
predicts the test set better. Beyond a certain point, however, additional complexity detracts 
from the model; its performance in the prediction of the test set begins to deteriorate.

This indicates over-fitting. The model is beginning to parameterize the noise in the 
data, of no value for prediction. In the extreme case in which the model contains as many 
parameters as the training data set contains observations, the model will fit the data 
perfectly (zero error). However, this cannot be regarded as a model at all in the usual sense. 
It has no predictive value.

The minimum point on the “Test” curve of Figure 4-1 represents the optimum 
model complexity. It is the model with greatest predictive value.

4.3. Information Criteria
There exist statistics which function as proxies for measurement of model predictive 

error relative to a test data set. These are called information criteria, and take the 
general form:

(4-13)

( )=

+

information criterion measure of model fit error relative to training data set

penalty for number of parameters

As model complexity increases the error in the fit of the model decreases but the penalty 
for number of parameters increases. The information criterion behaves in a manner 
similar to the model error relative to a test data set, as in Figure 4-1.
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For a GLM, a convenient form of (4-13) for a model based on data Y and producing 
fitted values Ŷ is:

IC Y Y D Y Y f p( ) ( ) ( )= +, ˆ , ˆ (4-14)

where

IC(Y, Ŷ ) denotes the information criterion;
D(Y, Ŷ ) denotes the scaled deviance, defined by (2-30);
p denotes the number of model parameters; and
f (.) is some monotonically increasing function.

The two most common forms of information criterion are defined by the penalty 
functions set out in Table 4-1, where n denotes the dimensionality of Y, i.e., the number 
of observations used in the fitting of the model.

The penalty functions of both criteria are linear in p, but the BIC applies the 
heavier penalty.

There is a modified form of the AIC, called AICc, that contains a correction for 
finite sample size n. In this case, f (p) = 2p[1 + (p + 1)/(n - p - 1)] → 2p as n/p → ∞.

The information criteria are used for the comparison of different models of the 
same data set. All models involve some loss of information contained in the data. If 
the AIC (say) assumes a lower value for Model 1 than for Model 2, then Model 1 is 
indicated as the more likely of the two to have minimized the information loss, and 
Model 1 would be selected in preference to Model 2.
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Figure 4-1.  Goodness-of-Fit and Prediction Error

Table 4-1.  Information Criteria

Information Criterion Function f (p)

Akaike Information Criterion (AIC) 2p

Bayes Information Criterion (BIC) p ln n
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4.4. Generalized Cross-Validation
Cross validation is a frequently used method for estimating prediction error, being 

easily applicable to regression and non-regression models alike. For example, in K-fold 
cross-validation, the data is split into K equal sized parts, with the model fitted on K-1 
parts and tested on the final Kth part. A common choice for K is n, i.e., one point is left 
out of the fit for each iteration of the calculation. This is also referred to as leave-one-
out cross-validation.

For linear models, where the fitted value may be expressed as ŷ = Hy, it may be 
shown that an approximation to leave-one-out validation is given by the generalized 
cross-validation (“GCV”) measure:

GCV
Y Y

n trace H n
i ii

n

=
−( )

− ( )[ ]
=∑ ˆ

( )
2

1
21

4 15-

where:

Yi is the i th observed value
Ŷ i is the i th fitted value
n is the number of observations

H is often referred to as the hat matrix. The trace of the hat matrix, trace(H), is defined 
as the effective number of parameters in a model.

Further discussion of all these points is given in Hastie, Tibshirani and Friedman 
(2009, pp. 232–233 and 241–245), who also note that the GCV measure is related to 
likelihood based measures such as AIC and BIC. As with those measures, it is composed 
of two parts: the first relating to the measure of model fit error (the residual sum of 
squares in this case, i.e., Y Yi ii

n −( )=∑ ˆ 2

1 ) and the second being a penalty for the number 
of parameters (the remainder of (4-15)).

4.5. Model Error
Re-consider the decomposition of prediction error into parameter and process error 

in Section 4.1. Recall (4-1), where the non-stochastic part of each observation is u(k, j; q). 
Now note that the fitted values of (4-3) are assumed to take the form u(k, j; q̂), i.e., the 
same parametric form with unknown parameters replaced by their estimates.

There is a tacit pre-supposition here that the function u(k, j; q) underlying the 
data can be accurately identified for modeling purposes. Thus was useful for didactic 
reasons in Section 4.1, but in fact this function will be unknown, and essentially 
unknowable. Not even the parameter set on which it depends will be identifiable in 
practice.

To recognize this, continue to suppose that (4-1) holds, but now suppose that, in 
ignorance of this parametric form, one has supposed for modeling purposes that

Y v k j Yk j k j k j K( )= ξ + ε ∈ +, ; for (4-16)�

for some different approximation function v(.) with a different parameter set.
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The fitted values from this model will be

( )= ξ ∈ +Y v k j Yk j k j K
ˆ , ; ˆ for (4-17)�

and the decomposition of prediction error corresponding to (4-4) is now

ˆ , ; , ; ˆ

Parameter error

, ; , ;

Model errorProcess error

(4-18)( ) [ ]( ) ( ) ( )= − = ξ − ξ  + ε + θ − ξ
� ����� ����� ���� ����� �����e Y Y v k j v k j u k j v k jk j k j k j k j

The decomposition contains parameter error and process error terms as in (4-4), but 
now includes an additional term that has been labelled model error. This is the term 
[u(k, j; q) - v(k, j; x)], which measures the difference between the parametric form 
assumed for the model and the true but unknown parametric form, i.e., the error 
introduced by the choice of model.

Since model error involves the form u(k, j; q), that has already been pronounced 
unknowable, its quantification is difficult. There is no known procedure for its estimation 
by reference just to the data relied on by the modeling.

There have, however, been one or two attempts to estimate model error from data 
and/or opinions external to the data set. Notable in this respect is the contribution by 
O’Dowd, Smith and Hardy (2005), which sets out:

• to identify the major potential causes of model error;
• to score each subjectively for its likely magnitude in the model under assessment;
• to map the scores to quantitative measures of error (e.g., coefficient of variation);
• to combine these measures with those for parameter and process error, with due 

allowance for any dependencies (also subjectively assessed) between the various 
components of model error.

This monograph is, as its title indicates, concerned with the application of GLMs to 
loss reserving. The assessment of model error will address the GLM used but, as can 
be seen from the description of O’Dowd, Smith and Hardy (2005), will not be carried 
out within the framework of that GLM. It will therefore not be discussed further here.

This is not, however, to minimize the importance of model error and the need 
to address it. In many cases it will represent a material, possibly even a dominant, 
proportion of total prediction error. For example, in the case of one large insurer, model 
error was assessed as representing about three-quarters of total prediction error.
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5. The Bootstrap

Chapter summary. This chapter is concerned with the estimation of the prediction 
error associated with outstanding losses, excluding the contribution of model error (as 
explained in the summary of Chapter 4). Two approaches are taken: the delta method, 
and the bootstrap.

Although the delta method is relatively simple computationally, its accuracy in any 
particular application is unknown, and may be dubious in some cases. Further, although it 
provides an estimate of MSEP, it provides no information on the distributional properties 
of prediction error, e.g., quantiles.

The bootstrap, while computationally more demanding, remedies both shortcomings. 
This is a device that generates many synthetic data sets with the same stochastic properties 
as the original one, and produces an estimate of outstanding losses from each dataset. It 
thus estimates the full distribution of prediction error and, with sufficient computation, 
its accuracy can be increased arbitrarily. Two forms of the bootstrap are examined.

The chapter concludes with numerical examples of both the delta method and the 
bootstrap.

5.1. Background
A chain ladder forecast was carried out in Table 3-2 on the basis of the chain ladder 

algorithm. The algorithm was merely heuristic and so the stochastic properties of the 
forecast were undetermined.

However, it was shown in Chapter 3 that the same algorithm, and so the same forecast, 
emerged from two different stochastic models. In each of those cases, the stochastic 
properties of the forecast follow, at least in principle.

The two stochastic chain ladder models were formulated in the form of GLMs 
in Section 3.3, whose parameter estimates were reported in Table 3-4 and Table 3-5. 
Although only the estimates themselves were reported there, the GLM software in 
fact also provides estimates of the associated standard errors, as in Table 5-1.

The parameter ln b1 has been aliased here in the manner described in Section 3.3.2. 
Since this amounts to selecting a zero (deterministic) value for this parameter, the associated 
standard error is zero.

The estimated correlations between parameter estimates are also provided by the 
GLM software. These are displayed in Table 5-2. Only the lower triangle of the correlation 
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Table 5-1.  GLM Parameter Estimates and Standard 
Errors for ODP Cross-Classified Model

j or k

ln âk ln b̂j

Estimate Standard Error Estimate Standard Error

1 10.657 0.0316 0.000

2 10.795 0.0299 -0.205 0.0228

3 10.899 0.0289 -0.747 0.0282

4 10.989 0.0281 -1.017 0.0328

5 11.039 0.0278 -1.452 0.0421

6 11.016 0.0285 -1.833 0.0547

7 11.008 0.0295 -2.140 0.0715

8 10.891 0.0327 -2.348 0.0931

9 10.836 0.0367 -2.513 0.1267

10 10.691 0.0510 -2.664 0.1993

Table 5-2.  Estimated Correlation Matrix of GLM Parameter Estimates  
for ODP Cross-Classified Model

Parameter

Parameter

ln â1 ln â2 ln â3 ln â4 ln â5 ln â6 ln â7 ln â8 ln â9 ln â10

ln â1 1.00

ln â2 0.20 1.00

ln â3 0.20 0.21 1.00

ln â4 0.20 0.21 0.22 1.00

ln â5 0.19 0.20 0.21 0.22 1.00

ln â6 0.18 0.19 0.20 0.20 0.20 1.00

ln â7 0.16 0.17 0.18 0.18 0.18 0.18 1.00

ln â8 0.13 0.14 0.14 0.15 0.15 0.14 0.14 1.00

ln â9 0.09 0.10 0.10 0.10 0.10 0.10 0.10 0.09 1.00

ln â10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
(continued on next page)
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Table 5-2.  Estimated Correlation Matrix of GLM Parameter Estimates  
for ODP Cross-Classified Model (continued)

Parameter

Parameter

ln â1 ln â2 ln â3 ln â4 ln â5 ln â6 ln â7 ln â8 ln â9 ln â10

ln b̂2 -0.32 -0.34 -0.35 -0.36 -0.37 -0.36 -0.35 -0.31 -0.28 0.00

ln b̂3 -0.28 -0.29 -0.30 -0.31 -0.32 -0.31 -0.30 -0.27 -0.10 0.00

ln b̂4 -0.25 -0.27 -0.28 -0.29 -0.29 -0.28 -0.27 -0.12 -0.09 0.00

ln b̂5 -0.21 -0.22 -0.23 -0.24 -0.24 -0.24 -0.12 -0.10 -0.07 0.00

ln b̂6 -0.18 -0.19 -0.20 -0.20 -0.20 -0.10 -0.09 -0.07 -0.05 0.00

ln b̂7 -0.16 -0.17 -0.17 -0.18 -0.09 -0.08 -0.07 -0.06 -0.04 0.00

ln b̂8 -0.14 -0.15 -0.16 -0.07 -0.07 -0.06 -0.06 -0.04 -0.03 0.00

ln b̂9 -0.14 -0.15 -0.05 -0.05 -0.05 -0.04 -0.04 -0.03 -0.02 0.00

ln b̂10 -0.16 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.02 -0.01 0.00

Parameter

Parameter

ln b̂2 ln b̂3 ln b̂4 ln b̂5 ln b̂6 ln b̂7 ln b̂8 ln b̂9 ln b̂10

ln b̂2 1.00

ln b̂3 0.36 1.00

ln b̂4 0.31 0.27 1.00

ln b̂5 0.24 0.21 0.19 1.00

ln b̂6 0.19 0.16 0.15 0.12 1.00

ln b̂7 0.14 0.12 0.11 0.09 0.08 1.00

ln b̂8 0.11 0.09 0.09 0.07 0.06 0.05 1.00

ln b̂9 0.08 0.07 0.06 0.05 0.04 0.04 0.04 1.00

ln b̂10 0.05 0.04 0.04 0.03 0.03 0.02 0.02 0.02 1.00

matrix is displayed, the upper triangle being given by symmetry. Since parameter ln b1 has 
been fixed at zero, it is non-stochastic and does not appear in the matrix.

5.2. Delta Method
From Table 5-1 and Table 5-2 all estimated second order moments of the parameter 

estimates are available. This is sufficient for an approximate estimate of the second 
moments of the estimated total outstanding losses R̂. This is done using the so-called 
delta method (Kendall and Stuart, 1977).

5.2.1. Uni-Dimensional
This method is most easily understood for a single-dimensional variate. Here the 

purpose is to calculate the variance of a transformed variate when the variance of the 
untransformed variate is known.
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In the interest of simplicity, the following notation will apply just to the present 
sub-section. It is unrelated to the notation introduced in Section 1.2.

Let X denote a random variate with E[X ] = µ, Var[X ] = s2, and let f denote a 
differentiable one-one transformation of X. The quantity Var[ f (X )] is required.

Take the Taylor series expansion of f (X ) to second order about X = µ:

. . . (5-1)1
2

2f X f X f X f( ) ( ) ( ) ( ) ( ) ( )= µ + − µ ′ µ + − µ ′′ µ +

where the primes denote differentiation.
Take expectations with respect to X throughout (5-1):

. . . . . . (5-2)1
2

2 1
2

2E f X f E X f f f[ ]( ) ( ) ( ) ( ) ( ) ( )= µ + − µ  ′′ µ + = µ + σ ′′ µ +

as a second order approximation of E[ f (X )], where E[X - µ] is seen to vanish in the 
first equation.

Now consider Var[ f (X )] = E{[ f (X ) - E[ f (X )]]2}. For a second order approximation 
of this quantity, a first order approximation of f (X ) - E[ f (X )] is required. This is obtained 
from (5-1) and (5-2) as

. . . (5-3)f X E f X X f[ ]( ) ( ) ( ) ( )− = − µ ′ µ +

from which

. . . . . . (5-4)2 2 2 2Var f X E X f f[ ] [ ] [ ]( ) ( ) ( ) ( )= − µ ′ µ +  = σ ′ µ +

This provides an easily calculated second order approximation of Var[f (X )].

5.2.2. Multi-Dimensional
With Section 5.2.1 for guidance, extend to the case in which Y = f (X ) with X now 

a column n-vector, and with f: 𝔑 → ℜ acting on X componentwise (just as h-1 did in 
(2-23)). Let the components of X, Y be denoted Xi, Yi respectively. In parallel with (5-3),

. . . (5-5)Y E Y f X E f X X fi i i i i i i[ ][ ] ( ) ( ) ( ) ( )− = − = − µ ′ µ +

with µi = E[Xi].
Then second order approximations of covariances may be obtained as

[ ][ ] ( )[ ] [ ][ ] [ ]{ } ( )= − − = ′ µ ′ µ, , (5-6)Cov Y Y E Y E Y Y E Y Cov X X f fi j i i j j i j i j

This may be conveniently expressed in matrix form, thus:

(5-7)Var Y DVar X D[ ] [ ]=

where Var[Y ] now denotes the entire variance-covariance matrix of vector Y, similarly 
for Var[X ], and D = diag[ f ′(µ1), . . . , f ′(µn)].
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5.2.3. Application to Loss Reserving
Now replace Y of Section 5.2.2 by the forecast Ŷ *, defined by (2-40), in order 

to estimate the variance of that forecast due to variation in b̂, i.e., parameter error 
as defined in Section 4.1. It will be assumed that the components of Ŷ * appear in 
dictionary order, as was illustrated in Section 3.3.2. Other quantities from Section 5.2.2  
also require replacement by those relevant to (2-40). Table 5-3 lists the required 
replacements.

With the replacements in the table, supplemented by this last one, (5-7) becomes

ˆ* * ˆ * ˆ * (5-8)Var Y DVar X D DX Var X Dparam
T( )  = β  = β 

where Varparam[Ŷ *] has been written instead of Var[Ŷ *] as a reminder that only parameter 
error is being estimated, Var[b̂] is estimated by the GLM software and

ˆ* , . . . , ˆ* (5-9)1
2,10

1
10,10D diag h h Y h h Y( )( ) ( )( )( ) ( )= ′ ′





− −

where the vector X*b of the innermost arguments has been replaced by X*b̂ = h(Ŷ *).
Finally, the full prediction error of Ŷ *, other than model error, may be estimated by 

adding process error (see (4-10)) where, for the case of the ODP distribution, process 
error is given by (2-19). Translation of this to the present context yields an estimated 
process error of

ˆ* ˆ ˆ* (5-10)Var Y DIAG Yproc   = φ  

where, for a vector v, DIAG[v] denotes the diagonal matrix with the components of v along 
its diagonal, and the estimate f̂ of scale parameter f is provided by the GLM software.

The MSEP of the forecast Ŷ * is now obtainable by combination of (5-8) and (5-10) 
thus:

ˆ* * ˆ ˆ ˆ*

* ˆ * ˆ ˆ* (5-11)

MSEP Y DVar X D DIAG Y

DX Var X D DIAG YT( )

  = β  + φ  

= β  + φ  

Table 5-3. Replacements in Section 
5.2.2 for Estimation of Forecast Error

Quantity from Section 5.2.2 Replaced By

Y Ŷ*

X X*b̂

µ X*b

f h-1
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Estimates of the prediction error of outstanding loss amounts Rk and R, or for that 
matter sums over any other subset of Ŷ *, can be obtained by the use of vectors consisting 
of just 0-1 components, selecting out the relevant components of Ŷ *.

For example,

ˆ 1 ˆ* 1 ˆ* 1 (5-12)MSEP R MSEP Y MSEP Yk k k
T

k  =   =  

where 1T
k = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0) with the 1’s so placed as to select the 

components Ŷ*k,J-k+2, . . . , Ŷ*kJ of Ŷ*.
Similarly

ˆ 1 ˆ* 1 (5-13)Var R MSEP YT  =  

where 1 is a vector consisting entirely of unit components.
A numerical example will be given in Section 5.4.1.

5.3. The Bootstrap
The delta method presents two difficulties.
First, since it is a second order approximation to covariance, it leaves an unquantified 

third order error. It is evident from the development in (5-1)–(5-4) that the error depends 
on the magnitudes of the higher derivatives f (m) (equivalently (h-1)(m) in Section 5.2.3),  
and especially on the convexity f ″ (equivalently (h-1)″). This knowledge may be 
insufficient, however, for the formation of a clear view of the magnitude of error.

Second, even a relatively accurate estimation of second order moments provides 
little distributional information. It may be necessary to estimate quantiles of R̂ for loss 
reserving purposes. For example, some regulators require the loss reserve to be equal 
to the estimated amount of outstanding losses with 100p% (p > 50) probability of 
adequacy (“PoA”). If this amount is denoted R̂p, then it is defined as follows:

ˆ (5-14)Prob R R pp<  =

It is evident that estimation of R̂p requires knowledge of the distribution of R. The delta 
method does not provide this. It is possible, of course, to assume some distribution. 
Often this is done in practice, where the lognormal distribution is often assumed for R. 
In fact, the lognormal often appears to perform quite well, but there is no guarantee of 
this and the procedure is at risk of producing erroneous PoA loss reserves, particularly 
for high p.

The bootstrap is a procedure which estimates the entire distribution of the estimand. 
It is a particularly convenient computational device since it does this without the need 
for any algebraic development such as in Section 5.2. Naturally, since it estimates an 
entire distribution, it also generates an estimate of variance (for that matter, any other 
moment or functional of the distribution).

There are many different approaches to the bootstrap. Shibata (1997) provides 
a useful classification of some of these into “non-parametric,” “semi-parametric,” 
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and “parametric,” with the terminology indicating the level of reliance on model and 
distributional assumptions. For any specific case, it is useful to consider the estimation of 
parameter and process separately and which of non-parametric or parametric methods are 
best suited to the problem in hand.

Some possible approaches to bootstrapping claims data are discussed below, following 
the terminology of Shibata where appropriate.

5.3.1. Semi-Parametric Bootstrap
The original form of the bootstrap was introduced by Efron (1979). It is a procedure 

for estimation of the properties of a defined statistic, particularly when analytical 
computation of those properties would be complex. It falls within the general family 
of re-sampling methods, since it involves repeated sampling from the available data.

For regression models, Efron (1979) proposed a procedure that involved resampling 
residuals and constructing pseudo datasets from these and fitted values. This type of 
procedure is outlined here. Consider an n-dimensional data vector Y. For the moment 
this is a general vector, and the bootstrap will be described in a general context. Later 
it will be specialized to the loss reserving context. Suppose that a model has been fitted 
to the data vector and a prediction Ŷ * of some vector Y * of future observations made.

Suppose the target prediction is some function R(Y*) of Y *, and it has been estimated 
by R(Ŷ *). The objective now is to estimate the distribution of the prediction R(Ŷ *).

Let Ŷ  denote the model’s vector of fitted values corresponding to Y, and let S(Y; Ŷ )  
denote the vector of standardized residuals associated with Y. Residuals may be Pearson, 
deviance or any other for which the inverse S-1(.; Ŷ ) exists.

For example, in the case of Pearson residuals, the i-th component of S(Y ; Ŷ ) is

; ˆ ˆ ˆ (5-15)S Y Y Y Yi i i i( ) ( )= − σ

where ŝ2
i is an estimator of Var[Yi]. In this case

; ˆ ˆ ˆ (5-16)1Y S S Y Y Si i i i i( )= = + σ−

Now suppose that the Si are iid. In fact, the residuals from a regression will be dependent, 
and so the requirement is actually that the Si be approximately iid. The requirement 
of identical distribution is an essential one, as will be explained further below, and the 
most egregious results can be obtained if it is violated.

Now draw a random n-sample from S(Y; Ŷ ). The sampling can be without 
replacement (in which case the sample will be simply a permutation of Y ), or with 
replacement. Let the members of the sample be denoted Si, i = 1, . . . , n, and arrange 
these in a vector denoted S. This is the process of data re-sampling referred to earlier.

Form the vector Y with i-th component

; ˆ (5-17)1� �Y S S Yi i( )= −

and let Y denote the vector with components Yi, ordered in the same way as the Si in S.
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Since the Si were iid, S and S have the same stochastic properties, and then, by (5-16)  
and (5-17), Y and Y have the same stochastic properties. That is, Y may be viewed as 
an alternative data set with the same stochastic properties as the original one. It is in 
fact called a pseudo-data set.

In the case in which the residuals Si are Pearson residuals (see (5-15) and (5-16)), 
the construction of the pseudo-data (5-17) takes the form

; ˆ ˆ ˆ (5-18)1� � �Y S S Y Y Si i i i i( )= = + σ−

It is possible to draw many pseudo-data sets. The number of possibilities is n! if sampling 
without replacement is used, and nn if with replacement. These are very large numbers 
even for n of moderate size.

So draw some large number r of pseudo-data sets, denoted Y(1), Y(2), . . . , Y(r), and 
model each of them, using precisely the same model as was applied to Y originally. 
Here “precisely the same model” means having precisely the same algebraic structure. 
Obviously, the parameters will change as the data inputs change. Call the model 𝓜.

For each pseudo-data set, form the same forecasts as for the original data 
set. Thus, let b̂( j) denote the vector of parameter estimates (“pseudo-estimates”) 
associated with the pseudo-data set Y( j), and let Ŷ*( j) denote the forecast of Y* using 
the j-th pseudo-data set, and let R(Ŷ*(j)) denote the associated forecast of the target 
R(Y*). This is a pseudo-forecast of R(Y*), and there are now r pseudo-forecasts 
R(Ŷ*( j)), j = 1, . . . , r.

The set of pseudo-forecasts has the same stochastic properties as an r-sample of 
forecasts of R(Y*), obtained by application of model 𝓜 to an r-sample of data sets. 
The variation between the pseudo-forecasts reflects parameter error introduced in 
Section 4.1, the error arising from the fact that the application of the same model to 
randomly varying data sets produces variation in the model parameter estimates.

As was also noted in Section 4.1, forecast error also needs to take account of the 
process error, or noise, contained in R(Y*) (see (4-6)). This may also be achieved by 
re-sampling, as follows.

Let the process error associated with the i-th component of Y* be denoted

* * * (5-19)Y E Yi i i[ ]ε = −

or, equivalently,

* ** (5-20)Y E Yi i i[ ]= + ε

Now, in the j-th replication (also referred to as a replicate) E[Y *i ] is estimated by the 
i-th component of Ŷ*( j). To obtain a set of random drawings with the same properties 
as the collection {e*i }, draw a second vector Sproc in the same way as S was drawn, form 
the pseudo-observation vector Yproc in parallel with (5-17), and then define the vector

* ˆ ˆ (5-21)Y Yproc procε = −
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The components of e*proc then have the same properties as the collection {e*i }. The 
procedure can be repeated to obtain r replicates e*proc( j) of e*proc.

In the case of Pearson residuals, (5-17) is specialized to (5-18) in this process, and 
(5-21) simplifies to

* ˆ (5-22), ,
�Sproc i i proc iε = σ

where e*proc,i and Sproc,i are the i-th components of e*proc and Sproc respectively.
Replace E[Y *i ] and e*i in (5-20) by the estimators just formed to define

ˆ* ˆ* * (5-23)� �Y Yj j proc j( ) = + ε( ) ( ) ( )
+

whereupon (Ŷ*( j))+ becomes a pseudo-forecast, augmented to include process error. 
Pseudo-forecasts of R(Y*), also including process error, can now be obtained as simply 
R((Ŷ*( j))+), j = 1, . . . , r.

These are iid drawings with the same distribution as R(Y *), and so the r replicates 
form an empirical distribution of R(Y *). Any stochastic property of R(Y *), e.g., MSEP, 
may then be estimated from the distribution.

The bootstrap process just described may be represented diagrammatically as in 
Figure 5-1. The dashed rectangles are marked for discussion in Section 5.3.2.

Model 

Replicate

Re-sample

Model 

Data

Parameter 
estimates

Fitted 
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Residuals
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residuals

Pseudo-
data

Pseudo-
parameter 
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Forecast

Pseudo-
forecast

Replications
simulate

parameter error

Add noise to 
simulate process 
error

Modelling

Figure 5-1.  Diagrammatic Representation of the Semi-Parametric Bootstrap
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The version of the bootstrap just described is called semi-parametric here and in 
Shibata 1997 (though elsewhere in the actuarial literature, it is often referred to as non-
parametric bootstrapping) because the generation of the pseudo-data sets by means 
of the re-sampling procedure (5-17) or (5-18) makes no distributional assumption. 
However, it does rely on a fitted model from which to calculate predicted values and 
residuals. The distribution of the pseudo-data Y( j) is determined entirely by that of the 
residuals S. Similarly in the addition of process error in (5-23).

By contrast, the non-parametric bootstrap (terminology as per Shibata, 1997) does 
not require a fitted model prior to resampling. It simply generates a large number of 
pseudo-samples by repeatedly sampling the observed data with replacement. Clearly 
this is inappropriate for aggregated insurance loss data where the magnitude differs 
from one development period to the next. The use of the term “semi-parametric” 
for the residual resampling approach may be helpful to distinguish the two types of 
bootstrap, which were both proposed in Efron (1979).

It is evident from the re-sampling basis of the bootstrap that the exclusion of any 
outlying observations, as discussed in Section 2.2.5, will have ramifications not only 
for model parameter estimation (as remarked in that sub-section) but will also reduce 
any bootstrap estimate of dispersion. Once again, one would need to consider whether 
adjustment of that estimated dispersion might be required. Such adjustments are beyond 
the scope of this volume.

5.3.2. Parametric Bootstrap
Parametric bootstrapping as defined in Shibata (1997) is functionally very similar 

to the semi-parametric method described above, but based on theoretical rather than 
empirical residuals. Thus for models such as GLMs, where the standardized deviance 
residuals are asymptotically normal, resampling of the actual residuals may be replaced 
by sampling from a normal distribution with the appropriate variance.

There are other possible ways to make use of the GLM assumptions to generate 
a distribution of reserves, including the approach described below which sim-
plifies the area of Figure 5-1 in the dotted box, in which replicates of parameter 
estimates are obtained, and also simplifies the generation of process error. With 
some abuse of terminology, this is also referred to as parametric bootstrapping in 
this monograph.

Parameter Estimates
It is supposed that the original parameter estimates b̂ (the second box in the 

figure) are MLEs, as is usually the case for GLMs. It is known that an MLE is an 
asymptotically normal unbiased estimator for indefinitely increasing sample size in 
the presence of some technical conditions (Cox and Hinckley, 1974). In symbolic 
terms,

ˆ , ˆ asymptotically (5-24)∼ N Var( )β β β 
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If this asymptotic relation is assumed to hold precisely for the finite data sample under 
consideration, then one may assume that

ˆ , ˆ (5-25)∼ N C( )β β

where Var[b̂] has been denoted by C, and Ĉ denotes the estimate of C provided by 
the GLM software (as already mentioned just prior to (5-9)). The parameter estimate 
replicates b̂(j) may then be sampled from the multi-normal N(b̂, Ĉ ).

The sampling requires care in view of the correlations contained in Ĉ. The usual 
sampling process consists of the following steps:

• apply a linear transformation M to b̂ such that the components of M b̂ are 
uncorrelated;

• sample the each of these components from a univariate normal distribution to 
obtain a random vector g;

• apply the inversion of M to the sampled vector g to obtain the required sampling 
from N(b̂, Ĉ ).

In mathematical terms, find M such that Var[M b̂] = L, diagonal, i.e.,

ˆ , . . . , (5-26)1MCM diagT
p( )= Λ = λ λ

Now make random drawings

ˆ , , 1,2, . . . , (5-27)∼ N M i pi
i

i( )( )γ β λ =

where (Mb̂)i denotes the i-th component of Mb̂.
Finally, construct replicates of b̂(j ) as

ˆ (5-28)1Mjβ = γ( )
−

where g = (g1, . . . , gp)T.
To check that b̂(j) ~ N(b̂, Ĉ), note that

ˆ ˆ ˆ (5-29)1 1E M E M Mj [ ]β  = γ = β = β( )
− −

and

ˆ ˆ ˆ (5-30)1 1 1 1Var M Var M M MCM M Cj
T T T( ) ( )[ ]β  = γ =   =( )

− − − −

Central to the above sampling process is the identification of the required matrix 
M in (5-26). this may be achieved by either Cholesky decomposition or spectral 
decomposition of Ĉ, both of which will be available from conventional statistical 
software.
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Cholesky decomposition expresses Ĉ in the form

ˆ (5-31)C LLT=

with L a lower triangular matrix. This is equivalent to (5-26) with M = L-1 and L = I.
Spectral decomposition expresses Ĉ in the form

ˆ (5-32)C P PT= Λ

with P an orthogonal matrix and g1, . . . , gp the eigenvalues of Ĉ. This is equivalent to 
(5-26) with M = P-1 = PT.

Process Error
The addition of process error is indicated in the bottom right box of Figure 5-1 and 

is described in (5-21) to (5-23). Now Yproc in (5-21) is a replicate of Y, which the GLM 
will have assumed subject to some particular distribution. Hence Yproc may be obtained 
simply as a random drawing from that distribution.

For example, if the assumed distribution of Yi is ODP, the i-th component of Yproc 
may be obtained as a random drawing from a ODP distribution with mean Yi and 
scale parameter f̂/wi, where this last quantity is the GLM’s estimate of (2-21).

Discussion
The parametric version of the bootstrap is so called because it makes use of assumed 

parametric forms: the normal distribution for parameter error, and the GLM’s chosen 
distributional form for process error.

Its implementation is somewhat simpler than that of the semi-parametric form 
with shorter computational times, considerably so for larger data sets. Evidently, how-
ever, its validity is dependent on the assumptions just stated, and will become more  
dubious as:

• the sample size n declines to the point where reliance cannot be placed upon the 
asymptotic result (5-24); and/or

• the error structure assumed within the GLM becomes a poor representation of the 
data.

The commentary at the end of Section 5.3.1 on the exclusion of isolated observations 
from the bootstrap applies equally to the parametric bootstrap.

5.4. Numerical Examples
5.4.1. Delta Method

Table 3-2 obtained the chain ladder forecasts associated with the data triangle 
of Table 1-1. These were obtained by application of the conventional chain ladder, but it 
was noted in Section 3.2 that the ODP cross-classified model produces the same forecasts.

The delta method, as described in Section 5.2.3, is now applied to estimate the forecast 
error associated with the ODP cross-classified model forecasts. Note that, although the 
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ODP Mack and ODP cross-classified models produce the same forecasts, they are different 
models and do not produce the same estimates of forecast error.

The forecast error required here is estimated by application of (5-11) to (5-13), 
where it was noted in Section 5.2.3. that values of Var[b̂] and f̂ are provided by the 
GLM software. These formulas required the evaluation of D, defined by (5-9). It is 
noted that, for the ODP cross-classified model, the link function is h = ln, and so (h-1)′ 
(h(.)) = identity. Thus, (5-9) simplifies to

*ˆ , ˆ , . . . , ˆ* * (5-33)2,10 3,9 10,10D diag ( )= µ µ µ

The results are displayed in Table 5-4. The table contains the root mean square errors 
of prediction (“RMSEP”) and coefficient of variation of prediction (“CVP”). The 
first of these is simply the square root of the MSEP, and the second is defined as

CVP
RMSEP
Forecast

=

5.4.2. Bootstrap
The parametric bootstrap, as described in Section 5.3.2, has been applied to 

estimate the forecast error associated with the ODP cross-classified model forecasts. 

Table 5-4. Chain Ladder Forecast Error

Accident 
Year

Outstanding Losses

Forecast RMSEP CVP

$000 $000 %

1989 3,398 924 27.2

1990 8,155 1,363 16.7

1991 14,579 1,775 12.2

1992 22,645 2,169 9.6

1993 31,865 2,523 7.9

1994 45,753 3,036 6.6

1995 60,093 3,577 6.0

1996 80,983 4,538 5.6

1997 105,874 6,786 6.4

Total 373,346 14,076 3.8

It may be noted that the table reveals positive correlation between 
(at least some) accident years. If accident years were independent, 
then the MSEP of the total forecast would be simply the sum of the 
accident year MSEPs, and the RMSEP of the total forecast would be 
10,275 ($000), substantially less than the actual result of 14,076. The 
difference is accounted for by positive correlation.
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The information required for this consists of that in Table 5-1, together with the 
GLM estimate of the scale parameter, which is f = 114.5.

The results of 10,000 bootstrap replications are contained in Table 5-5, in which:

• “Forecast” is taken as the arithmetic mean of the 10,000 replicates of the forecast; 
and

• “RMSEP” is taken as the square root of the unbiased variance of these 10,000 
replicates.

The results are evidently very similar to those obtained by the delta method in Table 5-4.  
The forecasts are slightly different, which can be accounted for by sampling error arising 
from the limited number of replicates.

Table 5-5. Parametric Bootstrap Estimates  
of Chain Ladder Forecast Error

Accident 
Year

Outstanding Losses

Forecast RMSEP CVP

$000 $000 %

1989 3,476 937 27.0

1990 8,269 1,366 16.5

1991 14,738 1,794 12.2

1992 22,776 2,186 9.6

1993 32,043 2,525 7.9

1994 45,963 3,057 6.7

1995 60,273 3,608 6.0

1996 81,249 4,589 5.6

1997 106,204 6,831 6.4

Total 374,992 14,286 3.8
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6. Model Validation

Chapter summary. Model validation consists of detailed checking that a fitted model 
is compatible with, and accounts for all features of, the data. There are many diagnostic 
plots available for this purpose. The present chapter discusses and illustrates a number 
of these.

Illustration is carried out first in the abstract, and then in relation to a simulated data 
set, and finally in relation to the actual data set given in Chapter 1 and used in numeri-
cal examples throughout this volume. In the case of simulated data, the target model 
is known, and so its effect of specific model features on some of the diagnostic plots can 
be clearly illustrated.

6.1. Introduction
Model validation is the process of examining whether the fitted model—both 

the distributional assumptions and the fitted parameter effects—are acceptable and 
adequate descriptions of the data being modeled. It is a critical part of building any 
model—if the assumptions underlying the model are found to be flawed, this then 
casts doubt on any inferences from that model.

Typically there are three aspects to a model validation:

• Analysis of the distributional assumptions;
• Analysis of the goodness-of-fit of the model; and
• Analysis of the model’s predictive performance on data beyond those used in the 

model estimation.

Of these the third is not usually possible for claims reserving models based on 
simple triangles (i.e., other than individual claim models, also known as micro-models 
or granular models), since all the data would normally be used to build the model. 
Thus, out-of-sample testing is not discussed further here.

In principle, the model validation would begin by validating the choice of dis-
tribution and the link function. Of these, the link function is usually determined by 
the model structure as being that transformation that produces a linear predictor. For 
example, a multiplicative model implies a log link while an additive model uses an 
identity link. In terms of model validation, a link function is acceptable if the model 
passes the other validation tests without requiring an excessive number of interaction 
terms. Once the link and the distribution have been validated, the user can move onto 
examine the goodness-of-fit of the model.
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One’s view of the error distribution is provided by the observed residuals, which 
depend in turn on the fitted model. No view of the distribution can become available until 
some model, at least a rudimentary one, has been fitted to the data. Thus the respective 
forms of the error distribution and model are inter-dependent, and cannot simply be 
selected sequentially.

In our experience, the estimated mean of the distribution is relatively insensitive 
to the choice of distribution, and similar findings are reported by Lai and Shih (2003), 
though, of course, the same is not true of the variance. Thus, our approach to model fitting 
and validation is generally to select a reasonable set of distribution assumptions using 
common sense arguments, fit the model and test for goodness of fit, before validating the 
model distribution assumptions carefully. In more detail, a step-by-step description of 
this process is as follows:

• Select the appropriate link function (e.g., a multiplicative model implies a log link);
• Select a reasonable distribution—e.g., ODP for a cross-classified model;
• Fit the main effects in the model and any obvious interactions (see Section 7.6);
• Check the residual diagnostics for any gross violations of the distributional assump-

tions and make changes if necessary;
• Continue with the model fitting using goodness-of-fit tests (primarily comparisons 

of actual and model fitted values) until a satisfactory goodness-of-fit of cell means 
is obtained. This may involve the use of interactions in the model;

• Review the distributional diagnostics in detail and make any adjustments required 
to yield satisfactory results. After any changes, re-check the goodness-of-fit and make 
changes if necessary. Repeat until a satisfactory model is obtained.

The assessment of the goodness-of-fit and the distributional assumptions is covered 
in detail below. In practice, the tools used in this assessment are usually graphical, and 
definitions and examples of all the various graphical tools used are provided.

Following that, some examples of the graphs are given in cases of poor fit and 
good fit. To facilitate this discussion, simulated data sets are used so that the true under-
lying model is known with certainty. Finally, model validation will be carried out for 
the cross-classified model using the example data set.

6.2. Summary of Assumptions and Tests
Before commencing the definition and use of the various model diagnostics later in 

this chapter, we have gathered together the list of model assumptions and corresponding 
diagnostics that will be discussed below. This is intended as a reference list that modelers 
may use to check the fit of their model.

Distributional Assumptions
• The link structure is appropriate:

C Expectations regarding the modeled quantity will largely determine the choice 
of link—e.g., a multiplicative model structure requires the use of a log link. It 
is validated if the model passes the other diagnostics tests without requiring an 
undue number of interactions.
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• The distribution choice is appropriate:
C Probability-Probability (P-P) plot;
C Residual plots by accident, development and calendar year periods;
C Histograms or kernel density plots of the residuals.

Goodness-of-Fit
• The model fits well by accident, development and calendar periods:

C Plots by accident, development and calendar periods of actual and expected 
(i.e., the expected value according to the fitted model) in some form, e.g.:
n actual vs. expected;
n log(actual) vs. log(expected);
n Actual/expected;

C Plots of residuals, also by accident, development and calendar periods;
• All significant interactions have been identified:

C A triangular (e.g., 2-d) heat map of actual/expected;
C Actual and expected plots for specific parts of the experience.

6.3. Diagnostic Graphs
All diagnostics graphs involve the comparison of actual and expected quantities, 

where “expected” is an abbreviation for “expected value according to the fitted model”.
The most well-known comparison is that based on residuals but other comparisons 

such as the quotient of the actual and expected values or plots of actual and expected 
values are also useful. In more detail, the functions of actual and expected values used are:

• Pearson residuals—both raw and standardized. Refer to Section 2.2.4 for their 
definition;

• Deviance residuals—both raw and standardized. Refer to Section 2.2.4 for their 
definition;

• Actual values including sums of actual values across rows (Sℛ(k)), columns (S𝒞( j)) 
and diagonals (S𝒫(k+j-1)). Depending on the scale of the comparison, the logs of these 
quantities may be more useful;

• Expected values including sums of expected values across rows, columns and 
diagonals (denoted by Sℛ̂(k), S𝒞( j) and S�̂�(k+j-1) respectively). Again, the logs of these 
quantities may be useful for many reserving problems;

• Actual/expected values in each cell of the triangle—for example Ykj/Ŷkj; and
• Actual/expected marginal values by row, column and diagonal. For example, the 

marginal actual/expected comparison for accident period k is Sℛ(k)/Sℛ̂(k).

Following from the discussion of Pearson and deviance residuals in Section 2.2.4, 
only deviance residuals will be used in this chapter due to their greater degree of normality 
when the underlying distribution (Poisson in this case) is not normal. All comments 
below which discuss normality and homo- and heteroscedasticity of residuals refer to 
standardized deviance residuals.

Based on these quantities, a number of diagnostic graphs are available to the user to 
carry out model validation. These graphs are discussed below in Sections 6.3.1 to 6.3.7. 
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Note that in all of the examples in these sections, the plots are drawn using a correctly 
specified model of simulated data so that the graphs indicate a well-fitting model.

6.3.1. Scatterplot
A scatterplot of residuals is a simple graph plotting residuals against a relevant variable 

such as the expected value, accident period, development period or calendar period. 
Figure 6-1 gives an example of a scatterplot where standardized deviance residuals are 
plotted against development period.

Departures from a random, homoscedastic plot of deviance residuals suggests 
problems with the model. A trend in the residuals indicates possible goodness-of-fit issues 
while heteroscedasticity (e.g., fanning of residuals) often indicates that the dispersion 
assumptions are inappropriate. As noted above, the example here is taken from a correctly 
specified model leading to homoscedastic residuals.

6.3.2. Spread Plot
This plot shows some summary statistics of the residuals plotted against a variable 

of interest (e.g., development period, expected value) to provide the modeler with 
information on the spread and distribution of the statistics. Specifically, the 25th and 
75th percentiles are plotted along with the standard deviation of the residuals. The 
spread plot is particularly useful for detecting heteroscedasticity of deviance residuals 
as heteroscedasticity is indicated by widening or narrowing of the inter-quartile range 
and by significant changes in the standard deviation.

The spread plot corresponding to Figure 6-1 is shown in Figure 6-2 below. Looking 
past the volatility (particularly in the higher development periods), the interquartile 
range is reasonably consistent while the standard deviation fluctuates around unity.

Figure 6-1.  Scatterplot of Standardized Residuals
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Note that in spread plots, the green and black lines plot the 25th and 75th percentiles 
while the blue line is the standard deviation of the residuals. If standardized residuals 
are used, as is the case here, then the standard deviation of these residuals should vary 
randomly about unity and any systematic departures from this may indicate a problem 
with the model assumptions.

6.3.3. Actual and Expected Comparison Plots
Actual and expected comparison plots display the actual and expected totals 

(e.g., by accident, development or calendar period). For example, such a plot by row 
or accident period shows the actual series (Sℛ(k)) and the expected series (Sℛ̂(k)) plotted 
for 1 ≤ k ≤ K. Areas of poor fit correspond to consistent differences in the actual and 
expected values. Figure 6-3 is an example of an acceptable graph where the expected 
values are close to the actual values.

Depending on the scale of the data, it may be more helpful to log the quantities, 
i.e., log(actual) vs log(expected).

6.3.4. Actual and Expected Ratio Plots
These plots are similar to those in 6.3.3 except that they plot the actual/expected 

ratio rather than individual actual and expected lines. Systematic deviations away from 
100% indicate regions of poor fit.

Figure 6-4 is the ratio plot equivalent to the comparison plot shown in Figure 6-3. 
Following some volatility in early calendar periods (when there is little data), the ratios 
fluctuate randomly around 100% indicating an adequate fit.

Figure 6-2.  Spread Plot
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6.3.5. Actual and Expected Ratio 2-D Heat Map
This diagnostic is particularly useful in the loss reserving context where it can be 

used to look at the goodness-of-fit across a data triangle (or other 2–dimensional array). 
Specifically, it calculates the actual/expected ratio in each cell of the triangle and applies 
a formatting conditional on the deviation of the ratio from 100%. In the example in 

Figure 6-4.  Actual and Expected Ratio Plot by Diagonal (calendar period)

Figure 6-3.  Actual and Expected Comparison Plot by Diagonal (calendar period)

Note that in actual and expected comparison plots, the red line shows the actual totals, the blue line the expected 
totals while the green dotted line (right-hand scale) shows the cumulative number of data points at each level.
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Figure 6-5 pink values indicate ratios larger than 100% and blue ratios less than 100%. 
The more intense the color, the greater the deviation from 100%.

The distribution of colors should be random across the triangle. Clumps of one 
color indicate areas of poor fit. For example, if the model includes terms for accident 
and development period effects, then a clumping of colors may indicate the need for 
further model terms such as interactions between accident and development periods or 
terms involving calendar periods.

The heat map in Figure 6-5 suggests that the model is not missing interaction or 
calendar period terms since the blue and pink colors are randomly distributed.

6.3.6. Probability-Probability Plot
A Probability-Probability plot (also known as a “P-P” plot or a percent-percent 

plot) is a graphical method for comparing two probability distributions. A P-P plot 
plots two cumulative distribution functions (“cdfs”) against each other. Given an 
input u, the plotted points are (F(u), G(u)) where F and G represent the cdfs of two 
probability distributions. Thus, a P-P plot is a parametric graph, whose range is the 
unit square [0,1] × [0,1]. Each pair of numbers represents the probability of being 
≤u under the distributions F and G respectively.

In a GLM application, one distribution will correspond to the selected error dis-
tribution (e.g., ODP as discussed in this monograph), referred to as the “theoretical” 
distribution while the other will correspond to the modelled data (the “empirical” distri-
bution). If the model fits the data well, then the empirical and theoretical distributions 
should be similar and the resulting P-P plots should be an approximately straight line 

Figure 6-5.  Actual and Expected Ratio Heat Map
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of the form y = x (see Figure 6-6). Pronounced or persistent deviations from a straight 
line indicate problems with the distributional assumptions.

For the model discussed in this monograph, each observation Ykj is assumed subject 
to an ODP with mean Ŷkj and variance fkjŶkj. The value of the cdf of this “theoretical” 
distribution is computed at Ykj . Call it ukj . The empirical distribution, ûkj , may be 
obtained by sorting by ascending u with ûkj  being the proportion of data points ≤ ukj . 
In effect, the empirical readings are simply n equally spaced points in [0,1] where n is 
the number of observations in the data set.

A related and perhaps better known plot is the Quantile-Quantile (“Q-Q”) plot, 
which plots the quantiles of two distributions against each other. In more detail, the 
inverse function of a cumulative probability function is the quantile function, i.e., 
given a cdf F, its quantile function is F -1. Thus, given two cdfs F and G, with associated 
quantile functions F -1 and G -1, a Q-Q plot draws the q th quantile of F against the 
q th quantile of G for a range of values of q. Thus, the Q-Q plot is a parametric curve 
indexed over [0,1] with values in the real plane R2.

The Q-Q plot requires that all observations appearing within it be drawn from the 
same distribution. This will not usually be the case for the raw observations modeled by 
a GLM, where the mean may vary from one observation to another. However, a Q-Q 
plot may be applied to the standardized deviance residuals, which are asymptotically 
N(0,1). In this case the ordered standardized deviance residuals are plotted against the 
quantiles of the standard normal distribution. Augustin, Sauleau and Wood (2012) 
provide some further discussion on the use of Q-Q plots as GLM diagnostics.

Note that in P-P plots, the blue line is the plot that would be obtained if the actual distribution exactly matched the 
assumed distribution. The red line is the plot of the assumed theoretical quantiles against the empirical quantiles.

Figure 6-6.  Probability-Probability Plot
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6.3.7. Histogram of Residuals
Finally, a simple histogram of standardized deviance residuals is a further useful 

check on the distributional assumptions—if the model is appropriate, then these 
residuals should be approximately standard normal, as in Figure 6-7 where magnitude 
of standardized residuals is represented on the horizontal axis and frequency of their 
occurrence on the vertical.

6.4. Simulated Data Set and Fitted Models
Three simulated data sets were generated to illustrate the use of the various model 

diagnostics in model validation. They are described in Table 6-1. Note that the accident 
and development period effects used to simulate the data are specified from the formulae 
given in the table below.

In summary, all three simulated data sets are Poisson distributed. Simulated data set 1 
has accident and development period effects only and a constant scale so may be correctly 
described by a cross-classified model. The second data set is similar to the first except 
that its scale parameter varies by development period. Thus, a cross-classified model 
with suitably selected weights is appropriate. Finally the third data set has development 
effects that vary according to accident period. Thus the cross-classified model cannot 
adequately model this dataset since it will not capture the interaction between accident 
and development effects.

A number of different models were fitted, all GLMs of the form Ykj ~ ODP(µkj , fkj). 
The models differ in the specifics of the definitions of µk j and fk j , which are given in 
Table 6-2, together with the data sets to which they were applied.

Figure 6-7.  Histogram

Note: the solid line overlay is a normal distribution, fitted using the method of moments, while the dotted line is a kernel density  
estimator, which may be helpful for small data sets such as those that typically result from reserve estimation using aggregate 
triangle data.
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Table 6-1.  Description of Simulated Data

Characteristic Simulated Data 1 Simulated Data 2 Simulated Data 3

Accident periods 20 20 20

Development periods 20 20 20

Development period 
effect j=1 to 20

bj = exp(-0.3[j - 1] 
+ 1.5ln[j])

bj = exp(-0.3[j - 1] 
+ 1.5ln[j])

bj = exp(-0.3[j - 1]  
+ 1.5ln[j]) for k=1 to 10 
and bj = exp(-0.5[j - 1] 
+ 2ln[j]) for k=11 to 20

Accident period 
effect, k=1 to 20

ak = exp(0.05k + 4) ak = exp(0.05k + 4) ak = exp(0.05k + 4)

Scale parameter 1 min(8, j + 1)2 1

Distribution Poisson Over-dispersed 
Poisson

Poisson

Table 6-2.  Models Fitted to Simulated Data

Model Name Model Description

Simulated Data Set

1 2 3

Mean µkj = exp(µ) Y

fkj = 1

Development µkj = exp(ln bj) Y

fkj = 1

Full µkj = exp(ln ak + ln bj) Y Y Y

fkj = 1

Full weights µkj = exp(ln ak + ln bj) Y

fkj = min(8, j + 1)2

6.5. Analysis of the Goodness-of-Fit
This aspect of model validation examines the data to ensure that all significant 

drivers of the target value have been identified. In claims reserving, this corresponds to 
reviewing the diagnostics by accident, development and calendar period to see if there 
are any un-modeled trends in the data.

In other words, the model is examined for the quality of fit to the data of its 
cell expected values. Dispersion and distributional questions will be considered in 
Section 6.6.

Traditionally this would be carried out by examining the residuals (refer back to 
Section 2.2.4 for the definition and discussion of Pearson and deviance residuals) for 
evidence of non-randomness. To illustrate this, the Mean model is fitted to simulated 
data 1. This model fits a single average to all data points, thereby ignoring the accident 
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and development period trends that exist in the data. Figure 6-8 shows scatterplots of 
the deviance residuals by accident and development periods and exhibits clear trends 
and departures from randomness.

Alternatively actual and expected comparison (Section 6.3.3) or actual and expected 
ratio (Section 6.3.4) plots may be helpful in providing a clearer view of the goodness-
of-fit (or lack thereof ).

The trends seen in Figure 6-8 may be clearly seen in the actual and expected plots 
in Figure 6-9. In general actual and expected plots may often be an easier way of  
assessing the goodness-of-fit of the data than residual plots. However, residuals plots 
should not be ignored for this purpose; in particular residual plots are very useful 

Accident period Development period

Figure 6-8.  Standardized Deviance Residuals (Mean model)

Actual and expected comparison plot by
accident period

Actual and expected ratio plot by
development period

Figure 6-9.  Actual and Expected (Mean model)

Note: Left hand graph: the red line is the actual line, while the blue line represents the expected values. The green dotted line 
represents (right-hand scale) the number of data points underlying each plotted point.
Right hand graph: The actual/expected ratios have been truncated to a minimum value of 50% and a maximum value of 150%.
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for identifying outliers that may need to be removed prior to fitting a model (refer 
to Section 2.2.5).

Suppose now that a model with development period effects has been fitted—the 
Development model. Residual and actual and expected plots by development period are 
shown in Figure 6-10. Note that, in the right-hand graph, both actual [red] and expected 
values [blue] have been plotted but they coincide so that only one (the expected line) is 
actually visible to the reader.

The residual plot no longer appears to contain trends, indicating that the model has 
captured the development period trends. This is confirmed by the actual and expected 
comparison plot, where the actual and expected totals are identical.

Note, however, that the ML equations for the ODP models are marginal sum 
estimation equations. Consequently, the actual and expected marginal totals associated 
with each model parameter are identical. The Development model contains development 
period (or column) parameters, and so actual and expected marginal totals by development 
year are identical (refer to Section 3.2 for further discussion of this point).

Thus, the actual and expected comparison and ratio plots provide no information 
in this case other than that development period trends have been captured in the slavish 
manner pre-ordained by marginal sum estimation.

On the other hand, the residual scatterplot does provide some information on the 
goodness-of-fit; in this case there is a suggestion of heteroscedasticity.

Figure 6-11 shows comparison plots of actual and expected for accident and 
calendar periods for the Development model. It is clear that the goodness-of-fit is 
still inadequate. The same plots are shown in Figure 6-12 but in this case for the fully 
specified cross-classified model, i.e., the Full model. The accident period actuals and 
expected overlay exactly due to marginal sum estimation in the presence of both 
accident and development period parameters in the model. The calendar period 
comparison is very close, suggesting that the model does not contain any calendar 
period effects.

Scatterplot of residuals Actual and expected comparison plot by development period

Figure 6-10.  Development Period Diagnostics (Development model)
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Other plots which may be useful include the residuals plotted against linear 
predictor and expected values. These plots are also used later when verifying distribution 
assumptions.

6.5.1. Identifying Interactions
So far the examples considered have been for a model where there are no interactions. 

Consider now a case where the development period factors bj in the cross-classified 
model change significantly at a point in the past as they do in simulated data 3, and 
consider the diagnostics under the Full model where one set of development period 
factors is fitted for all accident periods.

Both the accident period and development period actual and expected comparison 
(and ratio) graphs are not useful since the actual and expected totals are identical 

Accident period Calendar period

Figure 6-11.  Accident and Calendar Period Actual and Expected Comparison Plots 
(Development model)

Note: the red lines are the actual lines while the blue lines represent the expected values. The green dotted lines represent  
(right-hand scale) the number of data points underlying each plotted point.

Accident period Calendar period

Figure 6-12.  Actual vs Expected for Full CC Model



Casualty Actuarial Society 69

Stochastic Loss Reserving Using Generalized Linear Models

due to the use of marginal sum estimation. The calendar period actual and expected 
comparison plot does suggest areas of poor fit (see Figure 6-13), and some of the residual 
plots exhibit non-randomness such as that in the development period scatterplot also 
shown in Figure 6-13.

Since accident and development period effects have been fitted in the model, the 
missing effect may be either a calendar period effect or an interaction between accident 
and development period (or both). To determine its nature, a heat map of actual and 
expected ratios may be helpful.

The heat map is shown in Figure 6-14. The distribution of actual/expected ratios is 
non-random with clusters of ratios greater than 100% and less than 100%. The lines 
have been added by judgment to separate out areas that show greater concentrations 
of ratios greater or less than 100%. Since the clusters appear to be located for specific 
accident and development period groups rather than along entire diagonals, this suggests 
that the missing effects are interactions between accident and development periods and 
not calendar period effects.

6.6. Analysis of the Distribution Assumptions
The goodness-of-fit tests may be viewed as checking whether the model’s cell means 

provide a good fit to the cell observations. However, in addition to the cell means, it is also 
important to check whether the model distribution is a good approximation to the data. 
This is particularly true if the model is intended to be used to assess the variability of 
the loss reserve estimate.

The main distributional assumptions are:

• The form of the distribution of the data;
• The scale parameter of that distribution; and
• The choice of link.

Calendar period actual and expected
comparison

Development period scatterplot

Figure 6-13.  Diagnostic Plots—Model with Missing Interaction

Note: the red lines represent the actual observations, while the blue lines represent the expected values. The green dotted lines 
represent (right-hand scale) the number of data points underlying each plotted point.
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The main tools in checking the distributional assumptions are:

• Plots of residuals; and
• Probability-Probability (P-P) plots.

As discussed in Section 6.1, the recommended approach to model validation 
was first to fit a simple model and check for any gross violations of the distributional 
assumptions. At this stage, problems such as a moderate level of heteroscedasticity could 
be ignored since they may result from poor estimation of the cell means. Providing 
the residual plots do not indicate a serious problem, the modeler may then continue 
to fit the model. Once the cell means fit well (based on the goodness of fit tests), the 
distributional assumptions may be re-examined in fine detail and adjusted as required.

Distribution diagnostics are illustrated for simulated data 2 under the Full model. 
For simulated data 2, the full model correctly specifies the form of the cell mean but does 
not correctly specify the variability/scale since it assumes a constant scale parameter 
rather than a scale that varies by development period. Thus, the diagnostics should 
show evidence of incorrect dispersion assumptions.

Recall that in the spread plot, the green and black lines represent the interquartile 
range while the blue line is the standard deviation of the residuals at each development 
period.

The residuals in Figure 6-15 are clearly heteroscedastic with a fanning out of residuals 
observable for development periods 1-8, as expected based on the assumptions for the 
scale parameter (refer to Table 6-1). From the spread plot it is seen clearly that the standard 
deviation of the residuals increases over the same range of development quarters.

The P-P plot is shown in Figure 6-16. Some deviations from the Poisson distribution 
may be seen.

Figure 6-14.  Actual/Expected Heat Map—Full Model for Simulated Data 3
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The model was refitted using the correct formulation for the scale parameter. Strictly 
speaking, it is the weights, rather than the scale parameter, that require correction. 
Recall from (2-21) that the scale or dispersion parameter may be written as fi = f/wkj. 
In this case, f = 1 and the weights vary only by development period j and are specified 
by wkj = min(8, j + 1)2 (as per the data specification in Table 6-1).

The same plots as in the preceding two figures are shown below in Figure 6-17 after 
the model refit. The improvement is apparent.

As well as adjustments to the dispersion by means of weights, the modeler should 
generally consider whether the use of a different distribution, e.g., Gamma rather than 
Poisson, is more appropriate for the data under consideration.

Development period scatterplot Development period spread plot

Figure 6-15.  Diagnostic Plots—Full Model, Scale Parameter Assumed Constant

Figure 6-16.  P-P Plot—Full Model, Scale Parameter Assumed Constant
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Finally, there are no particular tests for the choice of the link function. Rather, the link 
is usually determined by the model structure (e.g., an additive model implies an identity 
link while a multiplicative model implies a log link), which in turn is often determined 
a priori by the nature of the data being modeled. Generally speaking, if the link function 
implies a structure that makes sense for the particular data, and if the diagnostics plots 
are acceptable without requiring an unreasonable number of interactions, then the link 
function may be considered appropriate.

6.7. Model Validation for Real Data
The examples discussed to date have used simulated data so that the true underlying 

model is known. In practice, this is not the case, so the modeler will need to select the 
best model using judgment. In the following sections, diagnostics plots for the cross-
classified model (Section 3.3.2) based on the data in Table 1-1 are shown together with 
some commentary.

6.7.1. Initial Check of Distribution Assumptions
As a model of main effects only, the cross-classified model may be easily fitted. 

Once this is done, the first step in model validation is to check that the distributional 
assumptions are not grossly violated.

Scatterplot by development year Spread plot by development year

P-P plot

Figure 6-17.  Diagnostic Plots for Correctly Specified Variable Scale Model
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The P-P plot for the cross-classified model is shown in Figure 6-18. While there 
are systematic departures from the straight line, suggesting that the distributional 
assumptions could be improved, the distortion is not at a level that renders the Poisson 
log link distributional assumptions unusable as an initial set of assumptions for building 
a model.

The residual plots should also be checked first for any major problems with the 
distributional assumptions and second for indications of regions of poor fit.

Figure 6-19 shows the scatter and spread plots by development year for the cross-
classified model. As above, the residuals do not suggest a major problem with the 
distributional assumptions.

However, the spread of the residuals in development years 1 and 2 is greater than in 
other years, which may suggest a less than optimal fit to the means of the development 
year 1 and 2 data or that the Poisson assumptions may be inadequate (e.g., perhaps the 
scale parameter varies by development period).

Figure 6-18.  P-P Plot for the Cross-Classified Model

Figure 6-19.  Residuals by Development Year for the Cross-Classified Model
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The residuals by accident and calendar year are shown in Figure 6-20. The residuals 
by calendar year, in particular, suggest a problem with the model fitting that should 
be investigated further.

Thus the conclusions from this stage of the model validation process are that there are 
areas of poor fit that need further investigation and possible modeling. For the time being 
the distributional assumptions (Poisson model, constant scale, log link) may continue to 
be used, but they will need reviewing once the fit of the model has been improved.

6.7.2. Goodness-of-Fit
The next step in the modeling process is to use the various goodness-of-fit diagnostic 

tools to identify the regions of poor fit better and determine whether these should be 
modeled.

Since the cross-classified model contains a parameter for each accident and devel-
opment year, the marginal totals will be identical under ML estimation (Section 3.2). 
Therefore actual and expected plots by accident and development years will be unhelpful. 
The comparison plot of actual and expected by calendar year is shown in Figure 6-21 
below. This appears satisfactory, even though the residuals by calendar year are prob-
lematic (Figure 6-20 above).

This suggests that the poor fit may result from some interactions, so the triangular 
heat map diagnostic may be useful and is shown in Figure 6-22. This indicates the 
presence of some missing interactions between accident year and development years 1 
and 2 (see the highlighted regions in the plot below).

Even in the absence of evidence of poor fit from the various one-way residual and 
goodness-of-fit diagnostics, the accident/development 2-d heat map should always be 
checked in reserving models.

In summary, the fit of the cross-classified model is reasonably good, but there is 
evidence of some interactions between accident and development years. Chapter 7 

Accident year Calendar year

Figure 6-20.  Residuals by Accident and Calendar Year for the Cross-Classified Model
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Figure 6-21.  Actual and Expected Comparison Plot by Calendar Year

Accident 0 1 2 3 4 5 6 7 8 9

1 98% 100% 100% 104% 113% 87% 96% 92% 100% 100%

2 99% 99% 106% 103% 95% 95% 99% 102% 100%

3 96% 108% 107% 91% 90% 102% 92% 104%

4 97% 103% 96% 97% 103% 111% 111%

5 95% 107% 100% 100% 97% 100%

6 98% 105% 93% 101% 104%

7 109% 91% 95% 104%

8 106% 90% 105%

9 103% 97%

10 100%

Development

Figure 6-22.  2-D Heat Map for Cross-Classified Model

deals with extensions to the cross-classified model, including the use of interactions, 
and the reader is referred there for further discussion concerning their use for this 
particular loss reserving problem.

Once interactions are included in the model (e.g., as per the discussions in 
Chapter 7), the modeler should then return to the tests of distributional assumptions 
and ensure that these are now satisfactory, making adjustments if required.
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7. Model Extensions

Chapter summary. It has often been remarked in the literature that the conventional 
chain ladder involves an excessive number of parameters, with a separate parameter for 
each accident year and for each development year. The GLM formulations of Chapter 3 
follow the same parametric structure, and therefore carry the same excess of parameters.

This chapter is concerned with approaches to parameter reduction, achieved largely 
by means of generalized additive models. A GAM is obtained by the replacement of 
each of a number of categorical variates in a GLM with a parametric form that is 
economical in its parameters. Prime candidates for this sort of parameterization 
are accident year and development year trends, which are represented by categorical 
variates in the chain ladder.

The chain ladder assumes a multiplicative structure in the sense that the mean associated 
with any cell is equal to the product of a row factor and a column factor. Sometimes 
this model structure will not be supported by the data. The concept of calendar period 
effects and of interactions, required to correct the structure, is explored.

A parametric form in relation to development year also enables models to be extrapolated 
beyond the range of development years encompassed by the data. A smooth parametric 
form will ensure that the model progresses smoothly over development years, both inside 
and outside the bounds of the data.

Finally, models other than the chain ladder are briefly discussed. These include exposure-
based models of claim numbers and payments, models that comprise of a number of 
sub-models and individual claim models. The chapter concludes with a brief reference 
to Bayesian models.

7.1. Chain Ladder Model Revisited
Consider the accident year parameter estimates ln âk appearing in Table 5-1. 

Figure 7-1 plots them against accident year k.
There are 10 parameters plotted. However, they assume a strongly parabolic appear-

ance, raising the question as to whether the 10 values might be adequately represented 
by means of a smaller number of parameters.

Consider Figure 7-2 in this context. The dotted curves here describe a confidence 
envelope of ±2 standard errors about the parameter estimates, where the standard errors 
are also obtained from Table 5-1. The solid line represents the ordinary least squares fit 
of a quadratic to the parameter estimates.
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The quadratic curve, which is described by only 3 parameters, appears to track the 
parameter estimates well and does indeed lie well within the confidence envelope.

As discussed in Section 4.2.2, an excessive number of model parameters degrades 
a model’s predictive power. A question arises therefore as to whether greater predictive 
power is obtained when the conventional chain ladder model is replaced by an alternative 
version in which the 10 accident year effects are represented by a quadratic form.

Curve fitting of this sort might have a physical motivation, or might simply amount 
to abstract fitting (as in the present case). In either case, one must usually be resigned to 
the loss of some goodness-of-fit. However, the ultimate justification for such curve fitting 
is reduction of prediction error as a result of reduced parameterization.

Mathematically, the use of the suggested quadratic form amounts to replacement of 
(3-18) in the ODP cross-classified model of Section 3.3.2 (i.e., E[Ykj] = µk j = exp(ln ak + 
ln bj)) by the following:

(7-1)0 1 2
2E Y exp a a k a k lnk j k j j[ ] ( )= µ = + + + β
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Figure 7-1.  Plot of Accident Year Parameter Estimates
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Figure 7-2.  Quadratic Fit to Accident Year Parameter Estimates
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where there are now 12 free parameters a0, a1, a2, ln b2, . . . , ln b10. Recall that 
ln b1 was arbitrarily set to zero in Section 3.3.2 (see Table 3-5) due to parameter 
redundancy.

It is somewhat convenient to abbreviate this model a little further, thus:

(7-2)1 2
2E Y exp a k a k lnk j k j j[ ] ( )= µ = + + β

where the degree of freedom lost by deletion of the parameter a0 is compensated by 
restoration of ln b1 as a free parameter. Model (7-2) contains the same number (12) of 
parameters as (7-1) but those parameters are now a1, a2, ln b1, . . . , ln b10.

7.2. Generalized Additive Models
The model (7-2) is an example of a generalized additive model (“GAM”). A 

GAM is a special case of a GLM. Recall the definition of a GLM in Section 2.2.1, and 
in particular condition (2) of that definition:

(7-3)h xi i
T( )µ = β

with xT
i = (xi1, xi2, . . . , xip), the vector of predictors associated with the i-th observation Yi.

Now suppose that one or more of the predictors takes the form

(7-4)x u zij j i( )=

where uj is a real-valued function, and zi is a vector of further covariates: zT
i = (zi1, 

zi2, . . . , ziq) which may include components of xi. The uj might be basis functions of 
the type introduced in Section 2.2.2.

When the GLM is defined subject to (7-4), it is a GAM. The model defined by 
(7-2) provides an example. In the present case,

, , . . . , , , (7-5)1 2 ,10 1 2x J J J u z u zi
T

i i i i i( )( ) ( )=

where Jij is a 0-1 indicator that takes the value unity if the i-th record relates to 
development year j and zero otherwise (compare with the design matrix X set out in 
Section 3.3.2);

(7-6)z ki i( )=

a 1-vector in which ki denotes the value of k associated with the i-th record; and

, 1,2 (7-7)u k k mm
m( ) = =

The following sections will examine a few applications of GAMs to the data triangle 
set out in Table 1-1.



Casualty Actuarial Society 79

Stochastic Loss Reserving Using Generalized Linear Models

7.3. Accident Year Trend
This model has been fitted to the data triangle set out in Table 1-1, and the resulting 

estimates appear in Table 7-1 under the heading “Simplified model”. Those under the 
heading “Chain ladder” reproduce the estimates from Table 5-1 for comparison. It is 
evident that the simplification of the model has caused very little difference to the 
estimated development pattern.

The quadratic representation of the accident year effect (see (7-2)) is 10.471 + 
0.2001k - 0.0179k2.

The simplified model has been applied to the forecast of outstanding losses, and the 
associated forecast error estimated by means of a parametric bootstrap. The procedure 
is parallel to that set out in Section 5.4.2, and its results appear in Table 7-2.

Table 7-2 may be compared with Table 5-5, which contains exactly the same 
information for the chain ladder model. The comparison indicates that the model 
simplification has affected the forecast of outstanding losses very little (0.4%), but has 
resulted in a reduction of 8.4% in estimated forecast error. In short, the reduction in 
parameterization of the model has resulted in improved forecast efficiency.

Note that, in some lines of business, an exposure measure may be used as an alternative 
means of capturing accident period trends. This is discussed below in Section 7.8.

7.4. Development Pattern
Consider the development year parameter estimates ln b̂j appearing in Table 5-1. 

Figure 7-3 plots them against development year j.
There are 10 parameters plotted. However, it appears that they might be adequately 

represented by a linear spline with a knot at j = 7.5, again by means of a smaller number 
of parameters.

Table 7-1.  Parameter Estimates for Simplified Model

j

ln b̂j

Chain Ladder Simplified Model

1  0.000  0.000

2 -0.205 -0.206

3 -0.747 -0.750

4 -1.017 -1.015

5 -1.452 -1.452

6 -1.833 -1.830

7 -2.140 -2.142

8 -2.348 -2.353

9 -2.513 -2.514

10 -2.664 -2.661
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Consider Figure 7-4 in this context. The dotted curves here describe a confidence 
envelope of ±2 standard errors about the parameter estimates, where the standard 
errors are obtained from Table 5-1. The solid line represents the ordinary least squares 
fit of the following linear spline to the parameter estimates:

1 max 0, 7.5 (7-8)1 2b j b j b j( ) ( ) ( )= − + −

The spline, which is described by only 2 parameters, appears to track the parameter 
estimates well and does indeed lie well within the confidence envelope with the exception 

Table 7-2.  Parametric Bootstrap Estimates of Simplified 
Model’s Forecast Error

Accident Year

Outstanding Losses

Forecast RMSEP CVP

$000 $000 %

1989 3,467 885 25.5

1990 8,334 1,295 15.5

1991 14,594 1,659 11.4

1992 22,416 2,000 8.9

1993 32,340 2,312 7.1

1994 45,263 2,614 5.8

1995 62,410 3,076 4.9

1996 79,922 3,658 4.6

1997 104,895 4,844 4.6

Total 373,641 13,086 3.5

Figure 7-3.  Plot of Development Year Parameter 
Estimates
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of the case j = 2. This suggests a model, with the accident year simplification of Section 7.3 
incorporated, of the form (7-3) with

1, , , 1, max 0, 7.5 , (7-9)2
2x k k j j Ji

T
i i i i i( )( )= − −

where ji denotes the value of j associated with the i-th record. Note the inclusion of the 
unit regressor, which allows for a constant term in the regression.

Thus the final model takes the form

1 max 0, 7.5 (7-10)0 1 2
2

1 2 2x a a k a k b j b j cJi
T

i i i i i( ) ( )β = + + + − + − +

This model has been fitted to the data triangle set out in Table 1-1, and the resulting 
estimates appear in Table 7-3.

Table 7-3.  Parameter Estimates for Model with Both 
Accident and Development Year Simplifications

Parameter Estimate

Accident year parameters

a0 10.469

a1 0.200

a2 -0.018

Development year parameters

b1 -0.358

b2 0.236

c 0.155

Figure 7-4.  Fit of Linear Spline to Development Year 
Parameter Estimates
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This model has been applied to the forecast of outstanding losses, and the associated 
forecast error estimated by means of a parametric bootstrap. The procedure is parallel 
to that set out in Sections 5.4.2 and 7.3, and its results appear in Table 7-4.

The bootstrap estimates of prediction error in Table 7-4 are comparable with those 
in Table 7-2 for the model that contained only the accident year simplification. It is 
seen that the development year simplification of the model has caused:

• once again, virtually no change in the forecast of outstanding losses; and
• just a slight increase in the associated CVP (3.50% to 3.55%).

Whether one chooses this model over the one developed in Section 7.3 is largely a matter 
of taste. The model of the present section reduces the number of model parameters 
from 12 (19 originally for the chain ladder) to 6, but without any improvement (and, 
technically, a slight deterioration) in forecast quality. However, it does express the 
development pattern in parametric form, leading to a smooth tail as well as forming 
a basis for tail extension, so it may be preferred on this basis. Tail smoothing and 
extension are discussed further in Section 7.7.

7.5. Calendar Year Trend
The models discussed up to this point have considered accident and development 

period effects only, or alternatively, the rows and columns of triangles laid out in the 
manner of Table 1-1. There is a third direction in this triangle—the diagonal or, 
equivalently, the calendar period—that should be considered.

Table 7-4.  Parametric Bootstrap Estimates of Forecast Error for 
Model with Both Accident and Development Year Simplifications

Accident Year

Outstanding Losses

Forecast RMSEP CVP

$000 $000 %

1989 3,542 776 21.9

1990 8,410 1,295 15.4

1991 14,490 1,678 11.6

1992 22,201 1,963 8.8

1993 32,572 2,303 7.1

1994 45,660 2,658 5.8

1995 61,592 3,088 5.0

1996 79,975 3,679 4.6

1997 104,959 4,977 4.7

Total 373,403 13,248 3.5
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In practice, calendar year trends are common in insurance data for a number of 
reasons. Some examples are given below:

• Many lines of business have a clear relationship with economic inflation. For 
example, changes in wage inflation will impact lines of business such as workers 
compensation or auto third party bodily injury claims as much of the cost of these 
claims consists of either income replacement or damages, reflecting pre-injury 
earnings in either case;

• Award precedents set by court decisions or other environmental change will often 
apply from a specific point in time, regardless of when the claim occurred;

• Changes in claims management departments such as expansion or contraction of 
staff numbers may impact the rate at which all claims are closed, which leads to a 
calendar effect on the insurance data.

A common method for dealing with economic inflation is to adjust the data so that 
all payments are in the same dollar values, e.g., the dollar values of the valuation date. 
In this case, the model forecasts will then be in the dollar values of the valuation 
date, so will need to be adjusted for future economic inflation. This has the advantage 
of producing forecasts with explicit economic assumptions, rather than an implicit 
assumption that the rate of economic inflation will be similar to that of the past, as 
is the case for the chain ladder. This may be useful for scenario tests, or if future rates 
are expected to be different to past rates, at least in the short term. Furthermore, for 
a company with multiple lines of business, carrying out a valuation in constant dollar 
values means that the consistent rates of future economic inflation may be applied 
across all LOBs. This is helpful both for scenario testing and for estimating variability 
of reserves since it introduces some correlation (that relating to economic variation) 
across the different LOBs.

Calendar period changes (both positive and negative) net of changes due to 
economic inflation are often referred to as superimposed inflation (“SI”), terminology 
introduced by Benktander (1979) and discussed in various parts of Taylor (2000). 
Typically SI is variable over time. For example, payments might increase at rates 
beyond economic inflation for a number of years, before measures are put in place to 
curtail the increase or even reduce claim size. This can lead to nil or even negative SI, 
which may last for some time, before other factors act to increase claim size once more.

Unmodeled calendar period effects can lead to distortions in the claim size 
models which would show up in the calendar period and triangular heat map 
diagnostics discussed in Chapter 6. If the diagnostics suggest calendar period effects, 
then as a first step, the modeler may wish to consider whether there is a natural  
economic inflation series for this line of business and, if so, adjust the past claim amounts 
to the valuation date. If unmodeled effects are still apparent after this step (or if there 
is no natural series to use), then the modeler should consider including calendar 
period effects in the model.

Adding calendar period effects to a model such as the cross-classified model must be 
done with due care. Accident, development and calendar period terms are not independent 
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covariates—knowledge of two of these determines the third. Thus, for the cross-classified 
model, replacing (3-18) with

(7-11)1( )µ = α + β + γ + −exp ln ln lnk j k j k j

is inappropriate since the collinearity of the accident, development and calendar terms 
(gk+j) means that there is no unique solution to the model, and any solutions returned 
by GLM software will be unstable.

Instead the modeler should impose a simple structure on the calendar period 
effects, based on examination of the model diagnostics. For example, if SI appears to 
progress at a constant rate over the first h diagonals and to be flat thereafter, then (3-18) 
could be replaced by

, 1 (7-12)( )( )µ = α + β + + − ϕexp ln ln min h k jk j k j

In practice, selection of an appropriate function should be based on model diagnostics, 
business knowledge and pragmatism; any calendar period trend will need to be 
extrapolated into the future for forecasting purposes, so the modeled trend must take 
this into account.

Recall that, although the Mack model formulation of the chain ladder may appear 
to be a development year only model, in fact the most recent diagonal of payments 
in the Mack model functions as accident period effects (see Section 3.2), so the same 
cautionary note about the addition of calendar period effects applies equally to Mack 
as to the cross-classified model.

7.6. Interactions
Consider model (7-10). It contains some terms that depend on accident year and 

others that depend on development year. This means, for example, that the relation 
between different development years is independent of accident year. In chain ladder, 
parlance, age-to-age factors are constant across accident years.

Similarly, the relation between different accident years is independent of development 
year. In these circumstances, the individual components of the linear response are called 
main effects.

In some cases, however, the data may indicate that some development year effects 
depend on accident year. Consider, for example, Figure 7-5, which displays a heat map 
for model (7-10).

Features of this map are:

• for development year 1, a distinct area of blue in the earlier accident years;
• for development year 2, a distinct area of pink in the earlier accident years;
• for development year 3, a possible progression from pink to blue with increasing 

accident year;
• for development year 4, a preponderance of pink over the whole set of accident years.

In effect, it appears that the payment pattern has altered. Traditional actuarial methods 
typically deal with this by calculating chain ladder factors based on recent diagonals 
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only, e.g., the most recent 3 or 5 diagonals, etc. Essentially this corresponds to one 
model for older diagonals (even though the chain ladder factors may not be calculated) 
which is then modified for more recent experience and for projection.

The approach taken by the GLM is similar in principle in that the model is adapted 
to better fit the changed experience. The above features suggest testing the following 
additional terms in the model’s linear response, listed in the order of the above dot 
points to which they relate:

(7-13)1 1 ,1 6 2 2 ,1 6 3 3 4 4d J K d J K d J k d Ji i i i i i+ + +− −

where the variate Ki,1-6 is a 0-1 indicator that takes the value unity if the i-th record 
relates to an accident year in the range 1 to 6, and zero otherwise (compare with the 
definition of Jij in Section 7.2).

When these terms are added to (7-10), the complete model becomes (with a slight 
re-labelling and re-ordering of parameters for logicality):

1 max 0, 7.5

(7-14)

0 1 2
2

1 2

1 2 2 4 1 1 ,1 6 2 2 ,1 6 3 3

x a a k a k b j b j

c J c J d J K d J K d J k

i
T

i i i i

i i i i i i i

( ) ( )β = + + + − + −

+ + + + +− −

When this model is fitted to the data, the parameter estimates are as in Table 7-5. All 
parameters are significant at levels well below 5%.

The number of parameters has grown to 10, so there is a need to ensure that the 
additional model terms add to the predictive efficiency of the model.

A comparison of the CVP with that in Table 7-4 shows a substantial reduction of 
17% (see Table 7-6). The CVP is now 23% below that of the conventional chain ladder 
model (see Table 5-5).

The information criteria AIC and BIC were introduced in Section 4.3, while the 
related measure, GCV, was introduced in Section 4.4. The progression of their values 
through the sequence of models developed in the present chapter is set out in Table 7-7. 
The corresponding progression of CVPs is also shown for comparison.

Accident Development year
year 1 2 3 4 5 6 7 8 9 10
1988 99% 101% 98% 111% 112% 84% 97% 96% 100% 97%
1989 99% 99% 102% 109% 93% 90% 99% 106% 99%
1990 95% 107% 102% 96% 88% 97% 92% 107%
1991 97% 103% 94% 104% 102% 107% 113%
1992 97% 108% 99% 108% 97% 98%
1993 97% 104% 89% 106% 101%
1994 110% 92% 93% 112%
1995 102% 87% 99%
1996 105% 98%
1997 101%

Figure 7-5.  Heat Map for Model with Both Accident and 
Development Year Simplifications
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Table 7-5.  Parameter Estimates for Model 
with Interactions

Parameter Estimate

Accident year parameters

a0 10.4900

a1 0.2066

a2 -0.0183

Development year parameters

b1 -0.3685

b2 0.2720

c1 0.0375

c2 0.0528

Interaction parameters

d1 -0.0671

d2 0.1273

d3 -0.0113

Table 7-6.  Parametric Bootstrap Estimates of Forecast Error 
for Model with Interactions

Accident Year

Outstanding Losses

Forecast RMSEP CVP

$000 $000 %

1989 3,630 569 15.7

1990 8,557 935 10.9

1991 14,563 1,203 8.3

1992 22,193 1,418 6.4

1993 32,505 1,677 5.2

1994 45,771 2,018 4.4

1995 62,998 2,459 3.9

1996 79,601 3,079 3.9

1997 101,742 4,094 4.0

Total 371,559 10,907 2.9
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The information criteria and GCV were introduced in Sections 4.3 and 4.4 as 
indicators of model predictive error. All three quantities show an improvement when 
accident year simplification is introduced and considerable improvement at the intro-
duction of interactions, in line with CVP. On the other hand, the message is more 
mixed at the introduction of development year simplifications—AIC increases some-
what, BIC and GCV fall somewhat—while CVP remains almost unchanged. This 
reflects different levels of penalty placed on numbers of parameters—BIC and GCV 
penalize number of parameters more and therefore the trade-off between worse model 
predictive accuracy and fewer parameters is acceptable to these measures and not to 
AIC with its weaker penalty.

Empirical experience indicates that this sort of perverse behavior is not uncommon. 
In fact, while the information criteria are reasonable indicators of CVP behavior in 
the case of incremental changes to a model (such as the addition of interactions), 
they are frequently suspect in the case of wholesale changes (such as the shift from a 
categorical to a parametric representation). GCV, on the other hand, aligns better with 
CVP behavior for this particular data set.

Homoscedasticity
The concepts of homoscedasticity and heteroscedasticity were introduced in Sec-

tions 2.2.4 and 2.2.5, and the need for ensuring the former before the acceptance of a 
model discussed in Section 2.2.5.

The above model including interactions is examined for homoscedasticity in 
Figure 7-6, which plots deviance residuals against accident year, and Figure 7-7, which 
plots them against development year. Reasonable homoscedasticity appears to have 

Table 7-7.  AIC, BIC and GCV for Various Models

Model AIC BIC GCV CVP

%

Conventional chain ladder (ODP 
cross-classified form)

-509,392 -509,354 6,685,428 3.8

Accident year simplification only -509,400 -509,376 5,075,351 3.5

Both accident and development 
year simplifications:
  without interactions
  with interactions

 
 

-509,397
-509,441

 
 
-509,385
-509,421

 
 

4,311,874
1,733,202

 
 

3.5
2.9

Notes:
•  AIC and BIC are defined in Section 4.3. The log likelihood used in their calculation is ∑n

i=1 wi[yi log ŷi - ŷi]/f 
where wi = 1 for all observations and the scale parameter is held constant at the value from the inter actions 
model. The scale parameter is held constant to prevent changes in the scale from distorting the measurement 
of changed model fit.

• GCV is defined in Section 4.4.
•  The values of AIC, BIC and GCV may differ depending on the statistical package. For AIC and BIC, this is  

because different packages may or may not include an additive constant (depending on the input data 
only) in the log likelihood expression. Thus the relativities of the scores, rather than their absolute values, 
are relevant. Additionally, the modeler should satisfy themselves that the measures are calculated  
appropriately in their package of choice.
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Figure 7-6.  Residual Plot by Accident Year for Model Including Interactions

Figure 7-7.  Residual Plot by Development Year for Model Including Interactions
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been achieved, though perhaps with a slight hint of tapering variance as development 
year advances beyond about 6. This matter is not pursued further here.

7.7. Tail Smoothing and Extension
7.7.1. Tail Extension

Note that the range of development year has been extended to j = 15 in Figure 7-4. 
The figure indicates that the parametric form fitted to development year may be extended 
beyond the range of the data, providing a means of tail extension.

By (7-14), the linear response xT
i b is linear in j ≥ 8 for fixed k, with gradient b1 + 

b2 = -0.097 (by Table 7-5). According to this model, the linear response decreases by 
0.122 from each development year to the next in the tail.

The link function in this example is exponential:

(7-15)E Y exp xk j k j i
T[ ] ( )= µ = β

(see (7-2)), which implies that E[Ykj] decreases by a factor of exp(-0.097) = 0.908 from 
each development year to the next in the tail; the tail is pure exponential.

It is necessary to recognize this form of tail extension for what it is, namely an 
extrapolation beyond the range of the data. In other words there is no direct evidence 
for the behavior imputed to the tail beyond development year 10, and one must accept 
the risks of this imputation.

On the other hand, the linear behavior of the linear predictor over the range j = 8, 
9, 10 gives reasonable cause to believe that the linearity is likely to persist for the next 
few values of j. The extrapolation becomes steadily more speculative as one progresses 
to higher development years.

7.7.2. Tail Smoothing
One aspect of the chain ladder that is often problematic is irregularity in the progres-

sion of estimated age-to-age factors for the higher development years. As j approaches J 
in the case of a triangular data set ( J = K ), the number of observations contributing to 
the estimate f ĵ decreases, until at j = J - 1 the estimator (1-8) depends on only the two 
observations X1,J-1 and X1,J.

It is evident that parameter estimation on the basis of such a small sample is liable 
to lead to an estimate with a large standard error. A more reliable estimate might be 
obtained by the fit of a parametric form (such as (7-8)) to the higher development years j.

As it happens, this was unnecessary in the present example. The development year 
effects delivered by the unmodified chain ladder (see Table 3-1 or Figure 7-3) were quite 
smooth. However, other numerical examples would not have yielded such a fortunate 
result, and a device for smoothing the age-to-age factors for the higher development 
years would have been beneficial.

An example of this can be found in Table 3.1 of Taylor (2000), where the estimated 
higher age-to-age factors are as set in Table 7-8.
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7.8. Exposure-Based Methods
It is sometimes the case that there exists a time series {ek} by accident period to which 

the claims experience of accident period k is expected to be at least roughly proportional. 
For example, the average number of motor vehicle damage claims in a year would, all else 
being equal, be expected to be proportional to the number of vehicles insured in that year.

If such a time series can be identified then it may be used to improve the model 
through the additional (known) time series data. This time series is generally referred 
to as the exposure, and may be incorporated into the model by (in the case of the cross-
classified ODP model) substituting ek for ak in (3-18):

(7-16)exp ln e lnk j k j( )µ = + β

Note that a crucial difference between (3-18) and (7-16) is that {ek} is a known series 
whereas {ak} is a series of parameters and must be estimated. In statistical parlance, ln 
ek is an offset in the GLM.

Further, it may be shown (Frees and Derrig, 2014, Section 18.3.2) that the inclusion 
of an exposure offset in a log link model (such as the cross-classified model) results in 
the remainder of the model terms producing an estimate per unit of the exposure. For 
example, in a model of ultimate motor vehicle damage claim numbers, with number 
of vehicles as an offset, the model produces an estimate of claim frequency per vehicle.

As noted in Frees and Derrig (2014), there may be accident period effects in 
addition to the offset. Thus, (3-18) could be replaced by:

(7-17)exp ln e ln lnk j k k j( )µ = + α + β

Simplifications to accident and development period effects as discussed in Sections 7.3 
to 7.7 above apply as before, the only difference being that they would now operate per 
unit of exposure.

Table 7-8.  An Example of Non-Smooth 
Age-to-Age Factors

Development 
Year

Estimated Age-to-Age 
Factor

10 1.028

11 1.014

12 1.009

13 1.008

14 1.009

15 1.001

16 1.002

17 1.001
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It is natural to think of exposure-based models for estimation of the ultimate numbers 
of claims reported in each accident period (i.e., including IBNR). However, such models 
are also useful for claim payments. Here, time series based on numbers of claims may be 
incorporated as an exposure measure to inform the payments model. Within Australian 
general insurance practice, such models are often used. These models include:

• Payments per claim incurred model (“PPCI”): {ek} = ultimate number of claims 
in accident period k. This model structure is conceptually very similar to the chain 
ladder model discussed in this monograph, except that the modeled payments are 
standardized for different numbers of claims incurred in each year. For lines of 
business with volatile numbers of claims, but similar average payments per claim, 
this model may be helpful.

• Payments per claim finalized model (“PPCF”): Here the time series varies by both 
accident and development period and is {ekj} = number of claims closed in accident 
period k and development period j. This model is suited to those lines of business 
where claims tend to settle as lump sums with closure and payment happening in 
the same cell of the triangle. In this case, the payments would be expected to relate 
to the number of claims closed in that cell. For example it may be useful for auto 
bodily injury claims or other liability claims.

• Payments per active claim (“PPAC”): As with the PPCF model, the time series varies 
by both accident and development period. In this case, {ekj} = number of active claims 
during accident period k and development period j. This model is suited to those 
lines of business where claims have ongoing payments for a number of years. An 
example would be weekly compensation payments from Workers’ Compensation 
insurance.

Further discussion of the PPCI and PPCF models is given in Taylor (2000) and, in a 
GLM context, in Frees and Derrig (2014), and the interested reader is directed there. 
The PPAC model, which may also be referred to as the Payments per Claim Handled 
(“PPCH”) model is discussed in Sawkins (1979) and in Taylor (1986).

Both references given above for the PPCF model discuss the concept of operational 
time, where development period in a model is replaced by the proportion of claims 
that have finalized to date. This is a useful tool in situations where the rates of claims 
closure are not constant over time, perhaps due to changes in claims departments or in 
the wider environment. Operational time may easily be incorporated into a GLM as 
outlined in Frees and Derrig (2014).

7.9. Beyond a Single Triangle
The exposure measure for a model of ultimate claim numbers is usually a known 

quantity such as number of vehicles, policy years or wages (e.g., for workers compensation 
claims). However, the exposure-based payments models rely on counts of claim numbers 
(ultimate, closed, active) which are not fully known in advance. For example, numbers 
of claims in recent years may need to be adjusted for IBNR (Incurred but Not Reported) 
claims. Numbers of claims closed and active claims may be known in the past, but future 
numbers will require estimation.
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Consequently, implementations of the PPCI model may involve two separate 
models:

1. A model of the ultimate number of claims so that IBNR numbers may be estimated;
2. An exposure-based model of the average payments per claim incurred.

Similarly, implementation of the PPCF model may require three separate models:

1. A model of the ultimate number of claims so that IBNR numbers may be estimated;
2. A model of the rate of closure of claims to allow the timing of future claims finaliza-

tions to be estimated;
3. An exposure-based model of the average payments per claim closed.

The prediction error of the PPCF model is the compound of the prediction errors of its 
component sub-models, and similarly for other models that consist of a number of sub-
models. The decision on whether to use models such as these must take into account 
the additional prediction error introduced by each component and whether this is more 
than offset by the model’s improved representation of the data. Detailed examination 
of this point may be found in Taylor and Xu (2016), while Taylor (2000) and Frees and 
Derrig (2014) provide more detail on implementing these models.

The double chain ladder (Martínez Miranda, Nielsen and Verrall, 2012) is another 
multi-model approach to the estimation of claims reserves. As the name suggests, two 
chain ladder models are used, one for reported claim numbers and the other for claim 
payments.

7.9.1. Bootstrapping a Compound Model
Bootstrapping a model such as the PPCI or PPCF is a straightforward extension of 

the bootstrap for a single triangle model. For each sub-model, n bootstraps are carried 
out. In the case of the average payments sub-model of the PPCF outlined above, the 
results of bootstrap b of this model are combined with the bootstrapped ultimate 
claim numbers from the b-th bootstrap of sub-model 1 and the claim closure pattern 
that results from the b-th bootstrap of sub-model 2. Further discussion of multiple 
bootstraps such as these is given in Taylor and Xu (2016).

Note that this process does not allow for correlations between the models apart from 
those that result from the forecasted value. For example, an increase in claim notifications 
might cause the finalization rate to slow down due to claims managers having greater 
numbers of claims to manage. Such an impact will not be captured in the bootstrap 
process outlined above. However, this type of change is arguably an aspect of model error 
(Section 4.5), and should be included in the allowance for that error. Scenario testing 
may also assist in estimating the impacts of such change.

7.10. Individual Models
Up to this point, the models discussed have assumed that the data are available 

in the form of triangles, such as that in Table 1-1. However, the data actually held 
by an insurance company will typically be in unit record form, with a considerable 
amount of information associated with each claim such as claimant information (date 
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of birth, information relevant to the particular policy type such as age, employment, 
earnings, etc.), claim information (peril, date of accident, notification, finalization, etc.) 
and transactional details on payments to date. The use of highly summarized triangles, 
rather than the individual data detail dates back to general insurance practice before the 
availability of modern computing power, and the need to summarize claims experience 
into a convenient form for analysis.

This restriction no longer applies, and it is possible to consider the claims experience 
at an individual claims level. Portfolios may contain thousands or even hundreds of 
thousands of claims, each associated with a possibly large number of explanatory variables. 
Contrast this with the small number of observations in a yearly triangle, which is likely 
to eliminate a considerable amount of useful predictive information. In more technical 
language, the triangle may not be a sufficient statistic for the mass of detail available.

Currently, there are typically two broad classes of model used in reserving and 
related problems:

• Aggregate or macro-models: models applied to aggregate data summarized in 
arrays of triangular, or some other, shape, such as those described above—the chain 
ladder, cross-classified model, PPCI, PPCF, etc. The aggregated data is typically 
aggregated over accident and development periods; and

• Individual claim, micro-models or granular models: as the name suggests these 
are applied to individual claim data or to data summarized at a granular level.

The use of individual claim rather than aggregate models may lead to more efficient 
models.

The application of GLMs to individual claims data proceeds in much the same way 
as to summarized triangular data. For example, a model with accident and development 
period effects such as (3-18) can be fitted to individual data. The difference lies in  
the design matrix, X, where each row corresponds to an individual observation rather 
than to a triangle cell as it does in Section 3.3.2. Fitting trends by accident, development 
and calendar periods and model validation proceeds in much the same way as before, 
the difference being that there are many more data points to inform the modeling 
process.

Merely fitting the same GLM to individual claim data as was fitted to the aggregate 
data (triangle) may not produce a markedly different model. However, the use of individual 
claims data opens up the possibility of using a number of claimant and claim related data 
as explanatory variables to refine estimates of average claim size. Taylor, McGuire and 
Sullivan (2008) classify explanatory variables as follows:

• Static variables: constant over the life of a claim (e.g., gender, pre-injury earnings);
• Dynamic variables: these may change over the life of a claim. Dynamic variables 

may be further categorized as:
C Time variables: these relate to the passage of time and are therefore future 

values are known with certainty (e.g., development period, calendar period);
C Unpredictable variables: future changes in these values are not predictable 

with certainty (e.g., time until a claim closes, spells off work).
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It is evident that, if any unpredictable variables are included in a model, then any forecast 
of that model will require forecasts of these variables. As noted in Section 7.9, which 
discusses the same concept for aggregate data models, any decision on the inclusion of 
an unpredictable variable in a model must offset the increase to the prediction error 
from use of this variable due to its stochastic nature against the resulting decrease in 
prediction error due to more accurate modeling.

Consequently, individual reserving models tend to lie on a spectrum from those 
models with time variables only to models with all types of predictors including 
unpredictable variables.

Taylor and McGuire (2004) discuss an individual claims reserving model that lies 
towards the simpler end of the spectrum. This is a model of the average size of auto 
bodily injury claims, which depends on the time variable accident period and functions 
of the unpredictable variable, development time until closure of a claim.

McGuire (2007) describes an update to this model where the use of claim severity 
is found to greatly increase the predictive power of the model. Micro-models are also 
discussed in detail by Pigeon, Antonio and Denuit (2013) and Antonio and Plat (2014).

At the other end of the spectrum lies the class of individual claims models referred 
to as Stochastic Case Estimate (“SCE”). These are intended to provide estimates of 
ultimate costs of individual claims that are alternatives to the physical or manual case 
estimates assigned by claims experts. As such, a model with high discriminatory power 
is to be preferred and in general, this is achieved by considering a large number of 
predictors. Further details on the construction of SCE models may be found in Taylor 
and Campbell (2002), Brookes and Prevett (2004) (which both relate to Australian 
workers’ compensation insurance) and Taylor, McGuire and Sullivan (2008) which 
applies an SCE to US medical malpractice. The latter paper also includes some discussion 
of applying a bootstrap to such models.

7.11. Bayesian Models
Although Bayesian models and related methods such as Markov Chain Monte 

Carlo (“MCMC”) are beyond the scope of this monograph, it is noted that they are 
increasingly used for stochastic reserving models.

Each GLM considered to this point of the present monograph is non-Bayesian 
in that its parameters are treated as fixed, though unknown, quantities. It can be 
transformed into a Bayesian model by representing each unknown parameter as a 
random quantity deriving from a particular statistical distribution. Put in an alternative 
manner, a Bayesian model for a particular quantity seeks to estimate the posterior 
distribution of that quantity based on prior distributions for the model parameters and 
the likelihood based on observed data.

In many ways, the Bayesian paradigm seems a natural fit to insurance-type problems. 
The prior distributions of the parameters may be used to codify expert knowledge or a 
priori expectations, and combine this in an objective manner with emerging experience. 
The similarities with credibility theory are apparent.

For many years, Bayesian analysis was limited for computational reasons; users 
were forced to restrict themselves largely to combinations of prior distributions and 
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likelihoods that led to closed form analytic solutions (conjugate priors). That changed 
with the advent of MCMC methods into the wider statistical community, which 
enabled simulation of full distributions from any posterior distribution. For insurance 
problems, MCMC enables the modeler to combine a priori knowledge with emerging 
experience to produce a full distribution of the stochastic reserves.

There have been many papers in the actuarial literature discussing Bayesian models 
and MCMC, of which a small sample is referenced here. Verrall (2000, 2004), England 
and Verrall (2002, 2006), England and Verrall (2006), Wüthrich (2007), England, 
Verrall and Wüthrich (2012) and Taylor and Xu (2016) present various Bayesian 
models, most of them Bayesian versions of the chain ladder. Scollnik (2001 and 2002), 
Ntzoufras and Dellaportas (2002), Meyers and Shi (2011), amongst others, describe 
the implementation of MCMC for insurance data.

All modeling approaches discussed up to this point consist of specification of a 
particular model, possibly Bayesian but always with a fixed number of param eters, 
and then estimation of those parameters. More recently, reversible jump MCMC 
(“RJMCMC”) methodology has been introduced as a framework containing a com-
plete family of models with differing numbers of parameters. The calibration step 
then consists of selection of a specific model from the family, as well as estimation of 
its parameters. A strength of RJMCMC is that it enables the modeler to consider a 
number of different models simultaneously. For example. Ntzoufras, Katsis and Karlis 
(2005) use RJMCMC to fit and choose between different models for claims count 
data, while Verrall and Wüthrich (2012) and Verrall, Hössjer and Björkwall (2012) 
consider the smoothing of the development period curve in a Bayesian ODP model, 
allowing RJMCMC to choose the cut-off development period at which parametric 
functions are used rather than the individual development period parameters.
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8. Conclusion

This monograph commenced with the application of the conventional chain ladder 
algorithm to a data set (Section 1.5). The application was non-stochastic, as is so often 
the case in practice.

Certain stochastic models were then identified as producing precisely the same forecast 
as the conventional algorithm (Section 3.3). The stochastic view regards the quantum of 
outstanding losses as a random variate, and the forecast as an estimate of the mean value 
of that variate. The stochastic models enable the estimation of the entire distribution of 
outstanding losses.

The “chain ladder algorithm”, as defined here, is absolutely rigid, with no scope for 
variation according to any eccentricities in the data to which it is applied. In practice, 
actuaries typically make a number of adjustments to it, such as calibration of the model 
on the basis of data of only recent years, or limiting in some way the influence of 
outlying observations.

It was shown (Section 3.4) that some of these adjustments could be formulated within 
the stochastic models. In consequence, the stochastic model could be made to parallel 
those used in practice while retaining its ability to estimate the entire distribution of 
outstanding losses.

Finally, Chapter 7 examined variations of the model that could not be made within 
the conventional chain ladder framework, but only within the formal stochastic model 
formulation. These variations explored the much discussed matter of whether or not 
the conventional chain ladder is over-parameterized, with the degradation of predictive 
power that comes with over-parameterization.

These model variations took two forms. First, the manner in which accident year 
was represented as influencing expected paid losses in individual cells of the claim 
triangle was changed from a separate factor for each accident year to a parametric 
function of accident year. For example, it was found possible to represent the effects 
of the 10 separate accident years by a function of only 3 parameters, rather than the 
10 parameters required by the conventional chain ladder. The parameterization of 
development year was similarly reduced.

The second form of model variation introduced was the introduction of interactions. 
The conventional chain ladder assumes that age-to-age factors are independent of accident 
year. Frequently, this assumption is violated by data triangles encountered in practice. 
Violations may be highly localized, affecting only a handful of cells, or they may consist of 
longer term systematic changes, such as trending age-to-age factors.



Casualty Actuarial Society 97

Stochastic Loss Reserving Using Generalized Linear Models

In any event, if model interactions are warranted but ignored in the modeling 
(such as inevitably occurs in the application of the conventional chain ladder), then 
estimates of accident and development year effects will be distorted.

These changes produce two beneficial results. First, they improve the goodness-of-fit 
of the model. Second, they reduce the associated prediction error. The end result observed 
in Table 7-6 was a 17% reduction in prediction error solely by virtue of inclusion of the 
interactions.

The final prediction error was 23% less than that associated with the conventional 
chain ladder. It is emphasized that all of these modifications of the conventional chain 
ladder model are achievable within a GLM framework but not by the conventional 
approaches that depend essentially on row and column sums or averages.

The chapter concluded by giving an overview of models beyond the chain ladder, 
discussing exposure-based models (both as a single model, or a model consisting of a 
number of sub-models in cases where claim numbers form the exposure) and micro- (or 
granular or individual claim) models which include Stochastic Case Estimate models. 
A brief introduction to Bayesian models was also provided for the reader’s interest.

In summary then, it has been shown that the chain ladder, together with some 
common variations of it, can be expressed in GLM form. Then it has been further shown 
that the GLM structure may be extended to a more statistically efficient model in ways 
that are not achievable without the GLM (or perhaps some other model of a similar level 
of sophistication).

In the process one has progressed from a heuristic algorithm to a fully stochastic 
model with diagnostics that are adequate to determine whether that model is a reason-
able representation of the data. Further, since the model is fully stochastic, it is capable 
of producing the full stochastic properties of its forecasts, including prediction error, 
quantiles, etc.

That is, the GLM is capable of anything of which the conventional chain ladder is 
capable, but the GLM is capable of many things of which the conventional chain ladder 
is not.
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