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This is the second monograph in the recently introduced CAS Monograph Series. A 
CAS monograph is an authoritative, peer reviewed, in-depth work on an important 
topic within the property and casualty actuarial practice.

In this monograph David Bahnemann brings together two perennially important 
elements of actuarial practice: a solid academic presentation of parametric distributions 
coupled with the application of these distributions in the actuarial paradigm.

Bahnemann taught mathematics at the university level for nineteen years, thus 
developing an excellent appreciation for what works and what does not work in presenting 
and conveying technical subject matter. Following that, he worked for more than two 
decades in applying this knowledge to all types of real actuarial problems that actuaries 
face every day. Hence, we have this rare presentation of mathematics that actuaries use 
whenever distributions are involved.

This monograph is useful for those wishing to learn the subject matter for the first 
time as well as for practicing actuaries who wish to have in their bookcase a “desk reference 
manual” for use whenever faced with a problem involving parametric distributions.

This work clearly is a labor of love in which Bahnemann has brought together in 
a single volume his entire professional life experience in this field. The CAS is grateful 
for his effort in producing this monograph as well as the gift it represents to the CAS 
and its members.

C. K. “Stan” Khury
Chairperson

Monograph Editorial Board

Foreword





This monograph contains a brief exposition of the standard probability distributions—and 
their fundamental applications—commonly encountered by property/casualty actuaries. 
Specifically, it includes the basic distributional topics that I had occasion to use during 
the 25 years I provided actuarial support to the excess and surplus lines underwriting 
departments at the St. Paul Companies (now Travelers). The emphasis is on a clear, 
informal presentation of the basic concepts, and there has been no attempt to provide an 
exhaustive (and possibly, exhausting) compendium of every possible topic and technique. 
Moreover, the focus is clearly on the use of parametric distributions fitted to empirical 
claim data to solve standard actuarial problems—creation of increased limit factors, 
pricing of deductibles, evaluating the effect of aggregate limits, and so on.

A prerequisite for understanding this material is an upper-level undergraduate course 
in mathematical—that is, calculus-based—probability and statistics, and the mathematical 
level of this monograph is similar to that in such a course.

I envision two possible uses of this monograph—first, as a study aid when the reader 
is first learning the material, and later as a handy on-the-shelf reference and source 
of ideas when faced with a distributional problem. The work contains more than six 
dozen worked-out illustrative examples and more than 170 problems that can serve as a 
help in mastering the fundamentals, as well as extending the basic ideas and providing 
applications beyond those presented in the text.

Chapter 1 contains a brief review of basic concepts from probability and mathematical 
statistics. Moreover, this chapter also provides an introduction to the notational conventions 
used throughout the text. Chapters 2 and 3, respectively, introduce the most commonly 
used probability distributions for claim size and claim counts. Many of the examples in 
this pair of chapters illustrate methods of fitting a probability distribution from a given 
parametric distribution family to a set of claim data. Chapter 4 is devoted to the properties 
of aggregate loss distributions and to some of the standard techniques for approximating 
values of such distributions. Chapter 5 takes up the concepts of excess claims and layers 
of insurance, ideas which find application in Chapter 6 to the modeling of such common 
policy provisions as deductibles and limits.

Projects like this never see the light of day without the assistance of many individuals. I 
am indebted to former St. Paul/Travelers colleagues David Warren and Nancy Braithwaite, 
who helped bring the manuscript to the attention of the Casualty Actuarial Society and 
recruit persons to check the problem solutions. I am grateful to the anonymous reviewers 
who made valuable suggestions for improvement and to the team of volunteers who 

Preface
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verified the problem answers and identified errors: Kendall McDonald, Ira Robbin, 
Heidi Holtti, Su Fei Ang, Mikalai Filon, George Schuler, Patrick Filmore, Andrew 
Scott, Kevin Hanson, and Rachel Larson. At the CAS Donna Royston provided 
excellent and thoughtful editorial support. I am particularly indebted to Stan Khury, 
whose enthusiasm for the project was essential. All these generous contributors deserve 
my heartfelt thanks. Finally, above all, I owe an enormous debt of gratitude to my 
wife, Abbie, whose encouragement and support never faltered, and without which the 
manuscript would not have been completed.

David Bahnemann
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Property/casualty insurance policies are written to cover policyholder losses that arise 
from certain unpredictable events. These events, which occur more or less randomly 
over time, must happen during the time period the policy is in effect in order to qualify 
as insured events. To cite just a few possibilities, an insured event could be property 
damage due to fire or storm, medical treatment due to illness, or personal injury due 
to accident or professional malpractice. The occurrence of such an event can trigger a 
claim against the policy.

In order to determine a reasonable premium charge for a policy, actuaries must be 
able to quantify the random aspects of the underlying claim process. In particular, they 
must be able to construct appropriate probability models for the incidence and size of 
claims, topics which are the subjects of Chapters 3 and 2, respectively. We begin here 
in Chapter 1 with a brief summary of basic probability concepts.

A Note on Notation. In addition to providing a review of the probability prerequisites, 
this chapter establishes most of the notational conventions used throughout the 
subsequent chapters. In general, the notation is consistent with standard usage employed 
by expositors of probability and mathematical statistics. Probability spaces are denoted 
by upper-case Greek letters and probability events are denoted by upper-case Roman 
letters. The probability of a general random-variable-related event is usually denoted by 
Pr{z}. As usual, cumulative probability functions are denoted by F(z) and probability 
density functions by the associated lower-case Roman letter: f (z). For most parametric 
distributional families, parameters are denoted by lower-case Greek letters. Random 
variables are denoted by upper-case Roman letters, with X or Y denoting a claim-size 
variable, N a claim-count variable, and S an aggregate-loss variable. In every case, the 
introduction of a concept is accompanied by sufficient mathematical display to establish 
the applicable notational conventions.

1.1.  Probability Spaces
Consider an experiment of chance for which the outcome cannot be predicted 

in advance. For example, tossing a coin and observing whether it lands Heads (H) 
or Tails (T ) is an experiment with a set of two possible, but unpredictable outcomes: 
{H, T }. The roll of a single die or pair of dice, the blind selection of objects from a 
well-mixed collection such as cards from a shuffled deck, the time to failure of an 
electronic or mechanical component, or the occurrence of an insurance claim—each 

1.  Introduction



2	 Casualty Actuarial Society

Distributions for Actuaries

can be interpreted as an experiment of chance with outcomes that cannot be predicted 
in advance.

A set W of all possible distinct outcomes of an experiment of chance is called a 
sample space for the experiment. Each element w of W is referred to as an elementary 
outcome. A performance of the experiment, obtaining one of the elementary outcomes 
as a result, is a trial of the experiment.

Note that different sets of elementary outcomes may be defined for any given 
experiment, depending on what attributes of the outcomes are of particular interest. 
For example, if an experiment consists of tossing a coin twice in succession, then one 
set of elementary outcomes could consist of all ordered pairs of Heads and Tails:

, , , .1 { }Ω = HH HT TH TT

If the order is unimportant, then the elementary outcomes could be the unordered pairs 
of Heads and Tails: W2 = {{H, H }, {H, T }, {T, T }}. Alternatively, if only the number 
of Heads obtained is material, then W3 = {0, 1, 2} would suffice as a sample space. 
However, sometimes selecting a sample space for which the elementary outcomes can 
be assigned equal probabilities makes all subsequent probability calculations easier—
see Example 1.2(a).

An event E for an experiment of chance is a subset of the sample space: E ⊆ W. If, 
at a trial of the experiment, outcome w ∈ W is obtained and it also happens that w ∈ E, 
then one says that event E has occurred.

Example 1.1.  (a) An experiment consists of tossing a coin three times in succes-
sion and observing the resulting sequence of Heads and Tails. A sample space consists 
of eight elementary outcomes, each an ordered triple of Hs and Ts:

, , , , , , , . (1.1){ }Ω = HHH THH HTH HHT HTT THT TTH TTT

Thus, if on the first and second tosses the coin falls Heads and on the third Tails, 
then the outcome of the trial is HHT. The event E of obtaining at most one Heads 
among the three tosses is defined by the set E = {HTT, THT, TTH, TTT }.

(b)  Another experiment consists of rolling a pair of dice and observing the number 
of spots on each die in turn (a die being a cube whose six faces are marked with one 
through six spots). There are 36 elementary outcomes in the sample space:

(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6),
(3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6),
(5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) . (1.2)

{

}

Ω =

For example, if one observes five spots on the first die and two spots on the second, 
then the outcome of the trial is (5,2).

The set E = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)} defines the event that the sum of 
the spots is seven. The event

(1,4), (2,4), (3,4), (4,4), (5,4), (6,4), (4,1), (4,2), (4,3), (4,5), (4,6){ }=F
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occurs when four spots are obtained on at least one die. Having obtained the outcome 
(5,2) on a trial, we observe that event E has occurred because (5,2) ∈ E and that event F 
has not occurred because (5,2) ∉ F.

(c)  An insurance policy pays at most $200,000 for an incurred claim. The issuing of 
such a policy can be interpreted as a trial of an experiment of chance for which the un-
certain outcome is the occurrence (or non-occurrence) of one or more claims. A reason-
able set of elementary outcomes would be the number of incurred claims: W1 = {0, 1, 2,  
3, . . .}. In addition, the occurrence of a claim can be interpreted as another experiment of 
chance for which the size of the claim is the unpredictable outcome. For this experiment 
the sample space can be expressed as an interval of real numbers: W2 = [0; 200,000].1 n

Generally, most—but not necessarily all—subsets of W can be considered events 
for an experiment with sample space W. In order to define probabilities for the events 
of an experiment of chance in a reasonable way, the set S of events must have certain 
properties. In particular, (i) S must contain W and (ii) S must contain the complement 
E c = {w ∈ W : w ∉ E } whenever E ∈ S. Moreover, (iii) S must contain the union of every 
countable collection of events in S.2 A collection of sets with these properties is called 
a s-algebra or Borel field.3 When the sample space W is finite or countably infinite, it is 
customary to assume that S is just the set of all subsets of W. The alternate case for the 
sample space that is uncountably infinite will be discussed briefly in Section 2.

Consider now an experiment of chance with a sample space W and a set of events S. 
To construct a probability space (W,S,P) for the experiment, one must assign a real 
number P(E ) to each event E—the probability of the event—that serves as a measure 
of the likelihood of the event will occur in a trial of the experiment. An event that is 
certain to occur—that is, the event W—is assigned the maximum probability of 1, 
and all other events have a probability measure between 0 and 1. A real-valued function P 
defined on the set of events S is called a probability set function if it satisfies the 
following three axioms:

( ) 1,

0 ( ) 1 ,

{ , , , . . . } ,
, for , ( ) ( ). (1.3)

1 2 3

A

A

A

1

2

3

∑

Ω =

≤ ≤ ∈

∩ = ∅ ≠ =

P

P E for E S

If E E E is a countable collection of disjoint events
that is E E i j then P E P Ei j i i ii∪

Other properties of function P can be derived from axioms A1, A2, A3 and the 
properties of S. Verification of the following set of statements is requested in Problem 1.2.

1	 In reality the value of an insurance claim is expressed in whole monetary units (cents or dollars, for example), but 
it is convenient to assume that all values on the continuous interval are possible outcomes.

2	We observe the usual convention that a countable set A contains either a finite or countably infinite number 
of elements. Set A is countably infinite if it can be put into one-to-one correspondence with the set of positive 
integers.

3	After the French mathematician, Emile Borel (1871–1956). Borel was a pioneer in the development of modern 
measure theory and the theory of functions. Throughout the period 1905–1950, he published more than 50 papers 
and several longer works in probability theory.
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Properties of P(x)
Assume that E, F ∈ S are events for a probability space (W,S,P). Then

a( ) ( ) 1 ( ). (1.4)= −P E P Ec

b( ) ( ) 0. (1.5)∅ =P

c( ) ( ) ( ) ( ) ( ). (1.6)+ = ∪ + ∩P E P F P E F P E F

d( ) ( ) ( ) ( ). (1.7)= ∩ + ∩P E P E F P E F c

e( ) ( ) ( ). (1.8)⊆ ≤If E F then P E P F

f( ) , , , . . . ,
. (1.9)

1 2 3

∑
{ }

{ }( )( )
= ω ω ω Ω

= ω
If E is a countable subset of
then P E P ii

There are many ways to assign the probability function P for a probability space 
(W,S,P). Methods range from those founded on a priori assumptions about the underlying 
experiment to methods based on analyses of sample data.

In the special case in which W is a finite set of n elementary outcomes, there are 
often situations in which the outcomes can be assumed, by a priori reasoning based 
on symmetry arguments, to have equal probabilities: P({w}) = 1/n for each w ∈ W. For 
example, in the toss of single fair coin (that is, a coin of uniform composition with a 
symmetrical shape), it is reasonable to assume that outcomes Heads and Tails are equally 
probable: P(H ) = P(T ) = 1/2. Similarly, single objects selected blindly (“at random”) 
from a collection of n similar objects can also be assumed to be equally probable. Thus, 
a specified card drawn from a well-shuffled bridge deck would have probability 1/52.4

In the finite case for which the n elementary outcomes are assigned equal probability, 
the probability P(E ) of an event E containing m elementary outcomes can be calculated 
by the following formula based on property (1.9) above, where #(E ) denotes the 
number of elements in the set E:

( )
#
#

. (1.10)∑ { }( ) ( )
( )

= ω =
Ω

=
ω∈

P E P
E m

nE

Example 1.2.    (a)  As in Example 1.1(a), an experiment involves tossing a coin 
three times and observing the sequence of Heads and Tails. The sample space W is displayed 
in equation (1.1). If the coin is assumed to be fair, then it makes sense to assign equal prob-
abilities to the eight elementary outcomes in W: P({w}) = 1/8 for each w ∈ W. Applying 
formula (1.10) to the event

, , ,{ }=E HTT THT TTH TTT

yields the probability of obtaining at most one Head: P(E ) = 4/8 = 0.5000.

4	A bridge deck contains 52 distinct playing cards, divided into four suits of 13 cards each: Hearts, Diamonds, 
Spades, Clubs. Each suit contains 10 numbered cards—Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10—and three Face cards: Jack, 
Queen, King. Hearts and Diamonds are red cards; Spades and Clubs are black cards.
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(b)  An experiment consists of drawing a single card at random from a bridge deck, 
so that each of the 52 elementary outcomes is assigned probability 1/52. We define 
events E and F by

E : card drawn is a Face card  and  F : card drawn is a Heart.

The probabilities of events E, E c, F, E ∩ F, and E ∪ F are calculated from formula (1.10):

#
52

12
52

0.2308,

#
52

52 12
52

0.7692,

#
52

13
52

0.2500,

#
52

3
52

0.0577,

12
52

13
52

3
52

22
52

0.4231.

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

= = =

= = − =

= = =

∩ = ∩ = =

∪ = + − ∩ = + − = =

P E
E

P E
E

P F
F

P E F
E F

P E F P E P F P E F

c
c

(c)  An experiment consists of dealing a hand of five cards at random from a standard 
deck of 52. Since the order of the cards is immaterial, the number of elementary outcomes 
is given by the combinatoric formula nCk = n!/[k! (n - k)!] for the number of distinct 
selections (or combinations) of k objects from a collection of n distinguishable objects:

52!
5!47!

2,598,960.52 5 = =C

Let E be the event of obtaining five cards from the same suit, and let F be the event of 
obtaining no face cards. Thus,

4 5,148
2,598,960

0.0020,

658,008
2,598,960

0.2532,

(4)( ) 1,008
2,598,960

0.0004.

13 5

52 5

40 5

52 5

10 5

52 5

( )( ) ( )

( )

( )

= = =

= = =

∩ = = =

P E
C

C

P F
C
C

P E F
C

C
n

One of the most useful probability concepts is that of conditional probability. 
Often one has partial information about the result of an experiment of chance, 
information which can alter the likelihood that a particular event could occur. For 
instance, consider the experiment of Example 1.1(b) involving the roll of a pair of 
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dice. Assuming that each die is fair, we assign the probability 1/36 to each elementary 
outcome in (1.2). As a result, the probability of obtaining a total of seven spots (event E 
in that example) is P(E ) = 6/36 = 0.1667. However, this probability changes if we 
know that event F has already occurred, namely, that at least one die shows four spots. 
In this case, the number of possible elementary outcomes has been reduced from 36 in 
W to only 11 in event F. In addition, there are only two outcomes in E that are also 
in F—that is, E ∩ F = {(3,4), (4,3)}—and these remain equally probable. Thus, the 
conditional probability of E given that F has occurred, denoted by P(E |F ), is

#
#

2
11

0.1818.( ) ( )
( )

= ∩ = =P E F
E F

F

However, the first quotient in this equation could also be expressed as

#
#

# #
# #

,
( )

( )
( ) ( )

( ) ( )
( )

( )
∩ = ∩ Ω

Ω
= ∩E F

F
E F

F
P E F

P F

which can be generalized to provide a definition for conditional probability. If P(F ) > 0, 
then P(E |F ), the probability of event E, given that event F has occurred, is defined by

(1.11)( ) ( )
( )

= ∩
P E F

P E F
P F

In addition, one can express (1.11) in the following multiplicative form, which is 
satisfied even when P(F ) = 0:

( ). (1.12)( ) ( )∩ =P E F P F P E Fi

Equation (1.12) is occasionally useful in calculating P(E ∩ F ), as in Example 1.3(b).

Example 1.3.    (a)  An experiment consists of tossing a fair coin two times in 
succession and observing the resulting sequence of Heads and Tails. The sample space 
contains four equally probable outcomes: W = {HH, HT, TH, TT }.

The probability of obtaining two Tails (event E ), given that at least one of the coins 
lands Tails (event F ), is therefore

, ,
1 4
3 4

1
3

.{ }( )( ) ( )
( )

{ }( )
= ∩ = = =P E F

P E F
P F

P TT
P HT TH TT

(b)  An urn contains eight white chips and five black chips. Two chips are drawn at 
random without replacing the first chip before drawing the second—at each draw the 
chips in the urn are equally likely to be drawn.

Let E1 denote the event that the first chip is white, and let E2 denote the event that 
the second chip is white. Clearly,

8
13

and
8 1

13 1
7

12
.1 2 1( ) ( )= = −

−
=P E P E E
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Thus, (1.12) implies that the probability P(E1 ∩ E2) that both chips are white is

8
13

7
12

56
156

0.3590.1 2 1 2 1( ) ( ) ( )∩ = = = =P E E P E P E Ei i
 
n

It is possible, however, that the occurrence of event F does not alter the probability 
of E, that is, P(E | F ) = P(E ). In this situation, we have

. (1.13)( ) ( ) ( )∩ =P E F P E P Fi

Events E and F for which equation (1.13) holds are said to be stochastically 
independent (or merely independent) events; otherwise, they are said to be 
dependent events.

Example 1.4.    Consider again the experiment of Example 1.1(b), involving the 
roll of two fair dice. The 36 equally probable elementary outcomes are displayed in 
(1.2). Let E7 denote the event of obtaining a total of seven spots, and F2 denote the 
event that the first die shows two spots. Thus,

6
36

1
6

and
6

36
1
6

.7 2( ) ( )= = = =P E P F

Since

2,5
1

36
,7 2 7 2( ) ( ) ( )( ){ }( )∩ = = =P E F P P E P Fi

events E7 and F2 are independent, by definition.
On the other hand, let E5 be the event of obtaining a total of five spots, so that 

P(E5) = 4/36 = 1/9. In this case,

2,3
1

36
.5 2( ) ( ){ }( )∩ = =P E F P

Therefore, E5 and F2 are dependent events:

1
9

1
6

1
36

.5 2 5 2( ) ( )( ) = ≠ = ∩P E P F P E Fi i
 
n

1.2. � Random Variables and Probability Distributions
When working with a random phenomenon modeled by a probability space, 

one is often more concerned with some numerical function of the outcomes  
in the sample space than in the actual set of outcomes. For example, interpreting  
the occurrence of an insurance claim as the outcome of a random experiment,  
actuaries usually focus on the monetary amount of the claim. From another perspec-
tive, they may be primarily interested in the number of claims occurring during the  
policy term.
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Assume that (W,S,P) is a probability space for an experiment of chance. Consider 
now a function X defined on the sample space W that assigns a real number X(w) to 
each outcome w ∈ W. The function X is called a random variable on W provided that 
for every real number x the set {w ∈W : X(w) ≤ x} is an event in S (such a function X is 
a measurable function with respect to S). The range space or value space of X is the 
range of the function X:

{ }( )= ∈ℜ = ω ω ∈Ω: for some .R x x XX

We denote random variables by upper-case letters—X, Y, N. Specific values that a 
random variable assumes are represented by lower-case letters—x, y, n.

Most commonly encountered random variables can be classified as one of two major 
types—the discrete type or the continuous type—although actuaries also meet the 
mixed type of variable that combines features of both the discrete and the continuous. 
A discrete random variable X has a countable range space, RX = {x1, x2, x3, . . .}, whereas 
for continuous random variables the range space consists of one or more intervals of 
real numbers—finite or infinite in length.

Assume now that (W,S,P) is a probability space and that X is a random variable 
defined on W. The set function PX defined on subsets of the real numbers R is called a 
probability distribution (or merely distribution) for X provided it assigns to a set A 
of real numbers the probability that X takes on a value in A:5

( ) : . (1.14){ }( )( )= ω ∈Ω ω ∈P A P X AX

In particular, the probability that X lies in the semi-infinite interval (-∞, x] is

] { }( )(( )−∞ = ω ∈Ω ω ≤, : ( ) . (1.15)P x P X xX

Example 1.5.    An experiment consists of tossing three fair coins. As discussed 
in Examples 1.1(a) and 1.2(a), the sample space (1.1) consists of eight elementary 
outcomes, each with probability 1/8. Let the discrete random variable X denote the 
number of Heads obtained. There are clearly four possible values for X: RX = {0, 1, 2, 3}. 
Thus, variable X is defined on the sample space by

{ }
{ }

( )ω =

ω =

ω ∈

ω ∈

ω =













0 if

1 if , ,

2 if , ,

3 if .

X

TTT

HTT THT TTH

HHT HTH THH

HHH

5	Technically speaking, set A must belong to the s–algebra @ generated by all the semi-infinite intervals (-∞, x]. 
The resulting induced probability space (, @, PX) is defined on all of . Virtually every set of real numbers 
encountered in practice belongs to @. Details of this formal approach to random variables and probability 
distributions can be found in an advanced textbook of probability.
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Each value of X defines an event in the underlying sample space, with an associated 
probability. Thus, the probability set function P defined on the sample space induces 
in a natural way a probability distribution PX for the random variable X:

 �

P X P TTT

P X P HTT THT TTH

P X P HHT HTH THH

P X P HHH

X

X

X

X

{ }

{ }

)

)

(

(

{ }) { } { })

{ }) { }

{ }) { }

{ }) { } { })

( (

(

(

( (

= = = =

= = = =

= = = =

= = = =

0 Pr 0
1
8

,

1 Pr 1 , ,
3
8

,

2 Pr 2 , ,
3
8

,

3 Pr 3
1
8

. (1.16)

In the final set of equations (1.16) of this example we introduced a somewhat 
simplified notation. If H(X ) is a statement about the values of X that can be true or 
false, then Pr{H(X)} represents the more precise expression

{ }( ){ } ( )( ) =Pr : .H X P x H x is trueX

Probability Distribution Functions
In practice, however, the probability distribution for a random variable X is usually 

expressed by a function defined directly on the real-number values of X. Specifically, 
one often generates a probability distribution for X by means of a probability 
density function f (abbreviated p.d.f.) defined on all of the real numbers . (The 
density function for X may be denoted by fX when it is important to distinguish the 
random variable from other variables in a given context.) Function f has a distinctive 
form, depending on whether X is of the discrete type or continuous type. Beginning 
with the discrete case, we shall in the following discussion take up these two types, as 
well as the mixed type, in turn.

Often f depends on a set of one or more numbers Q = 〈q1, q2, . . . , qr〉, which can 
vary over a range of values, each value-set of numbers determining a specific density 
function. Such numbers are called parameters. The resulting distributions are then 
said to belong to a parametric distribution family.

Whenever X has a countable range space RX = {x1, x2, x3, . . .}, X is said to be a 
discrete random variable. To serve as a probability density function in the discrete case, 
function f must have properties (i), (ii), (iii) listed below. In the discrete case f is also 
called a probability mass function.

0 for ,

0 for ,

1, 1, 2, 3, . . . . (1.17)∑

( )

( )

( )

( )

( )

( )

≥ ∈

= ∉

= =

i f x x R

ii f x x R

iii f x i

i i X

X

ii
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Function PX is defined by setting PX({xi}) = f (xi) for i = 1, 2, 3, . . . . Moreover, for a set A, 
A ⊆ , it follows that

. (1.18)∑ ( )( ) =
∈

P A f xX i
x Ai

The next example describes three common families of discrete distributions.

Example 1.6.    (a)  The simplest non-trivial random variable takes on only two 
distinct values: {0,1}. Such a variable X can be defined on any probability space relative 
to a fixed event E with P(E ) = p, where 0 < p < 1:

1 if

0 if .
( )ω =

ω ∈

ω ∉





X
E

E

A trial resulting in the occurrence of E is often termed a “success,” whereas the 
occurrence of the complement Ec is called a “failure.” Therefore, the probability of 
obtaining a success is Pr{X = 1} = p, and the probability mass function is

if 1

1 if 0

0 if 0,1 .{ }
( ) =

=

− =

∉










f x

p x

p x

x

The probability distribution with this function is called a Bernoulli distribution with 
parameter p, and X is accordingly known as a Bernoulli random variable.6

(b)  Another family of discrete distributions, related to the Bernoulli, comprises 
the binomial distributions with parameters n and p. X is a binomial random 
variable if X equals the number x of successes, each with probability p, obtained in 
n independent Bernoulli trials (n = 1, 2, 3, . . .).7 The probability of x successes in n 
trials is Pr{X = x} = nCx px (1 - p)n-x, and the probability mass function is

{ }
{ }

( ) =
− ∈

∉







−(1 ) if 0,1, 2, . . . ,

0 if 0,1, 2, . . . , .
(1.19)f x

C p p x n

x n

n x
x n x

6	The Bernoulli variable is named for Jacob [James] Bernoulli (1654–1705), a prominent member of the Bernoulli 
family of Swiss mathematicians. His most significant work in probability, the Ars conjectandi, was published 
posthumously in Basel in 1713.

7	 Informally, we say that successive trials of a single experiment or trials of separate experiments are said to 
be independent whenever the probabilities of the outcomes in one trial do not depend on those of another. 
In particular, if event E is associated with a certain trial and event F with another trial in the sequence,  
then Pr{E and F } = P(E )zP(F ). A more formal treatment of this topic can be found in a standard probability 
theory text.
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The factors nCx in (1.19) are the ordinary binomial coefficients. The Binomial Theorem is 
used at step (2) in the following verification that the probabilities in (1.19) all sum to 1:

1 1 1.
0 0

2
∑ ∑ ( ) ( )( ) = − = + − =

( )

=

−

=
f x C p p p p

x

n

n x
x n x

x

n
n

(c)  Consider a Bernoulli experiment with two elementary outcomes: success or failure. 
Independent trials with Pr{success} = p are performed until the first success is obtained. For 
this experiment the elementary outcomes in W form a countably infinite set of sequences 
beginning with a number (0, 1, 2, . . .) of failures (F ) and ending with a single success (S ):

, , , , , , . . . .{ }Ω = S FS FFS FFFS FFFFS FFFFFS

Let N denote a random variable with value equal to the number n of trials required to 
obtain the first success. Independence of the component Bernoulli trials implies that 
for n = 1, 2, 3, . . . the probability mass function is

Pr (1 ) . (1.20)1{ }( ) = = − −f n first S obtained on the n trial p pth n

Note that the sum of an infinite geometric series is used at step (2) in the following 
verification of the sum of all nonzero probabilities:

1
1

1 (1 )
1.

1 0

2
∑ ∑ ( )( ) = − =

− −
=

( )

=

∞

=

∞
f n p p p

pn

n

n
i

A distribution with probability mass function (1.20) is accordingly called a geometric 
distribution with parameter p. Refer also to Problem 3.21. n

A probability distribution for a random variable X can also be characterized by 
a function related to the probability density function, the cumulative distribution 
function (sometimes shortened to distribution function or abbreviated c.d.f.). This 
function is denoted by F—or by FX whenever the dependence on X must be empha-
sized—and is defined for all real numbers x by

Pr . (1.21)( ) { }= ≤F x X x

Therefore, if X is a discrete variable with range space RX = {x1, x2, x3, . . .} with a 
probability mass function f satisfying (1.17), then function F is given by

. (1.22)∑ ( )( ) =
≤

F x f xi
x xi

Example 1.7.    Let X be the random variable of Example 1.5. The probability 
density function can be expressed by the table

# Heads x 0 1 2 3

f(x) 0.125 0.375 0.375 0.125
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As usual, we assume that f (x) = 0 for x ∉ RX = {0, 1, 2, 3}. A graph of the cumulative 
distribution function, below, is shown in Figure 1.1:

0 if 0

0.125 if 0 1

0.500 if 1 2

0.875 if 2 3

1.000 if 3 .

( ) =

−∞ < <

≤ <

≤ <

≤ <

≤ < ∞















F x

x

x

x

x

x   n

Example 1.7 illustrates the fact that for a discrete random variable X, F(x) has a 
jump discontinuity at each value xi ∈ RX for which f (xi) > 0. Moreover, the height of 
the jump at xi is just f (xi). Elsewhere the function is constant:

∑ ( )( ) =

<

≤ < =

≥










=
−

−F x

x x

f x x x x i

R x R

jj
i

i i

X X

0 if

if , 2, 3, . . .

1 if max exists and max .

1

1
1

1

Thus, for every probability distribution defined on a discrete random variable the 
cumulative distribution function F(x) is a step function.

Suppose now that random variable X is a non-discrete variable. This means the 
range space RX is a uncountable set, and we shall further assume that RX consists of one 
or more intervals (of finite or infinite length) of real numbers. To serve as a probability 
density function in this case f must be defined on all of ℜ and be Riemann integrable 
there (“Riemann integrable” generally means that the function has at most a countable 

Figure 1.1.    Cumulative Distribution Function  
y  F (x) [Example 1.7]

0.4

1.0

0.8

0.6

0.2

-2 -1 0 1 2 3

y

x
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set of points of discontinuity).8 Function f must also have properties analogous to those 
of the discrete case (1.17):

0 for ,

0 for ,

1. (1.23)∫

( ) ( )

( ) ( )

( ) ( )

≥ ∈

= ∉

=−∞
∞

i f x x R

ii f x x R

iii f x dx

X

X

If such a density function exists, the probability function PX is defined for a set A 
of real numbers by the integral

. (1.24)∫( ) ( )=P A f x dxX A

Thus, for example,

∫[ ] [ ]( ) ( )= ⊆ ℜ, , , . (1.25)P a b f x dx a bX a

b

In particular, the cumulative distribution function is given by

. (1.26)∫( ) ( )= −∞F x f u dux

A basic theorem of calculus guarantees that for such an integrand f (x), the function 
F(x) is a continuous function of x on all of . Moreover, when the density function 
f (x) is continuous at x, then F(x) is also differentiable at x, with F ′(x) = f (x). As a 
result, the random variable X and its associated probability distribution PX are said to 
be continuous.

The next example illustrates a trio of important continuous distributions.

Example 1.8.    (a)  Random variable X takes on values throughout an interval  
[a, b] of real numbers (a < b). Variable X is said to have a uniform distribution on 
[a, b] if the probability density function is given by

( )

1
if [ , ]

0 if or .
= β − α

∈ α β

< α > β






f x

x

x x

8	Named for the German professor of mathematics, Bernhard Riemann (1826–1866), who gave the first rigorous 
definition, the Riemann integral is the ordinary integral of elementary calculus. Riemann’s approach to 
integration was later extended by other mathematicians, notably Henri Lebesgue (1875–1941). Although today 
the most general and rigorous treatments of probability are founded on the Lebesgue theory of measure and 
integration, the Riemann approach (and its generalization by Stieltjes, discussed in the next section) is adequate 
for the present work.
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Thus, the probability that X lies in a subinterval [c, d ], where a ≤ c < d ≤ b, is 
proportional to the length of the subinterval:

, ( )
1

.∫ ∫[ ]( ) = =
β − α

= −
β − α

P c d f x dx dx
d c

X c

d

c

d

(b)  Let X denote the size of an insurance claim that is unrestricted by any policy 
limit. Then it is reasonable to consider the nonnegative real numbers as the range space 
of X: RX = [0, ∞). When X has the probability density function

( ) ( )
=

−∞ < <

β ≤ < ∞ β >






− β

( )
0 if 0

1 if 0 0
f x

x

e xx

X is said to have an exponential distribution. The cumulative distribution function is

=
−∞ < <

− ≤ < ∞






− β

( )
0 if 0

1 if 0 .
F x

x

e xx

In the case b = 200 the probability that X falls in the interval [300,400] is

Pr 300 400
1

200
400 300 0.0878.200

300
400

∫{ } ( ) ( )≤ ≤ = = − =−X e dx F Fx

(c)  The random variable Z with the important standard normal distribution—
known also as the Gaussian distribution9—has a continuous nonzero density function 
defined on all of :

( )=
π

− −∞ < < ∞( )
1
2

exp , . (1.27)1
2

2f z z z

Because f is a function of z2, the distribution is symmetric about z = 0.
The cumulative distribution function, denoted in this case by the special notation 

F(z), is therefore

∫ ( )( )Φ =
π

−
−∞

1
2

exp . (1.28)1
2

2z u du
z

Because the integral in (1.28) cannot be evaluated by elementary methods of calculus, 
values of F must be obtained by some approximation method—refer to Appendix A.1 
for details. A graph of y = F(z) is shown in Figure 1.2. n

9	The German mathematician Karl Friedrich Gauss (1777–1855) is widely acknowledged as the greatest mathematician 
of the nineteenth century. Working at the University of Göttingen, he made significant contributions to a broad range 
of fields in mathematics and physics. He used the normal distribution to model the distribution of measurement errors.
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In addition to the special properties for cumulative distribution functions for 
discrete and continuous random variables already mentioned, the function F(x) has a 
number of general properties, listed below.

Properties of F(x)
Assume that c is an arbitrary real constant. Then

a( ) 0 1 . (1.29)( )≤ ≤ ∈ℜF x for all x

b . (1.30)1 2 1 2( ) ( )( ) ≤ <F x F x for x x

c lim 1 lim 0. (1.31)( ) ( ) ( )= =→∞ →−∞F x and F xx x

d Pr lim lim . (1.32)( ) { } ( ) ( ) ( ) ( )= = − = + − −→ + → −X c F x F x F c F cx c x c

e , , lim ( ) ( ). (1.33)( ) ( ) =→ +F x is continuous from the right that is F x F cx c

Proof:
(a)	The inequality follows from the definition (1.21) of F as a probability.
(b)	The inequality follows from

Pr 0.2 1 1 2( ) ( ) { }− = < ≤ ≥F x F x x X x

(c)	 Let 〈xn〉 be an increasing sequence of reals with limn→∞ xn = ∞. Then 〈In〉 = 〈(-∞, xn]〉 
is an ascending sequence of intervals, with ∪n In = (-∞, ∞) and PX(In) = F(xn).  
Applying the result of Problem 1.3(a):

)( )(−∞ ∞) ) )( ( (= = = =
→∞ →∞

∪ ,lim lim 1.F x P I P I P
n

n
n

X n X n n X

1.0

0.8

0.6

0.2

-3 -2 -1 0 1 2 3 z

y

Figure 1.2.    Cumulative Distribution Function  
y  F(z) [Example 1.8(c)]
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(d ) � The sequence ,1 1 ](= − +I c cn n n  is a descending sequence of intervals, with 
{c} = ∩n In. The result of Problem 1.3(b) yields

Pr lim

lim
1 1

.

( ) ( ){ }

( ) ( )

= = =

= +





− −











= + − −

→∞

→∞

X c P I P I

F c
n

F c
n

F c F c

X n n
n

X n

n

∩

(e)	 Let 〈xn〉 be a decreasing sequence of reals with limn→∞ xn = c. Then 〈In〉 = 〈(-∞, xn]〉 is 
a descending sequence of intervals, with ∩n In = (-∞, c] and PX(In) = F(xn). Again 
applying Problem 1.3(b):

,lim ( ) lim lim .](( )−∞( )( ) ( ) ( )= = = = =
→ + →∞ →∞

cF x F x P I P I P F c
n c n

n
n

X n X n n X∩
 
n

Note that property (d ) above implies that if X is a continuous random variable then 
Pr{X = x} = 0 for every real x.

Occasionally one encounters random variables that are neither entirely discrete nor 
entirely continuous but whose distribution is a hybrid of these two main types. Such a 
random variable is said to have a mixed distribution, with a cumulative distribution 
function of the form described below.

A distribution function F is of the mixed type if the function can be expressed as

, (1.34)1 1 2 2( ) ( ) ( )= ω + ωF x F x F x

where F1(x) is the distribution function of a continuous variable X1, F2(x) is the distribution 
function of a discrete random variable X2 with RX2 = {xi}, and the nonnegative numbers 
w1 and w2 satisfy w1 + w2 = 1. Here the numbers w1 and w2 can be interpreted as the 
respective probabilities of being (1) in the continuous state or (2) in the discrete state. A 
graph of y = F(x) is continuous except at the points {xi}, where it has a jump discontinuity 
of height w2 fX2(xi).

The next example illustrates some types of mixed distributions often encountered 
in the modeling of property/casualty claim processes.

Example 1.9.    The distribution of an unlimited claim-size random variable Y has 
the exponential c.d.f.

0 if 0

1 if 0 .0.01
( ) =

−∞ ≤ <

− ≤ < ∞






−

F x
x

e x
Y x

(a)  The variable X is distributed like Y for positive x, but takes on the value 0 with 
probability 0.25. Thus, the distribution of X is a mixed distribution with a discrete 
lump of probability at x = 0. Since

1 Pr 0 0.75,1 { }ω = = − = =Probability of being in the continuous state X
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the cumulative distribution function of X has the form

( ) ( ) ( )=
− ∞ < <

− ≤ < ∞






+

−∞ < <

≤ < ∞





=
− ∞ < <

− ≤ < ∞







−

−

0.75
0 if 0

1 if 0
0.25

0 if 0

1 if 0

0 if 0

1 0.75 if 0 .

0.01

0.01

F x
x

e x

x

x

x

e x

x

x

(b)  Alternatively, suppose that X is distributed like Y, but is limited above by  
the value 200—that is, claims less than or equal to 200 are paid at full value, 
but claims greater than 200 are paid at the maximum value of 200. In this case, 
however,

200 1 .1
2( )ω = = = − −Probability of being in the continuous state F eY

Therefore,

( )( ) = −

− ∞ < <

−
−

≤ < +
−∞ < <

≤ < ∞





≤ < ∞













=

−∞ < <

− ≤ <

≤ < ∞










−
−

−
−

−

1

0 if 0

1
1

if 0 200
0 if 200

1 if 200

1 if 200

0 if 0

1 if 0 200

1 if 200 .

2
0.01

2
2

0.01

F x e

x

e
e

x e
x

x

x

x

e x

x

x

x

(c)  Finally, again assume that X is distributed like Y, but simultaneously has both 
modifications described in parts (a) and (b): it takes on the value 0 with probability 
Pr{X = 0} = 0.25 and is limited above by the value 200. Thus, the modified variable Xc 
has a mixed distribution with two discrete lumps of probability mass, one at x = 0 and 
another at x = 200. Observe that

0.75 200 0.75 1 .1
2( )( )ω = = = − −Probability of being in the continuous state F eY

Variable X then has the cumulative distribution function

0.75 1

0 if 0

1
1

if 0 200

1 if 200

2
0.01

2( )( ) = −

−∞ < <

−
−

≤ <

≤ < ∞













−
−

−F x e

x

e
e

x

x

x
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0.25 0.75

0 if 0

0.25
0.25 0.75

if 0 200

1 if 200

0 if 0

1 0.75 if 0 200

1 if 200 .

2
2

0.01

( )+ +

−∞ < <

+
≤ <

≤ < ∞













=

−∞ < <

− ≤ <

≤ < ∞










−
−

−

e

x

e
x

x

x

e x

x

x

Graphs of y = F(x) for parts (a), (b), and (c) are shown in Figures 1.3, 1.4, and 1.5, 
respectively. n

1.00

0.75

0.50

0.25

-400 -200 0 200 400 600 x

y

Figure 1.3.    Mixed Distribution Function y  F (x)  
[Example 1.9(a)]
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-400 -200 0 200 400 600 x

y

Figure 1.4.    Mixed Distribution Function y  F (x) 
[Example 1.9(b)]
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Joint Distributions
It is frequently necessary to work with two or more random variables at the 

same time, recognizing that the values of one variable may influence the values 
of another. Accordingly, one must consider the probability distribution of the 
variables jointly. For example, suppose that X and Y are random variables with 
respective density functions fX(x) and fY(y). We define F(x, y), the joint cumulative 
distribution function of X and Y, by

, Pr , , . (1.35){ }( ) = ≤ ≤ −∞ < < ∞F x y X x and Y y x y

The joint probability density function f (x, y) is a function that, in the case that X 
and Y are both discrete variables, satisfies

, Pr , , , (1.36)( ) { }= = = ∈ ∈f x y X x and Y y x R y Ri j i j i X j Y

as well as

, , ,

( ) , , . (1.37)

∑

∑

( )

( )

( ) = ∈

= ∈

∈

∈

f x f x y x R

f y f x y y R

X i i j
y R

i X

Y j i j
x R

j Y

j Y

i X

In this context, functions fX(x) and fY(y) are called the marginal probability density 
functions of X and Y, respectively.

In the case that X and Y are both continuous variables, the density function f (x, y) 
must satisfy

, , , , , (1.38)∫∫( ) ( )= −∞ < < ∞−∞−∞F x y f u v du dv x yyx
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Figure 1.5.    Mixed Distribution Function y  F (x)
[Example 1.9(c)]
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with the marginal density functions given by

, and , . (1.39)∫ ∫( ) ( ) ( )( )= =−∞
∞

−∞
∞f x f x y dy f y f x y dxX Y

When it is true that the density functions satisfy the relation

, , , , (1.40)( ) ( )( )= −∞ < < ∞f x y f x f y x yX Yi

we say that random variables X and Y are independent. For independent random 
variables, the probability distribution of one variable is not affected by the values of 
the other. In particular, the probability Pr{X ≤ x} is mathematically independent of the 
value of Y, and vice versa. Consequently, we also have

, , , . (1.41)( ) ( )( )= −∞ < < ∞F x y F x F y x yX Yi

1.3.  Mathematical Expectation
One of the most useful random-variable concepts is that of mathematical expectation, 

which we define in the following way. Assume that X is a random variable with p.d.f. 
f—and range space RX = {xi} if X is discrete. Let g be a function such that

or ,∑ ∫( ) ( ) ( ) ( )−∞
∞g x f x g x f x dxi i

i

depending on whether X is discrete or continuous, respectively, exists as a finite 
number. Thus, whenever the above expression is an infinite series or improper Riemann 
integral, it must be convergent. The expectation or expected value of g(X ) is denoted 
by E[g(X )], and it is defined by

∑

∫
=





 −∞
∞

[ ( )]
( ) ( ) if is discrete

( ) ( ) if is continuous.
(1.42)E g X

g x f x X

g x f x dx X

i ii

A Note on Integrals. Students of integration theory will recognize that the dual 
expressions in (1.42) can be represented by a single formula in which the integral is of 
the Riemann–Stieltjes type, as opposed to the ordinary Riemann integral of elementary 
calculus:10

. (1.43)∫[ ]( ) ( ) ( )= −∞
∞E g X g x dF x

Without going into the theoretical details, unnecessary for the present discussion 
and which can be obtained from a text of real analysis, the Riemann–Stieltjes integral 

10	 Thomas Jan Stieltjes (1856–1894) was a prominent Dutch mathematician who made contributions to continued 
fractions, number theory, and analysis. Appearing in his 1894 paper, “Recherches sur les fractions continues,” his 
was the first published generalization of the Riemann integral. Details concerning the Riemann–Stieltjes integral 
can be found in textbooks of probability theory or advanced calculus; for example, refer to McCord and Moroney 
[14], pp. 82–92, or Apostol [2], pp. 140–182.
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has the following properties which support the use of the expression in (1.43). Whenever 
F(x) is a nondecreasing differentiable function for which F ′(x) = f (x) and f (x) is Riemann-
integrable, the Stieltjes integral in (1.43) reduces to the Riemann integral

. (1.44)∫ ∫( ) ( ) ( ) ( )=−∞
∞

−∞
∞g x dF x g x f x dx

In the case that F(x) is a nondecreasing step function with jumps at a countable set of 
values {xi} and with the height of the jump at xi equal to f (xi), then

. (1.45)1∫ ∑ ∑( )( ) ( ) ( ) ( ) ( ) ( ) ( )= − − =−∞
∞

−g x dF x g x F x F x g x f xi i ii i ii

As a result, we are justified in using the notation of (1.43) in place of (1.42), with the 
integral ( ) ( )∫−∞

∞
g x dF x  interpreted as a Riemann–Stieltjes integral.

Properties (1.46) through (1.50) below are straightforward consequences of definition 
(1.42). Verification is requested in Problem 1.8.

Properties of E[g(X )]
Assume that c is a real constant and that h and g are functions for which E[g(X)] and 
E[h(X)] exist. Then

a( ) . (1.46)[ ] =E c c

b( ) . (1.47)[ ] [ ]( ) ( )=E c g X c E g X

c( ) . (1.48)[ ] [ ] [ ]( ) ( ) ( ) ( )+ = +E g X h X E g X E h X

d( ) . (1.49)[ ] [ ]( ) ( ) ( ) ( )≤ ≤E g X E h X whenever g x h x for all x

e( ) ( ) ( ) . (1.50)[ ][ ] ≤E g X E g X

One of the most important expected values for a random variable X is the mean 
E[X ], obtained from (1.43) when g(X ) = X:

. (1.51)∫[ ] ( )= −∞
∞E X x dF x

In addition, the expectation of g(X ) = (X - E[X ])2 defines the variance of X:

[ ] . (1.52)2[ ] ( )= − Var X E X E X

The mean is a familiar measure of central tendency. For claim-size distributions, 
discussed in Chapter 2, the mean E[X ] is often called the severity.11 The variance is 

11	 Actuaries sometimes use the term “severity” as a synonym for “claim size” when referring to claim-size distributions 
as “severity distributions.” However, in this monograph we shall consistently use the term to denote mean claim size.
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a standard measure of the dispersion of the distribution—the larger the variance, the 
more widely dispersed over the range space is the unit mass of probability. The square 
root of the variance is known as the standard deviation: [ ] [ ]=SD X Var X .

Properties of Var[X ]
If c is a real constant, then

a( ) 0. (1.53)[ ] =Var c

b( ) . (1.54)2[ ] [ ]=Var c X c Var X

c( ) . (1.55)2 2[ ][ ] [ ]( )= −Var X E X E X

Proofs of these variance properties are requested in Problem 1.9.
Generalizing the expected values involved in definitions (1.51) and (1.52), we 

define the expectation of g(X ) = X m for m = 1, 2, 3, . . . :

. (1.56)∫[ ] ( )= −∞
∞E X x dF xm m

When the expression in (1.56) exists, the expected value E[X m ] is called the mth moment 
about 0 (or more simply, the mth moment) of X. In addition, the expected value  
E[(X - E[X ])m] is called the mth central moment of X. Accordingly, Var[X ] is the 
second central moment of X.

Although we have defined the moments, as well as the variance and other moment-
based entities, as characteristics of a random variable, it is customary to refer to them 
interchangeably as properties of the random variable and of its associated probability 
distribution. In a formal treatment of probability these concepts can be defined separately, 
but we shall not do so here.

Example 1.10.    (a)  Random variable X has a Bernoulli distribution with param-
eter p. Then

0 1 1 ,

0 1 1 ,2 2 2[ ] ( ) ( )
[ ] ( ) ( )( )

( )

= − + =

= − + =

E X p p p

E X p p p

so that equation (1.55) yields Var[X ] = p(1 - p).
(b)  Variable X is uniformly distributed on [a, b]. Integrating over the interval, we 

obtain the mean and variance as functions of parameters a and b:

1
2 2

,

1
3 4 12

.

2 2

2 2
2 2 2 2

∫

∫

[ ]

[ ] [ ]( )

( )

( ) ( )

=
β − α

= β − α
β − α

= α + β

=
β − α

− = β + αβ + α − α + β = β − α

α
β

α
β

E X x dx

Var X x dx E X
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(c)  Z has the standard normal distribution with p.d.f. (1.27). Then

∫

∫

( )

( )

=
π

− =

=
π

− =
π

π =

−∞
∞

−∞
∞

[ ]
1
2

exp 0,

[ ]
1
2

exp
1
2

2 1,

1
2

2

2 2 1
2

2

E Z z z dz

E Z z z dz

and so Var[Z ] = 1 - 02 = 1. n
Finally, we examine another special expected value for a random variable X, namely 

that of the function g(X ) = e tX. If there exists a positive number K such that the expectation 
E[g(X )] = E[e tX ] exists for all t < K, then the resulting function of t, M(t) = E[e tX], is 
called the moment-generating function of X. Thus,12

exp( ) . (1.57)12∫[ ]( ) ( )= = −∞
∞M t E e tx dF xtX

Moment-generating functions play an important role in probability. When it exists, 
the moment-generating function of a random variable is unique and, moreover, completely 
characterizes the probability distribution of the variable. That is, two random variables 
with the same moment-generating function have the same distribution. In addition, when 
it exists, the mth derivative of M(t) evaluated at t = 0 is just the mth moment:

, 1, 2, 3, . . . . (1.58)
0

[ ]( ) = =
=

d
dt

M t E X m
m

m
t

m

Proofs of both these assertions about the moment-generating function can be found in 
a standard text of probability theory.

Example 1.11.    (a)  Assume that random variable X has a binomial distribution with 
parameters n and p (n = 1, 2, 3, . . . and 0 < p < 1). Function M(t) exists for all real t, and

1 1 .
0 0

∑ ∑ ( ) ( )( )( ) ( )= = − = − +
=

−

=
M t e f x C pe p p petx

x

n

n x
t x n x

x

n
t n

The first two derivatives are

( )

( ) ( )( )

( )

( )

= − +

=
− − + + − + ≥

=







−

− −

1 ,

1 1 1 if 2

if 1.

1

2

2

2 2 2 1

d
dt

M t n p pe pe

d
dt

M t
n n p pe p e n p pe pe n

pe n

t n t

t n t t n t

t

12	 For a continuous random variable the moment-generating function is a type of Laplace transform of its probability 
density function. Although useful when it exists, the moment-generating function fails to exist for a number of 
important distributions, notably the lognormal family discussed in Chapter 2. However, the characteristic function 
of a random variable X, defined as the complex-valued function E[exp(itX )], always exists and has similar moment-
generating properties. The uniqueness of the moment-generating function is usually obtained from a corresponding 
uniqueness theorem about the characteristic function. For example, see Parzen [18], pp. 400–404. Refer also to 
Section 4.5.
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Evaluating these derivatives at t = 0, we obtain

0 ,

0 1 ,2 2[ ]
[ ] ( )

( ) ( )

= ′ =

= ′′ = − +

E X M np

E X M n n p np

and hence Var[X ] = n(n - 1)p2 + np - (np)2 = np(1 - p).
(b)  Assume that X is exponentially distributed with parameter b. Then

1 1
1

, 1 ,0∫( ) =
β

=
− β

− ∞ < < β− β∞M t e e dx
t

ttx x

and the first two derivatives are

1
and

2
1

.2

2

2

2

3( ) ( )
( ) ( )= β

− β
= β

− β
d
dt

M t
t

d
dt

M t
t

Therefore,

0 and 0 2 ,2 2[ ][ ] ( ) ( )= ′ = β = ′′ = βE X M E X M

so that Var[X ] = 2b2 - b2 = b2. n

For two or more random variables considered jointly, there are several useful and 
important results about expectations.

First, consider g (X, Y ) = X + Y. The expectation E[X + Y ] is just the sum E[X ] + 
E[Y ]. If, for example, X and Y are continuous variables, then

,

, ,

. (1.59)

∫∫

∫∫ ∫∫

∫ ∫

[ ] [ ]

) )

( ) ( )

( ) ( )

( )

[ ]

( )

+ = +

=   +  

= +

= +

−∞
∞

−∞
∞

−∞
∞

−∞
∞

−∞
∞

−∞
∞

−∞
∞

−∞
∞

E X Y x y f x y dx dy

x f x y dy dx y f x y dx dy

x f x dx y f y dy

E X E Y

X Y

Secondly, assume that X and Y are independent random variables and that g and h 
are functions for which E[g(X )] and E[h(Y )] each exist. Then the expectation of the 
product XY is the product of the expected values:

. (1.60)[ ] [ ] [ ]( ) ( ) ( ) ( )=E g X h Y E g X E h Yi i

In the continuous case, we have

,

∫∫

∫ ∫

[ ]

[ ] [ ]

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

=

=

=

−∞
∞

−∞
∞

−∞
∞

−∞
∞

E g X h Y g x h y f x f y dx dy

g x f x dx h y f y dy

E g X E h Y

X Y

X Y

i

i

i

and a similar argument applies in the discrete case.
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Again, suppose that X and Y are independent random variables. Then

. (1.61)[ ] [ ] [ ]+ = +Var X Y Var X Var Y

To verify (1.61), use (1.59) and (1.60) to obtain

2 2 ,2 2 2 2 2[ ] [ ] [ ][ ] [ ]( )+  = + + = + +E X Y E X XY Y E X E X E Y E Y

and so

2

.

2 2 2

2 2 2 2

[ ] [ ]
[ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ]
[ ] [ ]

( )

( ) ( )

+ = + + − +

= − + −

= +

Var X Y E X E X E Y E Y E X E Y

E X E X E Y E Y

Var X Var Y

When random variable Y is the sum of n independent, identically distributed 
random variables, Y = X1 + X2 + . . . + Xn, there is a useful result involving the moment-
generating functions. If each variable Xi has the same distribution as some random 
variable X, the generating function of Y can be expressed in terms of MX(t). Observe 
that the independence of the variables {Xi} is used at step (3):

exp . . . exp exp . . . exp

exp

. (1.62)

1 2 1 2

(3)

1
∏

[ ] [ ]

( )

[ ]

( )

( )

( )

( )

( ) ( )( ) = + + + =

=

=

=

M t E tX tX tX E tX tX tX

E tX

M t

Y n n

i
i

n

X
n

Example 1.12.    Assume that random variable Y is the sum of n independent 
random variables {Xi}, each having the distribution of X, a Bernoulli random variable 
with parameter p:

. . . .1 2= + + +Y X X Xn

The moment-generating function of each variable Xi exists for all real t, and

exp 1 1 .0 1[ ]( ) ( ) ( ) ( )= = = − + = − +M t M t E tX e p e p p peX X
t t t

i

Thus, by (1.62) the generating function for the sum Y is

1 .( )( ) = − +M t p peY
t n

Because this is the moment-generating function of a binomial distribution with parameters 
n and p, the uniqueness of the generating function implies that Y is binomially distributed 
with parameters n and p. n

1.4.  Random Samples
The problem of fitting a parametric distribution to a set of claim data, discussed 

briefly in the next section, relies heavily on the theory of sampling from a population, 
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a collection of objects with identical distributional characteristics. For example, an 
actuary is often interested in inferring the distribution of sizes or numbers of claims 
from a set of data obtained from a portfolio of similar policies. We begin with the 
definition of random sample, which is fundamental to the discussion that follows.

An ordered set 〈X1, X2, . . . , Xn〉 of independent, identically-distributed random 
variables is a random sample from a population random variable X if each Xi has the 
distribution of X. Thus, the distribution of Xi does not depend on the value of any other 
random variable Xj (i ≠ j) in the sample. In practice, a random sample of size n may 
be generated by performing n successive independent trials of a single experiment—for 
example, tossing a coin n times—or perhaps by making n selections from a collection of 
similar objects, each time replacing the selected object before making the next selection, 
a method called selection with replacement. The set of particular values of the random 
variables 〈Xi〉, denoted by 〈x1, x2, . . . , xn〉, is referred to as a set of sample observations. A 
statistic is a function of the sample variables 〈X1, X2, . . . , Xn〉.

The sample moments, analogs of formula (1.56) for moments of the population 
distribution, are useful statistics in the analysis of sample data:

1
, 1, 2, 3, . . . . (1.63)

1
∑= =
=

M
n

X mm i
m

i

n

The first moment is sometimes denoted by X
_
:

1
(1.64)1

1
∑= =
=

X M
n

Xi
i

n

and the sample variance by S2:

1 1
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Because they are functions of random variables, statistics are also random variables, 
with probability distributions induced by that of the population random variable. 
For instance, if the distribution of the population variable X has mean E[X ] = µ and 
variance Var[X ] = s2, then
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1
. (1.67)

2

2

[ ]= σ −

= − σ

Var X

n
n

Assume that 〈x1, x2, . . . , xn〉 is a set of observations from the random sample 
〈X1, X2, . . . , Xn〉 of size n. The sample distribution function or empirical distribution 
function Fn(x) is defined for all real x by

1 #
. (1.68)∑( ) = = ≤

≤
F x

n
observations x

nn
x xi

Although it is not itself a probability distribution function, Fn(x) has the same 
form as a cumulative distribution function for a discrete random variable defined 
on a finite set of equally probable outcomes. Fn(x) therefore has the properties  
of such a function—specifically, (1.29) through (1.33). In particular, the first 
moment evaluated at the observations 〈x1, x2, . . . , xn〉 is the mean of the sample 
distribution:

1
. (1.69)

1
∑=
=

x
n

xi
i

n

The variance of the sample distribution is defined similarly:

1
. (1.70)2 2

1
∑( )= −
=

s
n

x xi
i

n

Often, for ease of analysis, data in a set of observations from a random sample are 
grouped into a collection of disjoint intervals or cells: {(ck-1, ck]} (k = 1, 2, . . . , m). In 
this case, (1.69) has the form

1
, (1.71)
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kx c c
k k

i k k

If the sum of the observations in the kth cell is unavailable, so that ak is not known exactly, 
one could approximate the average ak in formula (1.71) by the interval midpoint:

1
2

. (1.72)1( )≈ +−a c ck k k
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1.5.  Fitting Distributions
Actuaries frequently find it desirable to fit a parametric distribution model to a 

set of claim data, both for the purpose of smoothing the empirical distribution but 
also for interpolating among or extrapolating beyond the existing data. The problem 
of extrapolation is particularly important in describing the behavior of the very large 
claims in a claim-size distribution—the probability of such claims is usually so small 
that in any given sample of claim-size data the number of large claims is insufficient to 
characterize adequately the right-hand tail of the underlying population distribution. In 
this section we review the rudimentary details of several methods used to fit probability 
models to data.

We begin with a finite set of claim data 〈x1, x2, . . . , xn〉, which can be interpreted 
as a set of particular values for a random sample 〈X1, X2, . . . , Xn〉 from a population 
random variable X with an unknown distribution. The variables 〈Xi〉 are independent, 
and each has the same distribution as X, representing the results of a single random 
selection from the population variable X. Here, X could be either a claim-size or  
claim-count variable, as discussed in Chapters 2 and 3. The aim is to find a 
probability model for the distribution of X, consistent with the sample observations 
〈x1, x2, . . . , xn〉.

In practice, in order to justify the interpretation as a random sample from a single 
population, claim data must often be adjusted in order that all are on the same basis. 
For example, claim-size data obtained from multiple policy or accident years may very 
well require the application of trend factors to remove the effects of monetary inflation 
over time.

Methods of fitting models to sample data usually depend on first selecting a 
distribution family, that is, a collection of distribution functions {FQ(x)} indexed by a 
finite set of numeric parameters Q = 〈q1, q2, . . . , qr〉. The choice of such a family can 
be arbitrary, but should take into consideration any known or desired properties of 
the distribution under investigation.

Having chosen such a family, one must next identify the particular member of the 
selected distribution family that, according to some selection criterion, best describes the 
data. This is usually done by finding an appropriate point estimate for each distribution 
parameter—usually in the form of a statistic, that is, a function of the sample random 
variables:

ˆ , . . . , , 1, 2, . . . , . (1.73)1( )θ = =g X X i ri i n

For example, the sample-moment statistics (1.63) are useful in this regard.
In a given situation there may exist several possible parameter estimators, statistics 

which could differ in their ease of computation or in the general properties of estimators 
deemed desirable by statisticians. The latter include the three estimator properties 
described below—bias, consistency, efficiency.

Assume that X is a random variable with a distribution that depends on the unknown 
parameter q. Let 〈X1, X2, . . . , Xn〉 be a random sample of X of size n and assume that 
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q̂n  is a function of the sample random variables, a statistic whose distribution depends 
on the parameter q.

•	 q̂n  is said to be an unbiased estimate of q whenever the mean of q̂n  is just q: E[q̂n ] = q. 
For example, the expected value of the sample mean X

_
 is E[X

_
] = E[X ]. Thus, if E[X ] = 

q, then q̂n  = X
_
 is an unbiased estimate of q. However, because [ ] (1 ) [ ]2 1= −E S Var Xn , 

the sample variance statistic is a biased estimate of Var[X ], although the bias 
[ ]1 Var Xn  is insignificant for large samples.

•	 q̂n  is said to be a consistent estimate of q if q̂n  converges in probability to q, 
that is,

lim Pr ˆ 1 for all 0.{ }θ − θ < ε = ε >
→∞n

n

It can be shown that when Var[X] is finite X
_

 converges in probability to E[X ], 
and so, as in the above example, q̂n  = X

_
 is a consistent estimate of q = E[X]. In 

addition, if q̂n  is an unbiased estimate of q and if limn→∞ Var[q̂n ] = 0, then q̂n  is 
also a consistent estimate of q.

•	 Suppose that q̂n  is an unbiased estimate of q and that for all estimates q̂n*  for which 
E[q̂n * ] = q, we have Var[q̂n ] ≤ Var[q̂n * ] for all q. In this case q̂n  is said to be an 
unbiased, minimum variance estimate of q. Statistic q̂n  is also called the most 
efficient estimator of q.

To find an optimal fitted distribution it is often advisable to try more than one 
method of calculating a set of parameter estimates Q̂ and sometimes work with more 
than one distribution family. Then, after deciding on a particular parameter estimate, 
one should in the final step evaluate how well the distribution FQ̂(x) fits the sample data. 
One could do this with an informal comparison of the fitted and empirical distribution 
functions or more rigorously by employing a standard goodness-of-fit test, such as that 
based on the chi-square statistic.

Briefly described below are four useful techniques of parameter estimation: the 
method of moments, the maximum-likelihood method, the minimum chi-square method, 
and minimum-distance methods.13

Method-of-Moments Estimation
First proposed by the English statistician Karl Pearson, this is the oldest technique 

of estimating parameters and perhaps the easiest to apply in practice. The method-
of-moments method is based on the usually reasonable assumption that the sample 
moments are good estimates of the corresponding population moments.14

Accordingly, one computes successive sample moments 1
1= ∑ =M xm n i

n
i
m evaluated 

at the sample data points 〈x1, x2, . . . , xn〉 and then equates them to the corresponding 

13	 More complete discussions of estimation techniques can be found in standard mathematical statistics texts. For 
example, see Hogg and Craig [7], chapter 6, or Lindgren [13], chapter 5.

14	 Karl Pearson (1857–1936), founder of the field of mathematical statistics, established the world’s first college 
department of statistics at University College London. His contributions include the foundations of statistical 
hypothesis testing and decision theory, and he is the eponymous inventor of the chi-square goodness-of-fit test.
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moments of the assumed distributional model, which depend on the unknown 
parameters Q:

, 1, 2, 3, . . . . (1.74)[ ]= =ΘM E X mm
m

One must use as many of these equations as is necessary to determine the parameters 
uniquely—in general, when there are r parameters to estimate use (1.74) for m =  
1, 2, . . . , r. The resulting system of equations could then be solved to obtain Q̂ = 
〈q̂1, q̂2, . . . , q̂r〉 in terms of the observed data values 〈xi〉.

Method-of-moments estimates have the advantage of usually being very easy to 
calculate, but they do not always have the desirable properties indicated above—they 
are often consistent, but are sometimes biased.

Example 1.13.    A possibly unbalanced die is rolled and the number of spots on 
the upper surface is observed. We define a Bernoulli random variable:

1 if # spots 6

0 if # spots 6.
=

=

≠





X

The probability distribution for X has a single unknown parameter

{ }{ }= = = =Pr 1 Pr # spots 6p X

with the probability mass function

( )
1 if 0,1

0 if 0,1 .

1 { }
{ }

( )
=

− ∈

∉







−

f x
p p x

x

x x

It is evident that E[X ] = p.
In order to estimate parameter p, the die is rolled 50 times, creating a random 

sample of size n = 50. Twelve sixes are observed, so that S50
i=1 xi = 12. The method-of-

moments estimate of parameter p is obtained from the unbiased, consistent estimator 
p̂ = x

_
:

ˆ 12
50

0.2400.= =p
 
n

Maximum-Likelihood Estimation
Simply stated, a maximum-likelihood estimator Q̂ of distribution parameters Q 

specifies the member FQ̂ (x) of a distribution family which maximizes the probability 
of obtaining the values 〈x1, x2, . . . , xn〉 actually observed in a random sample  
〈X1, X2, . . . , Xn〉.

To begin, let 〈X1, X2, . . . , Xn〉 be a random sample from a probability distribution 
with density function fQ(x). The joint probability density function for the sample is 
then Pn

i =1 fQ(xi). Evaluated at the observed sample values 〈x1, x2, . . . , xn〉, this product 
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can be regarded as a function of the parameters Q. As such, it is called the likelihood 
function of the random sample:

. (1.75)
1

∏( ) ( )Θ = Θ
=

L f xi
i

n

Therefore, Q̂ = 〈q̂1, q̂2, . . . , q̂r〉 is a maximum-likelihood estimator if it yields a 
maximum value for the likelihood function:

ˆ for all .( ) ( )Θ ≥ Θ ΘL L

Because they are located at points at which the likelihood function attains an extreme 
value, maximum-likelihood estimators are usually, but not always, unique.

An analytic solution of the maximum-value problem can be sought by setting the  
r partial derivatives of the likelihood function equal to 0 and solving the resulting system 
of equations. However, in most situations it is easier to solve the equivalent problem of 
maximizing the log-likelihood function log L(Q), using the same technique:1514

log , . . . , 0

log , . . . , 0.

1
1

1

( )

( )

∂
∂θ

θ θ =

∂
∂θ

θ θ =














L

L

r

r
r

� �

(Recall that log x is an increasing function of x, so that whenever L(Q̂) is a maximum 
value of the likelihood function, log L(Q̂) is a maximum value of log L(Q̂), and 
conversely.) If, as it often does, the analytic approach proves intractable, one could 
employ an iterative solving algorithm, available in many computer software packages.

Maximum-likelihood estimators are usually consistent and efficient, but not always 
unbiased, estimators of the distribution parameters.

Example 1.14.    Returning to the problem of Example 1.13, we now determine 
the maximum-likelihood estimator of p = Pr {X = 1} for a sample of size n. The likeli-
hood function is

1 1 ,1

1
∏( ) ( ) ( )= − = −−

=

∑ −∑L p p p p px x

i

n
x n xi i i i

and so the log-likelihood function is

log log log 1 .
1 1

∑ ∑( )( ) ( )= + − −



= =

L p p x p n xi
i

n

i
i

n

15	 Throughout this monograph, log x denotes the natural (base e) logarithm function of x.
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Therefore, the equation

log
1 1

1
0

1 1
∑ ∑( )∂

∂
= −

−
−





=
= =p

L p
p

x
p

n xi
i

n

i
i

n

has the solution ˆ 1
1= ∑ ==p x xn i

n
i , a maximum-likelihood estimate of p. n

Minimum Chi-Square Estimation
The minimum chi-square estimator Q̂ of distribution parameters Q specifies the member 
FQ̂(x) of a selected distribution family that minimizes an associated chi-square statistic. 
This statistic is identical in form to that used in the classic Pearson chi-square goodness-
of-fit test.

To construct the chi-square statistic one must first group the data from a random 
sample of size n into a smaller number m of classes or cells. If the population distribution 
is of the continuous type, like that of most size-of-loss random variables, then the 
cells may take the form of intervals of real numbers. Otherwise, if the distribution is 
discrete and the random variable is integer-valued—like that of a claim-count random 
variable—then the cells must be subsets of the nonnegative integers.

We then calculate the cell frequencies:

# 1, 2, . . . , and .1( )= = = ∑ =n observations in the k cell k m n nk
th

k
m

k

The statistic c2(Q) is given by

∑( ) ( )
( )χ Θ =

− φ Θ
φ Θ=

, (1.76)2
2

1

nk k

kk

m

where fk(Q) is the expected number of sample observations in the kth cell, based on the 
population distribution with parameters Q. For example, if the random variable X has 
a continuous distribution, with cells of the form (ck-1, ck], then

.1( ) ( ) ( )( )φ Θ = −Θ Θ −n F c F ck k ki

Since each expected value fk(Q) is a function of Q, so is c2(Q), and a minimum 
chi-square estimate of Q is a value Q̂ at which the statistic achieves a minimum value:

ˆ for all .2 2( ) ( )χ Θ ≤ χ Θ Θ

Calculation of Q̂ is complicated by the fact that both numerator and denominator 
of c2(Q) depend on Q. However, use of a computer-implemented iterative solving 
algorithm is a practical way of overcoming such computational complexities.

One advantage of using minimum chi-square estimation of the distribution 
parameters, of course, is the fact that at the end of the procedure one has a built-in 
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goodness-of-fit test available. The value of the chi-square statistic under the assumption 
of the fitted distribution—the null hypothesis—has already been computed. For 
illustrations of this method, refer to Examples 2.8 and 2.11.

Minimum-Distance Estimation
As with the minimum chi-square method discussed previously, minimum-distance 

methods are applied to grouped sample data. In particular, the method is most useful 
in estimating parameters for a random variable X with a continuous distribution. 
Suppose, for example, the n sample values have been assigned to m cell intervals of the 
form (ck-1, ck], where

# , 1, 2, . . . , and .1 1]( ( )= = = ∑− =n observations in c c k m n nk k k k
m

k

The empirical sample distribution function at the cell boundary point ck is

1
. (1.77)

1
∑( ) =
=

F c
n

nn k i
i

k

One minimum-distance estimator of parameter Q is the value Q̂ that minimizes 
the “distance” D(Q) between the sample and parametric distribution functions, Fn(x) 
and FQ(x), evaluated at the cell boundary points:

. (1.78)1
2( ) ( ) ( )Θ = ∑ −= ΘD F c F ck

m
n k k

Clearly, D(Q) is a function of Q, and Q̂ must satisfy D(Q̂) ≤ D(Q) for all Q.
An analytic solution of a minimum-distance problem is unlikely to be 

straightforward, but as in the case of minimum chi-square estimation, Q̂ can usually 
be obtained by applying a computer utility or software that implements an iterative 
solving algorithm. Minimum-distance methods in an actuarial setting are more fully 
discussed in a paper by Klugman and Parsa [12]. Examples of minimum-distance 
fitting can be found in Examples 2.9 and 2.10.

1.6.  Problems
1.1	 Let W be the sample space for an experiment of chance.

(a)	 Show that the set {∅, E, Ec, W} is a s-algebra.
(b)	 Assume that S is a s-algebra, with E, F ∈ S. Show that E ∩ F ∈ S.
(c)	� Assume that W = {a, b, c, d } and that {a} and {b,c} are events. Find the small-

est s-algebra S containing this pair of events—this is the s-algebra gener-
ated by {a} and {b,c}.

1.2	 Assume that (W, S, P) is a probability space. Verify the following properties of P.
(a)	 Equation (1.4).	 (b)	 Equation (1.5).
(c)	 Equation (1.6).	 (d )	 Property (1.7).
(e)	 Equation (1.8).	 ( f )	 Property (1.9).
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1.3	 Assume that (W, S, P) is a probability space. Verify the following properties of the 
probability function P.
(a)	� If E1 ⊆ E2 ⊆ E3 ⊆ . . . is an ascending sequence of sets in S, then P(∪nEn) = 

limn→∞ P(En).
(b)	� If E1 ⊇ E2 ⊇ E3 ⊇ . . . is a descending sequence of sets in S, then P(∩n En) = 

limn→∞ P(En).

1.4	 An urn contains three red and four black chips. Two chips are drawn at random 
without replacement. Calculate:
(a)	 the probability that both chips are red.
(b)	 the probability that both chips are black.
(c)	 the expected number of red chips.

1.5	 For a probability space (W,S,P) with events E and F show that
(a)	 P(E) = P(F ) z P(E |F ) + P(F c) z P(E |F c).
(b)	 If E and F are independent, then P(E ∪ F ) = 1 - P(Ec)P(Fc).

1.6	 Consider the following generalization of Example 1.4. Two fair dice are rolled. 
Let Em denote the event of obtaining a total of m spots (m = 2, 3, . . . , 12) and 
Fn the event that the first die shows n (n = 1, 2, . . . , 6) spots. For what values of 
(m, n) are events Em and Fn independent? Explain.

1.7	 A random variable X takes on five values with nonzero probability: RX = {1, 2, 3, 
4, 5}. The probability mass function is tabulated below, where k is a constant.

x 1 2 3 4 5

f (x) k2 0.50k k 0.25k 0.50

Calculate:
(a)	 k.	 (b)  F(2).	 (c)  Pr{X is odd }.
(d )	 E[X ].	 (e)  Var[X ].

1.8	 Verify the following properties of the expected value E[g(X )].
(a)	 Equation (1.46).	 (b)	 Equation (1.47).
(c)	 Equation (1.48).	 (d )	 Property (1.49).
(e)	 Property (1.50).

1.9	 Verify the following properties of the variance Var[X ].
(a)	 Equation (1.53).	 (b)	 Equation (1.54).
(c)	 Equation (1.55).

1.10  A discrete random variable N has the countably infinite range space RN =  
{1, 2, 3, . . .}.
(a)	 Can the outcomes in RN be assigned equal probabilities?
(b)	� Find the constant k such that f (n) = k pn (0 < p < 1, n ∈ RN) is a probability 

mass function for N.
(c)	 Using the function of part (b), calculate E[N ] and Var[N ].
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1.11	 A random variable X has the cumulative distribution function

0 if 0

1 0.25 if 0 .0.50( ) =
− ∞ < <

− ≤ < ∞




−F x
x

e xx

Calculate:
(a)	 Pr{X = 0}.	 (b)	 Pr{X = 1}.	 (c)	 Pr{X < 1}.
(d )	 Pr{1 < X < 2}.	 (e)	 E[X ].	 ( f )	 Var[X ].

1.12	 Assume random variable X has a continuous distribution, with c.d.f. F(x).
(a)	 Show that Pr{X = c} = 0 for all real c.
(b)	 Show that Pr{a < X < b} = Pr{a ≤ X ≤ b} = F(b) - F(a) for all a and b.

1.13	 Evaluate these Riemann–Stieltjes integrals.
(a)	 ∫1

0 x d(x2).	 (b)	 ∫3
1 x2 d(log x).

(c)	 ∫
∞
0 d(1 - e-x).	 (d )	 ∫5

0 x d(vxb).1615

1.14	 Evaluate these Riemann–Stieltjes integrals, in which F denotes the discrete 
cumulative distribution function of Example 1.7.
(a)	 ∫

∞
0 x dF(x).	 (b)	 ∫

∞
0 x2 dF(x).	 (c)	 ∫

∞
0  exp(tx) dF(x).

1.15	 Evaluate these Riemann–Stieltjes integrals, in which F denotes the continuous 
c.d.f. of the uniform distribution of Example 1.8(a).
(a)	 ∫

∞
0  x dF(x).	 (b)	 ∫

∞
0  x2 dF(x).	 (c)	 ∫

∞
0  exp(tx) dF(x).

1.16	 A random variable X has the distribution function

0 if 0

1 0.20 0.80 if 0 .100 200
( )

( ) ( )
=

−∞ < <

− − ≤ < ∞






− −

F x
x

e e xx x

(a)	� Show that the distribution of X can be interpreted as the mixture of two 
exponential distributions.

(b)	 Determine E[X ] and Var[X ].

1.17	 Calculate E[X ] and Var[X ] for the random variable X of Example 1.8(a).

1.18	 Calculate E[X ] and Var[X ] for the random variable Xa of Example 1.9(a).

1.19	 Assume that X is a random variable with E[X ] = 0 and Var[X ] = 1. Calculate 
E[Y ] and Var[Y ] for Y = sX + µ.

1.20	 Find the moment-generating functions for:
(a)	 the standard normal distribution.
(b)	� the normal distribution of Y = sZ + µ, where Z is the standard normal random 

variable.
(c)	 the distribution of X, uniformly distributed on the interval [a, b].

16	 vxb denotes the greatest integer function, defined for every real x as the unique integer m satisfying m ≤ x < m + 1. 
For example, v5b = 5, vpb = 3, v-1.5b = -2.
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1.21	 Random variable N has the geometric distribution defined by (1.20). Determine:
(a)	 M(t).	 (b)	 E [N ].	 (c)	 Var[N ].
(d )	� the probability that an odd number of trials is required to obtain the first 

success.

1.22	 Justify the algebraic rearrangement in the second step of (1.67).

1.23	 Find the maximum-likelihood estimator of the parameter b for the exponential 
distribution of Example 1.8(b).

1.24	 Random variable X has a mixed probability density function f defined by

	
, where 0 1and 1.

1 1
∑ ∑( ) ( )= ω < ω < ω =
= =

f x f xk k
k

n

k k
k

n

Show that E[X ] and Var[X ] are given by

	
( )and ,

1

2

1

2

1
∑ ∑ ∑[ ] [ ] [ ]= ω µ = ω σ + ω µ −
= = =

E X Var X E Xk k
k

n

k k
k

n

k k
k

n

where µk and s2
k are the respective mean and variance of the kth distribution.
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Every property/casualty claim process involves two independent random variables: the 
claim-size random variable and the claim-count random variable. These two variables 
combine to create a third fundamental claim variable, the aggregate-loss random 
variable, values of which represent the total claim amount generated by the underlying 
claim process. We shall investigate each of these variables and their related distributions 
in turn. Distributions of claim-size variables are studied in this chapter, the claim-count 
variable is the subject of Chapter 3, and then aggregate-loss distributions are taken up 
in Chapter 4.

A claim-size variable has an associated probability distribution called a size-of-loss 
distribution, often shortened to loss distribution. A set of empirical claim data, being 
finite, always has a discrete distribution, but as we shall see, a set of claim data can be 
usefully interpreted as a sample drawn from an underlying claim-size population assumed 
to have a continuous loss distribution.

To model the size of property/casualty insurance claims, actuaries employ a variety 
of parametric families of continuous distributions. The most popular probability 
distributions used for this purpose, including the lognormal and Pareto families, 
are studied in this chapter.

2.1.  Claim-Size Random Variables
A claim-size random variable, if based on a finite population of claims or on a finite 

sample of claims from a larger population, always has a discrete distribution. However, 
for many actuarial calculations it is useful to assume that the sizes of the underlying 
claim population are modeled by a continuous distribution, usually one of the standard 
parametric distributions discussed later in this chapter. Thus the task of the actuary 
often is to fit a continuous parametric claim-size distribution to a discrete sample of 
claim data. In addition, as we shall see, distributions of various derived random variables 
are neither wholly discrete nor continuous, but of the mixed discrete/continuous type.

Claim-size variables, by their very nature, take on only nonnegative values. Thus 
for all such variables X, Pr{X < 0} = 0. That is, FX(x) = 0 for all x < 0. The probability 
density function f (x) for a continuous size-of-loss distribution for which claim size is 
unbounded (or unlimited) from above takes on positive values over a semi-infinite 
interval of the form 0 ≤ x < x < ∞. For positive b in this interval, the portion of the 
distribution defined on the subinterval (b, ∞) is called the long tail of the distribution. 

2.  Claim Size
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Alternately, the part of the distribution defined on the finite subinterval (x, b), extending 
to the left and bounded below by 0, is called the short tail. Clearly, such distributions 
cannot be symmetric.

The skewness of the distribution, defined as the normalized third central moment, 
is a measure of distribution symmetry:

[ ] [ ]
[ ]( )

( )
[ ]

[ ]
[ ]

[ ] [ ]
[ ]( )

( )
( )

=
−  =

− +

−

3 2
.

3

3 2

3 2 3

2 2 3 2Sk X
E X E X

Var X
E X E X E X E X

E X E X

The larger the absolute value Sk[X ] the more asymmetric is the distribution. Symmetric 
random variables X, on the other hand, always have zero skewness—it is easy to verify 
that X = -X implies Sk[X ] = Sk[-X ] = -Sk[X], that is, Sk[X ] = 0. The standard normal 
variable Z, for example, has Sk[Z ] = 0. However, for a continuous, unlimited loss 
distribution, with its infinite long tail, skewness is usually positive—corresponding to 
greater probability density toward the left end of the distribution. Such a distribution 
is said to be positively skewed.

The following three examples illustrate these fundamental properties of claim-size 
distributions.

Example 2.1.    A discrete claim-size random variable X has the finite set of values 
RX = {0, 50, 100, 200}, with probability mass function

Claim Size x 0 50 100 200

f (x) 0.20 0.40 0.30 0.10

A graph of the cumulative distribution function F(x) is shown in Figure 2.1. The 
severity (mean) and variance of variable X are

[ ]

[ ]

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= + + + =

= − + − + − + − =

2
10

0
4

10
50

3
10

100
1
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200 70,

2
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10
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1
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x

Figure 2.1.    Discrete Cumulative Distribution Function 
[Example 2.1]
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In addition, the third central moment is

[ ]( )

( ) ( ) ( ) ( )

− 

= − + − + − + − =2
10

0 70
4

10
50 70

3
10

100 70
1

10
200 70 156,000,

3

3 3 3 3

E X E X

so that Sk[X ] = (156,000)/(3,100)3/2 = 0.9038. n

Example 2.2.    A continuous claim-size variable X has the exponential cumulative 
distribution function

( ) =
−∞ < <

− ≤ < ∞




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−

0 if 0

1 if 0 ,250
F x

x

e xx

a graph of which is shown in Figure 2.2. A probability density function for X is therefore 
given by
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and the skewness is given by
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Figure 2.2.    Continuous Cumulative Distribution 
Function [Example 2.2]
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Example 2.3.    For claim-size random variable Y the probability of a claim of size 
zero is Pr{Y = 0} = 0.20. But for positive values Y is distributed conditionally as variable 
X in Example 2.2—that is,

{ } { }≤ > = < ≤ = − < < ∞−Pr 0
Pr 0

0.80
1 , 0 .250Y y Y

Y y
e yy

Therefore, the cumulative distribution function of Y (see Figure 2.3) is given by

( ) =
−∞ < <

− ≤ < ∞






−

0 if 0

1 0.80 if 0 .250
F y

y

e y
Y

y

Obviously, Y has a mixed discrete/continuous distribution—FY(y) is continuous for 
all y ≠ 0, with a jump discontinuity at y = 0.

The mean, variance, and skewness of Y are, respectively,
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Sk Y

A comparison with Example 2.2 reveals the effect of transferring 20% of the total 
probability to the value y = 0—the mean, variance, and skewness of Y are all smaller 
than those of X. n

2.2.  Limited Moments
Actuaries seldom use continuous parametric size-of-loss distributions in their pure 

form, that is, without restrictions placed on the size of claims. The reason for this, of 
course, is that property/casualty insurance policies almost always specify some type 
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0.2

-400 -200 0 200 400 600 800

Figure 2.3.    Mixed Cumulative Distribution Function 
[Example 2.3]
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of limitation on the claim amount payable under the policy. Consequently, every 
unlimited probability distribution used to model insurance claim sizes must be modified 
appropriately to reflect whatever policy conditions are in place.

The most widely encountered condition of this type is a policy occurrence limit 
that caps each claim amount at a specified maximum value. Assume that X denotes an 
unlimited claim-size random variable, for which Pr {X < 0} = 0, and that individual 
claim amounts are then restricted by a policy limit l. The effective claim size from the 
viewpoint of the insurer is the limited random variable Y, defined by

{ }= =
≤ <

≤ < ∞






min ,

if 0

if .
(2.1)Y X l

X X l

l l X

The insurer pays in full those claims less than l and for all other claims pays the maximum 
amount l. Because the policy limit serves to conceal the actual size of each claim larger 
than l, variable X modified in this way is said to be censored at l . In terms of the 
function FX, the cumulative distribution function of variable Y is given by the formula

{ }( )
( )

= ≤ =
− ∞ < <

≤ < ∞






Pr

if

1 if .
F y Y y

F y y l

l y
Y

X

Accordingly, the distribution of Y can have a discrete lump of nonzero probability at 
y = l, of size

{ } ( ) ( )( )= = − − = − −Pr 1 .Y l F l F l F lY Y X

In particular, if FX is everywhere continuous with 0 < FX(l ) < 1, then variable Y has 
a mixed discrete/continuous distribution—FY is continuous for all y ≠ l, and it has a 
single jump discontinuity at y = l, with Pr{Y = l } = 1 - FX(l ) > 0.

With respect to X, the mean of the censored variable Y is referred to as the limited 
expected value or limited severity of X. It is denoted by E [X; l ] and represented by 
the Riemann–Stieltjes integral formula (refer to Section 1.3):

i ( )∫ ∫ ( )[ ] [ ] ( )( )= = = + −∞; 1 . (2.2)0 0E X l E Y y dF y x dF x l F lY X
l

X

If X is continuous, then there exists a function fX such that dFX(x) = fX(x)dx, and

i∫[ ] ( )( ) ( )= + −; 1 . (2.3)0E X l x f x dx l F lX
l

X

In the case that variable X has a discrete set of values {xi}, (2.2) has the form

i∑ ∑[ ] ( ) ( )= +
≤ >

; . (2.4)E X l x f x l f xi X i
x l

X i
x li i
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Equation (2.2) is easily generalized to a formula for limited moments of all orders m, 
where m = 1, 2, 3, . . . :

i∫[ ] ( ) ( )( )= + −; 1 . (2.5)0E X l x dF x l F lm m
X

l m
X

In the discrete case for which the values 〈xi〉 constitute n observations for a random 
sample 〈X1, X2, . . . , Xn〉 from a population claim-size random variable X, we denote by 
X̂ the variable with the sample distribution fn(xi) = 1/n, (1 ≤ i ≤ n). The sample limited 
expected value En[X̂ ; l ] is a special case of (2.4):

∑ ∑ ∑{ }  = = +
= ≤ >

ˆ;
1

min ,
1 1

. (2.6)
1

E X l
n

x l
n

x
n

ln i
i

n

i
x l x li i

Sometimes sample observations are grouped by size into a finite number m of 
non-overlapping intervals of the form (ck-1, ck], where k = 1, 2, . . . , m and for which 
it is possible that cm = ∞. Often only the claim count—and occasionally the total 
claim amount—in each interval is known. Whenever this is the case, probabilities for 
the discrete sample distribution can only be calculated accurately at the finite interval 
endpoints {ck}. This is also true for the sample limited severity En[X̂ ; l ], which is 
exactly computable only when l = cj, j = 1, 2, . . . , m. At such a point, formula (2.6) 
becomes

∑ ∑  = +
= = +

ˆ;
1

, (2.7)
1 1

E X c
n

n a
c
n

nn j k k
k

j
j

k
k j

m

where nk and ak are, respectively, the number of claims and the average claim size in 
the k th group interval (ck -1, ck] and where n = Sm

k =1 nk . If the total claim amount xk 
in (ck -1, ck] is known, then it is evident that xk = nk ak , or ak = xk /nk . Otherwise, for 
group intervals of finite width, ak can be approximated by the interval midpoint:  
ak ≈ �‒₂ (ck -1 + ck). This approximation, of course, is consistent with the assumption 
that claim sizes are distributed uniformly throughout each group interval (ck -1, ck]— 
refer to Problem 2.5.

It is useful to consider the limited expected value E [X; x ] as a function of the 
variable limit x, defined on the semi-infinite interval 0 ≤ x < ∞ by

i∫[ ] ( )( )( )= + −; 1 . (2.8)0E X x u dF u x F xx

E [X ; x ] exists as a finite number for all 0 ≤ x < ∞, even when E [X ] does not exist. Proof 
of this fact is requested in Problem 2.7.

The next examples illustrate the limited expected function E[X ; x] in three important 
cases—the first with a continuous variable X, the second with a discrete variable, and the 
third with a grouped claim sample.

Example 2.4.    Assume that the continuous random variable X is distributed as in 
Example 2.2. Then the first three moments of X limited at 400 are
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∫

∫

∫

[ ]

[ ]

( )

( )

[ ] ( )

( ) ( )

( )

= + = − =

= + = − =

= + =

− − −

− − −

− −

; 400
1

250
400 250 1 199.53,

;400
1

250
400 125,000 1 2.6 59,384,

;400
1

250
400 20,310,141.

250 1.6
0
400 1.6

2 2 250
0
400 2 1.6 1.6

3 3 250
0
400 3 1.6

E X x e dx e e

E X x e dx e e

E X x e dx e

x

x

x

Therefore, the mean and variance of the censored variable Y = min{X, 400} are E [Y ] = 
199.53 and Var [Y ] = 59,384 - (199.53)2 = 19,572. The skewness is

[ ] ( )( ) ( )( )
( )

( )
=

− +
=

20,310,141 3 199.53 59,384 2 199.53
19,572

0.2377.
3

3 2Sk Y

Censoring reduces not only the mean but also the variance and skewness of a random 
variable. The limited severity function for variable X, a graph of which is shown in 
Figure 2.4, is E [X ; x] = 250(1 - e-x/250). n

Example 2.5.    Consider the discrete claim-size variable X of Example 2.1. The 
limited severity function for X is the continuous, piecewise-linear function

[ ] =

≤ <

+ ≤ <

+ ≤ <

≤ < ∞














;

0.8 if 0 50

0.4 20 if 50 100

0.1 50 if 100 200

70 if 200 .

E X x

x x

x x

x x

x

Figure 2.5 displays a graph of y = E [X ; x]. n
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Figure 2.4.    Limited Severity Function y  E [X; x] 
[Example 2.4]
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Example 2.6.    A random sample of 200 claims 
is drawn from a population with an unknown claim-
size distribution.17 These observations are grouped by 
size into nine group intervals of the form (ck -1, ck], 
where c0 = 0 and ck = 500(k + 1) for k = 1, 2, . . . , 9. 
The results are displayed in the table.

To calculate limited expected values at the 
endpoints of each group interval, we use formula 
(2.7) with the average claim size in the i th group 
approximated by the interval midpoint: ak ≈ �‒₂ (ck -1 + ck). 
For example, the approximate sample limited severity  
at c3 = 2,000 is

( )( ) ( )( ) ( )( )

( )( )

  ≈
+ +

+
+ + + +

=

E X̂ ; 2,000
42 500 61 1,250 47 1,750

200

26 14 7 2 1 2,000
200

1,398.

200

The complete set of limited expected values at the group interval endpoints is displayed 
in Table 2.1, along with values of the sample cumulative distribution function F200 at 
the same points. A graph of y = E200[X̂ ; x] for x = ck, 0 ≤ k ≤ 9, is shown in Figure 2.6. n

The limited severity functions of the previous examples exhibit some mathematical 
attributes that are shared by all such functions, notably those properties listed below.

17	 In the time-honored tradition of the textbook example, claim data used in the examples and problems throughout 
this monograph have been selected to illustrate clearly the concepts under study rather than obtained strictly 
from potentially messier real-life insurance data.
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Figure 2.5.    Limited Severity Function y  E [X; x] 
[Example 2.5]

Size Group # Claims

0–1,000 42

1,001–1,500 61

1,501–2,000 47

2,001–2,500 26

2,501–3,000 14

3,001–3,500 7

3,501–4,000 2

4,001–4,500 1

4,501–5,000 0

Total 200



Casualty Actuarial Society	 45

Distributions for Actuaries

Properties of E[ X; x]
Assume that X is a claim-size random variable, for which Pr {X < 0} = 0. Then

	(a)	 [ ] [ ]≤ ≤ < < ∞; ; 0 .1 2 1 2E X x E X x for all x x 	 (2.9)

	(b)	 [ ] ≤ < ∞; 0 .E X x is continuous for all x 	 (2.10)

	(c)	 [ ] [ ] [ ]≤ ≤ < ∞, ; 0 .If E X exists then E X x E X for all x 	 (2.11)

	(d )	 [ ] [ ] [ ]=→∞, lim ; .If E X exists then E X x E Xx 	 (2.12)

	(e )	 [ ] ≤ < ∞; 0 .E X x is a concave function on x 	 (2.13)

	( f )	 [ ] [ ]( )+ = − + >; ; 0 and .E aX b x a E X x b a b for constants a b 	 (2.14)
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Figure 2.6.    Sample Limited Severity Function [Example 2.6]

Table 2.1.    Sample Limited Severities [Example 2.6]

Size x F200(x) E200[X̂; x]

0 0.0000 0

1,000 0.2100 895

1,500 0.5150 1,214

2,000 0.7500 1,398

2,500 0.8800 1,490

3,000 0.9500 1,533

3,500 0.9850 1,549

4,000 0.9950 1,554

4,500 1.0000 1,555

5,000 1.0000 1,555
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Proof:

	(a )	� Assume that numbers (x1, x2) satisfy the inequality 0 ≤ x1 < x2 < ∞. Then for random 
variables Y1 = min{X, x1} and Y2 = min{X, x2} we have Y1 ≤ Y2, so that E [X ; x1] = 
E [Y1] ≤ E [Y2] = E [X ; x2].

	(b )	 Again, assume that 0 ≤ x1 < x2 < ∞. Then

{ } { }≤ − ≤ −0 min , min , ,2 1 2 1X x X x x x

which implies that 0 ≤ E [X; x2] - E [X; x1] ≤ x2 - x1. This means that E [X; x ] is 
uniformly continuous—and hence continuous—on 0 ≤ x < ∞.

	(c )	 Since Y = min{X, x} ≤ X, we have E [X; x ] = E [Y ] ≤ E [X ].
	(d )	 Existence of E [X ] implies that

∫ ∫[ ]( ) ( )= =
→∞ →∞

∞lim and lim 0.0 u dF u E X u dF u
x

X
x

x
Xx

But

∫ ∫( )( ) ( ) ( )≤ − = ≤ → → ∞∞ ∞0 1 0 as ,x F x x dF u u dF u xXx Xx

so that

∫[ ] [ ]( )( ) ( )= + − = +
→∞ →∞ →∞

lim ; lim lim 1 0.0E X x u dF u x F x E X
x x

X
x

x

	( e )	 Let random variable Y(x) = min{X, x} be a function of x on 0 ≤ x < ∞.

Then, for 0 ≤ x1 < x2 < ∞ and 0 ≤ t ≤ 1,

1 1 .1 2 1 2( )( ) ( ) ( ) ( )+ − ≤ + −tY x t Y x Y t x t x

This implies that

[ ][ ] [ ]( ) ( )+ − ≤ + − ≤ ≤; 1 ; ; 1 for 0 1,1 2 1 2t E X x t E X x E X t x t x t

which means that E[X; x] is a concave function.
	( f )	 Let Y = min{aX + b, x}. Then

{ }{ } ( )= − + = − +min , min , .Y aX x b b a X x b a b

Therefore, E [aX + b; x ] = E [Y ] = aE [X; (x - b)/a ] + b, as required. n

2.3.  Gamma Distributions
Gamma distributions comprise a versatile family of probability distributions, with 

many applications in statistics and probability. Property/casualty actuaries have found 
them useful in constructing a variety of insurance models—parameter uncertainty for 
claim-count distributions, approximation of aggregate-loss distributions, and occasionally 
as claim-size distributions.

The gamma distribution with positive parameters (a, b) is defined by the 
probability density function
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( )
( ) ( )

=

− ∞ < ≤

β Γ α
< < ∞ α > β >







 α

α− − β

0 if 0

1
if 0 0, 0 .

(2.15)
1

f x

x

x e xx

Except for a discontinuity at x = 0 when 0 < a < 1, f is an everywhere-continuous 
function of x. Thus, gamma distributions are of the continuous type.

The symbol G in (2.15) denotes the gamma function,18 defined for positive x by 
the convergent improper integral

∫( )Γ = < < ∞− −∞ , 0 . (2.16)1
0x u e du xx u

The integral formula of Problem 2.10(a) implies that ∫ ∞
0 xa-1 e-x/b dx = ba G(a). So 

∫ ∞
-∞ f (x)dx = ∫ ∞

0 f (x)dx = 1, thus confirming that f is indeed a density function.
The gamma function is continuous on its domain and has derivatives of all orders 

there.19 The following properties of the function are the most useful for our purposes. 
Verifications are requested in Problem 2.11.

Properties of G(x)

	(a)	 ( )Γ =1 1. 	 (2.17)

	(b)	 ( ) ( )Γ + = Γ < < ∞1 , 0 .x x x x 	 (2.18)

	(c )	 ( )Γ + = =1 !, 1, 2, 3, . . . .n n n 	 (2.19)

	(d )	 ∏( ) ( )( )Γ + Γ = + < < ∞ ==
− , 0 , 1, 2, 3, . . . .0

1x n x x i x ni
n 	 (2.20)

Property (2.19) shows that G(x) is an extension, to all positive real numbers, of the 
factorial function n! = 1 z 2 z . . . z (n - 1) z n (where n is a positive integer), providing 
continuous interpolation between successive integer factorials.

The incomplete gamma function G(x, a) is handy in representing gamma-related 
distribution functions. It is defined for positive real x by the integral

∫( ) ( )Γ α = α >α− −, 0 . (2.21)1
0x u e duux

This integral is an ordinary proper integral whenever a ≥ 1 and is a convergent improper 
integral when 0 < a < 1. It is obvious that limx→∞ G(x, a) = G(a).

18	 The gamma function was introduced in 1730 by Swiss mathematician Leonhard Euler (1707–1783) as a generalization 
of the factorial function x ! to nonintegral values of x. Euler proposed the integral formula G(x) = ∫1

0 [log(1/u)]x-1 du, 
which is equivalent to (2.16). The traditional G notation is due to French mathematician Adrien-Marie Legendre 
(1752–1833).

19	 Proofs of continuity and differentiability can be found in a standard advanced calculus text.
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Suppose now that random variable X has a gamma distribution with density function f  
as defined in (2.15). The cumulative distribution function for X can be conveniently 
expressed in terms of an incomplete gamma function. To observe this, start with the 
integral I(x) = ∫

x

0 f (u)du (0 < x < ∞) and apply the change-of-variable substitution u = bv:

∫ ∫( ) ( ) ( )
( )

( )=
β Γ α

=
Γ α

=
Γ β α

Γ αα
α− − β α− −β1 1 ,

.1
0

1
0I x u e du v e dv

xux vx

The gamma (a, b) cumulative distribution function is therefore

( ) ( )
( )

=

−∞ < <

Γ β α
Γ α

≤ < ∞









0 if 0

,
if 0 .

(2.22)F x

x

x
x

To derive now general formulas for the mth moments of X, both unlimited and 
limited, begin this time with the integral Im(x) = ∫

x

0 um f (u)du and apply the same 
substitution u = bv as before. For m = 1, 2, 3, . . .

∫ ∫( ) ( ) ( ) ( )( ) =
β Γ α

= β
Γ α

= β
Γ α

Γ β α +α
α− − β α+ − −β1

, .1
0

1
0I x u u e du v e dv x mm

m ux
m

m vx
m

Hence,

[ ] ( ) ( ) ( ) ( ) ( )= = β
Γ α

Γ α + = α α + α + − β
→∞

lim 1 . . . 1 , (2.23)E X I x m mm

x
m

m
m

i

; 1

,
1

,
. (2.24)
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( )( ) ( )
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( )
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= + −

=
Γ β α +
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+ −
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



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E X
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x

x
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From (2.23) it follows that

[ ] [ ] [ ]= αβ = αβ =
α

, , S
2

. (2.25)2E X Var X k X

Random variables with the gamma (a, b) distribution also have an important 
reproductive property: the sum of independent gamma variables having the same b parameter 
is also gamma-distributed. This result is readily obtained from an argument based on the 
moment-generating function for a gamma (a, b) random variable X:

∫( ) ( )

( )( )

=   =
β Γ α

=
β Γ α

Γ α β −

= − β −∞ < < β

−α

−α

( )
α

α− − β−∞

α

1

1
( )

1

(1 ) , 1 , (2.26)

1 1
0

(2)

M t E e x e dx

t

t t

X
t X x t

i
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where the integral formula of Problem 2.10(a) was used at step (2). The restriction  
-∞ < t < 1/b guarantees that, as a function of t, the improper integral in the first step is 
convergent.

Assume now that {Xi} is a finite collection of independent gamma-distributed 
random variables, with identical b parameters but possibly different a parameters: 
{(ai, b)}. Independence among the Xi implies that the generating function for the sum 
Y = Si Xi is the product of the component generating functions. Hence,

∏ ∏( ) ( ) ( ) ( )= = − β = − β −∞ < < β−α −Σ α1 1 , 1 .M t M t t t tY X
i i

i

i i i

This is the generating function of a gamma random variable. The uniqueness of the 
generating function thus implies that Y has a gamma (Siai, b) distribution.

There are two important special cases of the gamma distribution worth noting.
(a)  The first instance, for which the exponent parameter a is fixed at a = 1, is the 

familiar exponential distribution,20 with cumulative distribution function

( )
( )

=
−∞ < <

− ≤ < ∞ β >






− β

0 if 0

1 if 0 0 ,
(2.27)F x

x

e xx

and probability density function

( )
( )

=
−∞ < ≤

β < < ∞






− β

0 if 0

1 if 0 .
(2.28)f x

x

e xx

The mean, variance, and skewness for a random variable X with an exponential 
distribution are likewise special cases of the general formulas (2.25):

[ ] [ ] [ ]= β = β =, , 2. (2.29)2E X Var X Sk X

Furthermore,

( ) ( )[ ] [ ]= β − = −− β − β; 1 1 . (2.30)E X x e E X ex x

We have already encountered an example of this distribution type—the claim-size 
random variable of Example 2.2 is exponentially distributed with b = 250. Exponential 
distributions have a number of actuarial applications, but they have limited practical value 
as size-of-loss distributions. With only a single parameter available, the exponential 
family is usually not flexible enough to provide a good fit to an empirical set of sample 
claim data. However, it is possible to adopt the Insurance Services Office (ISO) approach 

20	 The exponential distribution is sometimes known as the Laplace distribution, in honor of French mathematician 
and physicist Pierre-Simon Laplace (1749–1847). Laplace made important contributions to analysis and celestial 
mechanics, as well as to probability. His 1812 treatise, Théorie Analytique des Probabilités, provided an early 
mathematical basis for the subject. In it he wrote “the theory of probabilities is at bottom nothing but common 
sense reduced to calculus. . . .”
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and work with a mixture of exponential distributions. For example, the mixture of two 
such distributions has a three-parameter distribution function of the form

( )
( ) ( )

=
−∞ < <

− ω − − ω ≤ < ∞ β > β > < ω <






− β − β

0 if 0

1 1 if 0 0, 0, 0 1 .
(2.31)

1 2
1 2

F x
x

e e xx x

Bureau actuaries at ISO use mixtures of up to twelve exponential distributions, 
involving as many as 23 parameters, to model claim size in the current ISO increased 
limits factor methodology.21

(b)  Another important special case of the gamma distribution occurs when a =  �‒₂ n  
(n a positive integer) and b = 2. This distribution is known as the chi-square distribution 
with n degrees of freedom and is denoted by c2(n). The probability density function 
is, accordingly,

f x

x

n
x e x

n
n x( ) =

−∞ < ≤

( )
< < ∞




− −

0 0

1
2

0
2 1

2

2 1 2

if

if
Γ

.






( . )2 32

A random variable X with the c2(n) distribution therefore has mean, variance, and 
skewness

[ ] [ ] [ ]= = =, 2 , 2
2

. (2.33)E X n Var X n Sk X
n

The chi-square arises naturally as the distribution of the sum of squares of independent 
standard normal random variables. It figures prominently in the classic goodness-of-fit 
test—the so-called chi-square test, first introduced by British statistician Karl Pearson in 
1900. In such a test the calculated test statistic is distributed under the null hypothesis 
according to a chi-square model.

Because the gamma function and the associated distribution functions are defined 
by integrals with integrands having no elementary antiderivatives, evaluation of these 
functions necessarily involves some type of approximation. Some standard approximations 
are discussed in Appendix A.1.

Example 2.7.    Return now to the grouped sample of 200 claims of Example 2.6. 
We shall attempt to fit a gamma distribution model to these data.

Begin by assuming that these data represent a random sample of claims drawn from 
a population having a gamma distribution with unknown parameters (a, b). To use the 
method-of-moments technique for estimating (a, b), we compute the first and second 
sample moments M1 and M2, based on the midpoint approximation to the average 

21	 For a description of this approach, refer to the “Explanatory Memorandum” section of a current ISO Actuarial 
Service Circular for increased limits data and analysis (Jersey City, NJ: Insurance Services Office, Inc.); refer also 
to Keatinge [11]. For a discussion of mixed probability distributions like that in formula (2.31) as probability-
weighted sums of conditional distributions, refer to Section 3.3.
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claim size in each group: M1 = 1,555 and M2 = 3,036,875 (refer to Problem 2.6). 
Substituting these numbers into formulas (2.25) for the gamma mean and variance and 
then solving for a and b yields the joint method-of-moments estimators:

( )
( )

α =
−

=
−

=

β = − = =

ˆ 1,555
3,036,875 1,555

3.907288,

ˆ 618,850
1,555

397.931.

1
2

2 1
2

2

2

2 1
2

1

M
M M

M M
M

The skewness of the resulting distribution is =2 3.907288 1.0118.
The implied gamma probability density function is graphed in Figure 2.7 with a 

histogram of the sample distribution. Table 2.2 displays the limited expected values 

Figure 2.7.    Histogram with Gamma Density 
Function [Example 2.7]
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Table 2.2.   Tail Probabilities and Limited Severities [Example 2.7]

Size x

Pr {X > x} E [X; x ]

Sample Gamma Sample Gamma

1,000 0.7900 0.7382 895 924

1,500 0.4850 0.4604 1,214 1,223

2,000 0.2500 0.2465 1,398 1,396

2,500 0.1200 0.1186 1,490 1,484

3,000 0.0500 0.0528 1,533 1,525

3,500 0.0150 0.0222 1,549 1,543

4,000 0.0050 0.0089 1,554 1,550

4,500 0.0000 0.0035 1,555 1,553

5,000 0.0000 0.0013 1,555 1,554
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and tail probabilities at the group endpoints and compares the sample statistics to the 
corresponding gamma distribution values.

We test the goodness of fit of this gamma distribution by using the Pearson chi-
square test. To implement this test, define six cells by taking the first five groups in the 
table of Example 2.6 and, to avoid low-frequency cells, combine the remaining four 
groups into a single cell. The resulting seven cell boundaries are {ck} = {0, 1000, 1500, 
2000, 2500, 3000, ∞}, where k = 0, 1, 2, . . . , 6. The observed k th cell frequency is just 
the tabulated sample frequency nk for the k th cell (ck-1, ck]. The expected frequency in 
the k th cell is implied by the selected gamma distribution: fk(â, b̂) = (200)(Fâ,b̂}(ck) - 
Fâ,b̂(ck -1)), where Fâ,b̂(c6) = 1. The chi-square statistic then has the value
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( ) ( ) ( )
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When testing the fit of a distribution based on parameters estimated from a sample, 
c2 has q - r - 1 degrees of freedom, where q = # cells and r = # estimated parameters. In 
this example d.f. = 6 - 2 - 1 = 3, and so the rejection limit at the 5% significance level is 
c2

0.95(3) = 7.815. Because c2 < 7.815, we do not reject the null hypothesis that the fitted 
gamma distribution provides a reasonable description of the population claim size. n

2.4.  Lognormal Distributions
Applications of lognormal distributions are commonly found in a variety of fields—

physics, reliability theory, biology, economics, to name a few. Moreover, they are widely 
used in property/casualty insurance to model claim size. Like their gamma-distributed 
counterparts, lognormal random variables take on only nonnegative values, and the 
distribution is positively skewed. The shape of the lognormal probability density curve 
y = f (x) is typical of many continuous claim-size distributions—the curve rises to a 
maximum value in the short tail of the distribution (that is, the mode occurs at a 
relatively small positive value of x) and then declines asymptotically to y = 0 as x → ∞.

Random variable X has a lognormal distribution with parameters (µ, s) if, and 
only if, log X is normally distributed with mean µ and variance s2. Therefore, the 
lognormal variable X can be expressed as X = esZ+µ, where Z is the standard normal 
random variable. As a consequence, the lognormal cumulative distribution function is

( )( )
( )

=
−∞ < ≤

Φ − µ
σ

< < ∞ −∞ < µ < ∞ σ >




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x

x
x
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Again, log x denotes the natural (base e) logarithm function of x, and F denotes the 
standard normal distribution function:

∫( )Φ =
π

−∞ < < ∞−
−∞

1
2

, .22

z e du zuz

The continuous lognormal variable X has probability density function

( )( )
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σ π
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Keep in mind that parameters (µ, s) represent the mean and standard deviation 
not of X, but that of the normally-distributed variable log X. Although the lognormal 
variable X has finite moments of all orders, it turns out that E [e tX] is infinite for all  
t > 0, so the moment-generating function MX(t) does not exist. Nevertheless, the mth 
moments of X are obtainable from the generating function of the standard normal 
variable Z, that is, from MZ(t ) = exp(�‒₂ t 2). In fact, for m = 1, 2, 3, . . .

[ ] ( ) ( )( )=   = σ = µ + σσ +µ µ exp . (2.36)1
2

2 2E X E e e M m m mm Z m m
Z

The mean, variance, and skewness follow directly:
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To derive a formula for the limited mth moments, begin by evaluating the integral 
Im(x) = ∫ x

0 tm f (t)dt. The change-of-variable substitution v = (log t - µ)/s at step (2) does 
the trick:

i
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Consequently,

i
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As in the case of gamma-related distributions, evaluation of the normal and lognormal 
functions requires some sort of approximation. Microsoft Excel users find the worksheet 
functions lognorm.dist and lognorm.inv useful—refer to Appendix A.1.

Example 2.8.    Returning again to the grouped claim-size data of Example 2.6, we 
now attempt to fit a lognormal distribution model. This time, however, we shall use the 
minimum chi-square technique to estimate the distribution parameters—that is, we set the 
lognormal parameters µ and s equal to the joint values for which the chi-square statistic 
c2(µ, s), as a function of the variable parameters µ and s, achieves a minimum value.

Set up six cells as in Example 2.7, defined by the seven cell boundaries: {ck} =  
{0, 1000, 1500, 2000, 2500, 3000, ∞}, where k = 0, 1, 2, . . . , 6. As usual, the observed 
cell frequency is just the tabulated sample frequency nk for the cell (ck-1, ck]. Expected 
frequencies fk(µ, s) are those derived from the lognormal distribution: fk(µ, s) =  
(200)(Fµ,s(ck) - Fµ,s(ck-1)), in which Fµ,s(x) is the lognormal cumulative distribution 
function (note that Fµ,s(c6) = 1). The chi-square statistic then, as a function of µ and s, is
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To find values that minimize c2(µ, s) by analytic methods would be a daunting 
task, but computer software applications that use iterative algorithms often handle 
such problems with ease. In this example the Microsoft Excel Solver returns (µ̂, ŝ) = 
(7.274670, 0.442525), corresponding to a minimum value of c2(µ̂, ŝ) = 1.828. The 
minimum chi-square estimates have a built-in goodness-of-fit test—because c2(µ̂, ŝ) is 
less than the 5% rejection limit c2

0.95(3) = 7.815, the fitted distribution, as in Example 2.7, 
is a reasonable model of the data.

The graph of the fitted probability density function is shown in Figure 2.8 along 
with the histogram of the observed empirical distribution. The sample and fitted 
lognormal limited expected values and tail probabilities at the group interval endpoints 
are displayed in Table 2.3.

It is instructive to compare the present lognormal model with the gamma model of 
Example 2.7. The two distributions have similar severities—1,555 for the gamma model 
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and 1,592 for the lognormal—but the lognormal has the larger standard deviation and 
skewness: SD = 2,369.675 and Sk = 1.4959, compared to 786.670 and 1.0118, respectively, 
for the gamma. Appropriately, on the interval 0 < x < 3,500 the two distributions are similar, 
but beyond x = 3,500 the lognormal model consistently has the larger tail probability. n

2.5.  Pareto Distributions
Pareto distributions bear the name of the eponymous Italian sociologist and 

economist Vilfredo Pareto (1843–1923), who first proposed using them in an 1896 
textbook.22 The distribution has long been attractive to property/casualty actuaries. 

22	 In his Cours d’Économie Politique (Paris, 1896–97), based on lectures in economics given at Switzerland’s University 
of Lausanne, Pareto introduced what has become known as Pareto’s Law of Income Distribution. The law asserts 
that within a given population the proportion of individuals with incomes larger than x is modeled by a function 
of the general form C/x a.

Figure 2.8.    Histogram with Lognormal Density 
Function [Example 2.8]
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Table 2.3.   Tail Probabilities and Limited Severities [Example 2.8]

Size x

Pr {X > x} E [X; x ]

Sample Lognormal Sample Lognormal

1,000 0.7900 0.7965 895 958

1,500 0.4850 0.4653 1,214 1,273

2,000 0.2500 0.2305 1,398 1,441

2,500 0.1200 0.1072 1,490 1,522

3,000 0.0500 0.0491 1,533 1,559

3,500 0.0150 0.0227 1,549 1,576

4,000 0.0050 0.0106 1,554 1,584

4,500 0.0000 0.0051 1,555 1,588

5,000 0.0000 0.0025 1,555 1,590
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The computationally simple form of the distribution function—requiring only 
algebraic calculations and no limit processes—and the typically heavy long tail have 
made the Pareto family the distributional family of choice to model claim size in a 
variety of actuarial applications.

The classical Pareto distribution applies only to random variables with values larger 
than a fixed positive number g. Such variables have a continuous cumulative distribution 
function of the form
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Unlike the gamma- and lognormally-distributed random variables, which have 
moments of all orders, there exist for a Pareto random variable X only a finite number 
of moments. The existence of the mth moment depends on the size of parameter a. In 
particular, the following improper integral converges—and E [X m] exists—whenever 
m < a:
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For example, the mean E [X ] exists if a > 1, but a > 2 is required for the variance also 
to exist:
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On the other hand, limited moments exist for all values of parameter a. For 
example, the limited severity function is
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For computational convenience the classical Pareto distribution is sometimes 
transformed into the so-called “single-parameter” Pareto distribution. If random variable 
X has the distribution function (2.40), then dividing each claim by g yields the rescaled 
variable Y = X/g. This transform standardizes the minimum claim size at 1 and reduces 
the set of parameters from {a, g } to {a}.23 The distribution function of the transformed 
variable is then

{ } { } ( )( ) = γ ≤ = ≤ γ = γ =
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Pr Pr
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Not surprisingly, the distribution function of Y is a special case of (2.40), for which 
parameter g = 1.

As a claim-size distribution the classical Pareto distribution models only those 
claims in excess of a specified positive amount—a disadvantage in some applications. 
The most widely used form of the Pareto distribution gets around this restriction by 
shifting the minimum claim size to 0, as described below.

Suppose that random variable Y has the single-parameter distribution function 
(2.45). Applied to Y, the linear transformation L(Y ) = b(Y - 1) = X, for which b > 0, 
first shifts the lower limit to 0 and then scales the claim size by the constant multiplier b. 
Consequently, FX(x) satisfies for all x
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The resulting random variable X is said to have the shifted Pareto distribution,24 with 
distribution functions
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1

23	 The distribution of Y is a single-parameter distribution only in the sense that function FY in (2.45) formally 
depends on just the single parameter a. Parameter g is still present, however, in the preliminary scaling of random 
variable X.

24	 When it is unnecessary to maintain the distinction between the classical Pareto distribution function (2.40) and 
its shifted counterpart, most actuaries refer to (2.46) simply as the Pareto distribution function.
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To obtain the mth moments (m = 1, 2, 3, . . .) we first evaluate the integral  
Im(x) = ∫ x

0 um f (u) du by applying the change-of-variable substitution u = b/v - b:
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The integral in the right member of equation (2.49) is the special beta function B(a - m, 
m + 1). After applying a well known relation linking the beta and gamma functions,
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Formula (2.50) yields
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To develop now a formula for the limited mth moments, start again with the 
integral Im (x) in equation (2.48). The binomial formula is applied at the second 
step in the following sequence, and the integration in the final step requires that  
a ≠ 1, 2, . . . , m:
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Therefore, for a ≠ 1, 2, . . . , m
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In particular,

[ ] [ ]

[ ] ( )

( ) ( ) ( )

= β
α −

− β
+ β















 α ≠

= − α β
+ β







+ β
α −

−
β + β
α −

+ β −
α







α ≠

α−

α

;
1

1 1 ,

;
2

2
1

1,2 .

(2.54)

1

2 2
2 2 2

E X x
x

E X x E X
x

x x x

The limited severity in the case that a = 1 is requested in Problem 2.21.

Example 2.9.    The table displays the observations 
from a random sample of 200 claims drawn from a 
population with an unknown claim-size distribution, 
grouped by size into ten groups. Note that in this case 
the right-most group interval is a semi-infinite interval: 
10,000 < x < ∞.

In this example we fit a shifted Pareto (a, b) 
distribution to these data by minimizing, as a function 
of a and b, the “distance” between the sample 
limited expected values and the corresponding Pareto 
statistics at the finite endpoints of the sample groups: 
ck = 1000 k, where k = 0, 2, 3, . . . , 10. That is, the 
desired least-squares estimators (â, b̂) are parameter 
values that minimize the quasi-distance function
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In this equation variable X has a shifted Pareto (a, b) distribution and X̂ has the 
discrete sample distribution. The components of D(a, b) are thus defined by
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Size Group # Claims

0–2,000 56

2,001–3,000 22

3,001–4,000 18

4,001–5,000 16

5,001–6,000 14

6,001–7,000 12

7,001–8,000 10

8,001–9,000 8

9,001–10,000 7

>10,000 37

Total 200
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where nk = # claims in the k th group (ck-1, ck], n11 = 37, and n = 200. The average 
claim size for each finite group interval has been set to the interval midpoint in the 
formula for En[X̂ ; ci]. Solving iteratively yields â = 6.000000 and b̂ = 34,355.3719.25 
Figure 2.9 compares the graph of the implied Pareto density function to the 
histogram of the observed sample distribution.

Using the ten distribution groups as cells, we apply the chi-square test and obtain 
c2 = 1.793. Since d.f. = 10 - 2 - 1 = 7, the rejection limit is c2

0.95(7) = 14.067. The 
fitted Pareto distribution is therefore, at the 5% level of significance, a reasonable fit 
to these claim data. Table 2.4 compares the sample and Pareto limited expected values 
and tail probabilities. n

2.6.  Estimation with Modified Data
The fact that most available insurance claim-size data are modified by such common 

policy conditions as limits and deductibles presents additional challenges to the problem 
of fitting a distributional model to the unknown underlying unmodified, unlimited 
claim-size distribution for a portfolio of policies. In this section we consider some 
possible techniques for parameter estimation under such conditions. Generally speaking, 
one must either adjust the data to remove the effects of the policy modifications or 
modify the parametric distribution formulas to model the data modifications—or use 
a combination of both approaches. We begin in Example 2.10 with a set of policy 
data censored by a policy limit and then in Example 2.11 take up the problem of data 
both censored by a policy limit and truncated by a deductible.

Example 2.10.    A sample contains n = 1,500 claims from a large portfolio of 
policies, each with a policy limit of $300,000. These claim data are summarized in 
Table 2.5. For a sequence of selected claim sizes x the number and total amount for 

25	 The indicated solution was obtained by using the Solver utility in Microsoft Excel. To facilitate the iterative 
process, parameter a was arbitrarily fixed at â = 6 and the corresponding b̂ obtained iteratively.

Figure 2.9.    Histogram with Pareto Density Function 
[Example 2.9]
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claims less than or equal x have been tabulated. Moreover, there are 23 claims with 
the policy-limit value of 300,000. We wish to use these censored data to find an 
unlimited lognormal distribution for the unmodified claim population underlying 
this portfolio. Such a distribution will be useful in creating a set of increased limit 
factors for pricing policy limits greater than 300,000 (this topic is discussed in detail 
in Chapter 6). As in Example 2.9, we shall use the method of minimum-distance 
estimation to obtain the desired parameters.

Note that for all claim sizes x, x ≤ 300,000, sample limited expected values can be 
calculated accurately from the summarized sample data—for example, at x = 5,000 
we have

( )( )  =
− −

=ˆ ;5,000
1,102,272 5,000 1,500 1,096

1,500
2,082.E Xn

Table 2.4.   Tail Probabilities and Limited Severities [Example 2.9]

Size x

Pr{X > x} E [X; x ]

Sample Pareto Sample Pareto

2,000 0.7200 0.7121 1,720 1,693

3,000 0.6100 0.6051 2,385 2,350

4,000 0.5200 0.5164 2,950 2,910

5,000 0.4400 0.4425 3,430 3,388

6,000 0.3700 0.3807 3,835 3,799

7,000 0.3100 0.3287 4,175 4,153

8,000 0.2600 0.2848 4,460 4,459

9,000 0.2200 0.2476 4,700 4,724

10,000 0.1850 0.2159 4,903 4,956

Table 2.5.    Censored Data and Limited Severities [Example 2.10]

Size x # Claims ≤ x S Claims ≤ x En[X̂; x] Eµ,s[X; x]

1,000 729 225,138 664 648

5,000 1,096 1,102,272 2,082 2,091

10,000 1,208 1,918,947 3,226 3,239

25,000 1,326 3,752,091 5,401 5,410

50,000 1,391 6,007,543 7,638 7,580

100,000 1,440 9,234,739 10,156 10,168

200,000 1,468 13,100,561 13,000 13,069

300,000 1,500 22,343,455 14,896 14,850
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(However, the same cannot be said for any x > 300,000.) The lognormal limited mean 
Eµ,s[X ; x] is obtained from formula (2.39) with m = 1:

i i( )[ ] = µ + σ Φ − µ − σ
σ







+ Φ − + µ
σ





µ σ ; exp

log log
.,

1
2

2
2

E X x
x

x
x

Minimizing the quasi-distance function

∑ [ ]( )µ σ = −  µ σ, ; ˆ;,
2

D E X x E X xn
x

over all parameter values yields (µ̂, ŝ) = (6.9852,2.5850), and the resulting limited 
expected values are displayed in the fifth column of Table 2.5.

As usual with grouped claim data, we can easily apply the chi-square statistic to the 
nine cells defined by the sequence of claim sizes in Table 2.5:

{ }∞0,1 , 5 ,10 , 25 , 50 ,100 , 200 , 300 , .K K K K K K K K

We set the observed frequency of the last cell (300K, ∞) to be 23, the number of 
limit claims. The chi-square statistic c2 = 2.763 is less than the 5% rejection limit for  
d.f. = 6, c2

0.95(6) = 12.6, so we conclude that the lognormal with fitted parameters 
(µ̂, ŝ) is an acceptable distribution for the underlying claim population for this 
portfolio. n

The policy condition known as a straight deductible eliminates all claims less 
than or equal to the deductible amount d, where d > 0, and it reduces the size of larger 
claims by d. (Section 6.5 contains a more extended discussion of deductible concepts.) 
Thus, a claim sample generated by a portfolio of policies with a straight deductible 
would be missing all original claims of size d or less and sizes of the remaining claims 
would be reduced by the amount d. A sample or random variable with this property 
is said to be truncated below by d and shifted by d. The next example illustrates how 
an unlimited parametric distribution model could be fitted to an underlying claim 
population, given only a sample of truncated and shifted claim-size data.

Example 2.11.    A sample contains 770 claims from a portfolio of identical 
policies, each with a policy limit of $200,000 and a straight deductible of $1,000. 
Thus, the sample data have been censored above at 200,000 and then truncated below 
by 1,000 and shifted by the same amount. Adding back the 1,000 deductible amount 
to each claim in the sample removes the shift effect of the deductible, resulting in an 
adjusted sample of claim sizes censored above by 200,000 and truncated below by 
1,000. These adjusted claim sizes have been sorted into 12 groups, with the observed 
group frequencies displayed in Table 2.6. Thirty-one claims valued at the policy limit 
were placed in the last group (200K, ∞).

To fit a lognormal distribution to the underlying unmodified claim population, we 
shall use the minimum chi-square method of parameter estimation.
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Note that if X is a non-truncated random variable, then X truncated below by 
1,000 is defined only for 1,000 < X < ∞ by

= .1000X X

Thus, the expected frequency of cell (ck -1, ck] (k = 1, 2, . . . 12) in terms of the cumulative 
distribution function Fµ,s(x) of an unmodified, unlimited lognormal distribution is

( )( ) ( )( ) ( ) ( )φ µ σ =
−

−
µ σ µ σ

µ σ
, 770

1 1,000
., , -1

,

F c F c
Fk
k k

Minimizing the chi-square statistic

∑ ( )( ) ( )
( )χ µ σ =

− φ µ σ
φ µ σ=

,
,

,
2

2

1

12 nk k

kk

over all µ and s yields the estimated parameters (µ̂, ̂s) = (6.6916, 2.6965). Corresponding 
expected cell frequencies are shown in the third column of Table 2.6.

The minimum chi-square statistic c2(µ̂, ŝ) = 4.691 is less than the 5% rejection 
limit c2

0.95(8) = 15.5, so we can conclude that the fitted lognormal distribution is an 
acceptable description of the underlying unlimited claim-size distribution. n

Other examples of parameter estimation based on modified data can be found in 
Problems 2.39 and 2.43. In addition, we shall return to the important concept of truncated 

Table 2.6.   Truncated and Censored Data [Example 2.11]

Size Group Obs # Claims Exp # Claims

0–1K 0 0

1K–5K 367 360

5K–10K 112 122

10K–25K 118 121

25K–50K 65 63

50K–75K 36 27

75K–100K 13 16

100K–125K 10 10

125K–150K 8 7

150K–175K 6 5

175K–200K 4 4

>200K 31 34

Total 770 770



64	 Casualty Actuarial Society

Distributions for Actuaries

random variables and data in Sections 5.1 and 6.5, as well as in Problems 2.41 and 2.42. 
For a slightly different approach to the estimation problem addressed in Example 2.11, 
refer to Example 5.3 and Problem 5.23.

2.7. Transformations
With claim-size random variables, as with random variables in general, one can create 

new variables by transforming existing ones. This is often done in order to create claim-
size models with predetermined properties or with properties somewhat different from, 
but related to, those of a known variable. In this section we shall focus on those functions 
that transform one continuous claim-size random variable into another.

Assume that T is a strictly increasing—and hence invertible—continuous and 
differentiable function that maps a set of nonnegative real numbers into itself. If X is 
a continuous claim-size variable, then Y = T (X ) is also a continuous random variable 
with nonnegative values. As such, Y is also a possible random variable for the size of 
insurance claims. Because T is an increasing function, distribution functions for X and 
Y are related by

{ } ( ){ }( )( ) ( ) ( )= ≤ = ≤ = < < ∞− −Pr Pr , 0 . (2.55)1 1F y T X y X T y F T y yY X

Moreover, if FX is differentiable at x = T -1(y), then

( ) ( )( ) ( ) ( ) ( ) ( )= = =− − − . (2.56)1 1 1f y
d
dy

F y
d
dy

F T y f T y
d
dy

T yY Y X X

The simplest such function is the linear transformation L(X ) = aX + b, where a 
and b are real constants and a > 0. For a continuous variable X and Y = L(X ) = aX + b, 
distribution functions (2.55) and (2.56) become, respectively,

( ) ( )= −



 = −



 < < ∞and

1
, 0 . (2.57)F y F

y b
a

f y
a

f
y b

a
yY X Y X

Linear transformations appear in a variety of probability settings, where they are used 
to translate the values of a random variable, up or down by a fixed amount, or to rescale 
the values by applying a constant multiplier. For example, we previously observed in 
Section 2.5 that the linear transformation L(Y ) = b(Y - 1) = X creates a shifted Pareto 
random variable X from the classical single-parameter Pareto variable Y. In addition, 
we encountered in Section 2.4 the transformation T(Z ) = esZ+µ = X, transforming the 
standard normal variable Z first by the linear function sZ + µ and then by the exponential 
function, to define X as a lognormal claim-size random variable.

With regard to distribution characteristics, it is well known that L(X ) = aX + b 
transforms the mean of the random variable when either a ≠ 1 or b > 0—specifically, 
E [L(X )] = L(E [X ]) = aE [X ] + b. It also transforms the variance whenever a ≠ 1: 
Var [L(X )] = a2 Var [X ]. However, when a > 0 the skewness of a distribution remains 
unchanged under such a linear transform: Sk[L(X )] = Sk[X ]. Proof of this invariance 
property is requested in Problem 2.26.
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In some cases the linear transformation L(X ) does not change the parametric family 
of the initial distribution of variable X, but only alters the parameters within the family. 
For example, consider

( ) = >, 0. (2.58)L X c X cc

If random variable X has a gamma (a, b) distribution, then the transformed variable 
Y = Lc(X ) has the cumulative distribution function

( )( )
( )

( ) =

−∞ < <

Γ β α
Γ α

≤ < ∞









0 if 0

,
if 0 .

(2.59)F y

x

y c
x

Y

Consequently, Y is also gamma-distributed, but with parameters (a, cb). A similar 
outcome is obtained when transformation (2.58) is applied to a random variable with one 
of several other common parametric distributions. The results of applying Lc to X with the 
normal, exponential, lognormal, and Pareto distributions—as well as with the Weibull 
and Burr distributions defined in Examples 2.12 and 2.14—are shown in Table 2.7.

Another class of transformations important to the study of claim-size random 
variables are those functions having the form

( ) ( )= > δ >δ 0, 0 (2.60)1T X c X c

Such a transformation can be employed to produce a variable T(X) with distributional 
tail characteristics differing from those of X, as illustrated in Examples 2.12 and 2.13. 
Parameter d serves to alter the thickness of the long tail of the distribution. In general, 
the distribution of T(X) has a heavier long tail than that of X whenever 0 < d < 1. On 
the other hand, if d > 1, then X has the heavier-tailed distribution.

Example 2.12.    Consider the random variable X, defined by

( )( )= = β β > δ >( )δ− δ δ 0, 01 1X T Y Y

Table 2.7.    Effect of Lc(X) on Distribution Parameters

Distribution Family X Parameters Lc(X) Parameters

Normal µ, s cµ, cs

Gamma a, b a, cb

Exponential b cb

Lognormal µ, s µ + logc, s

Shifted Pareto a, b a, cb

Weibull b, d cb, d

Burr a, b, d a, c db, d
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in which transformation T is a special case of (2.60). If Y has an exponential (b) 
distribution, then formula (2.55) yields for the transformed variable X the cumulative 
distribution function

( )( )
( ) ( )

=
−∞ < <

− − β ≤ < ∞ β > δ >






δ

0 if 0

1 exp if 0 0, 0 .
(2.61)F x

x

x x
X

Here X is said to have a Weibull distribution, after Swedish engineer E.H.W. Weibull 
(1887–1979). In a 1939 paper Weibull proposed the distribution as a model for the 
random failure time of various parts of mechanical systems, for which F(t) = Pr{ failure 
time ≤ t }. A later paper [22], published by Weibull in 1951, served to promote the 
distribution in the U.S.

The Weibull distribution is known for its exceptional ability to fit a wide variety 
of data, and it is widely employed in reliability engineering and failure analysis. Of 
course, when d = 1 the distribution reduces to the special case of an exponential 
distribution. Otherwise—especially when 0 < d < 1—it is useful in modeling size-of-
loss distributions.

Formulas for the moments of the Weibull distribution are obtained from the 
integral Im(x) = ∫

x
0 um f (u) du, where the p.d.f. is f (x) = (d/bd) xd-1 e-(x/b)d:

∫ ∫( ) ( )( ) ( )( ) = δ
β

− β = β = β Γ β + δ
( ) ( )

δ
+δ− δ δ −

β δ
δ

exp ,1 ,1

0

2

0
I x u u du v e dv x mm

m
x m m v

x m

for m = 1, 2, 3, . . . . Note that the change-of-variable substitution v = (u/b)d was used 
at step (2). Therefore, the Weibull mth moments are

∫[ ] ( ) ( )= = β = β Γ + δ
→∞

δ −∞lim 1 , (2.62)0E X I x v e dv mm

x
m

m m v m

i
( )

[ ]

[ ]

( )( )

( )
( )

( )= + −

=
Γ β + δ

Γ + δ
+ ( )

δ
− β δ

; 1

,1

1
. (2.63)

E X x I x x F x

E X
x m

m
x e

m
m

m

m m x

Again, because the Weibull distribution functions and moments are expressed in 
terms of the gamma function, evaluation necessarily involves the use of approximation 
techniques. n

The next example, using a set of related Weibull variables, illustrates how the size of 
parameter d in (2.61) affects the distribution of probability in the long tail of a claim-
size distribution.

Example 2.13.    Consider three related Weibull random variables: X1 has parameters 
(b1, d1) = (220.653, 0.80), X2 has parameters (b2, d2) = (250, 1.00), and (b3, d3) = 
(265.774, 1.20) are parameters for X3. The means of X1, X2, and X3 are therefore identical:
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( ) ( )

( ) ( )

( ) ( )[ ]

[ ]

[ ]

= Γ + =

= Γ =

= Γ + =

220.653 1 1 0.80 250,

250 2 250,

265.774 1 1 1.20 250.

1

2

3

E X

E X

E X

Tail probabilities for these variables are compared in Table 2.8, clearly indicating the 
effect of parameter d on the thickness of the long tail. n

Example 2.14.    As another application of transformation (2.60) consider now 
the random variable X defined by X = T (Y ) = Y 1/d, where Y has the shifted Pareto 
(a, b) distribution:

( )
( ) =

−∞ < <

− β
+ β





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≤ < ∞ α > β > δ >







 δ

α

0 if 0

1 if 0 0, 0, 0 ,
(2.64)F x

x

x
x
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αβ δ
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
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α δ−

δ α+
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(2.65)1

1

f x
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x
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Such a transformed distribution is called the Burr distribution, after the Purdue 
University statistician Irving Wingate Burr, who first proposed its use. Clearly, the 
Burr distribution is a generalization of the shifted Pareto, to which it reduces when  
d = 1. Burr made numerous contributions to reliability theory, statistical quality control, 
and distribution theory. He introduced the distribution in 1942 as one suitable for 
modeling failure times in reliability engineering. n

Table 2.8.   Weibull Tail Probabilities [Example 2.13]

Size x

Pr{X1 > x}
d1 = 0.80

b1 = 220.653

Pr{X2 > x}
d2 = 1.00

b2 = 250.000

Pr{X3 > x}
d3 = 1.20

b3 = 265.774

200 0.3968 0.4493 0.4912

300 0.2784 0.3012 0.3146

400 0.2000 0.2019 0.1953

500 0.1460 0.1353 0.1183

600 0.1079 0.0907 0.0702

700 0.0806 0.0608 0.0409

800 0.0607 0.0408 0.0235

900 0.0460 0.0273 0.0133

1,000 0.0351 0.0183 0.0074



68	 Casualty Actuarial Society

Distributions for Actuaries

2.8.  Inflation Effects
When the claim process to be modeled is subject to some type of inflationary pressure 

applied over time, one must account for this in a probability model for the size of claims. 
Such time-dependent forces can arise from a variety of sources. Monetary inflation results 
from the changing, usually declining, value of the underlying currency. Social or judicial 
inflation occurs when changes take place in the societal or legal environment—changes 
that often affect the size of insurance claims. In contrast to monetary inflation, which 
usually gives rise to increasing claim size, social and judicial inflation could possibly 
result in a decrease as well as an increase in the size of claims. Of course, these types 
of inflationary pressure can also affect the frequency of claims, the subject addressed 
in Chapter 3.

Often a claim-size distribution, whether an empirical distribution based on a 
population of actual claims or a continuous parametric model as discussed in this 
chapter, must be adjusted for inflationary trend to account for past changes or to 
model change projected for the future. The simplest approach is to assume that all 
claims in the population are impacted in the same way by inflation, as is clearly the 
case with monetary inflation. Accordingly, we shall first study the concept of uniform 
trend and then take up one approach to the concept of variable trend.

Suppose that claim-size random variable X is subject to a uniform inflationary 
trend over a period of time. This means that every claim, large and small, changes 
by the same percentage during the time period. That is, X is transformed into a new 
random variable Y = T (X ) = tX, where t = 1 + r is the trend factor and r is the 
inflation rate for the period.

For example, assume that claim size is increasing at the uniform rate of 5% per 
annum. Then the constant trend factor for a single year is t1 = 1.05, whereas for a 
three-year period the factor is t3 = (1.05)3 = 1.1576.

Transformation T(X ) = tX is a linear transformation of the form (2.58), and so 
the cumulative distribution function of the transformed variable Y is a special case of 
formula (2.57):

( )( ) = τ < < ∞, 0 . (2.66)F y F y yY X

For example, if X has a lognormal (µ, s) distribution, then

( )( ) =

−∞ < ≤

Φ − τ − µ
σ

< < ∞







0 if 0

log log
if 0 .

F y

y

y
y

Y

As shown previously in Table 2.7, Y also has a lognormal distribution, but with 
parameters (µ + log t, s).

When a uniform trend factor is applied to a censored random variable the 
nonlinearity of the limited expected value E [X; x ] with respect to the random variable X 
serves to modify the effect of inflation on the average censored claim size. For example, 
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consider a claim-size random variable X subject to the fixed positive upper limit l. The 
average claim size before trending is E [X; l ], and the severity after applying t = 1 + r 
is given by equation (2.14):

[ ] [ ]τ = τ τ; ; . (2.67)E X l E X l

If r̃  denotes the effective rate of change on the censored variable, then

� [ ][ ]
[ ] [ ]( ) ( )+ =
τ

= +
+

1
;

;
1

; 1
;

. (2.68)r
E X l
E X l

r
E X l r

E X l

E [X; x] is a nondecreasing function of x, so it follows that

� ≤ . (2.69)r r

This overall reduction in the effect of inflation on claim size is due to the fact that 
all censored claims—those larger than l—are unchanged by the force of inflation. For 
example, if x > l and r > 0 then x and (1 + r)x are each replaced by l in the calculation 
of E [X; l ] and E [t X; l ].

However, if limit l is subjected to the same trend factor as the claim size—so that 
after trending the severity is E [t X; tl ]—then this leveraging effect of the upper limit 
disappears. Proof of this assertion is requested in Problem 2.32.

Example 2.15.    Random variable X has a shifted Pareto distribution with (a, b) 
= (2; 3,000). The average claim size subject to a policy limit of $8,000 is

[ ] = −
+







=; 8,000 (3,000) 1
3,000

8,000 3,000
2,182.E X

Application of a uniform 10% trend to X yields the limited severity

[ ] [ ]( ) ( )= = −
+





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=1.1 ; 8,000 1.1 ; 8,000 1.1 3,300 1
3,000

8,000 1.1 3,000
2,336.E X E X

Consequently, the effective inflation rate for the limited variable is less than the nominal 
10% rate: r̃  = 2,336/2,182 - 1 = 7.1%.

If, on the other hand, X is subjected to a negative annual trend of -5% so that  
t = 0.95, then

[ ] [ ]( )= =0.95 ; 8,000 0.95 ; 8,000 0.95 2,101.E X E X

In this case,

� = − = −2,101
2,182

1 3.7%.r n
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The assumption of a uniform trend—claims of all sizes are subject to the same rate 
of change—is not always satisfied in practice. Empirical evidence sometimes suggests 
that the trend factor should in some way be an increasing function of the claim-size 
variable X. In a study of non-uniform trend models Sheldon Rosenberg and Aaron 
Halpert proposed an annual trend factor of the form

( ) ( )τ = > >0, 0 . (2.70)26x a x a bb

Note that factor (2.70) reduces to the uniform case when b = 0; otherwise t(x) is an 
increasing function of x.

The trended random variable Y is therefore

i( )= τ = + . (2.71)1Y X X a X b

When X has a lognormal (µ, s) distribution the distribution function of the 
trended variable Y is

( )( ) ( )
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This implies that Y is also lognormally distributed, with parameters

� � ( )( ) ( )( )µ σ = + µ + + σ, 1 log , 1 .b a b

However, X and Y in (2.71) do not always belong to the same distribution family. If 
X has a shifted Pareto (a, b) distribution, for example, then Y has distribution function

( )
( ) = − β

+ β
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which defines a Burr distribution with parameters

� � � ( )( ) ( )α β δ = α β +( )+, , , ,1 1 .1 1a bb

Example 2.16.    Random variable X has a lognormal distribution with parameters 
(µ, s) = (7.2, 0.476) and thus has mean

( )( )[ ] = + =exp 7.2 0.476 1,500.1
2

2
E X

Applying the variable trend factor t(x) = 0.96x0.0183 yields a new lognormal variable 
Xt = t(X ) z X = 0.96X1.0183 with mean

[ ] ( )( ) ( ) ( )= + + =τ ( )exp 1.0183 7.2 log0.96 1.0183 0.476 1,650.1
2

2 2E X

26	 Rosenberg and Halpert [20], p. 466.
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Trending has increased the overall unlimited mean of the distribution by 10%: E [Xt]/
E [X ] = 1,650/1,500 = 1.10. Table 2.9 displays values of the variable trend factor t for 
several claim sizes. n

2.9.  Problems
2.1	� A continuous claim-size random variable X takes on values larger than or equal 

to 1,000 and has the Pareto cumulative distribution function

( )
( ) =

−∞ < <

− ≤ < ∞






F x

x

x x
X

0 if 1,000

1 1,000 if 1,000 .3

Evaluate:
(a)	 E [X ].	 (b )	 Var [X ].
(c)	 Pr{X > 2,000}.	 (d )	 E [X; 2,000].

2.2	 Claim-size random variable Y has the cumulative distribution function

( )
( )

( )
=

−∞ < <

− ≤ < ∞







0 if 500

1 0.75 500 if 500 .2
F y

y

y y
Y

Evaluate:
(a)	 E [Y ].	 (b )	 Var [Y ].
(c)	 Pr{Y = 500}.	 (d )	 E [Y; 1,000].

2.3	 Derive the limited severity function for random variable Y with the mixed 
distribution of Example 2.3.

Table 2.9.   Variable Trend Factor 
[Example 2.16]

Claim Size x t(x) = 0.96x0.0183

    100 1.0444

    500 1.0756

    750 1.0836

1,000 1.0894

1,500 1.0975

1,650 1.1000

2,000 1.1033

3,000 1.1115

4,000 1.1173

5,000 1.1219
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2.4	 The table displays the grouped claim sample data of Example 2.6, but with the 
total claim amount in each group now included. Calculate the mean of the 
sample distribution, as well as the limited severities at the endpoints of each 
group interval. Compare these results to those obtained in Example 2.6 and 
explain the observed differences.

Size Group # Claims
Total Claim 

Amount

0–1,000 42 20,370

1,001–1,500 61 74,725

1,501–2,000 47 82,250

2,001–2,500 26 57,200

2,501–3,000 14 37,800

3,001–3,500 7 22,400

3,501–4,000 2 7,200

4,001–4,500 1 4,400

4,501–5,000 0 0

Total 200 306,345

2.5	 Demonstrate that the midpoint approximation to ak in formula (2.7) is consistent 
with the assumption, but does not necessarily imply, that claims are distributed 
uniformly on each group interval of finite width.

2.6	 Using the notation of formula (2.7) for grouped sample data and the midpoint 
approximation ( )≈ +−

1
2 1a c ck k k , develop formulas for approximating the sample 

moments M1 and M2.

2.7	 Verify that for every claim-size random variable X, E [X; x] exists as a finite 
number. Cite an example for which E [X; x] < E [X ] = ∞.

2.8	 Show that for a discrete claim-size variable X, E [X; x] is a piecewise linear 
function on the interval 0 ≤ x < ∞.

2.9	 Assume that X is a continuous claim-size random variable with a density function 
f (x) = F ′(x) continuous on the interval 0 < x < ∞.
(a)	 Show that function E [X; x] is differentiable on 0 < x < ∞.
(b)	� Prove that the limited severity function for X can be expressed as E [X; x] = 

∫
x

0(1 - F(u)) du.
(c)	� Use the second derivative test from elementary calculus to verify that 

function E [X; x] is concave.

2.10	 Show that the gamma function G(x) defined by equation (2.16) can also be 
expressed by each of these integral formulas.
(a)	 G(x) = cx ∫

∞
0 ux -1 e-cu du, c > 0.

(b)	 G(x) = 2∫
∞
0 u2x -1 e-u2 du.	 (c)  G(x) = ∫

1
0 (log(1/u))x -1 du.



Casualty Actuarial Society	 73

Distributions for Actuaries

2.11	 Prove these properties of the gamma function G(x).
(a)	 Equation (2.17).	 (b )	 Equation (2.18).
(c)	 Equation (2.19).	 (d )	 Equation (2.20).

2.12	 Derive these values of G(x).
(a)	 ( )Γ = π.1

2 	

(b)	
i i( ) ( )Γ + =

−
π =

1 3 5 . . . 2 1
2

, 1, 2, 3, . . . .1
2n

n
nn

2.13	 Random variable X has a gamma (a, b) distribution for which =E X Var X[ ] [ ]. 
What can be said about a and b?

2.14	 Assume that X has an exponential distribution. For a > 0 and b > 0 calculate 
Pr{X > a + bX > a}. Interpret the result.

2.15	 Assume that X has the mixed exponential distribution with cumulative distribution 
function (2.31). Calculate:
(a)	 E [X ].	 (b)  Var [X ].	 (c)  E [X; x ].

2.16	 Use the minimum chi-square method to estimate the gamma parameters of 
Example 2.7. Compare the mean and variance of the resulting gamma distribution 
with the sample statistics. Which of the two gamma distributions, that obtained 
by the method-of-moments or that obtained by the minimum chi-square method, 
provides a better fit to the data?

2.17	 In a certain claim population the claim-size random variable X is distributed 
lognormally with (µ, s) = (6.3210, 1.6000). Calculate:
(a)	 E [X ].	 (b)	 Median[X ].27	 (c)  Var [X ].
(d )	Pr{X > 3,000}.	 (e )	 Pr{1,000 < X < 3,000}.
( f )	E [X; 3,000].	 (g )	 E [XX > 3,000].

2.18	 (a)	 �Calculate the mean and variance of the minimum chi-square fitted distribution 
of Example 2.8 and compare with the sample statistics.

(b)	 �Calculate the method-of-moments estimators of parameters µ and s for 
fitting a lognormal distribution model to the data of Example 2.6. Compare 
the result with that obtained in Example 2.8.

(c)	 �Which of the parameter estimates—the method-of-moments or the minimum 
chi-square—is likely to provide the better fit in Example 2.8?

2.19	 A claim-size variable X has a shifted Pareto distribution with parameters (a, b) 
= (3; 4,000). Calculate:
(a)	 E [X ].	 (b)	 Median [X ].	 (c)  Var [X ].
(d )	 Pr{X > 3,000}.	 (e )	 Pr{1,000 < X < 3,000}.
( f )  E [X ; 3,000].	 (g )	 E [XX > 3,000].

27	 Recall that m is the median of a continuous distribution for random variable X provided that FX(m) = 0.50.
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2.20	 Show that if Var [X ] exists for a shifted Pareto (a, b) random variable X, then 
Var [X ] > (E [X ])2.

2.21	 Derive a formula for E [X; x] when X has the shifted Pareto (a, b) distribution 
for which a = 1.

2.22	 Claim-size variable X is defined on a population from which a random 
sample 〈X1, X2, . . . , Xn〉 is drawn. Let 〈xi〉 be a set of observations for such a 
sample. Verify the following method-of-moments estimators for the indicated 
distribution parameters, where M1 and M2 are the first two sample moments.
(a)	 Estimator of the gamma parameter b when a is known: b̂ = M1/a.
(b)	 Joint estimators of the lognormal (µ, s) parameters: 

( ) ( )µ = σ =ˆ log and ˆ log .1
2

2 2 1
2M M M M

(c)	� Estimator of the lognormal parameter µ when parameter s is known:  
µ̂ = log (M1) − σ .1

2
2

(d )	 Joint estimators of the shifted Pareto (a, b) parameters:

( )α =
−

−
β =

−
ˆ 2

2
and ˆ

2
.2 1

2

2 1
2

1 2

2 1
2

M M
M M

M M
M M

2.23	 Verify the following maximum-likelihood estimators for the indicated distribution 
parameters.
(a)	 Estimator of the gamma parameter b when a is known: b̂ = M1/a.
(b)	 Joint estimators of the lognormal (µ, s) parameters:

∑ ∑ ( )µ = σ = − µ
=

=
ˆ 1

log and ˆ 1
log ˆ .

1

2
1n

x
n

xi
i

n

ii
n

(c)	 Estimator of the lognormal parameter s when µ is known:

∑ ( )σ = − µ=
ˆ 1

log .2
1n

xii
n

(d )	 Estimator of the shifted Pareto parameter a when b is known:

∑ ( )
α =

+ β − β=

ˆ
log log

.
1

n
xii

n

2.24	 Obtain formulas for the median of each continuous distribution.
(a)	 exponential (b).	 (b )	 lognormal (µ, s).
(c)	 shifted Pareto (a, b).	 (d )	 Weibull (b, d).

2.25	 For an unlimited population of 5,000 claims the mean claim size is 1,000 with a 
standard deviation of 2,000. Estimate the number of claims that are larger than 
1,000, assuming that the size-of-loss distribution is:
(a)  gamma.	 (b)  lognormal.	 (c)  shifted Pareto.



Casualty Actuarial Society	 75

Distributions for Actuaries

2.26	 Prove: if Sk[X ] exists for random variable X, then Sk[L(X )] = Sk[X ] for all linear 
transformations L(X ) = aX + b for which a > 0.

2.27	 Assume that X is distributed according to the classical Pareto distribution 
function (2.40) with parameters (a, g). Find a linear transformation L so that Y 
= L(X ) has the shifted Pareto (a, b) distribution (2.46).

2.28	 Assume that random variable U is uniformly distributed on the interval 0 < u 
< 1 and that parameters (a, b, d) are all positive. In each case determine the 
distribution of the transformed variable X.
(a)	 X = -2 logU.	 (b )	 X = b(U-1/a - 1).
(c)	 X = (b(U -1/a - 1))1/d.	 (d )	 X = b(-logU)1/d.
(e)	 X = log(1 + Y/b), where Y has a shifted Pareto (a, b) distribution.

2.29	 Random variable X has a Burr (a, b, d) distribution with cumulative distribution 
function (2.64).
(a)	 Derive a formula for E [X m], m = 1, 2, 3, . . . .
(b)	 Derive a formula for E [X; x ].

2.30	 Random variable Y is defined by Y = T (X ) = e X, where X is gamma (a, b) 
distributed. Y is said to have the loggamma distribution.
(a)	 Derive the cumulative distribution function for Y.
(b)	 Derive a formula for E [Y m], m = 1, 2, 3, . . . .

2.31	 The coefficient of variation CV [X ] of a random variable X is defined as the ratio 
of the standard deviation to the mean: CV [X ] = SD[X ]/E [X ]. Show that an 
application of the uniform trend transformation T (X ) = tX (t > 0) leaves both 
the coefficient of variation and the skewness invariant.

2.32	 Prove that the damping effect of a positive upper limit l on a uniform trend rate 
disappears when the limit l is subjected to the same trend factor as the claim size.

2.33	 Claim-size random variable Y is obtained by applying to X the variable trend 
factor t(x) = ax b. Determine the distribution of Y when the distribution of X is:
(a)	 exponential (b).	 (b)	 shifted Pareto (a, b).
(c)	 Weibull (b, d).	 (d )	 Burr (a, b, d).

2.34	 For claim-size random variable X let p = Pr {X ≤ E [X ]}. Determine p when X has 
the following distributions. How does p compare to 0.50?
(a)	 exponential (b).	 (b)	 gamma (a, b).
(c)	 lognormal (µ, s).	 (d )	 shifted Pareto (a, b), a > 1.

2.35	 Assume that n random variables {Xi} are independent and identically distributed 
with an exponential (b) distribution. Show that the distribution of Y = Sn

i =1Xi is 
gamma (n, b).

2.36	 Assume that claim-size variable X has a lognormal (µ, s) distribution. Verify that 
the conditional mean E [XX > a] is given by

( )( )[ ] [ ] ( )( )> =
Φ − + µ + σ σ

Φ − + µ σ
>

log
log

( 0).
2

E X X a E X
a

a
a
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2.37	 A parametric family of continuous probability distributions has a scale parameter  
whenever the probability density function fq(x) depending on parameter q can 
be written in the form

( ) ( )=
θ

θθ
1

.1f x f x

For each family of distributions identify the scale parameter, if any.
(a)	 normal (µ, s).	 (b )	 gamma (a, b).
(c)	 lognormal (µ, s).	 (d )	 shifted Pareto (a, b).
(e)	 Weibull (b, d).	 ( f )	 Burr (a, b, d).

2.38	 Assume that X is a continuous random variable whose distribution has a scale 
parameter q. Show that c q is a scale parameter for the distribution of variable cX.

2.39	 The grouped data displayed in the table 
represent the sizes of a random sample of 
claims drawn from an unlimited population 
and then censored at the value 100,000.
(a)	� Obtain estimates of parameters (µ̂, ŝ) for 

a lognormal model fit to the underly-
ing unlimited population distribution 
by minimizing the distance between the 
sample limited severities at the eight group 
endpoints 10,000 through 100,000 and 
those implied by the lognormal model at 
the same points, as in Example 2.10.

(b)	� Compare the sample mean M1 to the 
limited severity at 100,000 implied by 
the lognormal (µ̂, ŝ) distribution.

(c)	� Use the chi-square test, with eight cells, to test the goodness-of-fit of the 
lognormal (µ̂, ŝ) distribution.

2.40	 To the sample data of Problem 2.39, fit a lognormal model to the underlying 
claim-size distribution by using the minimum chi-square method applied to the 
nine cells with the boundary points

{0; 10,000; 20,000; 30,000; 40,000; 50,000; 60,000; 80,000; 100,000; ∞}.

Note that the observed frequency in the ninth cell (10,000; ∞) is 22.

2.41	 For the unlimited claim-size random variable X and positive limit l, the random 
variable Y defined only on the interval 0 ≤ X ≤ l by

= ≤ ≤, 0Y X X l

represents variable X truncated from above at l.
(a)	 Derive the cumulative distribution and density functions for Y.
(b)	 Obtain a formula for E [Y ].

Size Group # Claims

          0–10,000 78

10,001–20,000 27

20,001–30,000 21

30,001–40,000 15

40,001–50,000 12

50,001–60,000 10

60,001–80,000 8

80,001–99,999 7

100,000 22

Total 200
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2.42	 For the unlimited claim-size random variable X and positive limit a, the random 
variable Y defined only for X > a by

= < < ∞,Y X a X

represents variable X truncated from below at a.
(a)	 Derive the cumulative distribution and density functions for Y.
(b)	 Obtain a formula for E [Y ].

2.43	 The table displays the result of a random sample 
of claims drawn from an unlimited population, 
truncated above at size 50,000.
(a)	� Using the minimum chi-square method 

with ten cells for estimating parameters, 
fit a lognormal model to the underlying 
non-truncated population distribution.

(b)	� Compare the sample mean to the severity of 
the fitted lognormal distribution truncated 
above at 50,000.

Size Group # Claims

0–5,000 104

5,001–10,000 120

10,001–15,000 81

15,001–20,000 54

20,001–25,000 45

25,001–30,000 32

30,001–35,000 26

35,001–40,000 18

40,001–45,000 12

45,001–50,000 8

Total 500
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This chapter is devoted to probability models associated with the number of claims 
generated either by a single policy or by a portfolio of policies in property/casualty 
insurance. We study first some aspects of the basic claim process by means of a simplified 
example and then turn to the standard claim-count models. Our main emphasis is on the 
two most important parametric families, the Poisson and negative binomial distributions, 
with special attention paid to the modeling of both parameter uncertainty and claim 
contagion.

3.1.  An Elementary Claim Process
The incidence of insurance claims is most usefully modeled as a random process, 

continuous throughout a fixed time interval. For a single policy this period is the 
length of time the policy remains in force—the policy term, typically one year. The 
basic random process must be endowed with a probability structure rich enough  
to support the essential random variables. The most important such time-dependent 
random variable—the claim count—is the principal focus of this chapter. Values of 
the claim-count variable, which we denote by N, are just the numbers of insured 
events occurring during the policy term that give rise to claims against the policy.

Begin by considering a simple discrete model of a claim process, based on the 
following pair of assumptions about claims arising from a single policy:

B1 � During a short time interval the probability of a single claim occurring is a fixed 
number p (0 ≤ p ≤ 1) and the probability of two or more claims occurring is zero.

B2 � The numbers of claims occurring in disjoint short time intervals, each with 
the probability structure described in B1, are independent random variables.

In other words, the number of claims occurring during a single short interval is a 
Bernoulli random variable—it takes on the value 1 with probability p and the value 0 
with probability 1 - p.

Now let Nm denote the total number of claims occurring in m adjacent, but non-
overlapping intervals for each of which assumptions B1 and B2 both hold. It is evident 
that Nm is the sum of m independent Bernoulli random variables, and so it has a 
binomial distribution with parameters (m, p) and probability function

Pr 1 , 0,1, 2, . . . , . (3.1){ } ( )= = − =−N n C p p n mm m n
n m n

The mean and variance of Nm are mp and mp(1 - p), respectively.

3.  Claim Counts
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Example 3.1.    The probability that an individual policyholder makes a claim in 
any single day is 0.003. Assuming that at most one claim per day is possible and that 
claims on successive days are independent, the binomial distribution (3.1) with p = 0.003 
applies to any time period comprised of m successive days.

For example, during a 30-day period the respective probabilities of no claims and 
a single claim are

Pr 0 0.003 0.997 0.9138,

Pr 1 0.003 0.997 0.0825.

30 30 0
0 30

30 30 1
1 29

{ }

{ }

( ) ( )

( ) ( )

= = =

= = =

N C

N C

As a result, the probability of two or more claims is 1 - 0.9138 - 0.0825 = 0.0037. 
The expected number of claims for the 30-day period is mp = (30)(0.003) = 0.0900.

Probabilities of claims occurring during a full year can be computed in a similar way. 
For example, the probability of two claims in a 365-day year is

Pr 2 0.003 0.997 0.2009,365 365 2
2 363{ } ( ) ( )= = =N C

and the expected number of claims for the year is (365)(0.003) = 1.0950. n

Example 3.1 indicates how to apply the binomial model to a policy term of reason-
able length—one year, for example. In that example, this was accomplished by partition-
ing the policy term into disjoint short time intervals, during each of which at most one 
claim is possible, thereby dividing the period into discrete units with separate but identical 
probability structures. However, such a discrete-time approach is conceptually at variance 
with the intuitive view that a claim process should be a continuous one. It seems desirable, 
therefore, to find a continuous-time model for the process.

Passage from a discrete model to a continuous one always requires some type of 
limit procedure. To accomplish this in the case of the binomial model, first partition the 
policy period into m short subintervals of equal length, each with a Bernoulli probability 
structure specified by B1, for which p is the probability of a single claim. The total number 
of claims in all these subintervals then has the binomial probability function (3.1) with 
parameters (m, p).

Next, we allow the number of subintervals to become infinite in such a way that 
the expected number of claims for the total policy period remains unchanged. That is, as 
m → ∞ parameters m and p must always satisfy mp = l for some positive constant l. 
This implies that the probability p of a claim in each subinterval approaches zero as the 
number of subintervals becomes arbitrarily large—or equivalently, as the subinterval 
length becomes arbitrarily small. Then, for each nonnegative integer n, the probability 
of obtaining n claims is

Pr { } lim (1 )

lim
( 1) . . . ( 1)

!
1

= −

= − − + λ



 − λ





→∞
= λ

−

→∞

−

n claims C p p

m m m n
n m m

m
mp

m n
n m n

m

n m n
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lim
1

. . .
1

!
1 1

!
. (3.2)

i i i= − − + λ − λ



 − λ





= λ

→∞

−

−λ

m
m

m
m

m n
m n m m

e
n

m

n n m

n

The final step is a consequence of a familiar limit theorem from elementary calculus: 
limm→∞ (1 + x/m)m = ex.

Formula (3.2) expressing lne -l/n! as the limit of binomial probabilities was first  
derived by Siméon-Denis Poisson (1781–1840), French mathematician and mathematical 
physicist extraordinaire.28 The resulting probability distribution with probabilities given 
by (3.2) subsequently came to be known as a Poisson distribution.

Poisson distributions have been applied to a diverse range of random events occurring 
throughout some time interval (or, alternatively, some type of spatial configuration). 
The number of alpha particles emitted from a radioactive source during a fixed time 
period, the number of defective products in a lot of manufactured items, the number 
of calls arriving at a telephone switchboard during an hour, the number of cells 
visible under a microscope in a certain region, the number of hurricanes striking the 
North American Atlantic coast in a single year—all have been successfully modeled 
as Poisson processes.

Because of results like (3.2) the Poisson distribution has also come to play a prominent 
role in modeling claim processes in property/casualty insurance. In the next section, we 
derive this probability distribution directly from a set of general assumptions.

3.2.  Poisson Claim Processes
Experience has shown that the claim process in property/casualty insurance is often 

a Poisson process. This means that claims occur over time in accordance with the 
following set of assumptions, sometimes referred to as the Poisson postulates. In 
statements {A1, A2, A3, A4, A5}, Pn(t) is the probability that n claims occur during a time 
interval of length t, 0 ≤ t < ∞.

A1 � The numbers of claims29 occurring in disjoint time intervals are independent 
random variables.

A2 � The probability structure is time-invariant—that is, for all a ≥ 0 the probability 
of n claims occurring in the interval between a and a + t equals Pn(t). Thus, 
the distribution of the number of claims occurring during an interval depends 
on the length of the interval but not on the endpoints.

28	 Poisson’s derivation appeared in his 1837 treatise on probability, Recherchés sur la probabilité des jugements en matière 
criminelle et en matière civile [Research on the probability of criminal and civil verdicts]. Poisson published more than 
300 papers on mathematics, including the fields of analysis and probability, and on a wide range of topics in physics. 
His memorable adage, “Life is good for only two things, discovering mathematics and teaching mathematics,” is 
undoubtedly best appreciated by other mathematicians.

29	 In this special formulation of the Poisson postulates the underlying random event is the occurrence of an insurance 
claim during a specified time interval. However, as indicated above, the general Poisson process can be applied to 
a variety of random events occurring in time or space.
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A3 � The probability of a single claim occurring in a short interval of length h, h > 0, 
is approximately proportional to h:

P1(h) = λh + o(h) for some positive constant λ.30

Parameter l is the time density of the incidence of claims—the average 
number of claims per unit of time.

A4 � The probability of more than one claim occurring in a short interval of length h 
is approximately zero: S∞

n=2 Pn(h) = o(h).
A5 � In an interval of length t = 0, P0(0) = 1 and Pn(0) = 0 for n > 0.

Although these assumptions are often satisfied in practice, there are situations 
involving the incidence of insurance claims in which one or more of them fails to 
hold in a significant way. For example, A2 and A3 imply that the density l of claims 
per unit time remains constant over time, an assumption usually valid in the short 
run but which might fail in the long run. The assumption of independence in A1 
fails whenever the occurrence of a claim alters the probability of later claims. This 
phenomenon of claim contagion will be explored later, in Section 3.4. Finally, A4 is 
incompatible with the occurrence of multiple simultaneous claims, as is the case when 
two or more individuals are injured in the same accident. Such a violation of postulate A4 
can be avoided by always defining “claim” to refer to a single insured event, without regard 
to the number of claimants involved.

A general formula for the Poisson probability function Pn(t) can be derived directly 
from postulates {A1, A2, A3, A4, A5}. First, observe that A3 and A4 together imply that 
the probability P0(h) of zero claims in a short interval of positive length h is given by

1 1 .0
1

∑( ) ( ) ( )= − = − λ +
=

∞
P h P h h o hn

n

Moreover, the independence and time-invariance properties A1 and A2 imply that the 
probability of zero claims in the interval (0, t + h) can be expressed as

.0 0 0( ) ( ) ( )+ =P t h P t P h

Extending this last equation to the case of n claims, where n ≥ 1, we obtain

. . . , (3.3)0 1 1 0( ) ( ) ( ) ( ) ( ) ( ) ( )+ = + + +−P t h P t P h P t P h P t P hn n n n

verification of which is requested in Problem 3.5. Finally, combining the last three 
equations with postulate A4 produces

1 ,

1 ( ) , 1.

0 0

1 2∑

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

+ = − λ +

+ = − λ + + λ + + ≥− −=

P t h P t h o h

P t h P t h o h P t h o h P t o h nn n n n ii
n

30	 The expression o(h), pronounced “little oh of h,” denotes a function of h that approaches 0 faster than h, so that 
A = o(h) means limh→0A/h = 0. If A = o(h) and B = o(h), then A + B = o(h) also.
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These equations can now be used to obtain appropriate expressions for the derivative, 
with respect to t, of probability function Pn(t).

The case n = 0 yields the differential equation

lim lim .0
0

0 0

0

0
0

( )( ) ( ) ( ) ( ) ( ) ( )=
+ −

=
−λ +

= −λ
→ →

d
dt

P t
P t h P t

h
P t h o h

h
P t

h h

The initial condition P0(0) = 1 supplied by A5 gives rise to the unique solution P0(t) = e-lt. 
Similarly, the derivative in the case n ≥ 1 is

lim

lim

.

0

0

1

1

+( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

=
+ −

=
−λ + λ + +

= −λ + λ

→

→

−

−

d
dt

P t
P t h P t

h

P t h o h P t h o h o h
h

P t P t

n
h

n n

h

n n

n n

When n = 1 the solution of this differential equation is P1(t) = lte-lt. Continuing 
inductively for n = 2, 3, 4, . . . yields the general Poisson probability function

!
, 0,1, 2, . . . . (3.4)( )( ) = λ =

−λ

P t
t e
n

nn

n t

Example 3.2.    The claim process for a certain liability policy is Poisson, and 
claims occur at a constant rate of 0.04 per year. If the policy term is one year, then 
formula (3.4) with t = 1 and l = 0.04 applies. The probabilities for zero, one, and two 
claims against the policy are, respectively,

1 0.9608,

1 0.04 0.0384,

1
0.04

2!
0.0008.

0
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1
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2
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On the other hand, to obtain probabilities for claims arising during an 18-month 
period put t = 1.5 and l = 0.04 into the same formula. Thus

1.5 0.9418,

1.5 0.06 0.0565,

1.5
0.06

2!
0.0017.

0
0.06

1
0.06

2

2 0.06

( )

( ) ( )

( ) ( )

= =

= =

= =

−

−

−

P e

P e

P
e

 


In property/casualty insurance applications the claim-count random variable of 
greatest interest is the number of claims occurring during a fixed time period, usually 
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a single policy term. It is appropriate then to take the basic time unit in the Poisson 
process to be the length of this fixed period and adjust the parameter l to represent 
the claim density during the selected period. We denote the resulting random variable 
by N and use the customary f (n) to denote the associated probability mass function, 
which has the simplified form

!
, 0,1, 2, . . . . (3.5)( ) = λ =

−λ

f n
e
n

n
n

The moment-generating function M(t) for claim-count N with distribution (3.5) 
exists for all real t:
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exp . (3.6)
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This function has derivatives of all orders, and so all moments of N can be obtained 
from the successive derivatives of M(t) evaluated at t = 0:
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It is not surprising, given the role that l plays in the Poisson postulates, that E [N ] = l. 
In addition, the variance and skewness are

, (3.7)2 2 2 2[ ][ ] [ ]( )= − = λ + λ − λ = λVar N E N E N

1
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Poisson random variables have a distinctive property that serves to characterize 
this distributional family—the mean and variance are equal, each identical to the 
distribution parameter l.

The next example illustrates one way to fit a Poisson 
distribution to a set of claim data.

Example 3.3.    During a single policy period of one 
year a certain portfolio of 1,000 identical insurance poli-
cies generated 150 claims. These data have been summa-
rized in the table by the number of claims per policy per 
year. We wish to find a Poisson distribution for the claim-
count variable N for an individual policy selected from the 
portfolio.

# Claims # Policies

  0 868

  1 118

  2 11

  3 2

  4 1

≥5 0

Total 1,000
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To do so, one can interpret these data as observations for a sample of size 1,000 drawn  
from a population of policies with identical Poisson claim-count distributions and 
unknown Poisson parameter l. The method-of-moments estimate of parameter l is 
just the sample average: l̂ = 150/1,000 = 0.15 claims per policy per year. It is also the 
case that l̂ is a maximum-likelihood estimator of the parameter—see Problem 3.7.

In addition, the distribution based on l̂  can be interpreted as a parametric distribution 
fit to the empirical distribution of the portfolio data. Table 3.1 compares the sample 
distribution to that implied by the Poisson formula f (n) = (0.15)ne-0.15/n!.

Visual inspection of the tabulated values shows that the Poisson probabilities are 
close to the sample values. However, one can test the goodness of fit in a more formal 
way, as with the Pearson chi-square test. First compute the Pearson statistic relative 
to the three cells containing policies with 0, 1, and 2 or more claims, respectively—
grouping in this way avoids creating cells with frequencies that are too small. Here nk 
denotes the observed policy frequency in the kth cell. The expected cell frequency fk(l̂) 
predicted by the Poisson (l̂) distribution is fk(l̂) = 1,000p̂k, where p̂k is the Poisson 
(l̂) probability of being in the kth cell. Then

ˆ

ˆ
868 860.7

860.7
118 129.1

129.1
14 10.2

10.2
2.43.2

2

1

3 2 2 2

∑ ( )( )
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+
−

=
=

nk k
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The c2 statistic is approximately chi-square distributed, with degrees of freedom

. . # # 1 3 1 1 1.= − − = − − =d f cell s estimated parameters

The 95th percentile of the chi-square distribution with d.f. = 1 is c2
0.95(1) = 3.84. Because  

c2 = 2.43 < c2
0.95(1), we conclude at the 5% significance level that the Poisson distribution 

is an acceptable model for these data. n

Table 3.1.    Claim-Count Distributions [Example 3.3]

Pr{N = n}

# Claims n Sample Poisson (l = 0.15)

  0 0.8680 0.8607

  1 0.1180 0.1291

  2 0.0110 0.0097

  3 0.0020 0.0005

  4 0.0010 0.0000

≥5 0.0000 0.0000

Mean 0.1500 0.1500

Variance 0.1735 0.1500
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3.3.  Parameter Uncertainty
It is sometimes the case that an insurance claim process is not strictly Poisson 

because the density parameter l fails to be uniform throughout a population or 
is itself subject to some type of random fluctuation. For example, in a portfolio 
of insurance policies for which the random variable N is Poisson-distributed, 
the expected number of claims—the Poisson parameter l—might vary from one 
insured to another. What is the distribution of N for a policy selected at random 
from such a population? Or consider the situation in which the distribution of the 
number of wind-damage claims depends on a parameter l that varies with random 
changes in some key weather variables. How should one model the distribution of 
N in such a case?

Answers to questions like these can be obtained by means of a mixture of Poisson 
distributions, in which the parameter l is itself taken to be a random variable. The 
resulting variable N having such a mixed distribution is called a model of parameter 
uncertainty.

To model parameter uncertainty in the Poisson case, begin by assuming that a 
given population of policies has a finite number m of parameter states {Si}, where  
1 ≤ i ≤ m. In each state Si the claim process is Poisson with claim density ai and 
Pr{being in state Si} = pi, where p1 + p2 + . . . + pm = 1. Now let l denote a random 
variable with the set of values {ai} and the associated discrete probability distribution, 
for which E [l] = Sm

i=1aipi. In this context, variable l is called the mixing parameter 
for the distribution of N.

For example, consider a portfolio of policies comprised of m disjoint subgroups, 
where the claim-count distribution in the i th subgroup is Poisson with mean ai. The 
probability pi of obtaining a single policy from the i th subgroup in a random selection 
from this mixed portfolio is just the fraction of the total number of portfolio policies 
that belong to the i th subgroup. The probability function of the claim-count variable N  
for such a randomly selected policy is then specified for each n = 0, 1, 2, . . . by the 
conditional probability formula

Pr Pr
1
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The expected value of this mixed distribution turns out to be, quite reasonably, the 
probability-weighted average of the {ai}, that is, E[l]:
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The second moment is obtained in a similar way:
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As a result, one can express Var[N ] in terms of the mean and variance of l:

. (3.11)2

1

2∑[ ] [ ] [ ] [ ]( )[ ] = λ + α − λ = λ + λ
=

Var N E p E E Vari
i

m

i

It is evident from (3.10) and (3.11) that when N has a mixed Poisson distribution, 
Var[N ] = E[N ] if, and only if, Var[l] = 0 (in which case the variable l is constant). 
Therefore, a mixture of distinct Poisson distributions—for which Var[l] > 0—cannot 
itself be a Poisson distribution.

Example 3.4.    A portfolio of 100 insurance 
policies for which the claim counts are Poisson-
distributed produces an overall average of 0.51 
claims per policy per year. However, this portfolio 
consists of four policy subgroups, representing 
four parameter states, with expected claim counts 
ranging from 0.10 to 1.40, as shown in the table. 
Also tabulated are the numbers of policies in each 
subgroup. Consequently, the distribution of N for a policy selected at random from 
this portfolio has a mixed Poisson distribution with probabilities

0.10 0.2 0.35 0.4 0.70 0.3 1.40 0.1
!

.
0.10 0.35 0.70 1.40

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )=
+ + +− − − −

f n
e e e e

nN

n n n n

As expected, E[N ] = 0.51, and the variance exceeds the mean: Var[N ] = 0.6439 > 
E[N ]. Probabilities for N are shown in Table 3.2, where they are compared with those 
of the single Poisson distribution for which l = 0.51.

State Density ai # Policies

S1 0.10   20

S2 0.35   40

S3 0.70   30

S4 1.40   10

Total 0.51 100

Table 3.2.    Claim-Count Distributions [Example 3.4]

Pr{N = n}

# Claims n Mixed Poisson Poisson (l = 0.51)

  0 0.6365 0.6005

  1 0.2556 0.3063

  2 0.0788 0.0781

  3 0.0218 0.0133

  4 0.0056 0.0017

  5 0.0013 0.0002

  6 0.0003 0.0000

≥7 0.0001 0.0000

Mean 0.5100 0.5100

Variance 0.6439 0.5100
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This example effectively illustrates how mixing several distinct Poisson distributions 
serves to increase the dispersion of the claim-count distribution over what would be 
expected in the case of a single Poisson distribution. n

The discrete conditional probability formula (3.9) is readily generalized to the case 
in which the variable l has a continuous density function f l(u) on the interval 0 < u < ∞  
for which ∫

∞
0 f l(u)du = 1. Thus, the continuous analog of (3.9) for claim counts n = 0, 

1, 2, . . . is given by the integral formula

Pr
1
!

. (3.12)0 0
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n
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Formulas (3.10) and (3.11) for the mean and variance of N also hold in the 
continuous case. For example, in the following continuous analog of (3.10) integration 
over the semi-infinite interval 0 < u < ∞ replaces summation over the finite set of 
parameter values {ai}:
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As before, the second moment is E[N 2] = E[l] + E[l2], so that
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Example 3.5.    Parameter l for a mixed Poisson distribution has an exponen-
tial density function: f l(u) = 4e-4u, 0 < u < ∞. Consequently, E[l] = 0.25 and Var[l] = 
0.0625. The claim-count probabilities for the mixed distribution follow from (3.12):

4
!

4
!

1 5 0.8 0.2 , 0,1, 2, . . . .5
0

1∫( ) ( ) ( )( )= = Γ + = =( )−∞ − +f n
n

u e du
n

n nN
n u n n

This distribution is an instance of the geometric distribution—see Problem 3.21. 
Table 3.3 displays probabilities for the distribution, again compared to those of the 
related, but less-dispersed single Poisson distribution. n

31	 By using the Riemann–Stieltjes integral, formulas (3.9) and (3.12) can both be expressed by the single integral 
formula fN(n) = (1/n!) ∫ 0

∞une-udFl(u), where the function Fl(u) is the cumulative distribution function for the 
variable mixing parameter l.
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The mixed Poisson distribution provides a powerful alternative to the single Poisson 
distribution in modeling insurance claim data. However, the mixed distribution approach 
does require that one must have some a priori knowledge of the distribution of the vari-
able parameter l. In cases where claim data can reasonably be partitioned into a finite 
number of homogenous subgroups, as in Example 3.4, there is usually no difficulty 
in constructing the mixed distribution. On the other hand, if one is presented with a 
sample of claim data for which the mean and variance are quite different, then finding 
an appropriate parametric distribution in the absence of additional information about 
the population is more challenging. A common solution to this problem, which involves 
a special family of distributions for the variable l, is the topic of the next section.

3.4.  Negative Binomial Distributions
It is often the case that claim-count data yield a sample distribution with markedly 

different mean and variance and that very little is known about the actual population 
distribution. Nevertheless, the actuary can be faced with the problem of fitting a 
parametric distribution to such data in order to model the claim-count probabilities of 
a policy selected at random from the underlying population.

In situations like this it has proven useful to suppose that the population has a mixed 
Poisson distribution and, in the absence of any other information, to assume a particular 
distribution for the variable parameter l. Gamma distributions are almost always used 
for this purpose because of the useful analytic form of the resulting mixed distribution.

We start by assuming that the mixing parameter l has a gamma distribution with 
positive parameters a and b = n/a and the resulting density function

( ) ( )
( )

=
α ν
Γ α

< < ∞( )
λ

α
α− − α νf u u e uu, 0 . (3.16)1

Table 3.3.    Claim-Count Distributions [Example 3.5]

Pr{N = n}

# Claims n Mixed Poisson Poisson (l = 0.25)

  0 0.8000 0.7788

  1 0.1600 0.1947

  2 0.0320 0.0243

  3 0.0064 0.0020

  4 0.0013 0.0001

  5 0.0003 0.0000

≥6 0.0001 0.0000

Mean 0.2500 0.2500

Variance 0.3125 0.2500
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This special choice of a and b is contrived to yield convenient forms for the means 
and variances of l and N. In particular, E[l] = n and Var[l] = n2/a. The probability 
function for N is then obtained by substituting (3.16) into formula (3.12) for each 
n = 0, 1, 2, . . . :
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The mean, variance, and skewness of N are thus given by formulas (3.13), (3.14), 
and (3.15):
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The mixed probability distribution defined by (3.17) is a member of the negative 
binomial distribution family. Such a distribution has a probability function, with 
parameters r and q, of the general form

1
1 0, 0 1 , 0,1, 2, . . . . (3.19)( ) ( )( ) =
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The leading coefficient in this function is an instance of the general binomial coefficient, 
defined for all real x and n = 0, 1, 2, 3, . . . by

1
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Putting r = a and q = a/(n + a) into (3.19) and then applying (3.20) shows that 
probability function (3.17) does indeed belong to the negative binomial family.
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The general binomial coefficient first arose in connection with Isaac Newton’s 
binomial series, a convergent series expansion valid for all real s:

1 , 1 1. (3.21)
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Moreover, whenever s = m series (3.21) reduces to the familiar finite sum of the 
elementary Binomial Theorem.

The negative binomial distribution is so called because the probabilities in (3.19) 
are fixed multiples of terms from a convergent binomial series with negative exponent. 
This becomes evident after using the identity
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to restate probability function (3.19) as

1 . (3.23)( )( ) =
−



 −f n

r
n

q qr n

Verification of S∞
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The negative binomial moment-generating function is obtained in a similar way:
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Returning to the mixed distribution (3.17), one can see that for a given mean n 
the size of Var[N ] relative to E[N ] is determined by parameter a. The larger the value 
of a, the more nearly equal are Var[N ] and E[N ] and conversely. One can therefore 
interpret 1/a as a measure of parameter uncertainty—of how significantly the mixed 
distribution deviates from a single Poisson.
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Not surprisingly, the Poisson distribution is a limiting case—that is, for fixed mean n 
the negative binomial distribution (3.17) tends to a Poisson distribution as a → ∞. 
This can be easily demonstrated using the moment-generating function. The generating 
function of distribution (3.17) is

1 1 , log ,( ) ( )( ) ( )= − ν
α

−



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−∞ < < ν + α ν
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M t e tt

obtained by substituting r = a and q = a/(n + a) into (3.24). Passing to the limit as  
a → ∞ while holding n constant yields
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the moment-generating function of a Poisson random variable with mean n. The 
conclusion follows from the uniqueness property of the generating function.

One of the earliest uses of the negative binomial as a mixed Poisson distribution 
was in modeling the concept of accident proneness. The number of accidents incurred by 
individual members of a population group was assumed to be Poisson-distributed, but 
with different parameters—the more “accident-prone” members having larger Poisson 
parameters and those less so having smaller expected values. In the realm of property/
casualty insurance, actuaries began to apply the negative binomial distribution to 
automobile liability in the 1950s and 1960s.32 Since then, the distribution has enjoyed 
a wide range of applicability.

Example 3.6.    Claim-count data from a sample of 
5,000 automobile liability policies are displayed in the table. 
Here the mean 0.1238 and variance 0.130074 are unequal. 
This inequality suggests that the policies were possibly drawn 
not from a homogeneous population of Poisson-distributed 
policies but from a mix of policies with different Poisson 
distributions.

To obtain the distribution of claim counts for a single 
policy selected at random from this population, we shall 
assume a negative binomial distribution of the form (3.17) 
and search for appropriate parameter estimates (â, n̂). 
Derivation of maximum-likelihood parameter estimates for 
the negative binomial distribution involves some difficult, but not insurmountable, 
complexities,33 whereas the method-of-moments estimates are easily calculated. Opting 

# Claims # Policies

  0 4,429

  1 528

  2 39

  3 3

  4 1

≥5 0

Total 5,000

32	 For an example of such early applications of the negative binomial distribution in auto insurance see Hewitt [6].
33	 For example, refer to Simon [21]. In most cases the maximum-likelihood equations are solvable only by iteration, 

but Simon observes that the method “will usually produce answers very similar to the method-of-moments” 
estimates.
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for the latter approach, we set n̂ = 0.1238 and then solve the variance formula Var = 
n̂ + n̂2/â = 0.130074 for â:

ˆ 0.1238
0.130074 0.1238

2.44285.
2( )α =

−
=

Probabilities calculated from the resulting mass function

2.44285
! 2.44285

0.951766 0.048234 , 0,1, 2, . . . ,( ) ( )
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( )( )=
Γ +

Γ
=f n

n
n

nn

are displayed in Table 3.4. The chi-square statistic based on the four cells corresponding 
to 0, 1, 2, and 3 or more claims is c2 = 0.7753. The degrees-of-freedom parameter 
is d.f. = 4 - 2 - 1 = 1, so the rejection limit for a test at the 5% significance level is  
c2

0.95(1) = 3.84. Because c2 < 3.84, one can conclude that the negative binomial distribution 
is an acceptable model.

Recall that a negative binomial distribution can be interpreted as a mixture of 
Poisson distributions with a variable gamma-distributed mixing parameter l. In this 
case an implied gamma density function for the variable mixing parameter l can be 
obtained by putting â and n̂ into formula (3.16):

1141.264 , 0 .1.44285 19.7322( ) ( )= < < ∞λ
−f u u e uu

Here E[l] = 0.1238 = n and Var[l] = 0.006274. A graph of this density function y = f l(u) 
is shown in Figure 3.1. n

3.5.  Claim Contagion
One of the assumptions of the Poisson claim-count process, that of independence 

of successive claims, is not always satisfied. This happens whenever the occurrence of a 
claim changes the probability of subsequent claims. For example, a successful products 

Table 3.4.    Negative Binomial Distribution [Example 3.6]

Pr{n claims}

# Claims n Sample Negative binomial

  0 0.8858 0.8862

  1 0.1056 0.1044

  2 0.0078 0.0087

  3 0.0006 0.0006

  4 0.0002 0.0000

≥5 0.0000 0.0000
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liability claim against a manufacturer often increases the likelihood that similar claims will 
be brought in the future—a classic example of claim contagion. A standard approach to 
modeling such a contagion process is based on an urn model proposed by the Hungarian 
mathematician George Pólya (1887–1985). Pólya models have since been used to model 
a variety of contamination processes, including the spread of contagious diseases.34

In the Pólya model, an urn initially contains w white balls and b black balls. 
A trial consists of drawing one ball at random, noting its color, and then replacing it 
together with c additional balls of the same color. Obtaining a white ball on the first 
trial therefore increases the probability of selecting a white ball on the next trial. The 
probability function for the number Wm of white balls obtained in m trials, is derived 
by conventional combinatorial methods:

Pr , , ; , 0,1, . . . , . (3.26)0

1

0

1

0

1
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∏
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A distribution with probabilities Pn(w, b, c; m) is known as a Pólya distribution.35 
The ratio g = c/w is customarily called the degree of contagion. When there is no 
contagion—that is, when c = g = 0—the Pólya distribution is identical to the simpler 
binomial distribution for which the probability of drawing a white ball remains 
constant throughout successive trials.

0

1

2

3

4

5

6

0.0 0.2 0.4 u

y

y  = f λ(u )

ν

Figure 3.1.    Implied Gamma Density Function  
for Mixing Parameter l [Example 3.6]

34	 Pólya’s original contamination model first appeared in a 1923 paper by Pólya and F. Eggenberger “Über die Statistik 
der vergetteter Vorgänge,” Zeitschrift für Angewandte Mathematik und Mechanik, III, 279–289]. The present 
formulation is based on that presented by William Feller in his classic probability textbook: Feller [4], pp. 118–121, 
142–143. Urn models have been used to model probability distributions ever since they were introduced by Swiss 
mathematician Jacob Bernoulli to describe the two-outcome experiment underlying the random variable now 
known as a Bernoulli variable.

35	 Although history and logic dictate that (3.26) should be called the Pólya distribution, some authors apply that 
name instead to the associated negative binomial distribution (3.27).
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To derive the moments of the distribution for Wm, let p denote the probability of 
drawing a white ball in the first Pólya trial: p = w/(w + b). Then

, , ; , , ; 1

, , ; 1
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Similar reasoning yields

1 1
1

1
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+ +
= + − + γ
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E W mp m m

w c
w b c

p mp m m p
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so that

1 1
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1
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+ γ
−
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
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Var W mp m
p

p mpm

It is instructive to compare these formulas to the respective mean mp and variance 
mp(1 - p) of the related binomial distribution. Clearly, the two distributions have 
identical means, each equal to mp. The Pólya distribution, as one would reasonably 
expect, has the larger variance: Var[Wm] ≥ mp(1 - p).

Example 3.7.    Pólya trials are conducted with an urn that initially contains w = 10 
white balls and b = 5 black balls. Corresponding to c = 2, the degree of contagion is  
g = 2/10. The initial probability is therefore p = E[W1] = 10/15. Various probabilities 
for drawing white balls in the first three trials are given by

Pr 1
10
15

0.6667,

Pr 2 1
12
17

0.7059,

Pr 2 1
10
17

0. 5882,

Pr 2
12
17

10
15

10
17

5
15

0. 6667,

Pr 3 1 & 2
14
19

0.7368,

Pr 3 1 & 2
10
19

0. 5263.

i i

{ }

{ }

{ }

{ }

{ }

{ }

= =

= =

= =

= + =

= =

= =

white on st trial

white on nd trial white on st trial

white on nd trial black on st trial

white on nd trial

white on rd trial white on st nd trials

white on rd trial black on st nd trials
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The probabilities Pn(10,5,2;6) for obtaining n white balls in six successive Pólya trials 
are shown in Table 3.5 and compared with those for the related binomial distribution, 
for which c = 0. The expected count for each distribution is mp = 4, but the Pólya 
distribution with positive contagion has the larger variance, a fact clearly evident in 
Figure 3.2. n

To interpret the Pólya urn model as a claim process, identify the draw of a white ball 
in a Pólya trial with the occurrence of a claim. However, contagion in the urn model 
occurs at discrete times, after each draw from the urn. Modeling a time-continuous claim 
process, this time with contagion, again requires some type of limit process.

We proceed as in Section 3.1, where a Poisson distribution arose as the limit of a 
sequence of binomial distributions. Again, partition the basic time period—the policy 

Table 3.5.    Pólya and Binomial Probabilities [Example 3.7]

Pr{n white balls in 6 trials}

# White Balls n Pólya (c = 2) Binomial (c = 0)

0 0.0115 0.0014

1 0.0462 0.0165

2 0.1066 0.0823

3 0.1809 0.2195

4 0.2412 0.3292

5 0.2481 0.2634

6 0.1654 0.0878

Mean 4.0000 4.0000

Variance 2.1176 1.3333

0.0

0.1

0.2

0.3

0 1 2 3 4 5 6

Pólya Binomial

Figure 3.2.    Pólya and Binomial Distributions 
[Example 3.7]
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term—into m subintervals of equal length and perform one Pólya trial per subinterval. 
Then let m → ∞ in such a way that the expected number of white balls (that is, claims) 
in the time period remains constant: mp = n > 0. Passage to the limit is carried out 
in such a way that the degree of contagion g remains constant, as well. As before, the 
probability structure in each subinterval changes with m so that p → 0 as m → ∞. 
Whenever g > 0 the limit of the Pólya probability function (3.26) is

lim ( , , ; ) 1 1 1
1 1

, 0,1, 2, . . . . (3.27)
1/
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Comparison to formula (3.19), after setting r = 1/g and q = 1/(1 + gn), reveals the 
limiting distribution to be negative binomial with mean n and variance n + gn2.

Thus we have observed that two distinct situations—claim contagion in this section 
and parameter uncertainty with a gamma-distributed l discussed in Section 3.4—give 
rise to the same distribution family for the claim-count variable N. In fact, the negative 
binomial distribution in (3.27), with mean n and contagion parameter g, is identical 
to the negative binomial distribution (3.17) with mean n and uncertainty parameter 
a = 1/g. It is not surprising, then, that the negative binomial distribution remains the 
principal alternative to the Poisson for modeling the distribution of property/casualty 
claim counts.

We conclude this section with an outline of the proof of limit formula (3.27) in 
which the negative binomial is obtained as the limiting case of the Pólya distribution 
for a contagion model.

Proof of (3.27): Start by expressing the Pólya probability function in terms of the 
general binomial coefficients, where g = c/w and p = w/(w + b):
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An application of the identity in Problem 3.27(b) yields
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To complete the proof, we evaluate the limits of quotients A and B in turn.
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First, apply to quotient A in equation (3.28) formula (3.20) defining the general 
binomial coefficient as a ratio of gamma function expressions. This yields
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The limit of A is based on the asymptotic relation G(x) ~ 2πe-xx x-1/2.36 Applying this to  
the gamma functions in the last equation, substituting Q = gpm - gpn, and observing that 
factors involving 2πe-x cancel, one obtains

( )( )

− + γ − γ
γ







+ γ − γ
γ







γ






−
γ







= − +
+







− −
− +







− +
− +

+γ −γ
γ

−
γ

−

+γ −γ
γ

−

γ
−

γ
−

γ
−

+
γ − γ

γ

A

p pm pn
p

pm pn
p

p

p
p

p Q
Q

p
p

p Q
p Q

p Q

pm pn
p

pm pn
p

p

p

Q
p p

∼ i

1

1

1

1

1
1

(1 )
1

1
1 1

1
.

1 1 1
2

1 1
2

1 1
2

1 1 1
2

1

1/( )
1/

An application of the limit formulas
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For quotient B in equation (3.28) we have
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36	 This relation is a generalization of Stirling’s approximation formula: n! ~ 2πn(n/e)n, n a positive integer; see 
Feller [4], pp. 52–54, 66. f (x) ~ g(x) means that limx→∞ f (x)/g(x) = 1. Therefore, f (x) ~ g(x) and limx→∞ g(x) = L 
together imply that limx→∞ f (x) = L.
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This completes the proof. n

3.6.  Portfolio Claims
Up to now our focus has been on modeling the claim process for a single policy. However, 

it is also important to find probability models that describe the aggregate behavior of entire 
portfolios of similar policies. In a variety of situations it is possible to infer the distribution 
of the portfolio claim count from those of the individual component policies.

For example, if the claim process for each policy in a portfolio of policies is Poisson, 
what can be said about the distribution of N, the total number of portfolio claims that 
occur during a policy period? The answer lies in the reproductive property of Poisson 
variables—that is, the sum of mutually independent Poisson random variables is also 
Poisson-distributed. This fact follows from an argument based on the moment-generating 
function.

Let N = N1 + N2 + . . . + Nm be the sum of m independent Poisson random variables. 
If E[Ni] = li, where 1 ≤ i ≤ m, then
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the moment-generating function for a Poisson variable with parameter S m
i=1li. The 

uniqueness property of the generating function implies that N must be Poisson-
distributed with mean S m

i=1li.
In the special case that each policy in a portfolio of m policies has the same Poisson 

distribution with expected value l, it is evident that the portfolio claim-count variable 
N has a Poisson distribution with parameter ml.

One can similarly show by means of the moment-generating function that the sum 
N = N1 + N2 + . . . + Nm of mutually independent negative binomial variables, identically 
distributed as in (3.17) with parameters (a, n), has a negative binomial distribution 
with parameters (ma, mn):
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On the other hand, the sum N does not necessarily have a negative binomial 
distribution when the {Ni} have different a and n parameters. Consequently, the 
sum of independent claim-count random variables, each with a contagion structure 
as described in Section 3.5, is not always itself a negative binomial contagion model. 
Nevertheless, it is often desirable to be able to treat such a distribution as if it were 
such a model. One can do this by defining the contagion parameter g for an arbitrary 
claim-count variable N in a way that is consistent with the negative binomial case, 
namely,

[ ] [ ]
[ ]( )

γ =
−Var N E N

E N
, (3.29)2

obtained by rearranging the negative binomial formula

.2[ ] [ ] [ ]( )= + γVar N E N E N

Formula (3.29) implies that the contagion parameter for a Poisson random variable is 
g = 0, as one would reasonably expect.

Example 3.8.    Consider a group of 100 identical policies, each with a Poisson 
claim process and an expected annual claim count of 0.035 per policy. What is the 
probability that these policies in aggregate generate five or more claims during a 
single year?

The portfolio claim-count variable N is the sum of identically distributed Poisson 
variables. Under the reasonable assumption that the claim processes associated with 
these policies are independent, the reproductive property of the Poisson process implies 
that N also has a Poisson distribution, with parameter l = (100)(0.035) = 3.50. 
Therefore,

Pr 5 1 1 3.50
1
2

3.50
1
6

3.50
1

24
3.50 0.2746.3.50 2 3 4( ) ( ) ( ){ }≥ = − + + + +
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

=−N e  n

Example 3.9.    A portfolio contains 20 independent, identically-distributed policies 
subject to claim contagion. Each policy has an expected claim count of n = 0.150 per 
year and contagion parameter g = 0.400. Thus the distribution of the portfolio claim 
count N is negative binomial, with

20 0.150 3.000,

20 0.150 0.400 20 0.150 3.180.2
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Formula (3.29) implies a portfolio contagion parameter of

3.180 3.000
3.000

0.020.2( )
γ = − =  n
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3.7.  Problems
3.1	 Random variable N has a binomial (m, p) distribution.
	 (a)	 Use MN(t) to derive the mean, variance, and skewness for N.
	 (b)	 Evaluate lim

→∞
=λ

m
mp

 MN(t), where l > 0. What conclusion can be drawn?

3.2	 Verify that the Poisson probability function (3.4) satisfies S ∞
n=0Pn(t) = 1.

3.3	 Assume that claim-count variable N has probability function f (n) = lne-l/n! 
What are the values of l and Pr{N ≤ 3} in each case?

	 (a)	 E [N ] = 3.20.	 (b)	 Var[N ] = 2.50.
	 (c)	 Sk[N ] = 0.40.	 (d )	 f (1) = f (2).
	 (e)	 E [e tN ] = e4e t/e4.	 ( f )	 f (0) = 0.80.

3.4	 The policy claim count for a liability line of insurance is Poisson-distributed with 
constant density of 0.10 claims per policy per year. Compute the probability 
that a single policy has exactly two claims when the policy term is:

	 (a)	 6 months.	 (b)  15 months.	 (c)  24 months.

3.5	 Use mathematical induction to verify equation (3.3) for the decomposition of 
Pn(t + h) in the derivation of the Poisson probability function.

3.6	 Prove that the Poisson probability function f (n) = ln e-l/n! has a maximum 
value at n = vlb, where vxb denotes the greatest integer function. [Hint: show 
that f satisfies the recursion relation f (n) = (l/n) f (n - 1) for n = 1, 2, 3, . . . .]

3.7	 Let ni be a set of observations for a random sample of claim counts N1,  
N2, . . . , Nm drawn from a Poisson-distributed population with unknown 

	 parameter l. Prove that the sample mean 
1

1 1∑= =M
m

nii
m  is a maximum-likelihood 

estimator for l.

3.8	 Show that the cumulative distribution function F (n) for a Poisson (l) random 
variable can be expressed at each nonnegative integer n by

∑( ) ( )= λ = −
Γ λ +−λ

= !
1

, 1
!

.
0

F n
e
k

n
n

k

k

n

3.9	 The distribution of policy-year claims in a portfolio 
of 6,000 identical policies is summarized in the 
table.

	 (a)	� Fit a Poisson model to these data to obtain a 
probability function for the claim-count variable N 
for a single policy selected at random from this 
population.

	 (b)	� Check the goodness of fit of the resulting distribu
tion with a chi-square test.

# Claims # Policies

  0 5,220

  1 722

  2 52

  3 4

  4 2

≥5 0

Total 6,000
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3.10	 Derive these formulas for the moments of a random variable N with a mixed-
Poisson distribution directly from probability function (3.12), thus verifying 
(3.14) and (3.15).

	 (a)	 E [N 2] = E [l] + E [l2].        (b)  E [N 3] = E [l] + 3E [l2] + E [l3].
	 (c)	 E [(N - E [N ])3] = E [l] + 3Var[l] + E [(l - E [l])3].

3.11	 Assume that N has a mixed-Poisson distribution for which the mixing parameter 
l has a gamma distribution with (a, b) = (2, 1). Compute:

	 (a)	 E [N ].	 (b)  Var[N ].	 (c)  Pr{N ≤ 3}.

3.12	 N is the claim-count variable for a policy selected at random from a population 
characterized by a mixture of Poisson distributions for which l has a gamma 
distribution with E[l] = 0.100 and Var[l] = 0.005. Compute fN(n) for n = 
0, 1, 2, 3.

3.13	 Random variable N1 is Poisson-distributed with l = 0.75, variable N2 has a 
mixed-Poisson distribution with Pr{l = 0.6} = 0.75 and Pr{l = 1.2} = 0.25, 
and variable N3 has a mixed distribution for which ( ) = ( )

λ
−4

3
4/3f u e u.

	 (a)	 Show that E [N1] = E [N2] = E [N3].
	 (b)	 Compute Var[N1], Var[N2], and Var[N3].
	 (c)	 Compute fNi(n) for i = 1, 2, 3 and n = 0, 1, 2, 3, 4, 5.

3.14	 To the data of Example 3.6 fit a mixed Poisson distribution of the form

1
!

, 1.1 1 2 2 1 2
1 2( )( ) = ω λ + ω λ ω + ω =−λ −λf n

n
e en n

	 (a)	 Compute method-of-moments parameter estimates l̂1, l̂2, ŵ1, ŵ2.
	 (b)	� Compare the fit of the resulting distribution to that of the negative binomial 

distribution obtained in Example 3.6.

3.15	 The table displays the incidence of claims from a 
portfolio of 10,000 annual policies. Fit a reasonable 
distribution model to these data. What assumptions 
must one make? Test the goodness of fit of the fitted 
distribution.

3.16	 Prove identity (3.22) for the general binomial 
coefficient.

3.17	 Prove this identity: 
1

1

∏( )+
=

−
x i

i

n
 = G(x + n)/G(x), n =  

2,
 
3, 4, . . . .

3.18	 Derive these formulas for the mean and variance of a random variable N with 
the general negative binomial probability function (3.19).

	 (a)	 E [N ] = r(1 - q)/q.	 (b)  Var[N ] = r(1 - q)/q2.

# Claims # Policies

  0 8,956

  1 907

  2 120

  3 15

  4 2

≥5 0

Total 10,000



102	 Casualty Actuarial Society

Distributions for Actuaries

3.19	 Show that the negative binomial probability function (3.19) satisfies a 
recursion relation of the following form: there exist numbers a > 0 and b > 0 
such that

1 , 1, 2, 3, . . . .( ) ( )= + − =f n
na b

n
f n n

3.20	 Explain how the negative binomial probability function (3.19), whenever 
parameter r has a positive integer value, can be interpreted as Pr{M = n}, where 
M is the number of failures occurring before the r th success in a sequence of 
independent Bernoulli trials for which q is the probability of success in a single 
trial. The negative binomial distribution for which parameter r is a positive 
integer is sometimes called the Pascal distribution, after French mathematician 
and philosopher Blaise Pascal (1623–1662).37

3.21	 A random variable N with probability mass function

1 , 0 1, 0,1, 2, . . .( ) ( )= − < < =f n p p p nn

	 has a geometric distribution with parameter p.
	 (a)	 Show that the geometric distribution is a special case of the Pascal distribution.
	 (b)	 Compute E [N ] and Var[N ] in terms of p.

3.22	 A claim-count variable N is obtained as a mixture of geometric variables. Derive 
a formula for the probability function fN(n) under each of the following assump
tions about the distribution of the variable parameter p.

	 (a)	 p is uniformly distributed on the interval 0 < u < 1.
	 (b)	 p is distributed on the interval 0.10 < u < 1 with fp(u) = 1/(u log 10).

3.23	 (a)	� Verify that the moment-generating function Ml(t) for the mixing parameter l 
with the gamma probability density function (3.16) is

.( )( ) ( )= α − ν αλ
−αM t t

	 (b)	� Show that the moment-generating function MN(t) for the mixed distribution 
(3.17) satisfies the equation MN(t) = Ml(e t - 1), where Ml(t) is the generating 
function of part (a).

	 (c)	� Prove that the relation MN(t) = Ml(e t - 1) holds for an arbitrary (not just 
gamma) distribution for the variable parameter l.

37	 Pascal and fellow French mathematician Pierre de Fermat (1601–1665) are credited with establishing the 
mathematical foundations of probability. In a remarkable correspondence during the summer of 1654 they 
solved a celebrated problem from the realm of gambling: how should the stakes in a game of chance be divided 
between two equally skilled players when the game is interrupted? Pascal’s easily generalized solution made use of 
the array of binomial coefficients that has since become known as Pascal’s Triangle.
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3.24	 Let n1, n2, . . . , nm be observations of a random sample of size m drawn from a 
population with a negative binomial distribution (3.17) with unknown parameters 
(a, n). Find formulas for the method-of-moments parameter estimates (â, n̂).

3.25	 For the Pólya distribution of Example 3.7, compute:
	 (a)	 Pr{white on 3rd trialwhite on 1st & black on 2nd trial }.
	 (b)	 Pr{white on 3rd trialblack on 1st & white on 2nd trial }.
	 (c)	 Pr{white on 3rd trial }.

3.26	 The number Wm of white balls drawn from an urn in m Pólya trials has probability 
function Pn(100,25,5; m), n = 0, 1, 2, . . . , m.

	 (a)	 What is the degree of contagion?
	 (b)	 Compute these probabilities:

Pr{white on 1st trial },
Pr{white on 2nd trialwhite on 1st trial },
Pr{white on 2nd trialblack on 1st trial },
Pr{white on 2nd trial }.

	 (c)	 Compute the probabilities Pn(100,25,5;4) for n = 0, 1, 2, 3, 4.
	 (d )	� What is the limiting distribution of Wm as m → ∞ such that mp = 3.2 and 

the degree of contagion remain constant?

3.27	 (a)	� Demonstrate that the Pólya probability function (3.26) can be expressed in 
terms of the general binomial coefficients as

, , ;
1 1

1 1 1 1
,( ) = γ

+ −











−
γ

+ − −

−













γ
+ −











P w b c m
n

n

p
p

m n

m n
p

m

m
n

		  where p = w/(w + b) and g = c/w.
	 (b)	 Show that the denominator in part (a) can be written as

1
1

1
1 1 1 1 .

1 1
∏ ∏γ

+ −











= γ
+ − −

−











 γ

+ −





− −



= =

p
m

m
p

m n

m n pm
m i

m
i
mi

n

i

n

3.28	 N has a negative binomial distribution with mean 1.00 and contagion parameter 
g = 0.20. Compute the probabilities of N = 0, 1, 2, 3, 4, 5 claims.

3.29	 (a)	� Three independent claim-count variables (N1, N2, N3) have respective means 
(10, 25, 5) and contagion parameters (0.35, 0.20, 0). Compute the contagion 
parameter for N = N1 + N2 + N3.

	 (b)	� Let N be the sum of m independent claim-count random variables with means 
{ni} and contagion parameters {gi}. Prove that the contagion parameter for N is

.2
1 1

2
∑ ∑( )γ = γ ν ν= =i ii

m
ii

m
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3.30	 A policyholder owns a fleet of 20 insured automobiles. The claim process for each 
vehicle is Poisson-distributed with claim density of 0.30 per year. Assuming that 
the individual claim processes are independent, find the probability of incurring 
at least six auto claims in a single year.

3.31	 The claim-count variable for a portfolio of 8,000 policies is Poisson-distributed 
with an expected value of 650 claims. Assuming also that the claim-count variable 
for each policy has the same Poisson distribution, compute the expected number 
of policyholders that produce at least one claim.

3.32	 In a portfolio of m identical policies, the claim count for every policy  
has the same negative binomial distribution with contagion parameter g. If 
gm is the contagion parameter of the portfolio distribution, find limm→∞gm. 
What does this imply about the nature of the portfolio distribution for  
large m?

3.33	 The random time of occurrence—or waiting time—for successive claims in a 
claim process is occasionally of interest. In the case that the process is Poisson, 
the distribution of the random variable Tn, the occurrence time of the nth claim, 
has a particularly simple form.

Note that Tn ≤ t is identical to the event that at least n claims occur in the 
time interval [0, t). Thus, when the claim process is Poisson with parameter 
l = # claims per unit time, probability formula (3.4) implies that the distribution 
function for Tn is

∑
( ) { } ( )= ≤ =

−∞ < <

λ ≤ < ∞









−λ

=

∞Pr

0 if 0

!
if 0 .

F t T t

t

t e
k

t
n n k t

k n

	 (a)	 Show that Tn has the gamma probability density function

1 !
.1( ) ( )= λ

−
− −λf t

n
t en

n
n t

	 (b)	 Obtain E [Tn] and Var[Tn] in terms of n and l.
	 (c)	 Let T̂n denote the time between successive claims:

ˆ
if 1

if 2.

1

1

=
=

− ≥



 −

T
T n

T T n
n

n n

	 Show that variables T̂n are independent and that each has an exponential distribution 
with parameter b = 1/l.
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3.34	 The claim-count variable for a property policy with a two-year term has a Poisson 
distribution with 0.215 claims per year.

	 (a)	 What is the expected time until the occurrence of the first claim?
	 (b)	� What is the probability that the first claim will occur within the first year? . . . 

the second year?
	 (c)	� What is the probability that the second claim will occur within the first 

year? . . . the second year?

3.35	 For a certain claim process the claim-count variable N has a Poisson distribution 
with parameter l, and the probability that any given claim is fraudulent is p. 
Find the distribution of N* = # fraudulent claims. [Hint : for n = 1, 2, 3, . . .

iPr ( )

1 ( ).

*

∑

∑( ) { }

( )

= =

= 



 − 

=
∞

−
=

∞

f n n fraudulent claims N k f k

k
n p p f k

N k n N

n k n
Nk n
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The probability distribution of the total claim amount S for a claim process is called 
an aggregate loss (or aggregate claim) distribution. Because S depends on two 
independent random variables—the number of claims N and the claim size X—the 
distribution of S is a compound distribution, that is, an appropriate combination 
of the claim-count and claim-size distributions. In this chapter we describe how 
the aggregate distribution and its properties are derived from the component dis-
tributions of N and X and then discuss some practical methods for evaluating and 
approximating the distribution.

4.1.  A Discrete Example
Before providing a general definition of the aggregate distribution in the next 

section, we illustrate the basic ideas with a simple discrete model in Example 4.1.

Example 4.1.    Assume first that n = 0, 1, 2 are the only possible numbers of 
claims and that there exist just three potential claim sizes: {100, 200, 300}. Associated 
probability functions for N and X are shown in the following tables.

Claim Count N Claim Size X

# Claims n fN(n) Size x fX(x)

0 0.60 100 0.40

1 0.30 200 0.50

2 0.10 300 0.10

E[N ] = 0.50, Var[N ] = 0.45 E[X ] = 170, Var[X ] = 4,100

Thus, there are seven distinct total loss amounts: {0, 100, 200, 300, 400, 500, 600}. 
Probabilities for these values of S are defined by

if s S s S s N n f nS N
n
∑( ) { } { } ( )= = = = =
=

Pr Pr . (4.1)
0

2

4.  Aggregate Claims
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Conditional probabilities Pr{S = s | N = n} in this formula are displayed here for each 
n value and all possible s values.

n = 0 n = 1 n = 2

Amount s 0 100 100 + 100 100 + 200 100 + 300

200 200 + 100 200 + 200 200 + 300

300 300 + 100 300 + 200 300 + 300

Pr{S = s | N = n} 1.00 0.40 0.16 0.20 0.04

0.50 0.20 0.25 0.05

0.10 0.04 0.05 0.01

Inserting these tabulated probabilities into formula (4.1) yields values of the 
aggregate probability function. For example,

f S N f S N f

S N f

S N N

N

( ) { } ( ) { } ( )

{ }

( )( ) ( )( ) ( )( )

( )

= = = + = =

+ = =

= + + +

=

300 Pr 300 0 0 Pr 300 1 1

Pr 300 2 2

0 0.60 0.10 0.30 0.20 0.20 0.10

0.0700.

Other probabilities are obtained in a similar way and 
then assembled to form the distribution of S, shown 
in the table. Figure 4.1 displays a histogram of the 
discrete probability mass function fS.

The expected loss amount for such a policy is E[S ] 
= 85. In the next section, we shall see that it is not 
merely coincidental that E[S ] = (0.50)(170) = E[N ]
E[X ]. The premium charge for such a policy would 
therefore be $85 plus a loading for the expense of 
doing business and a provision for profit and risk. n

4.2.  Aggregate Distribution Properties
Example 4.1 shows how values for the aggregate random variable S can be generated 

in two steps: (i) select a number of claims N = n and then (ii) choose n claim-size values 
for X. The sum of these n numbers is a single value for S. Assuming that the sizes of 
successive claims are mutually independent and also independent of the number of 
claims, one can define the aggregate random variable by

=
=

+ + + >







0 if 0

. . . if 0,1 2

S
N

X X X NN

Aggregate Loss S

Amount s fs(s) Fs(s)

   0 0.6000 0.6000

100 0.1200 0.7200

200 0.1660 0.8860

300 0.0700 0.9560

400 0.0330 0.9890

500 0.0100 0.9990

600 0.0010 1.0000

E[S] = 85, Var[S] = 15,055
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where X1, X2, . . . , XN are independent random variables, all identical to X. This two-
step generation of the aggregate variable S suggests how to construct the probability 
distribution for S from the component claim-count and claim-size distributions. In the 
discussion that follows, fN(n) denotes Pr{N = n}, and F(x) is the cumulative distribution 
function for X.

For every positive integer n define Yn = Sn
k=1Xk as the sum of n independent random 

variables, each identical to X. (For later convenience, define Y0 = 0.) The distribution 
function of Yn is the convolution of n replicates of F(x):

� ��� ���F y Y y F F F y n y
n fold convolution

n n p p p( )( ) { } ( )∗ = ≤ = = −∞ < < ∞Pr . . . , 1, 2, 3, . . . , .
-

The convolution of two functions is obtained by a standard integral formula, employed 
in the following recursive definition of the sequence 〈F n

*( y)〉:38

p ∫( ) ( )

( )

( ) ( ) ( )

∗ =
<

≥







∗ = ∗ = ∗ − =− −−∞
∞

0 if 0

1 if 0
and

, 1, 2, 3, . . . . (4.2)

0

1 1

F y
y

y

F y F F y F y u dF u nn n n

Finally, the aggregate variable S has the compound distribution function

∑ ∑( ) ( ) ( ) ( ){ }= ≤ = = ∗ ≤ < ∞
=

∞

=

∞
Pr , 0 . (4.3)

0 0
F s f n Y s N n f n F s sS N n

n
N n

n

38	 Development of the convolution integral formula (F1 * F2)(x) = ∫
∞
-∞ F2(x - u) dF1(u) for the distribution function 

of the sum of two independent random variables can be found in most textbooks of mathematical probability; 
see also Problem 4.2. In practice, it is usually easier to derive the distribution of the sum Yn from the moment-
generating or characteristic functions of the random variables involved than it is to perform the sequence of 
integrations indicated in (4.2).

0.0

0.2

0.4

0.6

0 100 200 300 400 500 600 s

f (s)

Figure 4.1.   Aggregate Probability 
Mass Function [Example 4.1]
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The mth moments of S (m = 1, 2, 3, . . .) are related to the corresponding moments 
of the {Yn} variables by the equation

E S s dF s

s f n dF s f n s dF s

f n E Y

m m
S

m
N n

n
N

m
n

n

N n
m

n

∫

∑∫ ∫∑

∑

[ ]

[ ]

( )

( ) ( ) ( ) ( )

( )

=

= ∗ = ∗

=

∞

=

∞∞ ∞

=

∞

=

∞
, (4.4)

0

0
0 0

0

0

provided the E[Yn
m] exist. Formulas for the first three moments of Yn, displayed below, 

follow from the independence of the {Xk} variables. Derivation of these formulas also 
depends on the fact that the second and third moments of a sum of independent 
random variables are the respective sums of the second and third moments of the 
summands.

E Y n E X

E Y E Y E Y E Y

nE X E X n E X

nVar X n E X

E Y E Y E Y E Y E Y E Y

nE X E X n E X Var X n E X

n

n n n n
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Combining these results with equation (4.4) yields

E S f n nE X nf n E X E N E XN
n

N
n

∑ ∑[ ] [ ] [ ] [ ] [ ]( )( ) ( )= = 



 =

=

∞

=

∞
, (4.5)
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Therefore,

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]
[ ]

[ ] [ ]
[ ]

( )
( )

( ) ( )
( )

= +

=
−  +

+
− 

( [ ]) ,

3

. (4.8)
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E N E X E X Var N E X Var X

Var S

E N E N E X

Var S

If N is distributed with mean E[N ] = l and contagion parameter g so that Var[N ] = 
l + gl2, then formulas (4.5) and (4.8) become

E S E X

Var S E X E X

Sk S
E X E X E X E X

E X E X( )

[ ]
[ ] [ ]

[ ]

[ ] [ ]

[ ] [ ]

[ ] [ ] [ ]
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( )

( )
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= λ + γ λ

=
λ + γ λ + γ λ

λ + γ λ

,

,

3 2
. (4.9)

2 2 2

3 2 2 2 3 3

2 2 2 3 2

In the special case that N has a Poisson distribution, these formulas reduce to

E S E X

Var S E X

Sk S
E X

E X

[ ]
[ ]
[ ]( )

[ ] [ ]
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[ ]
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= λ

=
λ

,

,

. (4.10)

2

3

2 3 2

Derivations of (4.5)–(4.7) above, based on the fundamental equation (4.4) relating 
the moments of S to those of the sequence 〈Yn〉, are completely straightforward. 
However, as with any random variable, these formulas can also be derived from the 
moment-generating function of S whenever that function exists.

To construct MS(t), start with the moment-generating function of variable Yn. For 
each fixed n, Yn = Sn

k=1Xk is the sum of independent identical random variables, and 
therefore

M t E t X E t X M tY kk
n

k
k

n

X
n

n ∑ ∏( ) [ ] ( )( ) ( ) ( )=   = ==
=

exp exp ,1
1

where MX(t) is the generating function for the common claim-size variable X. Accord-
ingly, MS(t) is given by the series

M t E tY f n M t f n M tS N N Y
n

N X
n

n
n∑ ∑[ ] ( )( ) ( ) ( ) ( ) ( ) ( )= = =

=

∞

=

∞
exp .

0 0
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But this last formula can be interpreted as an expected value with respect to the 
distribution of N:

M t f n M t f n n M t E n M tS N X
n

n
N X

n
N X∑ ∑ [ ]( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )= = =

=

∞

=

∞
exp log exp log .

0 0

Thus, in terms of the generating function MN for N:

M t M M tS N X( )( ) ( )= log . (4.11)

As usual, E[S ] is now obtainable from (4.11) by differentiation:

E S M M M t
M t
M t

M
M
M

E N E XS N X
X

X t
N

X

X
[ ] [ ] [ ]( )( ) ( ) ( )

( ) ( ) ( )
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′
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′
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=

0 log 0
0
0

.
0

Similar derivations of formulas (4.6) and (4.7) are requested in Problem 4.5.

Example 4.2.    Assume that the claim-count random variable N has a Poisson (l) 
distribution:

f n
e
n

nN

n

( ) = λ =
−λ

!
, 0,1, 2, 3, . . . .

Moreover, suppose that claim size X is gamma (a, b) distributed:

F x

x

x
x
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( )

=

−∞ < <

Γ β α
Γ α

≤ < ∞









0 if 0

,
if 0 .

Accordingly, the moment-generating function for X is MX(t) = (1 - bt)-a, and the 
generating function for the sum of n independent such gamma variables is the nth power 
of MX(t):

M t t t tX
n n n( )( )( ) ( ) ( )= − β = − β −∞ < < β−α − α1 1 , 1 .

However, this is the generating function of a gamma variable with parameters (na, b), 
so the n-fold convolution of identical gamma-distributed variables also has a gamma 
distribution:

F y

y

y n
n

y n
n ( )

( )
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−∞ < <

Γ β α
Γ α

≤ < ∞ =









0 if 0

,
if 0 , 1, 2, 3, . . . .
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Note that deriving this convolution formula from the moment-generating function 
is considerably less onerous than carrying out the successive integrations indicated in 
formula (4.2). The distribution function for this combination of N and X can therefore 
be expressed in closed analytic form:

∑
( ) ( )

( )
=

−∞ < <

λ Γ β α
Γ α

≤ < ∞







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−λ

=

∞

0 if 0

!
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(4.12)
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In the particular instance that l = 2.5 and (a, b) = (3, 400), the Poisson formulas 
(4.10) imply that

E S

Var S

Sk S

[ ]

[ ]

[ ]

( )( )( )

( ) ( )( )( )( )

( )

= λαβ = =

= λα α + β = =

= α +
λα α +

= =

2.5 3 400 3,000,

1 2.5 3 4 400 4,800,000,

2
1

5
30

0.9129.

2 2

Values for the cumulative distribution function F(s) in this special case are displayed in 
Table 4.1. The distribution has a discrete lump of probability of size fN(0) = e-2.5 = 0.0821 
at s = 0, but at all other s values F(s) is continuous. A graph of the corresponding probability 
density function is shown in Figure 4.2. n

Table 4.1.    Aggregate Distribution 
[Example 4.2]

Amount s F(s)

0 0.0821

500 0.1096

1,000 0.1867

2,000 0.3755

3,000 0.5613

4,000 0.7152

5,000 0.8273

6,000 0.9013

7,000 0.9465

8,000 0.9723

9,000 0.9863

10,000 0.9934
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In Example 4.2 we observed that the convolution of a gamma cumulative 
distribution function with itself is also gamma, a fact which led to an easy-to-calculate 
exact formula for the aggregate distribution function of that example. However, this 
desirable reproductive property—the distribution of a sum of identical independent 
random variables having the same distribution type as the components—is shared 
by just a few families of distributions (notably the normal distributions, which are 
not generally useful as claim-size distributions). In fact, sums of the ubiquitous 
lognormal and Pareto distributions belong neither to their respective families nor to 
any other familiar parametric distribution family. As a consequence, actuaries have 
since the mid-1900s sought to develop various procedures for calculating values of an 
aggregate distribution. Among these are several approximations using easily calculable 
parametric distributions, algorithms featuring recursive formulas, Fourier-transform-
based methods, and Monte Carlo simulation. The remainder of this chapter is devoted 
to some of the most important of these techniques.

4.3.  Approximation by Matching Moments
In this section we discuss a traditional technique of approximation, the method 

of matching moments, similar to the method-of-moments for fitting a distribution 
model to sample data. This approach is based on the not-unreasonable assumption 
that two distributions with identical moments of order m, where usually 1 ≤ m ≤ 3, are 
sufficiently similar that one distribution can be used to approximate the other.39

The method consists of two steps:

(i)	 Calculate from the moments of the claim-count and claim-size distributions the 
required mean µ = E[S ], variance s2 = Var[S ], and skewness k = Sk[S ] according 
to formulas (4.5) and (4.8).

(ii) � Select from a convenient parametric family of continuous distributions the 
particular member with matching respective first, second, and third moments. 

39	 Although the method of matching moments usually gives reasonable results, the assumption on which it is 
based—that distributions with identical lowest moments are indeed comparable—could fail to hold. It is 
possible for distributions with identical first-, second-, and third-order moments to be significantly different. For 
a discussion of this “moment problem” see Pentikäinen [19] and the references cited there. However, Pentikäinen 
suggests that acceptable approximations are usually obtained by the method of matching moments when the 
variable X is restricted to a finite interval, as in the case that claim size is limited by policy conditions.
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Figure 4.2.    Aggregate Density Function 
[Example 4.2]
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The cumulative distribution function of this selected parametric distribution 
could then serve as an approximation to FS.

Normal Approximation
There are several reasons for considering a normal approximation to an aggregate-

loss distribution. The variables Yn defined in Section 4.2 are the sums of independent, 
identically distributed claim-size random variables. Thus, when n is large, the Central 
Limit Theorem implies that Yn is approximately normally distributed. In addition, 
whenever the claim count is Poisson-distributed with mean l (but not when N has a 
positive contagion parameter—see Problem 4.8), the Poisson formulas (4.10) imply 
that Sk[S ] is small for large values of l. In fact, in the Poisson case, one can observe that 
liml→∞ Sk[S ] = 0, so that the distribution of S is asymptotically symmetric.

In such a case—when N is Poisson-distributed and l is large—it is useful to try 
the approximation S ≈ Y = sZ + µ, where Z is the standard normal variable. This is 
equivalent to asserting that the standardized variable

T S
S( ) = − µ

σ
(4.13)

is approximately standard normal. The normal approximation S ≈ Y = sZ + µ (or 
equivalently, T(S) ≈ Z ), yields

F s S s T S T s

Z T s T s s s

S { }

{ } ( ) ( )

( ) { } ( ) ( )

( ) ( ) ( )

= ≤ = ≤

≈ ≤ = Φ = Φ − µ σ ≤ < ∞

Pr Pr

Pr , 0 . (4.14)

Because E[Y ] = E[S ] = µ and Var[Y ] = Var[S ] = s2, the normal approximation 
(4.14) certainly involves matching the first two, but not necessarily the third, moments 
of the distributions. Of course, the skewness of the symmetric variable Y = sZ + µ 
is zero, whereas Sk[S ] is usually positive. Because of this, the normal approximation 
generally underestimates the probabilities of large claims. Moreover, it could assign 
significant probability to negative values of s and thereby fail to model acceptably the 
short tail of the aggregate distribution (for instance, refer to Example 4.3). Obviously, 
the normal approximation is useful only in those cases where S is nearly symmetric. In 
other situations one must look elsewhere for a satisfactory approximation.

Gamma Approximation
When S is notably skewed, one way to improve on the normal approximation is 

to match moments with a known skewed distribution. The versatile family of gamma 
distributions often provides a reasonable starting point.

For example, consider a gamma-distributed variable G with parameters (a, b). The 
required mean µ and variance s2 then determine a and b:

µ = αβ

σ = αβ







α = µ σ

β = σ µ






implies

.2 2

2 2

2
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With these parameters the distribution of G has the specified mean and variance, 
and it is also skewed, with Sk[G ] = 2s/µ > 0. However, the utility of the gamma 
approximation S ≈ G depends on how close 2s/µ is to the desired skewness k.

For a better approximation—one that matches all three parameters µ, s, and k—
start again with a gamma variable G, except this time solve for the gamma parameters 
in terms of s and k:

σ = αβ

κ = α







α = κ

β = σκ







2

implies
4

1
2

.
(4.15)

2 2
2

As before, the distribution of G is now completely determined, but with E[G ] = ab 
= 2s/k. In order to match the required aggregate mean µ we introduce the shifted 
variable Y = G + µ - 2s/k, a random variable with all three specified properties:

E Y E G

Var Y Var G

Sk Y Sk G

[ ] [ ]

[ ] [ ]

[ ] [ ]

= + µ − σ κ = µ

= = σ

= = κ

2 ,

,

.

2

The distribution function of the resulting shifted gamma approximation S ≈ Y is

F s F s F s

s s

S Y G

( )

( ) ( ) ( )

( ) ( )

≈ = − µ + σ κ

= Γ − µ β + α α Γ α µ − σ κ ≤ < ∞

2

; , 2 , (4.16)

where gamma parameters a and b are given by (4.15). Depending on the sign and 
magnitude of the quantity µ - 2s/k, the shift of the origin sometimes adversely affects the 
modeling of the short tail of the distribution, as in the case of the normal approximation 
(again, refer to Example 4.3).

Normalizing Transformations
The normal approximation to S can also be improved by finding a refinement of 

the standardizing transformation (4.13) that allows for a better match of the third 
moments. Specifically, one could look for a transform T(S) with not only the properties 
E[T(S)] = 0 and Var[T(S)] = 1 as in (4.13), but with the additional property that the 
transformed variable be symmetric, or nearly so: Sk[T(S)] ≈ 0. If such a “symmetrizing” 
function T could be found, then the assumption T(S) ≈ Z is more likely to provide 
a satisfactory approximation to S. Such a transformation must necessarily be more 
complex than that of standardizing transformation (4.13). In particular, it cannot be 
linear, because the skewness property of a random variable is invariant under such a 
transformation (refer to Problem 2.26). Two such normalizing functions, described in 
this section, have been used extensively—the normal power and the Wilson–Hilferty  
transformations.
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For a random variable S with mean µ, variance s2, and skewness k the normal 
power transformation is defined by

iT S
S

NP ( ) =
κ

− µ
σ

+
κ

+ −
κ

6 9
1

3
. (4.17)2

It was proposed in 1969 by Finnish authors Lauri Kauppi and Pertti Ojantakanen, 
who were seeking an approximation to the Poisson case of an aggregate distribution.40 
Kauppi and Ojantakanen observed that for large values of S the standardized aggregate 
variable (S - µ)/s could be approximated by a certain quadratic polynomial Q in the 
standard normal variable Z:

Q Z Z Z
S( )( ) = κ − + ≈ − µ

σ6
1 . (4.18)2

This approximation formula is based on the so-called Edgeworth series expansion 
of a distribution function.41Solving the approximate equation (4.18) for Z yields 
formula (4.17) and the approximation

iZ T S Q S
S

NP =( )( ) ( )≈ = − µ σ
κ

− µ
σ

+
κ

+ −
κ

− 6 9
1

3
. (4.19)1

2

Thus, the normal power approximation to FS is

F s T sS NP( )( ) ( )≈ Φ . (4.20)

Formula (4.20) is generally applicable to the long tail of the distribution, the main 
region of interest in most applications. TNP is somewhat less successful in modeling 
the short tail, but a refinement of TNP(s) for smaller values of s exists.42 The Normal 
Power approach can generally be relied upon to give acceptable results whenever S is 
moderately skewed, say when k < 2.

Another classic approach to this problem is based on the work of Harvard 
statisticians Edwin B. Wilson and Margaret M. Hilferty. In 1931 Wilson and Hilferty 
developed a transformation of the chi-square variable X = c2(m) with m degrees of 
freedom that yielded, approximately, the standard normal variable Z:

W X m
X

m

m

Z
( )

( ) =
− −

≈

1 1 2
9

2
9

. (4.21)
3

40	 Kauppi and Ojantakanen [10].
41	 A detailed derivation of the normal power approximation from the Edgeworth expansion can be found in Beard, 

Pentikäinen, and Pesonen [3], pp. 107–110, 355–356.
42	 Ibid., pp. 116–117.
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This transformation gave rise to a remarkably accurate approximation to the cumulative 
distribution function of the chi-square random variable:

F x W xm ( )( ) ( )≈ Φ( )χ , (4.22)2

illustrated in Table 4.2. Since its initial appearance the Wilson–Hilferty transformation 
has been successfully generalized to other random variables—including, as we shall see, 
moderately skewed aggregate-loss variables.

To generalize (4.21) in this way, recall that c2(m) is gamma-distributed, with param-
eters a = (1/2) m and b = 2. Thus, E[c2(m)] = m  and Var[c2(m)] = 2m. Thus, for the scaled 
variable Y  = (1/m) c2 (m)  we have E[Y ] = 1 and Var[Y ] = 2/m. Setting v Var Y[ ]= , one  
can express transformation W in (4.21) as

W Y
v

Y
v( )( ) = − +3

1
3

. (4.23)1/3

It is a simple matter now to apply (4.23) to an arbitrary gamma random variable G 
with parameters (a, b). In this case, set Y = G/(ab), for which v = α1 . Consequently,

W Y Y( )( ) = α − +
α

3 1
1

3
,1/3

or in terms of the variable G,

W G
G( ) = α − αβ

αβ
+ α





− α +
α

3 3
1

3
. (4.24)3

1/3

Table 4.2.   Wilson-Hilferty Approximation to x2(10)

x Fc2(10)(x) F(W (x)) Relative Error

  3 0.0186 0.0193 +3.76%

  6 0.1847 0.1837 -0.54%

  9 0.4679 0.4672 -0.15%

12 0.7149 0.7155 +0.08%

15 0.8679 0.8686 +0.08%

18 0.9450 0.9453 +0.03%

21 0.9789 0.9789 +0.00%

24 0.9924 0.9923 -0.01%

27 0.9974 0.9973 -0.01%

30 0.9991 0.9991   0.00%
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Replacing G with S and substituting ab = E[G ] = µ, ab2 = Var[G ] = s2, α =2  
Sk G[ ] = κ into (4.24) leads to a transformation of the aggregate variable S:

T S
S

WH ( ) ( )( ) =
κ

− µ
σ

+
κ

−
κ

+ κ
3

2 2 6
6

. (4.25)
2/3 1/3

As in (4.22), we obtain the Wilson–Hilferty approximation to distribution 
function FS(s):

F s T s sS WH( )( ) ( )≈ Φ ≤ < ∞, 0 . (4.26)

Because this approximation has been so successfully applied to gamma random 
variables, which in turn have provided acceptable approximations to a wide range 
of aggregate distributions, it is not surprising that the Wilson–Hilferty formula has 
proved to be useful in approximating aggregate distributions, as well.

In fact, all three approaches that take into consideration the skewness of S—
the shifted gamma, the normal power, and the Wilson–Hilferty schemes—provide 
acceptable approximations to the aggregate-loss variable S whenever the skewness is 
not too large.

Example 4.3.    The result of applying the normal (4.14), shifted gamma (4.16), 
normal power (4.20), and Wilson–Hilferty (4.26) approximations to the moderately 
skewed distribution of Example 4.2 are displayed in Table 4.3. The normal approximation 
clearly fails to yield a reasonable result, whereas the other three methods generate quite 
acceptable approximations to the long tail of the distribution.

Application of these same approximations to the Poisson/gamma distribution (4.12) 
for which l = 10, a = 0.05, and b = 6,000 yields the outcomes shown in Table 4.4. 

Table 4.3.    Approximations to FS(s): m 5 3,000, s 5 2,191, k 5 0.9129 [Example 4.3]

Amount s F(s) Normal
Relative 

Error
Normal 
Power

Relative 
Error

Shifted 
Gamma

Relative 
Error

Wilson-
Hilferty

Relative 
Error

0 0.0821 0.0855 +4.14% 0.0534 -34.96% 0.0459 -44.09% 0.0464 -43.48%

1,000 0.1867 0.1807 -3.21% 0.1900 +1.77% 0.1775 -4.93% 0.1765 -5.46%

2,000 0.3755 0.3240 -13.72% 0.3745 -0.27% 0.3680 -2.00% 0.3668 -2.32%

3,000 0.5613 0.5000 -10.92% 0.5591 -0.39% 0.5607 -0.11% 0.5605 -0.14%

4,000 0.7152 0.6760 -5.48% 0.7125 -0.38% 0.7185 +0.46% 0.7191 +0.55%

5,000 0.8273 0.8193 -0.97% 0.8245 -0.34% 0.8310 +0.45% 0.8318 +0.54%

6,000 0.9013 0.9145 +1.46% 0.8987 -0.29% 0.9038 +0.28% 0.9044 +0.34%

7,000 0.9465 0.9661 +2.07% 0.9443 -0.23% 0.9475 +0.11% 0.9478 +0.14%

8,000 0.9723 0.9888 +1.70% 0.9707 -0.16% 0.9724 +0.01% 0.9724 +0.01%

10,000 0.9934 0.9993 +0.59% 0.9927 -0.07% 0.9930 -0.04% 0.9929 -0.05%
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This second distribution is considerably more skewed than that in Table 4.3, with  
µ = 3,000, s = 4,347, and k = 2.8293. Again, as expected, the normal approximation 
is unsuitable. The shifted gamma and Wilson–Hilferty methods, however, produce 
generally satisfactory results, at least to the long tail, while the normal power 
approximation is less accurate. n

4.4.  Recursion
In contrast to the method of matching moments, in which the approximating dis-

tribution for the aggregate-loss random variable is selected from a family of continuous 
distributions, the next technique under consideration involves a discrete approximating 
distribution. Values of this distribution are calculated by means of a recursion formula 
for the aggregate probability function.

The recursion approach has been studied since the mid-1960s, when the Poisson 
case was first described by R. M. Adelson. It was later extended to other cases by 
such authors as H. H. Panjer.43 We present in this section a basic formulation of 
the recursion method, which rests on a pair of assumptions, one for each of the 
variables N and X.

Suppose first that the claim count N has a distribution for which the probability 
function fN(n) satisfies, for some constants a and b, a recursion relation on n:

f n
na b

n
f n nN N( ) ( )= + − =1 , 1, 2, 3, . . . . (4.27)

43	 Panjer [17].

Table 4.4.    Approximations to FS(s): m 5 3,000, s 5 4,347, k 5 2.8293 [Example 4.3]

Amount s F (s) Normal
Relative 

Error
Normal 
Power

Relative 
Error

Shifted 
Gamma

Relative 
Error

Wilson-
Hilferty

Relative 
Error

0 0.00005 0.2451 — 0.4023 — 0.1228 — 0.1494 —

2,000 0.5922 0.4090 -30.94% 0.5866 -0.95% 0.5886 -0.61% 0.5835 -1.47%

4,000 0.7513 0.5910 -21.34% 0.7108 -5.39% 0.7504 -0.12% 0.7519 +0.08%

6,000 0.8401 0.7549 -10.14% 0.7978 -5.04% 0.8402 -0.01% 0.8443 +0.50%

8,000 0.8946 0.8750 -2.19% 0.8590 -3.98% 0.8949 +0.03% 0.8992 +0.51%

10,000 0.9294 0.9463 +1.82% 0.9020 -2.95% 0.9298 +0.04% 0.9333 +0.42%

12,000 0.9522 0.9808 +3.00% 0.9322 -2.10% 0.9525 +0.03% 0.9552 +0.32%

14,000 0.9674 0.9943 +2.78% 0.9532 -1.47% 0.9676 +0.02% 0.9694 +0.21%

16,000 0.9777 0.9986 +2.14% 0.9678 -1.01% 0.9778 +0.01% 0.9789 +0.12%

18,000 0.9846 0.9997 +1.53% 0.9779 -0.68% 0.9847 +0.01% 0.9853 +0.07%
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Whenever N is Poisson-distributed with E[N ] = l, it is easy to show that probabilities 
fN(n) satisfy (4.27) with a = 0 and b = l. This relation also holds in the negative 
binomial case—refer to Problem 3.19.

In addition, assume that claim-size variable X has a discrete structure, with only a 
finite number of equally spaced values xk:

x kh k m h step lengthk { }{ } = = >: 0,1, 2, . . . , ˆ , where 0 is the constant . (4.28)

We denote the probability mass function for X by

g k X x f xk X k( ) { } ( )= = =Pr ,

for which, as usual, g(k) ≥ 0 and S∞
k=0 g(k) = Sm̂

k=0 g(k) = 1. It is convenient to select m̂ 
so that m̂ = max{k : g(k) > 0}.

Again, let Yn = Sn
i=1Xi be the sum of n (n ≥ 1) independent random variables, each 

identical to X . Because the component variables {Xi} can have only values that are 
multiples of h, this is true for each Yn and for the aggregate loss variable S, as well. 
Probabilities for Yn are denoted by

g m Y mh mn n( ) { }= = =Pr , 0,1, 2, 3, . . . ,

where, by convention, g0(0) = 1 and g0(m) = 0 when m ≥ 1. Thus, the probability 
function fS(m) for S has the form

f m S mh f n g m mS N n
n
∑( ) { } ( ) ( )= = = =
=

∞
Pr , 0,1, 2, 3, . . . . (4.29)

0

Because of the independence of the {Xi} it is easy to verify that the convolution 
probabilities gn(m) can be expressed recursively for positive n by

g m g k g m k mn n
k

m

∑( ) ( ) ( )= − =−
=

, 0,1, 2, 3, . . . . (4.30)1
0

In addition, observe that gn(0) = gn(0) for each positive n, so that

∑
( )

( ) ( ) ( )
( ) ( )

( ) ( )
= =

=

>





=

∞
0 0

0 if 0 0

log 0 if 0 0.
(4.31)

0
f f n g

f g

M g g
S N

n
N

N
n

Finally, applying (4.27) to formula (4.29), we obtain

f m a
b
n

f n g m mS N n
n
∑( )( ) ( ) ( )= + − =

=

∞

1 , 1, 2, 3, . . . . (4.32)
1

Having established these preliminary results, we can now state and prove the main 
theorem about fS(m):
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The probability function for the aggregate-loss variable with a claim-count distribution 
satisfying (4.27) and a claim-size variable having the discrete structure (4.28) satisfies a 
recursion relation on the integer variable m:

f m
ag

a
b
m

k g k f m k mS S
k

m

∑( )( ) ( ) ( ) ( )=
−

+ − =
=

1
1 0

, 1, 2, 3, . . . , (4.33)
1

and fS(0) is given by (4.31).

Proof : Verification of formula (4.33) rests on an ingenious argument about con-
ditional probabilities and expectations for the random variables involved in the sums 
{Yn} to create an alternative expression for gn(m).

Begin by considering the following conditional probability formula for Xn. Vari
ables Xn and X1 + X2 + . . . + Xn-1 are independent, so for each k and for each positive 
m for which gn(m) ≠ 0

X kh Y mh
g k g m k

g mn n
n

n
{ } ( ) ( )

( )= = =
−−Pr .1

Subject to the condition Yn = mh, the expected value of Xn is therefore

E X Y mh h
k g k g m k

g mn n
n

nk

m

∑[ ] ( ) ( )
( )= =

−−

=

. (4.34)1

1

It is obvious that

E X Y mh E Y Y mh mhi n
i

n

n n∑ [ ] [ ]= = = =
=

. (4.35)
1

However, the random variables {Xi} are identical and independent, and they play sym
metric roles in the definition of Yn. This means that the expected values E[Xi | Yn = mh] 
must be identical, so that the sum in equation (4.35) must also equal nE[Xn | Yn = mh]. 
Consequently, E[Xn | Yn = mh] = (m/n)h. Substituting this value into equation (4.34) yields 
the alternate formula

g m
n
m

kg k g m kn n
k

m

∑( ) ( ) ( )= −−
=

. (4.36)1
1

But g(k)gn-1 (m - k) = 0 whenever gn(m) = 0, so (4.36) is valid for all values of m.
To conclude, apply (4.30) and (4.36) to formula (4.32) and obtain

i

f m af n g m
b
n

f n g m

af n g k g m k
b
n

f n
n
m

k g k g m k

S N n
n

N n
n

N
n

n
k

m

N n
k

m

n

∑

∑

∑

∑ ∑ ∑

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

= − + −

= − − + − −

=

∞

=

∞

=

∞

−
=

−
==

∞

1 1

1 1

1 1

1
1

0
1

11
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ag f n g m a
b
m

k g k f n g m k

ag f m a
b
m

k g k f m k

N n
n

N n
nk

m

S S
k

m

∑

∑

∑ ∑( )
( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= − + + − −

= + + −

−
=

∞

−
=

∞

=

=

0 1 1

0 .

1
1

1
11

1

Solving this equation for fS(m) yields (4.33), as required. n

Example 4.4.    Claim-count random variable N is Poisson-
distributed with mean l = 1.75. Variable X has a discrete 
structure of the form (4.28), with h = 1,000, m̂ = 5, and the 
tabulated probabilities g(k).

Applying formula (4.33) in succession yields the probability 
function for the aggregate variable S:

f eS ( ) = =−0 0.1738,1.75

fS ( ) ( )( )( )= =1
1.75

1
1 0.20 0.1738 0.0608,

fS [ ]( ) ( )( )( ) ( )( )( )= + =2
1.75

2
1 0.20 0.0608 2 0.40 0.1738 0.1323,

fS [ ]( ) ( )( )( ) ( )( )( ) ( )( )( )= + +

=

3
1.75

3
1 0.20 0.1323 2 0.40 0.0608 3 0.20 0.1738

0.1046,

fS [

]

( ) ( )( )( ) ( )( )( ) ( )( )( )

( )( )( )

= + +

+ =

4
1.75

4
1 0.20 0.1046 2 0.40 0.1323 3 0.20 0.0608

4 0.15 0.1738 0.1170,

. . . .

The cumulative probability function F is a step function:

� �
F s f kS S

k

s h

∑( ) ( )=
=

.
0

Values of the derived discrete distribution functions for S are displayed in Table 4.5. n

In order to use formula (4.33) to approximate the distribution of an aggregate-
loss variable S for which the claim-size variable X is continuous, or continuous almost 
everywhere, one must first approximate X with a discrete variable of the form (4.28) by 
selecting parameters h and m̂ and defining probabilities g(k).

k xk g(k)

  1 1,000 0.20

  2 2,000 0.40

  3 3,000 0.20

  4 4,000 0.15

  5 5,000 0.05

≥6 1,000 k 0.00
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In general, greater accuracy is achieved by choosing h small and m̂ large. However, 
there does exist a tradeoff. The recursive nature of the method requires the calculation 
of all preceding values { fS(1), fS(2), . . . , fS(m - 1)} before fS(m) can be evaluated, 
necessitating a large number of arithmetic operations in most applications. Calculation 
time can be adversely affected if m̂ becomes too large.

Whenever X is censored—say, by a policy limit l—one should select h and m̂ so 
that m̂h = l. On the other hand, if X is unlimited, then m̂h must be large enough to 
guarantee that 1 - FX(m̂h) is small, as in Example 4.5.

Probabilities g(k) can be defined in variety of ways. In general, one is faced with 
the problem of starting with a continuous probability distribution defined by FX for 
intervals of X values and redistributing the total probability mass to a finite set of point 
values. One simple technique, often referred to as the midpoint method, is to treat the 
lattice points {kh} as the midpoints of certain intervals and then assign probabilities as 
follows:

g F h

g k F k h F k h k m

g m F m h

X

X X

X

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )

=

= + − − = −

= − −

0 ,

, 1, 2, . . . , ˆ 1,

ˆ 1 ˆ . (4.37)

1
2

1
2

1
2

1
2

Table 4.5.    Aggregate Distribution [Example 4.4]

Amount s fS(s) FS(s)

0 0.1738 0.1738

1,000 0.0608 0.2346

2,000 0.1323 0.3669

3,000 0.1046 0.4715

4,000 0.1170 0.5886

5,000 0.0932 0.6818

6,000 0.0786 0.7604

7,000 0.0641 0.8245

8,000 0.0499 0.8744

9,000 0.0377 0.9121

10,000 0.0274 0.9395

12,000 0.0138 0.9729

14,000 0.0063 0.9886

16,000 0.0027 0.9955
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One difficulty with the midpoint method is that when h is large and m̂ is small the 
discrete distribution may fail to have the same moments as the continuous distribution 
for X. This can often be improved by a careful selection of h and m̂.

Example 4.5.    Return again to the aggregate-loss variable of Example 4.2, in which 
N is Poisson with E[N ] = 2.5 and X is gamma-distributed with (a, b) = (3, 400), so 
that E[X ] = 1,200 and Var[X ] = 480,000.

Now approximate the distribution function using recursion model (4.33), with 
the midpoint method for assigning claim-size probabilities and two choices for param-
eters h and m̂: (A) (h, m̂) = (100, 60) and (B) (h, m̂) = (20, 300). Note that m̂h =  
6,000 in both cases, and that FX(6,000) = 0.99996. Both sets of parameters return 
good approximations to E[X ] and Var[X ]: (1,199.98; 480,642) for option (A) and 
(1,199.88; 479,846) for (B). Nevertheless, the two options do yield materially different 
approximations to FS(s), as shown in Table 4.6. n

4.5.  Fourier Approximation
We have already observed that the moment-generating function of a random variable 

is a Laplace transform of its probability density function f. In an analogous way, the 
characteristic function j of a random variable is defined as a Fourier transform of the 
density function:

t E e e f x dx t iitX itx∫ ( )[ ]( ) ( )ϕ = = = −−∞
∞ for all real 1 . (4.38)

Table 4.6.    Aggregate Distribution, Discrete Approximations [Example 4.5]

Amount s FS(s)
Approx (A)  

h = 100 Relative Error
Approx (B)  

h = 20 Relative Error

0 0.0821 0.0821   0.00% 0.0821   0.00%

500 0.1096 0.1158 +5.66% 0.1108 +1.09%

1,000 0.1867 0.1956 +4.77% 0.1885 +0.96%

2,000 0.3755 0.3852 +2.58% 0.3775 +0.53%

3,000 0.5613 0.5699 +1.53% 0.5630 +0.30%

4,000 0.7152 0.7218 +0.92% 0.7165 +0.18%

5,000 0.8273 0.8318 +0.54% 0.8282 +0.11%

6,000 0.9013 0.9042 +0.32% 0.9019 +0.07%

7,000 0.9465 0.9482 +0.18% 0.9469 +0.04%

8,000 0.9723 0.9733 +0.10% 0.9725 +0.02%

9,000 0.9863 0.9868 +0.05% 0.9864 +0.01%

10,000 0.9934 0.9937 +0.03% 0.9935 +0.01%
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Whereas the moment-generating function of a random variable could fail to exist, 
the expected value in (4.38) exists for every random variable. Moreover, to every charac-
teristic function there corresponds a unique probability distribution, thus establishing 
a one-to-one correspondence between the set of probability distributions and the set of 
characteristic functions.

There exists a variety of formulas that invert formula (4.38) and allow recovery 
of the density function f—or equivalently, the distribution function F—from j(t). 
Particularly useful in this section is the inversion formula

F x F x e t
t

dt
i tx

∫ ( )( ) ( ) ( )+ + −
= −

π
ℑ ϕ−∞

2
1
2

1
, (4.39)

0

where F(x+) and F(x-) are the respective right- and left-hand limits of F at x.44

The correspondence between distributions and characteristic functions has been 
exploited by several authors—notably in the early 1980s by Philip Heckman and 
Glenn Meyers45—to develop methods for approximating an aggregate distribution 
function. These methods generally involve setting up the approximating function in a 
such a way that an appropriate inversion formula becomes easy to evaluate. The general 
approach to using characteristic functions as the basis of an approximation is outlined 
in this section, with particular attention paid to the Heckman–Meyers approach.

The characteristic function of an aggregate variable S is defined in a manner 
analogous to that of the moment-generating function MS(t). For each positive integer n 
the characteristic function of Yn = Sn

k=1Xk is given by the product

t E it X E it X tY kk
n

k
k

n

X
n

n ∑ ∏( ) [ ] ( )( ) ( ) ( )ϕ =   = = ϕ=
=

exp exp ,1
1

where jX(t) is that of the common claim-size distribution. Thus, jS(t) is given by the series

t E itY f n t f n tS N N Y
n

N X
n

n
n∑ ∑[ ] ( )( ) ( ) ( ) ( ) ( ) ( )ϕ = = ϕ = ϕ

=

∞

=

∞
exp . (4.40)

0 0

Finally, jS(t) can be expressed in terms of MN(t), as in (4.11):

t M tS N X( )( ) ( )ϕ = ϕlog . (4.41)

In the case that N has a Poisson (l) distribution, this equation becomes

t tS X( )( ) ( )ϕ = λϕ − λexp . (4.42)

44	 ℑ(a + ib) denotes the imaginary part of the complex number a + ib: ℑ(a + ib) = b and | a + ib | = a b+2 2 . Also, 
eiq can be expressed as a complex number of the form a + ib by means of Euler’s Formula: ei q = cosq + i sinq. Note 
that if F is continuous at x, then (1/2) (F (x+ ) + F (x-)) = F (x). For a derivation of inversion formula (4.39) 
consult, for example, Parzen [18], pp. 400–413.

45	 Heckman and Meyers [5].
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On the other hand, if N has a negative binomial distribution with mean l and contagion 
parameter g (g ≠ 0), then

t tS X( )( ) ( )ϕ = + λγ − λγ ϕ − γ1 . (4.43)1

Example 4.6.    The characteristic function for the gamma (a, b) random variable 
is j(t) = (1 - ibt)-a. Therefore, the aggregate variable S with a Poisson-distributed 
claim count with mean l and a gamma (a, b) claim-size distribution has characteristic 
function jS(t) = exp(l(1 - ibt)-a - l). n

The Heckman–Meyers algorithm begins with the definition of a piecewise-
linear approximation to the cumulative distribution function FX(x) for claim-size 
variable X. As we shall soon discover, this approach gives rise to a computationally 
tractable characteristic function for S. We start by assuming that FX(x) is continuous 
on an interval 0 < x < l. The Heckman-Meyers algorithm accordingly assumes that 
X is censored at l. If one must use an uncensored variable, choose l large enough so 
that 1 - FX(l ) is negligibly small. After partitioning the closed interval [0, l ] into 
m subintervals

c c c c lm m= < < < < =−0 . . . ,0 1 1

we approximate FX(x) by a piecewise-linear function F̂X(x) with nodes at the points46

c F c k mk X k( )( ) =, , 0,1, 2, . . . , .

That is, the graph of y = F̂X(x) on [0, l ] is a continuous polygonal curve connecting the 
endpoints (0, FX(0)) and (l, FX(l )). The associated probability density function f X̂(x) 
is a step function—that is, f X̂(x) is piecewise constant on [0, l ], with the sequence of 
constants defined by

F c F c
c c

k mk
X k X k

k k

( ) ( )
δ =

−
−

=−

−
, 1, 2, . . . , .1

1

Consequently, the characteristic function associated with the approximating distribu-
tion function F̂X(x) is

t e dx F c e

tx i tx dx F c e

X k
itx
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c

k

m

X m
ic t

kc
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X m
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∫∑
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ϕ = δ + −

= δ + + −

=

=

−

−

ˆ 1

cos sin 1

1

1

1

1

46	 To improve the approximation to FX(x) it is advantageous to use a nonregular partition, with partition points 
closer together nearer x = 0, where the graph of y = F(x) is steeper, and farther apart nearer x = l, where the graph 
is flatter. For example, the formula ck = exp(log(l )k/m) for 1 ≤ k ≤ m often works well—see Example 4.7.
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where A(t ) and B(t ) denote the real and imaginary parts of ĵX(t), respectively. Note 
that a discrete lump of probability of size 1 - FX(l ) has been incorporated at the upper 
limit l = cm.

We can now use formulas (4.42) and (4.43) to develop the characteristic function 
for the approximating aggregate distribution. In the Poisson case

t A t i B t R t eS
i t( )( ) ( ) ( ) ( )ϕ = λ + λ − λ = ( )θˆ exp ,

where R(t) = elA(t)-l and q(t) = lB(t). In the negative binomial case the function is

t A t iB t R t eS
i t( )( )( ) ( ) ( ) ( )ϕ = + λγ − λγ + = ( )− γ θˆ 1 ,1

with

R t A t B t

t
B t

A t

( )( ) ( ) ( )

( ) ( )
( )

= + λγ − λγ + λγ

θ = −
γ

λγ
+ λγ − λγ





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− γ
1 and

1
arctan

1
.

2 2 1

The cumulative distribution function of S is recoverable from ĵS(t) by means of 
inversion formula (4.39):

∫

∫

∫

( )

( )

( )

( ) ( ) ( )

( )

( )

( )

≈ = −
π

ℑ ϕ

= −
π
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∞
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sin , (4.44)
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S S
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its i t

whenever FS(s) is continuous at s. In their paper [5], Heckman and Meyers use numerical 
integration to evaluate formula (4.44) at the required values of s.

Example 4.7.    An application of the Heckman–Meyers algorithm to the aggre-
gate distribution of Example 4.2 yields the results shown in Table 4.7.47 Here the 

47	 These results were obtained from an implementation of the Heckman–Meyers algorithm in a Microsoft Excel 
workbook created by the author.
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basic claim-size interval of definition is taken as [0; 20,000], with partition points  
ck = exp(log(20,000)k/256), k = 1, 2, . . . , 256. This choice of partition improves the 
accuracy of the approximation by placing the points closer together at the left end of 
the interval and farther apart at the right end, where the distribution is flatter. The 
approximation is highly accurate, except at the single point s = 0. At this exceptional 
point there is a discrete lump of probability, the probability of N = 0 claims. Such 
points of discrete probability give rise to jump discontinuities in the function FS(s), as 
discussed in the next section. n

4.6.  Discontinuities
When a generally continuous claim-size distribution has a nonzero probability amount 

at a positive singular point x, the corresponding aggregate distribution function has a 
jump discontinuity at all multiples of x. This phenomenon is always present when the 
continuous claim-size variable X is censored at a limit value l. The distribution of the 
modified variable has a discrete lump of probability in the amount of 1 - FX(l ) at x = l 
and an aggregate distribution function based on the modified distribution would then 
have jump discontinuities at all positive integer multiples of l.

The size of the jump discontinuity in the aggregate distribution at s = kl, the kth 
multiple of the claim limit l, is given by

if k F l kN X
k( )( ) ( )− =1 , 1, 2, 3, . . . . (4.45)

In situations where E[N ] is fairly large, the probability fN(k)—and therefore the 
size of the discontinuity at k—is comfortably small. When this occurs the error of 

Table 4.7.    Heckman–Meyers Approximation [Example 4.7]

Amount s F (s) F̂ (s) Relative Error

0 0.0821 0.0412 -49.82%

500 0.1096 0.1094 -0.15%

1,000 0.1867 0.1869 +0.10%

2,000 0.3755 0.3757 +0.06%

3,000 0.5613 0.5614 +0.01%

4,000 0.7152 0.7151 -0.01%

5,000 0.8273 0.8271 -0.02%

6,000 0.9013 0.9011 -0.02%

7,000 0.9465 0.9463 -0.02%

8,000 0.9723 0.9722 -0.01%

9,000 0.9863 0.9862 -0.01%

10,000 0.9934 0.9934 0.00%
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approximation by a continuous function is negligible. On the other hand, when the 
expected number of claims is small, then the techniques discussed in Sections 4.3 
and 4.5 can fail to provide a reasonable approximation at or near such a point of 
discontinuity. The next example illustrates this situation.

Example 4.8.    Consider a gamma-distributed claim-size variable X with (a, b) = 
(2.5, 500). The unlimited mean is 1,250, but the distribution limited at l = 2,000 has 
a mean of 1,147. The limited distribution has a single discrete amount of probability 
of size 0.1562 at l = 2,000.

Compounding this claim-size variable with a Poisson claim-count variable with 
mean l = 1.308 yields an aggregate random variable S with mean 1,500 = (1.308)
(1,147). The aggregate distribution function FS will then have a jump discontinuity at 
s = 2,000, the size of which is given by (4.45) with k = 1:

e( )( ) ( ) =−1.308 0.1562 0.0552.1.308

Approximating the aggregate distribution function by the shifted gamma approxi-
mation (4.16) yields the continuous function shown in the graph of Figure 4.3 as the 
dashed curve. This approximation has considerable error throughout a fairly broad 
interval about the discontinuity at s = 2,000.

By way of contrast, the Fourier approximation (4.44) based on the Heckman-Meyers 
algorithm does a better job of approximating the function near the singular point, but 
as a continuous function it also has difficulty at the point itself. This approximation is 
shown in Figure 4.3 as the solid curve. Note that the graph of the Heckman–Meyers 
function passes through the midpoint of the jump at s = 2,000. n

4.7.  Simulation
Methods for calculating or approximating aggregate loss distributions discussed in 

the previous sections all involve deterministic models—that is, numbers associated with 
the approximating distribution are all calculable from definite algorithms and functional 
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s

Figure 4.3.    Approximations to F(s) at a Point of 
Discontinuity [Example 4.8]
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formulas. In this section we turn to another classic approach to the problem—the 
method of distribution simulation, often called Monte Carlo simulation in reference 
to its stochastic basis.

The simulation technique is conceptually simple and straightforward: first 
(i) generate a large random sample of selections from the parametric distribution in 
question, and then (ii) create the discrete distribution for this sample, a distribution 
which can be a useful approximation to the original parametric distribution. In the 
case of stochastic simulation, however, there is no empirical population of data from 
which to select a random sample. The sample points must be generated, either from 
a table of random numbers or by means of a computer random number generator. 
Such computer software packages—more accurately characterized as pseudo random 
number generators—typically generate numbers uniformly distributed between 0 and 1.

At the heart of the simulation method lies the following theorem, used to transform 
a number u randomly selected from a uniform distribution on the interval 0 < u < 1 to 
a random value of a variable with a specified distribution. Thus, if F is the distribution 
function of random variable Y and u is a number randomly generated from the interval 
0 < u < 1, then F̃ -1(u)—where F̃ -1 is the generalized inverse function defined at 
(4.46)—is a randomly generated value of variable Y.

Assume that F( y) = Pr{Y ≤ y} is the cumulative distribution function for random vari-
able Y. The generalized inverse function F̃ -1 is defined for each u in the open interval (0, 1) by

�F u u F{ }( ) ( )= ξ ≤ ξ− min : . (4.46)1

If random variable U is uniformly distributed on the interval (0, 1), then random variable 
F̃ -1(U ) is identical to Y: F̃ -1(U ) = Y.

Proof : Observe first that F̃ -1 has the following properties:

�u F F u u( ) ( )( )≤ − for all in 0,1 , (4.47)1

�F F y y y( )( ) ≤− for all real , (4.48)1

�F u u( )− is a nondecreasing function of , (4.49)1

(refer to Problem 4.19). The theorem will be established if we can show that for all real y

�u F u y u u F y{ }( ) ( ){ }≤ = ≤−: : . (4.50)1

Then, if random variable U is uniformly distributed on (0, 1), equation (4.50) 
implies that

F U y U F y F y y{ }( ) ( ){ } ( )≤ = ≤ = −∞ < < ∞−Pr Pr , .1

As a result, random variables F̃ -1(U ) and Y have the same cumulative distribution 
function F( y), and so they must be identical: F̃ -1(U ) = Y.
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To prove equation (4.50), assume that y is a fixed real number. First select u in (0, 1) 
so that F̃ -1(u) ≤ y. Because of (4.47) and the fact that F is a nondecreasing function

�u F F u F y( )( ) ( )≤ ≤− . (4.51)1

Conversely, suppose that u ≤ F( y). Properties (4.48) and 4.49) imply that

� �F u F F y y( ) ( )( )≤ ≤− − . (4.52)1 1

Combining (4.51) and (4.52) yields the desired result. n

Example 4.9.    Suppose that X has the claim-size distribution of Example 4.1, 
with cumulative distribution function

F x

x

x

x

x

( ) =

−∞ < <

≤ <

≤ <

≤ < ∞













0 if 100

0.40 if 100 200

0.90 if 200 300

1.00 if 300 .

(a)  The inverse (4.46) is therefore given by

�F u

u

u

u

( ) =

< ≤

< ≤

< <









−

100 if 0 0.40

200 if 0.40 0.90

300 if 0.90 1.00.

(4.53)1

If U is uniformly distributed on the interval (0, 1), then F̃ -1(U ) takes on three possible 
values—100, 200, 300—with probabilities

�

�

�

F U

F U

F U

{ }
{ }
{ }

( )

( )

( )

= = − =

= = − =

= = − =

−

−

−

Pr 100 0.40 0 0.40,

Pr 200 0.90 0.40 0.50,

Pr 300 1.00 0.90 0.10.

1

1

1

This verifies, of course, that random variables F̃ -1(U ) and X are identical.
(b)  Suppose now that three trials of the random generation process are performed, 

generating random numbers u1 = 0.4547, u2 = 0.9236, and u3 = 0.2573. The corre
sponding random values of X are obtained from formula (4.53): x1 = F̃ -1(u1) = 200,  
x2 = F̃ -1(u2) = 300, and x3 = F̃ -1(u3) = 200. n

The next three examples illustrate methods for generating random values of 
commonly encountered claim-size and claim-count random variables.

Example 4.10.    (a)  Variable X1 is exponentially distributed, with F1(x) = 1 - e-x/b  
for 0 < x < ∞. Because F1 is strictly increasing for positive x, the function is invertible 
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there in the ordinary sense, and the inverse defined in (4.46) is identical to the con
ventional inverse function:

x F u u u( ) ( )= = −β − < <− log 1 , 0 1.1
1

Alternatively, because 1 - U is also distributed uniformly on the interval (0, 1), one can 
generate a random value for x by the equation x = -blogu, 0 < u < 1.

(b)  Similarly, when random variable X2 has a shifted Pareto distribution with 
distribution function F2(x) = 1 - (b/(x + b))a for 0 < x < ∞, the inverse function is 
given by

x F u u u( )( ) ( )= = β − − < <− − α1 1 , 0 1.2
1 1

(c)  Random variable X3 has a lognormal distribution with parameters (µ, s). 
Thus, if z is a randomly generated value of the standard normal distribution,48 then  
x = exp(µ + sz) is a random value for X3.

(d )  Five values of u were randomly generated from the uniform distribution on 
the interval (0, 1). Corresponding random values for X1 when b = 2,000, for X2 when 
(a, b) = (2; 2,000), for standard normal Z, and for X3 when (µ, s) = (4.956, 2.3) are 
displayed in Table 4.8. n

Example 4.11.    (a)  Variable X has a gamma distribution with probability density 
function

f x
n

x e n xn
n x( ) ( ) ( )=

β Γ
= β > < < ∞− − β1

1, 2, 3, . . . , 0 , 0 .1

The reproductive property of the gamma distribution implies that X has the same 
distribution as the sum of n independent random variables Xi, each with the exponential 
distribution with parameter b (refer to Section 2.3). Thus, to generate a random value 

48	 Users of Microsoft Excel find the composite of two worksheet functions NORM.S.INV(RAND) convenient for 
generating random values of the standard normal variable Z. Refer to Appendix A.1 and also to Problem 4.26.

Table 4.8.    Random Values for Claim-Size Distributions [Example. 4.10(d )]

Trial
Uniform

u
Exponential

x1

Pareto
x2

Std Normal
z

Lognormal
x3

(1) 0.1854 410 216 -0.8950 18

(2) 0.3038 724 397 -0.5135 44

(3) 0.5498 1,596 981 0.1252 189

(4) 0.7953 3,172 2,420 0.8249 947

(5) 0.9774 7,580 11,304 2.0028 14,221
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for X, generate values for each of the identical random variables Xi —the sum of these 
values is a random value for X:

x x x xn= + + +. . . .1 1

(b)  Variable X has a gamma distribution with (a, b) = (3, 400). Three random 
values are generated from the uniform distribution on (0, 1): 0.5349, 0.8762, 0.2009 
(three different random values of the uniform distribution are required because the Xi 
must be independent). Thus, we have a random value for X:

x ( ) ( ) ( ) ( ) ( ) ( )= − − − − − −

=

400 log 1 0.5349 400 log 1 0.8762 400 log 1 0.2009

1,232.

Example 4.12.    (a)  Variable N has a Poisson distribution with mean l = # claims 
per unit time:

f n
e
n

nN

n

( ) = λ =
−λ

!
, 0,1, 2, . . . .

The random variable T̂n, where T̂1 = occurrence time of the first claim and T̂n = time between 
the occurrence of the (n - 1)st and the nth claim (n > 1), has an exponential distribution 
with parameter b = 1/l [refer to Problem 3.33(c)]. Thus, the event that N = n in a unit 
of time is equivalent to

T Ti
i

n

i
i

n

∑ ∑≤ <
= =

+ˆ 1 ˆ . (4.54)
1 1

1

If {ui} are values of the random variable U, uniformly distributed on the interval 
(0, 1), then by the result of Example 4.10(a) above, we have corresponding values  
of T̂i : ti = -(1/l)log ui. As a result, inequality (4.54) is satisfied whenever

u ui
i

n

i
i

n

∑ ∑( ) ( )− λ ≤ < − λ
= =

+
1 log 1 1 log .

1 1

1

After multiplying by -1 and applying the exponential function, we obtain the equivalent 
inequality

u e ui
i

n

i
i

n

∏ ∏≥ >
=

−λ

=

+
. (4.55)

1 1

1

Inequality (4.55) can now be used to generate a random value for N in the following 
way, a method easily programmed for computer implementation:

	 (i)	� Assume that 〈ui〉, i = 1, 2, 3, . . . , is a sequence of random values generated 
from the uniform distribution on the interval (0, 1).

	(ii)	 If u1 < e-l, then stop and set n = 0.
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	(iii)	 Otherwise, if u1u2 < e-l, then stop and set n = 1.
	(iv)	 Otherwise, if u1u2u3 < e-l, then stop and set n = 2.
	 (v)	 Otherwise, if u1u2u3u4 < e-l, then stop and set n = 3.
	 . . .

Continue in this way until (4.55) is satisfied by i = m:

u e ui
i

m

i
i

m

∏ ∏< ≤
=

+
−λ

=
;

1

1

1

then stop and set n = m.
(b)  Variable N has a Poisson distribution with mean E[N ] = l = 1.500. Successive 

products of numbers randomly generated from the uniform distribution on the interval 
(0, 1) are compared to e-1.500 = 0.2231 according to the procedure developed in part (a) 
above. Corresponding random values of N are then calculated, and the results of four 
such trials are displayed in Table 4.9. n

The next two examples illustrate how Monte Carlo simulation methods can be 
used to generate random values of a compound aggregate loss random variable. To gen-
erate a single such value, one must first generate a random value for the claim-count 
variable N, say N = n, and then generate n values for the claim-size variable X. The sum 
of these claim-size amounts is a random value for the aggregate loss variable S.

Example 4.13.    (a)  For the aggregate variable S the claim-count N is Poisson-
distributed with mean l = 1.500. Claim-size X has a lognormal distribution with 
parameters (µ, s) = (4.956, 2.300). Therefore, S has mean

E S E N E X ( )( ) ( )[ ] [ ] [ ]= = + =1.500 exp 4.956 2.300 3,000.1
2

2

For each random value n obtained for N we generate n random values for X, the sum 
of which is a random value for S. Table 4.10 displays the results of this procedure based 
on the four values for n generated in Example 4.12(b).

(b)  One distinct advantage that Monte Carlo simulation has over other methods of 
approximating an aggregate loss distribution is the fact that it is easy to model various 

Table 4.9.    Random Values for Poisson Distribution [Example 4.12(b)]

Trial u1 u2 u3 u4 Pui e-1.500 n

(1) 0.6791 0.7543 0.2391 0.1225 0.2231 2

(2) 0.1047 0.1047 0.2231 0

(3) 0.7591 0.4746 0.7205 0.3256 0.0845 0.2231 3

(4) 0.5029 0.2874 0.1445 0.2231 1
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policy conditions imposed on the size of claims—including complex deductible and/or  
limit restrictions. As an example, consider the imposition of a $1,000 policy limit 
on the size of claims in the claim process described in part (a) above. The results are 
shown in Table 4.10, where the limit has been imposed on each random claim size 
as it is generated, yielding the modified random values x̃ and the associated modified 
aggregate loss amounts s̃ . n

Example 4.14.    Return now to the aggregate distribution of Example 4.2, for 
which N has a Poisson distribution with l = 2.5 and X is gamma-distributed with 
parameters (a, b) = (3, 400). We generate 10,000 values of N—and for each of these 
a corresponding aggregate loss amount, thus creating a randomly generated sample of 
size 10,000. The resulting sample cumulative distribution function is an approximation 
to the aggregate distribution function F(s). For example, 5,599 sample points have 
aggregate loss amounts less than or equal 3,000, so that

F FK S( ) ( )= = ≈3,000
5,599

10,000
0.5599 3,000 .10

This compares favorably with the actual value of F(3,000) = 0.5613. Values of the 
cumulative distribution F10K(s) based on the generated sample are shown in Table 4.11  
along with the exact values of F(s). n

Example 4.15.    Consider the aggregate random variable S for which the claim 
count N is Poisson-distributed with l = 3 and claim size X has a lognormal distribu-
tion with (µ, s) = (6, 1.5). Moreover, claim size is limited by a policy limit of 1,000. 
As before, a sample of 10,000 random trials is generated, and the resulting aggregate 
distribution function created. A graph of y = F10K(s) is displayed in Figure 4.4, in which 
the discontinuity at multiples of the 1,000 limit is clearly evident. n

Table 4.10.    Random Values for Aggregate-Loss Distribution [Example 4.13]

Trial n

Example 4.13(a) Example 4.13(b)

u z x s x̃ s̃

(1) 2 0.2871 -0.5619 39 — 39 —

0.8945 1.2508 2,522 2,561 1,000 1,039

(2) 0 — — — 0 — 0

(3) 3 0.7387 0.6393 618 — 618 —

0.3766 -0.3144 69 — 69 —

0.9411 1.5641 5,185 5,872 1,000 1,687

(4) 1 0.6982 0.5192 469 469 469 469
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Table 4.11.    Approximation by Monte Carlo Simulation [Example 4.14]

Amount s F (s) F10K(s) Relative Error

0 0.0821 0.0832 +1.34%

500 0.1096 0.1084 -1.09%

1,000 0.1867 0.1874 +0.37%

2,000 0.3755 0.3796 +1.09%

3,000 0.5613 0.5599 -0.25%

4,000 0.7152 0.7130 -0.31%

5,000 0.8273 0.8342 +0.83%

6,000 0.9013 0.9042 +0.32%

7,000 0.9465 0.9468 +0.03%

8,000 0.9723 0.9719 -0.04%

9,000 0.9863 0.9865 +0.02%

10,000 0.9934 0.9935 +0.01%

0.0

0.2

0.4

0.6

0.8

1.0

0 2,000 4,000 6,000 8,000 s

y

Figure 4.4.    Cumulative Distribution Function  
y 5 F10K(s) [Example 4.15]
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4.8.  Problems
4.1	 Construct the discrete aggregate loss distribution based on these distributions 

for N and X.

Claim Count N Claim Size X

Count n fN(n) Size x fx(x)

0 0.20 500 0.10

1 0.40 1,000 0.40

2 0.25 1,500 0.30

3 0.15 2,000 0.20

4.2	 Assume that Y = X1 + X2, where X1 and X2 are continuous, independent (not 
necessarily claim-size) random variables.
(a)	 X1 and X2 have respective probability density functions f1 and f2. Prove that

f y f y x f x dxY ∫ ( )( ) ( )= −−∞
∞ .1 2

(b)	� Assume now that X1 and X2 are identically distributed claim-size random 
variables, with common distribution function F and F(x) = 0 for x < 0. 
Show that FY can be expressed as

F y
y

F y x dF x y
Y y

∫ ( ) ( )
( ) =

<

− ≥







0 if 0

if 0.0

4.3	 Verify that the recursion formula (4.2) yields F 1*( y) = F( y) for all y.

4.4	 In each of the following cases construct a formula for FS(s) in terms of fN(n) = 
Pr{N = n} and FX(x), the c.d.f. for X.
(a)  fN(n) = 0 for n > 1.      (b)  fN(n) = 0 for n > 2.

4.5	 Derive formulas (4.6) and (4.7) for E[S 2] and E[S3] from the compound 
moment-generating function (4.11).

4.6	 N is Poisson-distributed with mean l, and X has an exponential (b) distri-
bution. Derive explicit formulas for the aggregate distribution functions fS(s)  
and FS(s).
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4.7	 N is Poisson-distributed with mean l = 8, and X has a gamma distribution with 
a = 0.2000 and b = 3,750. Calculate the indicated values for FS(s).

Amount s FS(s)

0 _____________

3,000 _____________

6,000 _____________

9,000 _____________

12,000 _____________

15,000 _____________

18,000 _____________

21,000 _____________

24,000 _____________

27,000 _____________

4.8	 l and g are the claim-count mean and contagion parameter, respectively, for an 
aggregate loss variable S. Prove that for fixed g:

(a)  CV S[ ] = γ
λ→∞
lim .      (b)  Sk S[ ] = γ

λ→∞
lim 2 .

4.9	 Verify the normal power inversion formula (4.19):

Q S T SNP( )( ) ( )− µ σ =− ,1

	 where TNP(S ) is given by (4.17).

4.10	 Provide detailed derivations of the Wilson–Hilferty transformation formulas (4.24) 
and (4.25).

4.11	 Derive from the Wilson–Hilferty chi-square approximation (4.22) a formula 
for c2

0.95(m), the 95th percentile of the chi-square distribution with m degrees 
of freedom.

4.12	 Use the formula obtained in Problem 4.11 to estimate the chi-square percentiles 
in the following table.

d.f. m c2
0.95 (m) Wilson–Hilferty Relative Error

5 11.070 __________ __________%

10 18.307 __________ __________%

15 24.996 __________ __________%

20 31.410 __________ __________%

25 37.652 __________ __________%

30 43.773 __________ __________%
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4.13	 Tabulate the following approximations to the Poisson/gamma distribution func-
tion of Problem 4.7.

Amount s FS(s) Normal
Relative 

Error
Normal 
Power

Relative 
Error

Shifted 
Gamma

Relative 
Error

Wilson-
Hilferty

Relative 
Error

0 _______ _______ _____% _______ _____% _______ _____% _______ _____%

3,000 _______ _______ _____% _______ _____% _______ _____% _______ _____%

6,000 _______ _______ _____% _______ _____% _______ _____% _______ _____%

9,000 _______ _______ _____% _______ _____% _______ _____% _______ _____%

12,000 _______ _______ _____% _______ _____% _______ _____% _______ _____%

15,000 _______ _______ _____% _______ _____% _______ _____% _______ _____%

18,000 _______ _______ _____% _______ _____% _______ _____% _______ _____%

21,000 _______ _______ _____% _______ _____% _______ _____% _______ _____%

24,000 _______ _______ _____% _______ _____% _______ _____% _______ _____%

27,000 _______ _______ _____% _______ _____% _______ _____% _______ _____%

4.14	 l and g are, respectively, the claim-count mean and contagion parameter for 
an aggregate loss variable S. Verify the following special cases of formula (4.31)  
for f (0).
(a)	 If N is Poisson-distributed, then fS(0) = elg (0)-l.
(b)	 If N has a negative binomial distribution, for which g ≠ 0, then

f gS ( )( ) ( )= + γ λ − γ λ − γ0 1 0 .1

4.15	 Show that recursion formula (4.33) can be expressed in the following form, 
where m̂ is defined by (4.28):

f m
ag

a
b
m

k g k f m k mS S
k

m m

∑ ( )( ) ( ) ( ) ( )=
−

+ − =
{ }

=

1
1 0

, 1, 2, 3, . . . .
1

min , ˆ

4.16	 Use the recursion method of Section 4.4 to calculate the cumulative distribu-
tion function of the aggregate random variable for which claim size X has the 
discrete distribution of Example 4.1 and N has a Poisson distribution with  
l = 1.35.

4.17	 Verify that the midpoint formulas of (4.37) actually define a discrete probability 
function.

4.18	 Random variable U is uniformly distributed on the interval (0, 1).
(a)	 Show that the characteristic function of U is jU(t) = (eit - 1)/(it).
(b)	 Use formula (4.39) to recover FU(x) from jU(t).
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4.19	 Let F be the cumulative distribution function for random variable Y. Prove these 
statements about the inverse function F̃ -1 defined by (4.46).
(a)	  F̃ -1 exists for all variables Y.
(b)	  F̃ -1(u) is a nondecreasing function of u.
(c)	 u ≤ F(F̃ -1(u)) for all u in (0, 1).
(d )	  F̃ -1(F( y)) ≤ y for all real y.
(e)	� Show by example that it is possible for the inequalities in (c) and (d ) to be 

strictly less than.
( f )  If F is strictly increasing, then F̃ -1 is the usual inverse of function F.

4.20	 F is a strictly increasing cumulative distribution function for continuous random 
variable X. Prove: random variable F(X ) is uniformly distributed on the unit 
interval (0, 1).

4.21	 Calculate the inverse function F̃ -1(u) in the case that F(x) is a Weibull distribution 
function (2.61).

4.22	 Consider the following sequence of random selections from the uniform distri-
bution on the interval (0, 1):

0.4695, 0.2871, 0.7527, 0.9106, 0.5538, 0.1189, 0.8853 .

Calculate the random value for N with a Poisson distribution (l = 3) that is 
implied by the sequence.

4.23	 Five random values of U, uniformly distributed on the interval (1,0), are shown 
in the table. Calculate corresponding random values for X1 (exponential with 
b = 2,000), for X2 (Pareto with (a, b) = (2.5; 3,000)), for X3 (lognormal with  
(µ, s) = (5.181, 2.2)), and for X4 (Weibull with (b, d) = (1,000; 0.5)).

Trial
Uniform

u
Exponential

x1

Pareto
x2

Lognormal
x3

Weibull
x4

(1) 0.2097 _________ _________ _________ _________

(2) 0.3562 _________ _________ _________ _________

(3) 0.6970 _________ _________ _________ _________

(4) 0.8245 _________ _________ _________ _________

(5) 0.9882 _________ _________ _________ _________

4.24	 (a)  Random variable N has a geometric distribution, with

f n p p p nn( ) ( ) ( )= − < < =1 0 1 , 0,1, 2, . . . .

Show that random values of N can be generated by the formula

� �n u p( ) ( )( )( )= − − −log 1 log 1 1 ,
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where vxb denotes the greatest integer function. [Hint: the cumulative 
distribution function at positive integer n is

F n pN
n( ) ( )= − − +1 1 .1

(b)	 Use moment-generating functions to show that the sum of m identical 
independent random variables, each distributed with a geometric distribu-
tion with parameter p has the special negative binomial distribution with 
probability density function

f n
m n

n
p p m p nm n( ) ( ) ( )=

+ −



 − = < < =

1
1 1, 2, 3, . . . , 0 1 , 0,1, 2, . . . .

(c)	� Describe a method for generating random values of a random variable with 
the negative binomial distribution defined in part (b).

4.25	 (a)	� Random variables 〈Un〉 (n = 1, 2, . . . , 12) are independent and uni-
formly distributed on the interval (0, 1). Show that the distribution of 
X = S12

n=1 Un - 6 is approximately standard normal.
(b)	� Use the result of part (a) to devise a method of generating random values 

from a normal distribution with parameters (µ, s).
(c)	� Use the result of part (b) to devise a method of generating random values 

from a lognormal distribution with parameters (µ, s).
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We investigate in this chapter claim processes in which all claims are restricted to those 
larger in size than some fixed positive amount—that is, to claims that penetrate an excess 
layer of insurance. Distributions of such excess losses are critical to the quantification of 
such common policy provisions as deductibles and to the pricing of successive layers of 
coverage lying above a first-dollar, or primary, layer of insurance.

5.1.  Excess Claim Size
Consider first an unlimited claim-size random variable X and a nonnegative 

constant a. The random variable Y defined by

Y
X a

X a X{=
≤ ≤

− < < ∞
0 if 0

if a

represents the size of claims modified by a policy condition that imposes an underlying  
limit amount a. Here the insurer pays nothing if the claim size is a or less, and the 
sizes of all other claims are reduced by a. In this situation a could represent an amount 
retained by the insured, as in the case of a policy with a deductible, or for an umbrella 
or excess policy it might be the limit of an underlying primary policy.

The distribution function of variable Y is readily obtained from that of X:

F y Y y
y

F y a y
Y

X

( ) { }
( )

= ≤ =
−∞ < <

+ ≤ < ∞






Pr

0 if 0

if 0 .

If E[X ] exists, then so does E[Y ]. Moreover,

E Y ydF y a

u a dF u

udF u udF u a dF u

E X E X a

X

Xa

X X Xa

a

∫

∫

∫ ∫∫

( )[ ]

[ ]

( ) ( )

( ) ( ) ( )

= +

= −

= − −

= −

∞

∞

∞ ∞

[ ; ]. (5.1)

0

0 0

Clearly, E[Y ] ≤ E[X ] whenever both expected values exist.

5.  Excess Claims
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For random variable Y the probability that the insurer pays nothing,

F Y X a F aY X{ } { }( ) ( )= = = ≤ =0 Pr 0 Pr ,

is usually a positive number. However, insurers do not always see, nor are they usually 
interested in, claims for which Y = 0. It is therefore more useful, from an insurer’s 
standpoint, to work with a related variable Xa, defined only for X > a:

X X a a Xa = − < < ∞, . (5.2)

Xa represents the excess of X over the limit a, for which claims of size a or smaller are 
ignored and all others are reduced by the amount a. Thus modified, variable X is said 
to be truncated from below and shifted by a. Variable Xa has a distribution function 
obtained conditionally from that of X—and in this case FXa(0) = 0:

F x X a x X a

x

F x a F a
F

x
X X X

X

a { }
( )

( ) ( ) ( )= − ≤ > =

−∞ < <

+ −
−

≤ < ∞








Pr

0 if 0

1
if 0 .

(5.3)

Whenever E[X ] exists the expected value of Xa is

E X
xdF x a

F a
E X E X a

F aa
X

X X

∫ [ ][ ]( )
( ) ( )

[ ] =
+

−
=

−
−

∞

1
;

1
. (5.4)0

[Compare this formula with that of (5.1).] Moreover, if all three moments E[X ], E[X 2], 
and E[X 3] exist, then the second and third moments of Xa are, respectively,

E X
E X E X a a E X E X a

F aa
X

[ ] [ ] [ ]( )[ ]
( )

=
− − −

−
[ ]

; 2 ;
1

, (5.5)2
2 2

[ ] [ ] [ ] [ ] [ ]( )

[ ]( )[ ]

( )

( )

=
− − −

−

+
−

−

E X
E X E X a a E X E X a

F a

a E X E X a
F a

a
X

X

; 3 ;
1

3 ;
1

. (5.6)

3
3 3 2 2

2

The limited expected value of the excess random variable Xa is an obvious combina
tion of limited severities of the unlimited claim-size variable X:

E X l
xdF x a

F a
l

F l a F a
F a

u a dF u
F a

l
F a l

F a

a
X

l

X

X X

X

Xa

a l

X

X

X

∫

∫

[ ]
( )
( )

( ) ( )
( )

( ) ( )
( )

( )
( )

=
+

−
+ − + −

−






=
−

−
+ − +

−






+

;
1

1
1

1
1

1

0
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E X a l E X a a l F a l a F a
F a

l F a l a F a l F a
F a

E X a l E X a
F a

X X

X

X X X

X

X

[ ] [ ]

[ ] [ ]

( ) ( )

( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( )

=
+ − − + − + + −

−

+
− + − + −

−

=
+ −
−

; ; 1 1
1

1
1

; ;
1

. (5.7)

Example 5.1.    Claim-size random variable X has an exponential distribution with 
mean b:

F x
x

e x
X x

=
−∞ < <

− ≤ < ∞






− β

( )
0 if 0

1 if 0 .

For the exponential distribution family it is evident that the excess c.d.f. is independent 
of the size of limit a:

F x
e e

e
e xX

x a a

a
x

a

( ) ( )( ) =
− − −

= − ≤ < ∞
− + β − β

− β
− β1 1

1 , 0 .
( )

As a consequence, the excess claim size Xa and unlimited claim size X have the same 
distribution. This means that the existence of a deductible or underlying coverage 
does not affect the distribution of claim size. In particular, E[Xa] = E[X ] = b for 
every limit a. n

Example 5.2.    Claim-size variable X has a Pareto distribution with probability 
density function

f x
x

xX ( ) = αβ
+ β

< < ∞
α

α+( )
, 0 .1

Accordingly, the density function for Xd is

f x
f x d

F d x d d
d

x d
xX

X

X
d ( )

( )
( )

( )
( )

( ) = +
−

= αβ
+ + β

β
+ β







= α + β
+ + β

< < ∞
α

α+

α α

α+1
, 0 .1 1

Hence, Xd is also Pareto-distributed, with parameters (a, d + b). The mean E[Xd] exists 
whenever a > 1, and it is an increasing linear function of the lower limit d:

E X
d

d[ ] = + β
α − 1

. n

Example 5.3.    The table below displays grouped claim-size data derived from a 
sample of 300 claims from an unlimited population with an unknown distribution. 
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Before the data were tabulated these claims were censored by a $50,000 
policy limit and then subjected to a $1,500 straight deductible. Using the 
minimum chi-square approach, we wish to find a lognormal distribution 
function Fµ,s(x) for the population of the unlimited—non-truncated and 
non-censored—claims.

We begin by defining ten cells with boundaries ck = 5,000k (k = 0, 
1, . . . , 9) and c10 = ∞. The observed cell frequencies are just the tabulated 
group claim frequencies nk. In particular, note that n10 = 14.

The expected cell frequencies fk(µ, s) are expressed in terms of the 
(as yet unknown) unlimited and unmodified population lognormal 
c.d.f. Fµ,s(x). The probability Pk(µ, s) of a claim being less than or 
equal ck is

)( )
)
(

(µ, σ =
+ −

−
=

=








 µ,σ µ,σ

µ,σ( )
1,500 1,500

1 1,500
if 1, 2, . . . , 9

1 if 10.

P
F c F

F
k

k

k

k

Therefore

P Pk k k( )( ) ( ) ( )( )φ µ σ = µ σ − µ σ− ., 300 , ,1

Minimizing the chi-square statistic

nk k

kk
∑ ( )( ) ( )

( )
χ µ σ =

− φ µ σ
φ µ σ=

,
,

,
2

2

1

10

as a function of µ and s yields a minimum value of c2(µ , s) = 1.6610 corresponding 
to the parameter estimates (µ , s) = (8.67593, 1.18109).

Because sample data were truncated by the 1,500 deductible, the number of claims 
entirely eliminated by the deductible is unknown. However, one can estimate this 
number by means of Fµ ,s (1,500) = 0.1243:

population claims ( ) ( )( )≤ ≈
−

= =# 1,500
300

1 0.1243
0.1243 343 0.1243 43. n

5.2.  Excess Severity
The expectation E[Xa] obtained in (5.4), with respect to the unlimited random 

variable X, is called the mean excess claim size at a or excess severity at a.49 As with 
the limited expected value, we can express the mean excess claim size, when it exists, 

49	� Illogically in the context of loss distributions, E[Xa] is also known as the mean residual life at a. The term, 
however, makes sense when the random variable X is a failure-time variable encountered in reliability theory. The 
expression apparently found its way into actuarial usage because many distributions used by actuaries have also 
played prominent roles in reliability theory.

Size Group # Claims

0–5,000 139

5,001–10,000 68

10,001–15,000 32

15,001–20,000 15

20,001–25,000 11

25,001–30,000 8

30,001–35,000 5

35,001–40,000 4

40,001–45,000 4

45,001–48,500 14

Total 300
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as a function of the associated limit x. In this context E[Xx] is commonly denoted by 
e(x)—or by eX(x) when dependence on the random variable X must be indicated:

e x
E X E X x

F x
xX

X

[ ] [ ]( ) =
−

−
< < ∞

;
1 ( )

, 0 . (5.8)

The behavior of e(x) for large values of x is characteristic for all distributions in 
a given parametric family and tends to differ from one such family to another. 
For example, when X is exponentially distributed, e(x) is a constant function of x,  
as shown in Example 5.1. Example 5.2 indicates that for Pareto-distributed X with  
a > 1, e(x) is an increasing linear function of x. In the case of the lognormal family, 
e(x) increases without bound as x → ∞, whereas for gamma-distributed X the func
tion decreases toward a horizontal asymptote as x → ∞. The Weibull e(x) function 
behaves like a/xb for some a and b and large values of x. Typical shapes for the graph 
of y = e(x) are shown in Figure 5.1. Refer to Problem 5.26 for hints on verifying 
these results.

The asymptotic behavior of y = e(x) is occasionally useful when it comes to fitting 
a parametric distribution to a set of sample data. The shape of the graph of the sample 
excess severity function en(x) may suggest an appropriate family of distributions. If 
this graph is approximately linear with positive slope, then a Pareto distribution could 
be used. If it is nearly constant for large x, a gamma or exponential model would be 
indicated. Otherwise, if the graph lies between these extremes, then a lognormal or 
Weibull distribution could be used.

y

x

exponential

lognormal

gamma

Pareto

Weibull

Figure 5.1.    Characteristic Excess Severity 
Function Graphs50

50	 Figure 5.1 is suggested by a similar display in Hogg and Klugman [8], p. 109.
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There is, however, a practical restriction in the use of this asymptotic test. The 
characteristic behavior of y = e(x) becomes apparent only for large x, the region for 
which sample data is typically the most sparse. It is therefore essential that the claim 
data contain enough large claims so that en(x) can be reliably calculated for sufficiently 
large values of x.

Example 5.4.    The table displays grouped sample claim data for n = 1,000 policies.

Size Group # Claims Total Loss Severity

0–100 100 6,000 60

101–500 300 95,000 317

501–1,000 240 145,000 604

1,001–2,000 185 260,000 1,405

2,001–4,000 140 450,000 3,214

4,001–5,000 15 66,000 4,400

5,001–10,000 20 150,000 7,500

Total 1,000 1,172,000 1,172

To investigate the behavior of the sample excess severity function for large x, begin by 
calculating values for the relevant sample statistics at the right-hand endpoints of the 
group intervals. For example, values of Fn(2,000), En[X̂; 2,000], and en(2,000) for the 
discrete sample variable X̂ are, respectively,

F

E X

e

( )

( )( )

( )

= + + + =

  = + + +

+ + + =

= −
−

=

2,000
100 300 240 185

1,000
0.8250,

ˆ ; 2,000
6,000 95,000 145,000 260,000

1,000

140 15 20 2,000
1,000

856,

2,000
1,172 856
1 0.8250

1,806.

1000

1000

1000

The complete set of end-point values is shown in Table 5.1.
The tabulated values of en(x) along with a least-squares regression line are displayed 

graphically in Figure 5.2. It is evident that the sample values are very nearly aligned—
the coefficient of determination for the linear regression is R2 = 0.9823. A Pareto model 
is obviously indicated. To fit such a distribution, observe that the regression function 
0.257335x + 1,208.50 can be equated with the Pareto e(x) and the resulting equation 
solved for parameters a and b:

x x+ = + β α −0.257335 1,208.50 ( ) ( 1).
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Thus, (a, b) = (4.88599; 4,696.22). Corresponding end-point values for this Pareto 
distribution are shown in Table 5.1 for comparison.

The technique of estimating Pareto parameters from the slope and intercept of 
the regression line seems to work well in this example, but it should be used with some 
caution. The slope of the regression line is sensitive to the size of the largest claims, and 
the calculated distribution parameters could be significantly affected by changes in just 
a few of these numbers. n

Example 5.5.    Figure 5.3 shows the graph of the sample excess severities for the 
data of Examples 2.6 and 2.7. Superimposed on this graph are the corresponding graphs 
of y = e(x) for the fitted gamma and lognormal distributions obtained in those examples. 
The graph of the gamma model reasonably approximates that of the sample function, 
but the lognormal function diverges significantly from the sample values for x > 1,500. 
This suggests that of the two probability distributions obtained in Chapter 2 the gamma 
might provide the better fit. n

Table 5.1.    Sample and Pareto Excess Severity Functions [Example 5.4]

Sample Distribution (n = 1,000) Pareto Distribution

Size x Fn(x) En[X̂; x] en(x) F(x) E[X; x] e(x)

0 0.0000 0 1,172 0.0000 0 1,208

100 0.1000 96 1,196 0.0978 95 1,234

500 0.4000 401 1,285 0.3900 393 1,337

1,000 0.6400 606 1,572 0.6106 638 1,466

2,000 0.8250 856 1,806 0.8233 904 1,723

4,000 0.9650 1,096 2,171 0.9507 1,098 2,238

5,000 0.9800 1,122 2,500 0.9711 1,136 2,495

10,000 1.0000 1,172 — 0.9962 1,194 3,782

0

1,000

2,000

0 1,000 2,000 3,000 4,000 5,000 x

y

y = 0.257335x+1,208.50
R2 = 0.9823

Figure 5.2.    Sample Excess Severities with  
Regression Line [Example 5.4]
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5.3.  Layers of Coverage
In many situations an insurance policy may impose both an upper limit and a lower 

limit on the claims subject to the policy. How these are applied depends on the specific 
policy conditions—for example, on whether the lower limit represents a deductible or 
whether it is the limit of underlying coverage, as in the case of an umbrella or excess 
liability policy. We shall be primarily concerned with the latter case in this section and 
leave the main discussion of the deductible case to the next chapter.

If the excess variable Xa is subject to an upper limit l (as in the case of an excess policy 
written over underlying coverage), then the claim amount paid by the insurer is the 
unrestricted amount x first decreased by a and then limited by l. Such claims are said to 
belong to the layer of coverage defined by a and l. Limit a is called an underlying limit 
or attachment point, whereas l is the layer limit or the width of the layer. An unlimited 
claim of size x is said to penetrate the layer whenever x > a.

If a > 0 the layer is called an excess layer, whereas in the trivial case a = 0 claims 
in the layer are referred to as first-dollar or ground-up claims. The layer defined by 
a and l is sometimes denoted by the “interval” notation (a, a + l ]—although a layer of 
coverage is conceptually different from an interval of claims. This distinction is explored 
in Problems 5.14 and 5.15.

In the case of a straight deductible, however, the deductible limit is generally applied 
after the policy limit. In this situation, the layer width is the policy limit reduced by 
the deductible size, l - a, so that the insured layer is (a, l ]. Deductibles are explored in 
detail in Section 6.5.

Example 5.6 illustrates, in the context of a policy limit and deductible, how upper 
and lower policy limits serve to partition claims into a sequence of layers.

Example 5.6.    An insurance policy with a $3,000 limit and $100 straight 
deductible defines a three-layer structure: (i) the deductible layer between 0 and 100, 
(ii) the insured layer of width 2,900 between 100 and 3,000, and (iii) an uninsured 
layer excess of 3,000. Note that the deductible effectively reduces the policy limit 
from 3,000 to 2,900.

0

200

400

600

800

1,000

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

Sample Gamma Lognormal

x

y

Figure 5.3.    Excess Severity Functions [Example 5.5]
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Suppose that the occurrence of insured events during the policy period gives rise 
to four claims—of sizes 50, 600, 1,800, and 4,000—for a total of 6,450. Three claims 
penetrate the insured layer, and one of these is limited by the policy limit. The table 
shows how they are distributed among the three layers.

Layer Claim 1 Claim 2 Claim 3 Claim 4 Total

[0; 100] 50 100 100 100 350

(100; 3,000] 0 500 1,700 2,900 5,100

(3,000; ∞) 0 0 0 1,000 1,000

Total 50 600 1,800 4,000 6,450

Here the insurer pays 5,100 in the insured layer, whereas the policyholder retains 
1,350 of the total claim amount—350 within the deductible layer plus 1,000 in the 
uninsured layer above 3,000. n

The random variable for claim size Xa,l in the layer (a, a + l ] is defined on the 
interval a < X < ∞ by the equation

X
X a a X a l

l a l X
a l =

− < ≤ +

+ < < ∞





if

if .
(5.9),

Accordingly, the cumulative distribution function of variable Xa,l is

F x

x

F x a F a
F a

x l

l x

X
X X

X
a l

( ) ( ) ( )
( )

=

−∞ < <

+ −
−

≤ <

≤ < ∞













0 if 0

1
if 0

1 if .

(5.10),

It is easy to verify that the moments of the layer distribution are just the limited 
moments of the excess variable Xa:

E X E X l
E X a l E X a

F aa l a
X

[ ] [ ] [ ] [ ]
( )

= =
+ −
−

;
; ;

1
, (5.11),

E X E X l
E X a l E X a a E X a l E X a

F aa l a
X

[ ] [ ] [ ] [ ] [ ] [ ]( )
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+ − − + −
−

;
; ; 2 ; ;
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, (5.12),
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Example 5.7.    Random variable X has a Pareto distribution with parameters 
(a, b) = (2; 3,000). What is the average claim size in the layer 4,000 excess of the limit 
5,000?

We first calculate the limited severities at the attachment point 5,000 and at  
a + l = 9,000. At a = 5,000

E X[ ] ( )= β
α −

− β
+ β













= −



 =

α−

; 5,000
1

1
5,000

3,000 1
3,000
8,000

1,875.
1

A similar calculation yields E[X; 9,000] = 2,250. Therefore, the layer mean is

E X E X
FX

[ ] [ ]
( )
−

−
= −

−
=

; 9,000 ; 5,000
1 5,000

2,250 1,875
1 0.8594

2,667. n

Limits imposed on the size of claims serve to decrease the variability of a claim 
process. To compare the dispersion of different distributions in a meaningful way, one 
can use the coefficient of variation. For variable X the coefficient of variation CV [X ] 
is defined as the ratio of the standard deviation to the mean:

CV X
Var X
E X

SD X
E X

[ ] [ ]
[ ]

[ ]
[ ]

= = . (5.14)

Because the coefficient of variation is a dimension-less ratio, calculating CVs for 
random variables with different means can provide a basis for an apt comparison. 
In addition, CV [X ] has the useful property of remaining invariant whenever X is 
subjected to the linear transformation Lc(X ) = cX, where c > 0 (refer to Problem 2.31): 
CV [cX ] = CV [X ].

Example 5.8.    A claim-size variable 
X has a lognormal distribution with pa-
rameters (µ, s) = (5.9809, 1.800). Prob-
abilities and first and second limited mo-
ments at limits 3,000 and 8,000 for this 
distribution are displayed in the table.

The coefficient of variation of the 
unlimited variable X is

CV X[ ] = − =102,134,385 (2,000)
2,000

4.9531.
2

Limit l FX(l ) E [X; l ] E [X2; l ]

3,000 0.869761 891 1,853,050

8,000 0.952557 1,276 5,774,970

∞ 1.000000 2,000 102,134,385
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Not surprisingly, the distribution of X3K has a smaller CV:

E X

CV X

K

K

[ ]

[ ]
( )

= −
−

=

=

− − −
−

−

=

2,000 891
1 0.869761

8,515,

102,134,385 1,853,050 2(3,000)(2,000 891)
1 0.869761

8,515

8,515

2.9858.

3

3

2

Restricting claims to the layer between 3,000 and 8,000 by imposing on X3K an upper 
limit of 5,000 further reduces the coefficient of variation of the claim-size variable: 
CV [X3K ; 5,000] = 0.6452. n

5.4.  Excess Claim Counts
We now investigate the distribution characteristics of the random variable Na, 

the number of claims excess of an underlying limit a. Because the very definition of an 
excess claim depends upon the size of the claim, distributions of excess claim counts 
involve not only the distribution of the ground-up claim count N, but also that of the 
unlimited claim size X.

If the distribution of X remains unchanged over time, then the probability of an excess 
claim also remains constant. Whenever this is true, the distribution of the excess claim 
count Na is related in a simple way to the distribution of the number N of unrestricted, 
ground-up claims.

Let FX(x) be the cumulative distribution function for the claim-size variable X. The 
probability that a claim exceeds a is p = 1 - FX(a), and the probability of obtaining n such 
claims is given by the conditional probability formula (5.15) below. This distribution 
function for Na is derived from the fact that the number n of excess claims, given the 
occurrence of k ground-up claims (n ≤ k), has a binomial distribution with parameters 
(k, p). The resulting formula is valid for every distribution of the ground-up claim-count 
variable N:
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It is easy to show that E[Na] = pE[N ]:
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f k kp

pE N

N
k
∑ ( )( )
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=
=

∞

. (5.16)

0

In a similar way one can obtain a formula for the second moment:

E N p E N p p E Na[ ] [ ] ( ) [ ]= + −1 , (5.17)2 2 2

so that

Var N p Var N p p E Na ( )[ ] [ ] [ ]= + −1 . (5.18)2

If N is known to have a specific parametric distribution, one can often determine the 
exact distribution of Na. For example, if N has a Poisson (l) distribution, then (5.15) 
becomes
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This means that Na is also Poisson-distributed, with parameter la = pl.
It is likewise true that if N has a negative binomial distribution of the form (3.17) 

with parameters (a, n), then Na has a negative binomial distribution as well, but with 
parameters (a, pn). A proof is requested in Problem 5.17.

Example 5.9.    The number of claims for a ground-up claim process is Poisson-
distributed with l = 15. Moreover, the unlimited claim-size variable X has the lognormal 
distribution of Example 5.8.

Consequently, the number of claims that penetrate a policy layer with attachment 
point 3,000 also has a Poisson distribution. The expected layer claim count is

E N FK X[ ] ( ) ( )( )( )= λ − = =1 3,000 15 0.130239 1.9536.3 n

5.5.  Inflation Effects
In Chapter 2 we saw that the effect of a uniform inflationary trend factor applied 

to an unlimited claim-size variable is moderated by the presence of a policy limit. 
In particular, claims subjected to a positive rate of inflation r and limited by an upper 
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limit increase at a rate less than r. In this section we continue that previous discussion 
and explore the effects of uniform inflationary pressure on claims excess of a fixed 
lower limit.

Suppose that the inflation factor t = 1 + r is applied to the ground-up claim size X  
with c.d.f. FX(x). Then the average claim sizes excess of the limit a before and after trending 
are, respectively,

E X
E X E X a

F a
E X

E X E X a
F aa

X
a

X
[ ] [ ]

( )[ ] [ ] [ ]
( )

= −
−

τ =
τ − τ τ

− τ
[ ; ]

1
and

;
1

.

Consequently, the effective trend factor �τ for the excess claim size Xa is

E X
E X

E X E X a
E X E X a

F a
F a

a

a

X

X

� i i
[ ]
[ ]

[ ]
[ ] [ ]

( )
( )

[ ]τ =
τ

= τ
− τ
−

−
− τ

;
;

1
1

. (5.19)

Formula (5.19) for Xa can be easily generalized to the layer claim-size variable Xa,l, as 
requested in Problem 5.19.

Example 5.10.    Claim-size random variable X is Pareto-distributed with param-
eters (a, b) = (2; 3,000) and is subject to a uniform annual inflation rate of r = 10%. 
What is the annual trend rate for claims excess of 5,000?

The average excess claim size before trending is

eX ( ) = +
−

=5,000
5,000 3,000

2 1
8,000,

whereas the average trended claim size is

e X ( ) ( )= +
−

=5,000 1.10
5,000 1.10 3,000

2 1
8,300.1.10

Therefore, the effective excess trend rate is r� = 8,300/8,000 - 1 = 3.75%.
Similarly, the average trended claim size in the layer (5,000; 9,000] is

E X E X
FX

[ ] [ ]( ) ( )−
−

= −
−

=
1.10 ; 9,000 1.10 1.10 ; 5,000 1.10

1 (5,000 1.10)
2,415 1,988
1 0.841922

2,701.

The non-trended severity in this layer was found in Example 5.7 to be 2,667, so the rate 
of change for the layer claims is r� = 2,701/2,667 - 1 = 1.27%, yet another illustration 
of the damping effect of an upper limit. n

Having just examined what happens to the size of excess claims when the unrestricted 
claim size is subject to inflation, we turn now to a related question: How does such 
an inflationary trend affect the number of excess claims? One would reasonably expect 
that, all other things being equal, a positive rate of inflation applied to the claim size 
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should increase the number of claims excess of a fixed limit a—after trending, all claims 
are larger, so there ought to be more of them that exceed the limit.

In fact, if E[N] is the expected number of ground-up claims and tX is the claim-size 
trend factor, then the expected numbers of excess claims before and after trending are, 
respectively, (1 - FX(a))E [N ] and (1 - FX(a/tX))E [N ]. The effective trend factor �τN for 
the excess claim count due solely to the effect of inflation on the claim size X is therefore 
given by

F a
F aN

X X

X

� ( )
( )τ =

− τ
−

1
1

. (5.20)

To verify that a positive inflation rate applied to the unlimited claim size generally 
increases the excess claim count, observe that tX > 1 implies that a/tX < a, and so FX(a/tX) 
≤ FX(a). Application of this last inequality to (5.20) yields �τN ≥ 1, as expected. A similar 
argument shows that �τN ≤ 1 whenever tX < 1.

Example 5.11.    As in the previous example, claim-size variable X has a Pareto 
distribution with (a, b) = (2; 3,000). The effective annual trend factor for the number 
of claims excess of 5,000 due to 10% inflation in the claim size X is

F
FN

X

X

� ( )
( )τ =

−
−

= −
−

=
1 5,000 1.10

1 5,000
1 0.841922
1 0.859375

1.1241.n

The 12.41% increase in the number of excess claims in the last example turned 
out to be larger than the basic claim-size inflation rate. But this is not always the case. 
Problem 5.21 shows that the rate of change in the number of excess claims can be 
either larger or smaller than the claim-size inflation rate.

Nevertheless, it is possible to generalize about the change in the total aggregate 
excess loss due to an inflationary trend applied to the unrestricted size of loss. The 
expected aggregate loss amount S for claims excess of limit a is

E S E N E X

F a E N
E X E X a

F a

E N E X E X a

a a

X
X

i
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[ ] [ ] [ ]
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1 [ ]
;

1

;

Combining equations (5.19) and (5.20) yields the effective trend factor for the aggregate 
variable S:

E X E X a
E X E X aS X

X� [ ] [ ]
[ ] [ ]τ = τ

− τ
−

;
;

. (5.21)

As before, tX > 1 implies that a/tX < a and E[X; a/tX ] ≤ E[X; a]. Consequently, the quotient 
expression in (5.21) cannot be less than 1, and so �τS ≥ tX. Similarly, �τS ≤ tX whenever 
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tX < 1. As we have just demonstrated, the existence of a fixed underlying limit magnifies, 
or leverages, the effect of the basic uniform claim-size trend on the aggregate excess loss.

Example 5.12.    As before in Examples 5.10 and 5.11, claim-size X has a Pareto 
distribution with (a, b) = (2; 3,000) and is subject to a uniform annual inflation rate 
of 10%. In addition, the ground-up claim count is increasing at an annual rate of 5%. 
What is the annual change in the total aggregate loss generated by claims excess of 5,000? 
How much of this change is due solely to claim-size inflation?

Example 5.11 showed that the claim count increases at a rate of 12.41% due to the 
increase in X, so the total increase in the claim count is

rN ( )( )= − =1.05 1.1241 1 18.03%.

Since the excess claim size increases at a rate of 3.75%, as shown in Example 5.10, the 
total aggregate loss increases at the annual rate of

rS ( )( )= − =1.1803 1.0375 1 22.46%.

Thus, 1.2246/1.05 - 1 = 16.6% is the annual rate of increase due only to the claim-size 
inflation. This result, of course, can also be obtained directly from equation (5.21):

rS� ( )= −
−

− =1.10
3,000 1,807
3,000 1,875

1 16.6%. n

5.6.  Aggregate Layer Claims
The aggregate-loss random variable S for claims in the excess layer (a, a + l ] is 

defined just as in Section 4.2, but with the modified variables Na and Xa,l as components. 
Formulas for the mean, variance, and skewness of S, in terms of the ground-up claim 
count N and unlimited claim size X, are obtained by applying equations (5.11), (5.12), 
(5.13), (5.16), and (5.18) to the formulas of (4.9).

For example, if the distribution of N has mean E[N ] = l and contagion parameter g 
so that Var[N ] = l + gl2, then the layer mean, variance, and skewness can be obtained 
from the formulas

E S E X a l E X a[ ] [ ] [ ]( )= λ + −; ; , (5.22)

Var S E X a l E X a aE S E S[ ] [ ]( )[ ] [ ] [ ]( )= λ + − − + γ; ; 2 , (5.23)2 2 2

Sk S Var S E X a l E X a aVar S

a E S E S Var S E S

i [ ] [ ]( )[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

( )

( )

= λ + − −

− + γ − γ

; ; 3

3 3 . (5.24)

3 2 3 3

2 2 3

Example 5.13.    The components of a ground-up claim process are as described 
in Examples 5.8 and 5.9—that is, N has a Poisson distribution with mean l = 15, and 
the claim-size variable X is lognormally distributed with parameters (µ, s) = (5.9809, 
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1.8000). What are the distribution characteristics for random variable S for claims in 
the layer 5,000 excess of 3,000?

Formula (5.22) yields the mean

E S[ ] ( )( )= − =15 1,276 891 5,775,

and the variance and skewness are calculated from (5.23) and (5.24):

Var S

Sk S

[ ]

[ ]

( )

( )( )
( )

( )( ) ( )( ) ( )
( )

( ) ( )( )= − − =

=
−

−
−

=

15 5,774,970 1,853,050 6,000 5,775 24,178,800,

15 37,049,701,689 4,790,705,259
24,178,800

9,000 24,178,800 3 3,000 5,775
24,178,800

0.92816.

3 2

2

3 2

Because the expected layer claim count l3K = 1.9536 is small, one should expect the 
cumulative distribution function for S to have significant discontinuities at the smaller 
multiples of the layer limit 5,000. This is clearly evident in Figure 5.4, which displays 
the graph of y = FS(x) as well as that of the continuous shifted gamma approximation 
to the function. n

The distribution of Example 5.13 exhibits some properties typical of the distributions 
of aggregate loss in an excess layer. It is often the case, especially for small portfolios of 
policies or even for large single policies, that the expected layer claim count is small. 
As we have seen, this leads to jump discontinuities of substantial size at the lower 
end of the distribution, thus complicating the task of approximating the distribution 
with one of the continuous approximation models. Nevertheless, these methods can 
still return reasonable results for the long tail of the distribution, usually the most 
important region for applications of the aggregate distribution.

0.0
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0.4

0.6

0.8

1.0

0 5,000 10,000 15,000 20,000 25,000

Aggregate distribution function Gamma approximation

y

x

Figure 5.4.    Layer Aggregate Loss Distribution 
Function [Example 5.13]
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5.7.  Problems

5.1	 The claim-size random variable X for a claim process has an exponential dis
tribution with mean 1,000. The expected number of claims for the ground-up 
claim process is 20. However, policy conditions limit claims to the layer between 
1,000 and 3,000.

	 (a)	 Compute the mean and variance of the layer claim size.
	 (b)	 Compute the expected number of layer claims.
	 (c)	� How do the policy conditions alter the coefficient of variation of the claim-size 

variable?
	 (d )	� If a uniform inflation rate of 10% per annum is applied to X, what is 

the annual percentage increase in the layer claim size? . . . the layer claim 
count? . . . the total layer aggregate loss?

5.2	 Compute eX(3,000) for the following distributions of X. Note that the unlimited 
severity for each distribution is the same: E[X ] = 2,000.

	 (a)	 uniform on [0; 4,000].	 (b)	 gamma, (a, b) = (2; 1,000).
	 (c)	 exponential, b = 2,000.	 (d )	 shifted Pareto, (a, b) = (3; 4,000).
	 (e)	 lognormal, (µ, s) = (5.9809, 1.8000).

5.3	 Verify formulas (5.5) and (5.6) for the second and third moments of Xa.

5.4	 Verify formulas (5.11), (5.12), and (5.13) for the moments of Xa,l.

5.5	 Prove: E X e a e a l
F a l

F aa l X X
X

X
[ ] ( ) ( ) ( )

( )
= − +

− +
−

1
1

.,

5.6	 Claim-size variable X has the mixed cumulative distribution function F(x) =  
Sm

k=1wkFk(x), where {Fk} are the component distribution functions and the weights 
{wk} satisfy wk > 0 and Sm

k=1wk = 1. Show that

e x
e x F x

F x
xX

k k kk
m

k kk
m

∑
∑

( )( ) ( ) ( )
( )

=
ω −
− ω

< < ∞=

=

1
1

, 0 .1

1

5.7	 Compute Pr{Xd > x }, where 0 < d < x, and the distribution of X is:
	 (a)  exponential (b).	 (b)  shifted Pareto (a, b).

5.8	 Prove: If E [X ] exists, then E [X ] = E [X; x] + e(x) (1 - F(x)) for all x > 0.

5.9	 (a) � Show that the excess severity function eX(x) can be expressed by the integral 
formula

e x u x dF u dF u xX Xx Xx∫ ∫( )( ) ( ) ( )= − < < ∞∞ ∞ , 0 .

	 (b) � The unlimited claim-size observations x1, x2, . . . , xn from a random sample 
of size n are grouped into a sequence of intervals of the form (ck-1, ck], where 
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nk = # claims in the kth interval, Sknk = n, and x–k = mean claim size in the  
kth interval. Show that the sample excess severity function en(ck) is

e c n x c nn k i i k
i k

i
i k

∑ ∑( )( ) = −
> >

.

5.10	 For the lognormal claim-size random variable X of Example 5.8 calculate:
	 (a )  CV [X; 3,000] and CV [X; 8,000]. Compare these numbers to CV [X ].
	 (b )  Sk[X ], Sk[X; 3,000], and Sk[X; 8,000].

5.11	 Calculate CV [X ] in terms of the distribution parameters when the distribution 
of X is:

	 (a )	 exponential (b).	 (b )	 gamma (a, b).
	 ( c )	 lognormal (µ, s).	 (d )	 shifted Pareto (a, b) with a > 2.
	 ( e )	 uniform on the interval [0, a ], a > 0.

5.12	 Assume that the policy of Example 5.6 has a ground-up claim process with 
E [N ] = 5 and that the claim-size variable X is Pareto-distributed with (a, b) = 
(3; 5,000). For each layer L defined in that example compute:

	 (a )	 probability PL that a claim penetrates the layer L.
	 (b )	 expected number of layer claims E[NL].
	 ( c )	 expected layer claim size E [XL].
	 (d )	 expected aggregate layer loss E[SL].

Layer L PL E [NL] E [XL] E [SL]

[0; 100] ____________ ____________ ____________ ____________

(100; 3,000] ____________ ____________ ____________ ____________

(3,000; ∞) ____________ ____________ ____________ ____________

[0; ∞) 1.0000 5.0000 2,500.00 12,500

5.13	 Assume that E[X ] exists and that the partition

b b b b bm m= < < < < < = ∞−0 . . .0 1 2 1

	 defines a sequence of m contiguous layers. Prove: if µk is the mean claim size for 
the kth layer (bk-1, bk] and pk = Pr{X > bk-1}, then E [X ] = Sm

k=1pkµk.

5.14	 Let X denote an unlimited claim-size variable with distribution function F, and 
assume that 0 ≤ a < b. The claim interval between a and b is just the set of claims 
of size X such that a < X ≤ b.

	 (a) � Explain how the claim interval between a and b differs from the layer defined 
by a and b.

	 (b)	� If l is the mean number of ground-up claims, what is the expected number 
of claims in the interval a < X ≤ b?

	 (c)	 Prove that the average claim size in the interval a < X ≤ b is

E X a X b
E X b E X a b F b a F a

F b F a
[ ] [ ] [ ] ( )( ) ( )

( )
( )

( )
< ≤ =

− − − + −
−

; ; 1 1
.
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5.15	 For the grouped data of Example 5.4 the indicated groups can be used to define 
either a sequence of claim intervals or a sequence of layers of coverage. Calculate 
the average claim size for each interval and each layer.

Interval/Layer Interval Mean Layer Mean

(0; 100] ___________ ___________

(100; 500] ___________ ___________

(500; 1,000] ___________ ___________

(1,000; 2,000] ___________ ___________

(2,000; 4,000] ___________ ___________

(4,000; 5,000] ___________ ___________

(5,000; 10,000] ___________ ___________

5.16	 Verify formula (5.17) for the second moment of the excess claim-count random 
variable Na.

5.17	 Prove that whenever the ground-up claim count N has a negative binomial 
distribution of the form (3.17) with parameters (a, n), then the distribution of 
the claim count Na excess of an underlying limit a is also negative binomial, with 
parameters (a, pn), where X is the claim-size variable and p = 1 - FX(a).

5.18	 The ground-up claim count N has mean l and contagion parameter g. Prove 
that for the excess claim count Na, the contagion parameter is unchanged: ga = g.

5.19	 Derive a generalization of formula (5.19) for the effective trend factor �τ 
associated with the layer claim size Xa,l.

5.20	 Show that the leveraging effect on the aggregate excess loss disappears when
ever the underlying limit a is also trended at the same rate as the claim-size 
variable X.

5.21	 Claim-size random variable X is lognormally distributed with (µ, s) = (5.9809, 
1.8000) and is subject to an inflation rate of 10% per annum. Calculate the 
corresponding effective inflation rate on the excess claim count for each of the 
following underlying limits, thus demonstrating that the induced claim-count 
rate of change can be either more or less than the basic claim-size inflation rate.

	 (a)  a = 3,000.	 (b)  a = 8,000.

5.22	 Variable X has a lognormal distribution as in Problem 5.21 and is also subject to 
a 10% inflation rate. Calculate the effective inflation rate on the excess aggregate 
loss for each of the following excess layers. What can be said about the effective 
layer inflation rate as compared to the basic rate of inflation?

	 (a)  (a, a + l ] = (3,000; 5,000].	 (b)  (a, a + l ] = (3,000; 8,000].
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5.23	 As in Example 5.3, the table summarizes grouped 
claim-size data from a sample of 1,000 claims. 
These claims are excess of a 500 straight deductible 
and have been censored by a policy limit of 
100,000.

	 (a) � Use the minimum chi-square method to 
obtain estimates of lognormal parameters 
for the ground-up population claim-size 
distribution.

	 (b) � Estimate the number of claims eliminated 
by the policy deductible.

5.24	� Assume that X is a continuous claim-size random 
variable for which E[X ] exists as a finite number. 
Derive this integral formula for eX(x):

e x
F u du
F xX

Xx

X

∫ ( )
( )

( )
( )

=
−
−

∞ 1
1

.

5.25	 Establish the following asymptotic properties of the mean excess claim size 
function eX(x). In each case it is useful to express eX(x) by the integral formula of 
Problem 5.24.

	 (a)  If X has the gamma density function

f x x e x( )
( )

=
Γ α βα

α− − β1
,1

then eX(x) ≈ x/(x/b + a - 1) for large x so that limx→∞eX(x) = b. [Hint : Apply 
l’Hôpital’s Rule.]

	 (b)  If X has a Weibull density function

f x x x x( )( )( ) = α
β

− β < < ∞α
α− αexp , 0 ,1

then eX(x)≈ ba/(axa-1) for large x. [Hint : use l’Hôpital’s Rule to show that

e x
xx

X

( )
( ) ]

β α
=

→∞ α α−lim 1.1

Size Group # Claims

0–1,000 236

1,001–2,000 161

2,001–3,000 107

3,001–5,000 135

5,001–10,000 159

10,001–15,000 71

15,001–25,000 62

25,001–50,000 43

50,001–75,000 11

75,001–100,000 15

Total 1,000
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In this chapter we explore some common applications of the claim-count, claim-
size, and aggregate-loss distributions in property/casualty insurance. In particular, we 
investigate the pricing of policies with various coverage limitations such as deductible 
options, and per-claim and aggregate limits with a variety of properties. We begin by 
reviewing some basic premium concepts and how they relate to distributional theory.

6.1.  Premium Concepts
Every insurance policy has an associated loss process described jointly by a claim-count 

random variable N and a claim-size variable Y. In the following discussion Y represents 
the entire claim amount: the indemnity payment plus loss adjustment expense allocated 
to the claim, as limited by policy conditions. Allocated loss adjustment expenses (ALAE) 
are those incurred during the settlement process for an individual claim: attorneys’ fees, 
investigation expense, expert witness fees, and the like. (Unallocated loss adjustment 
expenses, such as claim department overhead, are usually treated as general expenses and 
are not included in the policy aggregate loss.) The expected loss for the policy is then 
E [N ]E [Y ], the mean of the policy aggregate loss distribution. Premium charged for 
such a policy is based on this expected loss, loaded for general expenses, underwriting 
profit, and a charge for risk.

The mean E [N ] of the claim-count variable represents the expected number of 
claims per policy. In most situations, the expected claim count is seen to depend on an 
exposure unit associated with the policy coverage. The exposure unit is usually chosen 
to have certain desirable characteristics: (i) it should be a meaningful indicator of the 
policy’s expected number of claims—the more exposure units covered by the policy 
the greater the expected number of claims, and (ii) one should be able to determine 
an expected number of claims—constant over at least a moderate period of time—
associated with a single exposure unit.

For example, a single auto is the customary exposure unit for an auto liability policy 
with a term of one year. For such a policy the expected number of policy claims E[N ] is 
obtained by multiplying the number of autos covered by the policy for a year, referred to 
as the number of vehicle years, and the expected number of claims per auto per year—
that is, the number of claims per vehicle year. Other common measures of exposure 
include dollars of annual payroll for workers’ compensation policies, the number of 
objects manufactured in a year or dollars of annual sales for product liability coverages, 
and building area measured in square feet for premises liability coverages.

6.  Limits and Deductibles
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The expected number of claims per unit exposure is called the claim frequency. 
If m denotes the number of exposure units and j the claim frequency, then obviously

[ ]ϕ = . (6.1)m E N

In addition, the claim severity is the average claim size E [Y ] for the policy. The product 
of frequency and severity, denoted by p, is called the pure premium:

[ ]( )( )= = = ϕ . (6.2)p pure premium frequency severity E Y

It is clear that the pure premium represents the expected aggregate claim amount per unit 
of exposure. Accordingly, exposure times pure premium yields the policy expected loss:

[ ] [ ] [ ]( )= ϕ = . (6.3)mp m E Y E N E Y

In the case that a policy involves more than a single line of business—each with its own 
exposure, frequency, and severity—then the policy expected loss is obtained by summing 
over all component coverages the corresponding products of exposure, frequency, and 
severity.

Example 6.1.    For a certain general liability coverage the exposure unit is $1,000 
of annual sales, the claim frequency is 0.000825 claims per $1,000 sales per year, and 
the claim severity is $5,200.

An insured has $650,000 of sales revenue per year. Consequently, the number 
exposure units for an annual policy is

= =$650,000
$1,000

650,m

the pure premium is p = (0.000825)(5,200) = 4.29, and the expected loss for the policy 
is mp = (650)(4.29) = 2,789. n

To calculate the policy premium one must first load the pure premium amount 
with a provision for general expenses, underwriting profit, and risk. General expenses 
include acquisition expense—commission paid to agents and brokers—salaries and 
overhead, taxes and fees, and other costs of doing business. Underwriting profit is the 
expected excess of premium over paid losses and expenses. (In some lines of business 
the underwriting profit could be zero, or even negative, in anticipation of an offset 
from investment income.) The risk charge is extra premium collected by the insurer to 
cover such contingencies as (i) random fluctuations of losses about the expected values 
and (ii) uncertainty inherent in the selection of critical parameters used in modeling 
the underlying loss process. Insurer risk from the first source is called process risk and 
that from the second, parameter risk.

Provisions for expense, profit, and risk can be treated either as variable—loaded as a 
percent of the final premium amount—or as fixed—added as a dollar amount per unit 
of exposure to the pure premium. Agent and broker commission is generally a variable 
expense, whereas the overhead cost of issuing a policy could be loaded as a fixed expense.
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If variable expenses, plus the load for profit and risk, constitute the fraction v of 
the total policy premium,51 and fixed expenses are f dollars per unit exposure, then the 
modified pure premium

= +
−1

(6.4)R
p f

v

is the rate per unit exposure. The number of exposure units m times the rate R yields 
the final policy premium P:

( ) [ ] [ ]= =
+

−
= +

−1 1
. (6.5)P mR

m p f
v

E N E Y m f
v

In the case that f = 0—that is, all expense amounts are assumed to be variable and 
expressed by the expense ratio v—the factor

ψ =
−
1

1
(6.6)

v

is called a loss-cost multiplier. Rate formula (6.4) then reduces to the simpler form 
R = yp, and the premium formula becomes

( ) [ ] [ ]= = ψ = ψ . (6.7)P mR m p E N E Y

In subsequent sections we shall generally assume that expenses are loaded by means of 
a loss-cost multiplier y, as in (6.7).

Example 6.2.    A business owner wishes to buy annual insurance coverage for 
general liability and auto liability for a business operation that involves premises of 
20,000 square feet and four automobiles. General and auto liability premiums are 
rated separately, as indicated below.

For the general liability coverage the insurer has determined a claim frequency 
of 0.004 per 1,000 square feet per year and a claim severity of 6,500. The general 
liability pure premium is therefore p = (0.004)(6,500) = 26.00. Variable expenses plus 
profit load amount to 30% of the premium; fixed expenses are 4.10 per exposure unit. 
Therefore, the general liability annual rate is

= +
−

=26.00 4.10
1 0.30

43.00 per 1,000 square feet.RGL

For the auto coverage the claim frequency is 0.052 per vehicle year, with a claim severity 
of 2,800 and fixed expense of 9.80 per vehicle year, and so the auto liability rate is

( )( )=
+

−
=

0.052 2,800 9.80
1 0.30

222.00 per vehicle year.RAL

51	 As we shall see in Section 6.3, the risk load is often calculated as an amount that varies with the policy limit, as 
well as one that varies with premium.
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Annual liability premium P is obtained by multiplying the number of exposure units 
and the rate for each coverage and summing the results:

( )( ) ( )( )= + = + =20,000
1,000

4 20 43 4 222 $1,748.P R RGL AL
 
n

6.2.    Increased Limit Factors
The premium for many property/casualty policies is calculated first for a basic per-

claim policy limit, and then this basic-limit premium is multiplied by an appropriate 
increased limit factor (ILF) to determine the full policy premium. A set of increased 
limit factors—one for each of the available policy limit options—can be obtained 
from an empirical loss distribution based on loss data organized around the required 
policy per-claim limits, or it can be derived from an appropriate parametric size-of-
loss distribution. Such an analytic distribution fit to empirical sample data is often 
useful for obtaining factors for those higher limits for which data are either sparse or 
nonexistent.

Let Pb denote the policy premium at the basic per-claim limit b and Pl the premium 
at a policy per-claim limit l. Then the increased limit factor I(l ) is defined by

( ) = , (6.8)I l
P
P

l

b

so that Pl = Pb z I(l ). Note also that if the policy premium is based on formula (6.7), 
then pl = pb z I(l ), where pl is the pure premium associated with the limit l.

In the discussion that follows, El[Y ] is the policy severity, including both indemnity 
payment and allocated loss adjustment expense, appropriately modified by the policy 
limit l . When expenses are loaded by means of a loss-cost multiplier y, ILF formula (6.8) 
becomes

[ ] [ ]
[ ] [ ]

[ ]
[ ]

( ) = = ψ
ψ

= . (6.9)I l
P
P

E N E Y
E N E Y

E Y
E Y

l

b

l

b

l

b

The specific form of El [Y ] depends on whether policy conditions stipulate that 
limit l applies to the full claim amount, including both indemnity and allocated loss 
adjustment expense portions of a claim, or whether it applies only to the indemnity 
payment.

Consider first the case that policy limit l applies to the total claim amount: indemnity 
loss plus loss adjustment expense. If Xt denotes the ground-up, unlimited total claim-
size random variable, then the policy severity is El[Y ] = E[Xt ; l ]. In these circumstances 
ILF formula (6.9) can be expressed as

[ ]
[ ]( ) =

;
;

. (6.10)I l
E X l
E X b

t

t
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On the other hand, suppose that the limit l applies only to the indemnity portion 
of the claim, as is usually the case. If random variable X denotes just the indemnity 
component of the claim, then one could write

[ ][ ] = + ε; , (6.11)E Y E X ll

where e is the average per-claim allocated loss adjustment expense, independent of the 
policy limit. In this case (6.9) has the form

[ ]
[ ]( ) =

+ ε
+ ε

;
;

. (6.12)I l
E X l
E X b

Provision for loss adjustment expense in formula (6.11) is an overall average amount e 
added to every claim, regardless of size. Amount e can thus be interpreted as the mean 
of a loss adjustment expense random variable, but in (6.11) it is unnecessary to know 
exactly how that variable is distributed.

As an alternative to this approach, it is sometimes useful to assume that loss 
adjustment expense bears some functional relationship to the size of the indemnity 
payment. One simple scheme is to assume that loss adjustment expense is a fixed multiple 
u of the indemnity amount. This assumption can be approximately true provided that 
the indemnity payment is not too large. (An alternative, hybrid method of expense 
loading is described in Problem 6.6.) Again, assuming that the policy limit applies only 
to the indemnity portion of the claim, one can write

[ ] [ ] [ ] [ ]( )= + = +; ; ; 1 . (6.13)E Y E X l u E X l E X l ul

Then ILF formula (6.9) becomes

[ ]
[ ]

[ ]
[ ]( ) ( )

( )=
+
+

=
; 1
; 1

;
;

. (6.14)I l
E X l u
E X b u

E X l
E X b

The three approaches to loss adjustment expense incorporated into formulas (6.12), 
(6.13), and (6.14) can be combined into a single general formula for the policy severity:

[ ] [ ]( )( )= + ε +; 1 . (6.15)E Y E X l ul

In case that limit l applies to indemnity loss plus loss adjustment expense, set X = Xt  
and e = u = 0 in (6.15). Otherwise, when the limit applies only to the indemnity 
payment, let variable X represent the indemnity-only portion of a claim and set either 
e = 0 or u = 0, as desired.

The Insurance Services Office (ISO) increased limits methodology treats allocated 
loss adjustment expense additively like the constant e in formula (6.15) and loads 
unallocated adjustment expense multiplicatively like the factor 1 + u in that formula.52

52	 For an extended discussion of the ISO method, refer to a current ISO Actuarial Service Circular for increased limits 
data and analysis for General and/or Commercial Auto Liability (Jersey City, NJ: Insurance Services Office, Inc.).
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Example 6.3.    Indemnity losses for a portfolio of insurance policies have a lognormal 
claim-size distribution with parameters (µ, s) = (7.000, 2.400). The policy per-claim limit 
applies only to the indemnity portion of a claim, and the average per-claim loss adjustment 
expense is 2,200. Claim frequency for these policies is j = 0.0005 per exposure unit, and 
variable expenses equal 35% of premium.

A set of increased limits factors based on (6.15) with b = 100,000, e = 2,200, and 
u = 0 is shown in the third column of Table 6.1. For example,

( ) = +
+

=1,000
15,345 2,200
8,896 2,200

1.5812.I K

For a policy with 400 exposure units, so that E [N ] = (400)(0.0005) = 0.2000, the 
basic-limit premium is

( )( )=
+

−
=

0.2000 8,896 2,200
1 0.35

$3,414.100P K

The corresponding premium for a policy limit of 1,000,000 is therefore

( ) ( )( )= = =P P I KK K i 1,000 3,414 1.5812 $5,398.1,000 100

Alternatively, if the loss adjustment expense is treated as 20% of the indemnity 
portion of the claim, then the resulting increased limit factors are displayed in the 
fourth column of Table 6.1. For example, in this case

( ) ( )( )
( )( )= =1,000
15,345 1.20
8,896 1.20

1.7249.I K

For the policy with 400 exposure units the basic-limit premium is

( )( )( )=
−

=
0.2000 8,896 1.20

1 0.35
$3,285,100P K

Table 6.1.    Increased Limit Factors [Example 6.3]

Limit l
($000) E[X; l ]

I (l )
ALAE = 2,200

I (l )
ALAE = 20%

100 8,896 1.0000 1.0000

500 13,626 1.4263 1.5317

750 14,668 1.5202 1.6488

1,000 15,345 1.5812 1.7249

2,000 16,738 1.7067 1.8815

3,000 17,390 1.7655 1.9548

4,000 17,782 1.8008 1.9989

5,000 18,048 1.8248 2.0288
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and with a 1,000,000 limit,

( )( )= =3,285 1.7249 $5,666.1,000P K  n

Excess Layer Pricing
Increased limit factors can also be applied to price an excess layer of coverage, 

defined by a policy limit l and attachment point a (l > 0, a > 0), as discussed in 
Section 5.3. If j and Ea,l[Y ] denote, respectively, the ground-up claim frequency and 
the severity for the policy layer (a, a + l ], then the layer pure premium is

( ) [ ]( )= ϕ −1 ,, ,p F a E Ya l X a lt

where Xt is the total ground-up claim amount. In the case that Xt is subject to the layer 
limits we rearrange the pure premium formula as follows:

[ ] [ ]

[ ] [ ]

[ ] [ ]
[ ]

[ ]
[ ]

( )

( )

( )
( )

= ϕ −
+ −
−

= ϕ + −

= ϕ
+

−





1
; ;
1

; ;

;
;

;
;
;

. (6.16)

,p F a
E X a l E X a

F a

E X a l E X a

E X b
E X a l

E X b
E X a
E X b

a l X
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t t

t
t

t

t

t

t

t

In this special case, a layer factor, applied to the basic-limit pure premium to calculate 
the pure premium for the excess layer, is just the difference of two ground-up increased 
limit factors of the form (6.9), namely,

i ( )( ) ( )= + − .,p p I a l I aa l b

Since Pa,l = m (ypa,l) = m (ypb) (I(a + l ) - I (a)), premium for the excess layer (a, a + l ] 
can be calculated by using the layer formula for policy premium P:

i ( )( ) ( )= + − . (6.17)P P I a l I ab

The simplicity of this basic formula makes it very easy to apply. Because of this, 
it is widely used in increased limits pricing, even in situations where it is not strictly 
appropriate. For example, suppose that the layer limits l and a apply only to the indemnity 
portion of a claim and ALAE is added as in formula (6.11). Then the excess-layer 
premium based on that model would be

[ ] [ ] [ ]

[ ] [ ] [ ]( )

( )

( )

( )
( )

( )

= ψ −
+ −
−

+ ε





= ψ + − + − ε

1
; ;

1

; ; 1 . (6.18)

,P E N F a
E X a l E X a

F a

E N E X a l E X a F a

a l X
X

X
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On the other hand, the layer formula for P yields

[ ] [ ] [ ]
[ ]

[ ]
[ ]

[ ] [ ] [ ]

( )

( )

= ψ + ε
+ + ε

+ ε
−

+ ε
+ ε







= ψ + − .

;
;

;
;
;

; ; (6.19)

P E N E X b
E X a l

E X b
E X a
E X b

E N E X a l E X a

Notice that P = Pa,l and that the load for loss adjustment expense has dropped out 
of the premium calculation in (6.19) entirely. In the situation where such an excess 
policy is written over a primary policy providing first-dollar coverage for the primary 
layer [0, a], this state of affairs is consistent with the assumption that allocated loss 
adjustment expense is paid in its entirety by the primary insurer.

On the other hand, if loss adjustment expense is loaded by means of the factor 
1 + u, then

[ ] [ ] [ ]( )( )= ψ + − +; ; 1 ,,P E N E X a l E X a ua l

where the provision for ALAE in the excess premium is

[ ] [ ] [ ]( )= ψ + −; ; .ALAE E N E X a l E X a u

The layer formula for P yields the premium amount

( )−[ ] [ ]

[ ] [ ] [ ]
[ ]

[ ]
[ ]

[ ]

( )

( )

= ψ +
+

−





= ψ + +

; 1
;

;
;
;

; ; 1 . (6.20)

P E N E X b u
E X a l

E X b
E X a
E X b

E N E X a l E X a u

In this case, for which the ALAE multiplier u is the same for both primary and excess 
policies, the basic layer formula preserves the loss adjustment expense loading exactly 
and P = Pa,l .

Example 6.4.    We return to the portfolio of policies described in Example 6.3 
and calculate the premium for successive excess layers of insurance for a policy with 
m = 400. We use the ILFs constructed in that example under the assumption that the 
average per-claim ALAE payment is e = $2,200.

The basic limit premium was calculated in the previous example to be $3,414. Thus, 
premium P for the layer (1,000,000; 2,000,000] given by the layer formula (6.17) is

( )( ) ( )( )= = =3,414 1.7067 – 1.5812 3,414 0.1255 $428.P

Similarly, for the layer (2,000,000; 3,000,000], we obtain

( )( ) ( )( )= = =3,414 1.7655 – 1.7067 3,414 0.0588 $201.P

Premium amounts for the successive million-dollar layers obtained from these layer 
factors applied to the basic-limit premium are displayed in Table 6.2. n
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Consistency
The premiums calculated in Example 6.4 illustrate an important and desirable 

characteristic of excess layer pricing—premium amounts for successively higher layers 
of constant width decrease as the attachment point becomes larger. In that example, 
premium for the ground-up million-dollar layer is $5,398, and for successively 
higher layers of one-million-dollar width the calculated premium steadily declines 
with increasing attachment point: $428, $201, $121, $82. As we shall see, this is a 
property common to all pricing methods based on expected losses and reasonable 
distributions for the claim-size random variables.

Consider a set of increased limit factors based on the general severity formula 
(6.15). If the claim-size variable X has a continuous probability density function 
fX(x) = F ′X(x), then the ILF function I(x) is twice differentiable with respect to the 
limit x (refer to Problem 2.9). Specifically, for all x > 0

( )
[ ] [ ]( ) ( ) ( ) ( ) ( )( )

′ =
+ −

+ ε
′′ =

− +
+ ε

<
1 1

;
and

1
;

0.I x
u F x

E X b
I x

u f x
E X b

X X

A set of increased limit factors for which I ″(x) < 0 for all limits x is said to be consistent. 
Thus, every set of increased limit factors based on severity formula (6.15) for which the 
claim-size density function is continuous is always consistent.

Consistent sets of increased limit factors share a common property: the premium 
P calculated from the layer formula (6.17) applied to successive excess layers of constant 
width is a decreasing function of the attachment point limit. It is easy to verify this 
assertion in the case that the claim-size variable has a continuous probability density 
function. Assume that in the formula

i ( )( ) ( )= + −P P I x l I xb

the attachment point x is variable, whereas the layer width l is a fixed constant. Then 
the rate of change of premium P with respect to x is

( ) ( )= + −



 .

dP
dx

P
d
dx

I x l
d
dx

I xb

Table 6.2.    Layer Premium [Example 6.4]

Layer ($000) Layer Factor Premium

        [0; 100] 1.0000 3,414

        [0; 1,000] 1.5812 5,398

(1,000; 2,000] 0.1255 428

(2,000; 3,000] 0.0588 201

(3,000; 4,000] 0.0353 121

(4,000; 5,000] 0.0240 82
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Consistency means that I ′(x) is a decreasing function of x, so that

( ) ( )+ < <and hence 0.
d
dx

I x l
d
dx

I x
dP
dx

Therefore, for each fixed l, premium P for the layer (x, x + l ] decreases as the attachment 
point x increases.

6.3.  Risk Load
Increased limit factors based on expected-value concepts have generally been thought 

to be inadequate for pricing insurance policies with high limits or attachment points 
unless they were loaded with a charge for insurer risk. With lower claim probabilities 
for such policies, loss behavior associated with excess policies is more volatile and less 
predictable than that of primary policies with lower limits. Insurer risk due to such 
variability is process risk, in contrast to the parameter risk derived from estimation 
errors in selecting the claim-count and claim-size distributions. Process risk has long 
been understood by actuaries as a function of the variance of the basic stochastic claim 
process for a portfolio of policies or line of property/casualty insurance business.

In most approaches to risk-loaded increased limit factors, the risk load r(l ) is 
usually defined as an increasing function of the policy limit l , which is added to the 
expected total policy severity for the policy. The severity formula (6.15) is thus modified

[ ]( )( ) ( ) ( )[ ] + ρ = + ε + + ρ; 1 , (6.21)E Y l E X l u ll

and the resulting risk-loaded increased limit factors are

[ ]
[ ]

( )
( )( ) ( ) ( )

( ) ( )=
+ ε + + ρ
+ ε + + ρ

; 1
; 1

. (6.22)I l
E X l u l
E X b u b

The merits of different methods of quantifying process risk for increased limit 
factors have been debated since the mid-1970s. Robert Miccolis53 suggested in 1977 
that process risk load be added to the policy expected aggregate loss as a constant 
multiple of the variance of the policy aggregate indemnity-loss random variable S:

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]
[ ]

( )

+

= +
+



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;

;
; ;

.
2

E N E X l kVar S

E N E X l k
E N Var X l Var N E X l

E N

The multiplier k in this formula is selected arbitrarily to produce the desired level of 
risk loading. The risk load function r(l ) in formula (6.21) is thus given by

( )[ ] [ ]( )( ) [ ]
[ ]

ρ = = + δ ,; ; (6.23)2 2l k
Var S
E N

k E X l E X l

53	 Miccolis [16].
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where d = Var [N ]/E [N ] - 1. Setting d = 0, of course, is consistent with the assumption 
that N has a Poisson distribution. Note also that when d = 0 the risk load r(l ) is 
independent of the claim-count random variable and dependent only upon the claim-
size variable. Such a variance-based approach to process risk load was adopted by ISO 
in the early 1980s.54

By mid-decade, however, ISO changed to a method based on the standard deviation 
of the policy aggregate indemnity-loss distribution:

[ ]

[ ]

[ ]
[ ]

[ ]
[ ]

[ ]

( )

( )

( )ρ =

= + δ

= ′ + δ

; ;

; ; , (6.24)

2 2

2 2

l k
Var S
E N

k
E N

E X l E X l

k E X l E X l

where d is defined as in the variance formula (6.23). ISO actuaries cited several reasons 
for this change. Risk-loaded factors based on (6.23) and (6.24) with thick-tailed Pareto 
distributions for X were sometimes inconsistent (for example, refer to Problem 6.10). 
Moreover, it seemed preferable to express the risk load as a dollar amount rather than in 
terms of (dollars)2. In 1991 ISO introduced a new risk-loading method that includes a 
measure of parameter risk as well as process risk. But this new method returned to the 
earlier variance approach to process risk.55

Example 6.5.    We turn again to the portfolio of policies described in Example 6.3. 
Indemnity losses are distributed lognormally with parameters (µ, s) = (7.000, 2.400), 
and allocated loss adjustment expense is 20% of the indemnity payment. We generate 
a set of risk-loaded increased limit factors by using formula (6.22) with e = 0 and  
u = 20%. The risk load r(l ) is obtained by the standard deviation method (6.24) 
with k′ = 0.0277 and d = 0. Thus,

( ) ( )

( ) ( )

ρ = =

ρ = =

100,000 0.0277 512,509,058 627,

1,000,000 0.0277 5,283,276,848 2,013,

so that

( ) ( )( )
( )( )=

+
+

=1,000,000
15,345 1.20 2,013

8,896 1.20 627
1.8074.I

Two sets of increased limit factors—risk-loaded and non-risk-loaded—are displayed 
in Table 6.3. The average increased limit factor in each column is obtained by using the 
indicated portfolio weights for the given set of limits. The ratio of these two averages 

54	 Insurance Services Office [9].
55	 This approach is based on the paper by Glenn Meyers [15].
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indicates an increase of 1.7955/1.6938 - 1 = 6.0%. This means that using the risk-
loaded factors on a portfolio with this distribution of policy limits would generate 6% 
more premium than would be obtained by using the unloaded factors. n

Unfortunately, both the variance and standard deviation approaches to risk load 
are incompatible with the layer formula (6.17) for pricing an excess layer. For example, 
if the risk load ra,l for the excess layer (a, a + l ] is defined as a multiple of the variance 
of the aggregate indemnity-loss variable S for the layer, then ra,l ≠ r(a + l ) - r(a), 
where r(l ) is defined by (6.23).

To show this in a special case, we first calculate the layer risk load. For simplicity, 
assume that N is the ground-up claim-count variable with d = 0 and that X is the 
ground-up claim-size variable. Then

[ ] [ ]( )

[ ]
[ ]

[ ] [ ]
( )

( )
( )ρ =

−

= + − − + −

1

; ; 2 ; ; .

,

2 2

kVar S
F a E N

k E X a l E X a a E X a l E X a

a l
X

But this means that

[ ] [ ]( )( ) ( ) ( ) ( )ρ = ρ + − ρ − + − < ρ + − ρ2 ; ; ., a l a ka E X a l E X a a l aa l

That is, the risk load ascribed to the layer (a, a + l ] by the basic layer formula, namely 
r(a + l ) - r(a), is larger than the risk load based on the actual variance of the layer 
aggregate-loss random variable.

Overstatement of the risk load remains a technical problem when one uses the 
basic layer formula with risk-loaded ILFs to price excess layers of insurance. Ideally, 
one should first determine the layer premium by applying the basic formula with 
non-risk-loaded factors and then add on the risk load for the layer. Such an approach, 

Table 6.3.    Risk-Loaded Increased Limit Factors [Example 6.5]

Limit l
($000)

E [X; l ]
× 1.20

Risk 
Load
r(l )

I (l )
w/o Risk 

Load

I (l )
w/ Risk 
Load

Limit
Weight

100 10,675 627 1.0000 1.0000 15%

500 16,351 1,473 1.5317 1.5770 10%

1,000 18,414 2,013 1.7249 1.8074 30%

2,000 20,086 2,663 1.8815 2.0128 20%

3,000 20,868 3,090 1.9548 2.1197 10%

4,000 21,338 3,410 1.9989 2.1897 10%

5,000 21,658 3,668 2.0288 2.2407 5%

Average 1.6938 1.7955
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probably too cumbersome to be widely adopted, is more frequently used by reinsurers 
providing excess-of-loss coverage.

6.4.    Aggregate Limits
It is often the case with liability lines of insurance that policies are written not 

only with a per-claim limit but also with an aggregate limit as well. Whereas the per-
claim limit is the maximum the insurance company would pay on a single claim, an 
aggregate limit is the maximum amount that would be paid during the policy term for 
all claims combined.

The policy expected loss under the restrictions imposed by a per-claim limit l 
and an aggregate limit L (where L > l ) is just the expected value E [Sl ; L], where Sl is 
the aggregate-loss random variable based on a claim-size variable N and a claim-size 
variable X limited at l. Thus, the unlimited aggregate mean is

[ ] [ ] [ ]= ; . (6.25)E S E N E X ll

It is often more efficient and accurate to calculate the expected aggregate loss 
eliminated by the limit L—namely E [Sl ] - E [Sl ; L ]—and subtract this amount from 
the unlimited mean (6.25) than it is to calculate E [Sl ; L ] directly. For example, if the 
(unlimited) aggregate distribution function FS(s) has been approximated by one of the 
deterministic models discussed in Chapter 4, then expected excess loss E [Sl ] - E [Sl ; L] 
can be obtained from the integral formula

∫ ∫

∫

[ ] [ ] ( )( ) ( ) ( )

( ) ( )

− = − − −

= −

∞

∞

; 1

. (6.26)

0 0E S E S L s dF s s dF s L F L

s L dF s

l l S S
L

S

SL

In practice, the improper integral in (6.26) is most easily evaluated by numerical 
integration techniques. When a deterministic approximation is not practicable, then 
an approximation to E [Sl ; L ] could be obtained by stochastic simulation.

Thus, when N is the claim-count variable, X is the unlimited indemnity-only 
claim-size variable, and allocated loss adjustment expense is loaded multiplicatively by 
the factor 1 + u, the increased limit factor from the basic limit b with no aggregate limit 
to a per-claim limit l combined with an aggregate limit L is given by

[ ]
[ ] [ ]

[ ]
[ ] [ ]( ) ( )

( )=
ψ +

ψ +
=,

; 1
; 1

;
;

. (6.27)I l L
E S L u

E N E X b u
E S L

E N E X b
l l

The next example illustrates the use of formula (6.27).

Example 6.6.    For a portfolio of liability policies the unlimited indemnity claim 
size distributed lognormally with (µ, s) = (7.000, 2.400). Claim count N is distributed 
so that E [N ] = 1.20 with contagion parameter g = 0.100. Allocated loss adjustment 
expense is assumed to be 20% of the indemnity payment.
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At the basic limit of 500,000 with no aggregate limit the expected policy indemnity 
loss is

[ ] [ ] ( )( )[ ] = = =; 500,000 1.20 21,743 26,092.0.5E S E N E XM

With a per-claim limit of 2,000,000 the expected loss is

[ ] [ ] ( )( )[ ] = = =; 2,000,000 1.20 28,338 34,006.2E S E N E XM

Consider now the case for which the per-claim limit of 2,000,000 is accompanied 
by an aggregate limit of 3,000,0000. In addition to the mean 34,006, the aggregate-
loss variable S2M has SD[S2M] = 151,311 and Sk[S2M] = 9.4728. A numerical integration 
of ∫ ∞

3M(s - 3,000,000) dF̃ (s), where  ̃F (s) is the shifted gamma approximation to FS2M(s), 
yielded

[ ][ ] − =; 3,000,000 91.2 2E S E SM M

Thus,

[ ] = − =; 3,000,000 34,006 91 33,915.2E S M

The ILF for the 2,000,000/3,000,000 limit combination is therefore

( ) = =2 , 3
33,915
26,092

1.2998.I M M

Compare this result with the factor for the 2,000,000 per-claim limit with no aggregate 
limit:

( ) = =2
34,006
26,092

1.3033.I M

The expected policy aggregate losses for several combinations of per-claim and aggregate 
limits for this portfolio, as well as the increased limit factors calculated from them, 
are shown in Table 6.4. n

6.5.  Deductibles
The deductible is a coverage modification often used to decrease the policy claim 

count by eliminating small claims less than the deductible amount. It also serves 
possibly to encourage the policyholder to take steps to prevent or limit the occurrence 
of claims. We discuss in this section the standard straight deductible, as well as the less 
common franchise and diminishing deductible options.

By reducing the amount paid by the insurer for some or all claims, deductible 
provisions also serve to lower the premium charged for a policy. Deductible premium 
credits are easily calculated with the help of the claim-size limited pure premium and the 
loss elimination ratio concepts. In many cases, where there are sufficient data available, 
deductible credits can be calculated empirically. In other cases, analytic models involving 
parametric distributions are useful.
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Straight Deductible
The straight deductible is the most common deductible coverage modification. 

It eliminates, from the standpoint of the insurer, all claims less than or equal to the 
deductible amount d, and it reduces the size of larger claims by d. If X represents 
the unmodified, ground-up claim-size variable, excluding allocated loss adjustment 
expense, then application of a straight deductible of size d yields a modified random 
variable, truncated from below and shifted by d:

= − < < ∞, . (6.28)X X d d Xd

Clearly, claims net of such a deductible are excess over an underlying limit d, as 
discussed in Section 5.1.

For all deductible options discussed in this section we shall assume that allocated 
loss adjustment expense is not included in the deductible or policy limit and that 
the policy severity is modeled by the general formula (6.15) with ALAE parameters 
e and u. Thus, the basic-limit pure premium before application of the deductible is

[ ]( )( )= ϕ + ε +; 1 , (6.29)p E X b ub

where b is the basic limit and j the claim frequency.
In practice, the basic-limit pure premium (6.29) is modified to reflect the presence 

of a deductible by applying a deductible credit factor C(d ):

i ( )( )= − < <1 , 0 . (6.30),p p C d d bd b b

Table 6.4.    Expected Aggregate Loss and ILFs with Aggregate Limits 
[Example 6.6]

Per-Claim 
Limit

Aggregate Limit ($000)

1,000 2,000 3,000 4,000 5,000 Unlimited

500,000 26,050 26,092 26,092 26,092 26,092 26,092

1,000,000 29,702 30,306 30,333 30,335 30,335 30,335

2,000,000 — 33,524 33,915 33,988 34,002 34,006

3,000,000 — — 35,421 35,696 35,781 35,821

4,000,000 — — — 36,604 36,808 36,949

5,000,000 — — — — 37,428 37,733

500,000 0.9984 1.0000 1.0000 1.0000 1.0000 1.0000

1,000,000 1.1384 1.1615 1.1625 1.1626 1.1626 1.1626

2,000,000 — 1.2848 1.2998 1.3026 1.3032 1.3033

3,000,000 — — 1.3575 1.3681 1.3713 1.3729

4,000,000 — — — 1.4029 1.4107 1.4161

5,000,000 — — — — 1.4345 1.4462
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Of course, this implies that the deductible-modified policy premium is obtained in the 
same way:

i ( )( )= −1 . (6.31),P P C dd b b

The deductible premium credit amount is therefore Pb C(d ). Note also that the existence 
of the deductible reduces the basic limit policy layer width to b - d.

A formula for the deductible credit factor C (d ) is easily derived by starting with 
the modified basic-limit pure premium, calculated from first principles as the product 
of the policy frequency and severity:

[ ] [ ]

[ ] [ ]

( )

( )

( ) ( )

( ) ( )

( )

( )

= ϕ −
−

−
+ ε


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= ϕ − + − ε +

1
; ;
1

1

; ; 1 1 . (6.32)
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Equating the two expressions for pd,b in (6.30) and (6.32), we solve for C (d ):

[ ] [ ]
[ ]( ) ( ) ( ) ( )=

ϕ + ε +
=

+ ε
+ ε

( ); 1 ;
;

. (6.33)C d
E X d F d u

p
E X d F d

E X b
X

b

X

The expression in (6.33) is merely the ratio of the pure premium eliminated by 
the deductible to that of the unmodified policy layer [0, b]. Accordingly, the ratio is 
referred to as a loss elimination ratio. The loss elimination ratio concept is useful 
in quantifying the effects of a variety of coverage modifications mandated by policy 
conditions.

Formula (6.31) yields the basic-limit premium modified by the straight deductible d, 
but how should the premium for a higher limit l be so adjusted? Recall that Pl =  
Pb z I(l ), where I(l ) is the increased limit factor for limit l with respect to the basic limit b, 
and that the premium credit amount for the existence of the deductible is Pb z C(d ). 
Therefore,

i ( )( ) ( ) ( )= − = − . (6.34),P P P C d P I l C dd l l b b

Example 6.7    As in Example 6.3, consider a portfolio of policies for which the 
ground-up indemnity claim size X has a lognormal distribution with parameters 
(µ, s) = (7.000, 2.400) and allocated loss adjustment expense is u = 20% of the 
indemnity amount. The basic limit is b = 100,000. We calculate the credit factors, 
as well as the resulting frequency and severity, for five straight deductible options: 
{1,000; 2,000; 3,000; 4,000; 5,000; 10,000}. Results are tabulated in Table 6.5. For 
example, equation (6.33) with u = 20% and e = 0 implies that

[ ]
[ ]( ) = = =2,000

;
;

1,111
8,896

0.1249.C
E X d
E X b
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The ground-up claim frequency for this portfolio is j = 0.000500. Consequently, for a 
policy with deductible d = 2,000 we have an deductible-adjusted frequency

( )( ) ( )( )ϕ − = − =1 0.000500 1 0.5989 0.000201.F dX

In addition, the modified severity is

[ ] [ ]
( ) ( ) ( )−

−
+ = −

−
=

; ;
1

1
8,896 1,111

1 0.5989
1.20 23,291,

E X b E X d
F d

u
X

yielding the pure premium p = (0.000201)(23,291) = 4.671.
In Example 6.3 we calculated the basic-limit premium for a policy with 400 exposure 

units to be $3,285. Accordingly, premium for this policy with a limit of 1,000,000 and 
a 2,000 deductible is P = (3,285)(1.8074 - 0.1249) = $5,527. n

Franchise Deductible
The franchise deductible was one of the first coverage modifications to arise. Marine 

underwriters from the earliest times used it with policies insuring cargo shipments. It is 
now utilized in some types of workers’ compensation coverages. The franchise deductible 
eliminates all claims less than or equal to the deductible or “franchise” amount d, and 
claims in excess of d are paid in full. Consequently, application of a franchise deductible d 
to the unlimited, ground-up random variable X results in the truncated, but non-shifted 
variable

= < < ∞, .X X d Xd

In this case, the deductible-modified basic-limit pure premium is

[ ] [ ]( )( )( ) ( ) ( )= ϕ − + − + ε +; ; 1 1 . (6.35),p E X b E X d F d d ub d X

Table 6.5.    Straight Deductible Credit Factors [Example 6.7]

Ded d E [X ; d ] FX(d ) C (d ) Frequency Severity Pure Prem

0 0 0.0000 0.0000 0.000500 10,675 5.338

1,000 659 0.4847 0.0741 0.000258 19,182 4.942

2,000 1,111 0.5989 0.1249 0.000201 23,291 4.671

3,000 1,478 0.6625 0.1661 0.000169 26,375 4.451

4,000 1,793 0.7051 0.2016 0.000147 28,903 4.262

5,000 2,071 0.7364 0.2328 0.000132 31,070 4.095

10,000 3,144 0.8215 0.3534 0.000089 38,669 3.451
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It is easy to show that the deductible credit factor for a franchise deductible of size d 
and basic limit pure premium given by (6.29) is

[ ]
[ ]
( )( ) ( ) ( )

=
− − + ε

+ ε
; 1

;
. (6.36)C d

E X d d F d F d
E X b

X X

Example 6.8.    We recalculate the deductible credit factors of Example 6.7 in the 
case that d is a franchise deductible. For instance,

[ ]
[ ]

( )( ) ( ) ( )( )=
− −

=
− −

=2,000
; 1

;
1,111 2,000 1 0.5989

8,896
0.0347.C

E X d d F d
E X b

X

Moreover, the resulting claim frequency and severity for a deductible of size 2,000 are, 
respectively,

( )ϕ = −
−

+





=0.000201 and
8,896 1,111

1 0.5989
2,000 1.20 25,691.

The full set of results is displayed in Table 6.6. As one would expect, the premium 
credit for a franchise deductible is less than that for a straight deductible of equal 
size—the straight deductible eliminates a larger fraction of the pure premium than is 
eliminated by the corresponding franchise deductible. n

Diminishing Deductible
The diminishing (or disappearing) deductible is an alternative that incorporates 

features of both the straight and franchise deductibles. Such a policy modification 
eliminates all claims less than a positive deductible amount d and pays in full all claims 
in excess of a larger amount D, D > d. Claims between d and D in size are paid net of 
a deductible amount that declines linearly from size d at X = d to 0 at X = D—that 

Table 6.6.    Franchise Deductible Credit Factors [Example 6.8]

Ded d E [X ; d ] FX(d ) C (d ) Frequency Severity Pure Prem

0 0 0.0000 0.0000 0.000500 10,675 5.338

1,000 659 0.4847 0.0162 0.000258 20,382 5.251

2,000 1,111 0.5989 0.0347 0.000201 25,691 5.152

3,000 1,478 0.6625 0.0523 0.000169 29,975 5.058

4,000 1,793 0.7051 0.0690 0.000147 33,703 4.970

5,000 2,071 0.7364 0.0846 0.000132 37,070 4.886

10,000 3,144 0.8215 0.1528 0.000089 50,669 4.522
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is, the deductible “disappears” at D. Thus, the deductible amount, as a function of 
the unrestricted claim value x, is

( )
( )

= −
− ≤ ≤

< < ∞








if

0 if .

(6.37)Ded x

d
D d

D x d x D

D x

Like the franchise deductible, the diminishing deductible has the advantage of 
eliminating, from the standpoint of the insurer, numerous small claims while at the 
same time paying larger claims in full. However, the diminishing deductible can be 
more difficult to administer.

It is a straight-forward exercise to show that the deductible-modified random 
variable Xd,D is defined for X > d by

( )
= −

− < ≤

< < ∞







if

if .
(6.38),X

D
D d

X d d X D

X D X
d D

The distribution function for variable Xd,D is therefore

( )+
( )

( )
( )

( ) ( )
( )

=

≤

−
−

−
≤ ≤

−
−

< < ∞
















0 if 0

1
if 0

1
if .

(6.39),

x d
F x

x

F
D d

D F d

F d
x D

F x F d
F d

D x

X

X X

X

X X

X

d D

In the case that allocated loss adjustment expense is loaded multiplicatively (with e = 0 
in (6.29)), the credit factor C(d, D) for the disappearing deductible defined by d and D is

+

[ ] [ ]

[ ] [ ]( )

( )

( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )

= −


−

−
−

− − − + −

−
− 



,
1

;
; 1

; ; 1 1

. (6.40)

C d D
E X b

E X D D F D

D
D d

E X D E X d D F D d F d

dD
D d

F D F d

X

X X

X X

Example 6.9.    We now calculate the deductible credit factors for the policies 
of Example 6.7 with a diminishing deductible for which D = d + 1,000. The factors 
are displayed in Table 6.7, compared with those obtained in Examples 6.7 and 6.8. 
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Note that for a given d the straight deductible eliminates the largest percent of the 
total policy loss, the franchise deductible the least percentage, and the diminishing 
deductible eliminating an amount between the two extremes. n

Deductibles and Inflation
Because the characteristics of claims net of a straight deductible are similar to those 

of excess claims, the deductible exerts a comparable leveraging effect on an inflationary 
trend, as discussed in Section 5.5.

Suppose, for example, that the pure premium for a policy with a fixed straight 
deductible of size d is subjected to a uniform trend factor t = 1 + r. Assuming first that 
claim-size variable X is unlimited from above by the policy conditions, we calculate the 
trended pure premium:

( )[ ] [ ] ( )( ) ( )= ϕ + − τ + − τ ε1 ; 1 .p r E X E X d F dr X

The effective trend factor is therefore

� � [ ] [ ]
[ ] [ ]

( )
( )( ) ( )

( )τ = + = +
− τ + − τ ε

− + − ε
1 1

; 1
; 1

. (6.41)r r
E X E X d F d

E X E X d F d
X

X

Both E [X ; x] and FX (x) are nondecreasing functions of x, so that

� �< ≤ ≤ <0 or 0. (6.42)r r r r

Thus, in the absence of other policy limits, the straight deductible magnifies the effect 
of a uniform trend.

However, if policy claims are limited by an upper limit b, then

� [ ] [ ]
[ ] [ ]

( )
( )( ) ( )

( )τ = +
τ − τ + − τ ε

− + − ε
1

; ; 1
; ; 1

. (6.43)r
E X b E X d F d

E X b E X d F d
X

X

The damping effect of the upper limit in this case sometimes prevents inequalities (6.42) 
from holding for certain combinations of b, d, and r. This phenomenon is illustrated in 
the next example.

Table 6.7.    Deductible Credit Factors [Example 6.9]

Ded d
Straight 

C (d )
Diminishing 

C (d,D )
Franchise 

C (d )

1,000 0.0741 0.0233 0.0162

2,000 0.1249 0.0424 0.0347

3,000 0.1661 0.0599 0.0523

4,000 0.2016 0.0766 0.0690

5,000 0.2328 0.0917 0.0864
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Example 6.10.    A policy has a straight deductible of d = 500. The ground-up claim-
size variable X has a shifted Pareto distribution with (a, b) = (2; 8,000). Moreover, j = 0.25 
and e = 50. If claims are unlimited by policy conditions, then the policy pure premium is

[ ] [ ]( )( )
( )

( )
( )( )( )

= ϕ − + − ε

= − + −

=

; 1

0.25 8,000 471 1 0.1142 50

1,893.

0p E X E X d F dX

However, if claims are subjected to a 5% uniform trend, then

[ ] [ ]( )( )
( )

( ) ( ) ( ) ( )
( )( )( )

= ϕ − + − ε

= − + −

=

1.05 1.05 ; 1.05 1 1.05 1.05

0.25 8,400 472 1 0.1092 52.5

1,994.

5%p E X E X d F dX

Thus, the effective trend rate is

� = − = − =1
1,994
1,893

1 5.3%,5%

0
r

p
p

greater than the nominal 5%.
On the other hand, if policy conditions limit claims to l = 5,000, replace E [X ] in 

the above calculations with the limited severity E [X ; 5,000] = 3,007. Then

� = − = − =1
677.3
662.7

1 2.2%. (6.44)5%

0
r

p
p

Here the natural increase in the effective trend rate has been dampened by the presence 
of the policy limit. n

6.6.  Problems
6.1	 For a certain liability coverage the claim frequency is j = 0.00075 and the 

severity is E [Y ] = 6,000. For these policies expenses are all variable with  
v = 25%. For a policy for an insured with 2,500 exposure units, calculate:
(a)	 pure premium p.	 (b)	 expected # policy claims E[N ].
(c)	 policy expected loss.	 (d )	 loss-cost multiplier g.
(e)	 rate R.	 ( f )	 policy premium P.

6.2	 A product liability policy is issued for a premium of $13,000. The insured’s 
exposure amount is $2,100,000 of product sales, and the exposure unit is 
$1,000 of sales. For this line of business the severity at the policy limit is 
9,950, and the policy has a loss-cost multiplier y = 1.60. Calculate:
(a)	 rate R.	 (b)	 pure premium p.
(c)	 claim frequency j.	 (d )	 expected # policy claims E[N ].
(e)	 policy expected loss.	 ( f )	 variable expense ratio v.
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6.3	 For the policy of Problem 6.2 instead of treating all expenses as variable 
assume that there is fixed expense of $0.50 per exposure unit and variable 
expense is 30% of premium. Calculate:
(a)	 rate R.	 (b)	 pure premium p.
(c)	 claim frequency j.	 (d )	 expected # policy claims E[N].
(e)	 policy expected loss.

6.4	 The average claim frequency for a portfolio of policies is j = 0.000800 per 
policy year. If the claim-count distribution is Poisson, compute the probability 
that an individual annual policy selected from this portfolio will give rise to 
more than a single claim when the number of exposure units is
(a)	 1,000.	 (b)	 2,000.

6.5	 Assume that the distribution of the unlimited indemnity claim size X for a portfolio 
of policies is lognormally distributed with (µ, s) = (6.800, 2.600).
(a)	� Complete the following table of increased limit factors based on formula 

(6.12) with an average per-claim ALAE = 2,500.

Limit l E [X; l ] ALAE I (l )

100,000 9,178 2,500 1.000

250,000 ____________ ____________ ____________

500,000 ____________ ____________ ____________

1,000,000 ____________ ____________ ____________

2,000,000 ____________ ____________ ____________

5,000,000 ____________ ____________ ____________

(b)	� Alternatively, assume that ALAE is 25% of the indemnity payment. Complete 
the following table of increased limit factors based on formula (6.14).

Limit l E [X; l ] ALAE = 25% I (l )

100,000 9,178 2,295 1.000

250,000 ____________ ____________ ____________

500,000 ____________ ____________ ____________

1,000,000 ____________ ____________ ____________

2,000,000 ____________ ____________ ____________

5,000,000 ____________ ____________ ____________

6.6	 Consider the following alternative to the two methods of loading allocated loss 
adjustment expense in an ILF formula—the per-claim average amount e of 
formula (6.12) and the fixed multiple u of the indemnity payment in formula 
(6.14). Here the ALAE for smaller claims is loaded as a percent of the indemnity 
payment, and for larger claims ALAE is fixed at a constant per-claim average.
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Let X be the unlimited claim-size (indemnity only) random variable. Assume 
that the allocated loss adjustment expense is a fixed multiple r (r > 0) of claim 
size X whenever X is not larger than the claim size c and that ALAE has the 
constant value rc when X > c. Thus the policy claim amount is

=
+ ≤

+ >





if

if .
Y

X r X X c

X rc X c

Show that in this case the policy severity at limit l is

[ ]
[ ]
[ ] [ ]

( )
=

+ ≤

+ >







; 1 if

; ; if .
E Y

E X l r l c

E X l r E X c l c
l

6.7	 For the portfolio of policies of Example 6.3 construct an ILF table using the method 
of loading allocated loss adjustment expense described in Problem 6.6. Assume that 
r = 20% and c = 750,000. Compare the results to those obtained in Example 6.3.

Limit l
($000)

I (l )
e = 2,200

I (l )
u = 20%

I (l )
limited

100 1.0000 1.0000 1.0000

500 1.4263 1.5317 __________

750 1.5202 1.6488 __________

1,000 1.5812 1.7249 __________

2,000 1.7067 1.8815 __________

3,000 1.7655 1.9548 __________

4,000 1.8008 1.9989 __________

5,000 1.8248 2.0288 __________

6.8	 (a)	� Construct the following ILF table using the risk-loaded formula (6.22). Assume 
that the unlimited indemnity claim size X has a shifted Pareto distribution 
with (a, b) = (3; 6,000) and that e = 0, u = 20%. Use the standard deviation 
method of risk loading (6.24) with k′ = 0.5000 and d = 0.1000.

Limit l E [X; l ] ALAE r(l )
I (l )  

w/o RL
I (l )  

w/ RL Weight

1,000 796 159 447 1.0000 1.0000 10%

2,000 ______ ______ ______ _______ _______ 5%

3,000 ______ ______ ______ _______ _______ 15%

4,000 ______ ______ ______ _______ _______ 15%

5,000 ______ ______ ______ _______ _______ 25%

7,500 ______ ______ ______ _______ _______ 10%

10,000 ______ ______ ______ _______ _______ 20%
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(b)	� Calculate the overall premium effect of using the risk-loaded factors in place 
of the unloaded factors.

6.9	 Show that the risk-load parameter d of formulas (6.23) and (6.24) can be 
expressed as d = gE [N ], where g denotes the contagion parameter for the claim-
count variable N.

6.10	 Construct the following table of increased limit factors using the risk-loaded 
formula (6.22). Assume that the unlimited indemnity claim size X has a shifted 
Pareto distribution with (a, b) = (0.780, 100) and that e = u = 0. Use the variance 
method (6.23) for calculating the risk-load function r(l ) with k = 0.0000005 
and d = 0. Calculate the layer factors for successive layers of 1,000,000 width 
and thereby demonstrate the inconsistency of this set of ILFs.

Limit l E [X; l ] r(l ) I (l ) Layer Factor

1,000,000 2,994     622 1.0000 —

2,000,000 3,562 1,448 1.3858 0.3858

3,000,000 3,936 2,375 1.7458 0.3600

4,000,000 _________ _________ _________ _________

5,000,000 _________ _________ _________ _________

6,000,000 _________ _________ _________ _________

7,000,000 _________ _________ _________ _________

8,000,000 _________ _________ _________ _________

9,000,000 _________ _________ _________ _________

10,000,000 _________ _________ _________ _________

6.11	 Consider a policy selected from the portfolio of Example 6.6 with per-claim 
limit l. Calculate the loss eliminated by the addition of an aggregate limit of size l  
and obtain the resulting loss elimination ratio when l equals:
(a)	 1,000,000.	 (b)	 2,000,000.	 (c)	 3,000,000.
(d )	 4,000,000.	 (e)	 5,000,000.

6.12	 (a) � Assuming that variable expenses and profit load are 25% of premium, 
calculate the premium for a policy selected from the portfolio of Example 6.6  
with a per-claim limit of 1,000,000 and no aggregate limit.

(b) � What is the premium credit if the policy in part (a) is written with an 
aggregate limit of 1,000,000?

6.13	 The following set of twelve (unadjusted) losses are incurred on a policy with a 
per-claim limit of l = 20,000 and a deductible of size d = 2,000:

{
}

1,000; 1,550; 1,700; 2,200; 2,500; 3,000;

5,200; 9,000; 11,000; 12,500; 15,000; 19,800 .
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Compute the total amount paid by the insurer (exclusive of loss adjustment 
expense) and the empirical loss elimination ratio for this set of claims if the 
deductible is
(a)	 a straight deductible.	 (b)	 a franchise deductible.

6.14	 Repeat the calculations requested in Problem 6.13 if the policy in that problem 
has a per-claim limit of l = 12,000.

6.15	 Derive formula (6.33) for the franchise deductible credit factor.

6.16	 (a)	� Calculate the straight deductible factors and corresponding pure premiums 
for the portfolio of policies of Example 6.7, this time with ALAE parameters 
e = 500 and u = 0.

(b)	� Calculate the franchise deductible factors and corresponding pure premiums 
for the portfolio of policies of Example 6.8 with ALAE parameters of part (a).

6.17	 A policy has a basic limit b = 5,000 and a deductible of size d. Assume that 
the underlying claim size variable X has a shifted Pareto distribution with 
(a, b)=(3.00;10,000). Assume also that the unlimited claim frequency is  
j = 0.005 and e = 250. Compute C(d ), the policy frequency and severity, 
and the pure premium for deductibles of sizes {0; 250; 500; 750; 1,000} in 
the case of
(a)	 a straight deductible.	 (b)	 a franchise deductible.

6.18	 Prove that on the interval 0 < d < b the deductible credit factors (6.33) and 
(6.36)
(a)	 are increasing functions of d.
(b)	 satisfy the inequality 0 < C(d ) < 1.

6.19	 Verify formulas (6.38), (6.39), and (6.40) for the diminishing deductible.

6.20	 Verify inequalities (6.42) for a deductible-modified uniform trend rate.

6.21	 A portfolio of policies described in Example 6.7 has a total expected ground-up 
claim count of 500.
(a)	� For each of the indicated straight deductibles calculate (i ) the total number 

of claims eliminated by the deductible and (ii) the percent of the total 
ground-up basic-limit loss eliminated by the deductible.

Deductible
# Claims

Eliminated
% BL Premium

Eliminated

1,000 ____________ ____________

2,000 ____________ ____________

3,000 ____________ ____________

4,000 ____________ ____________

5,000 ____________ ____________



Casualty Actuarial Society	 187

Distributions for Actuaries

(b)	� Assuming that the claim-size X is subjected to a 10% uniform trend, perform 
the same calculations requested in part (a).

Deductible
# Claims

Eliminated
% BL Premium

Eliminated

1,000 ____________ ____________

2,000 ____________ ____________

3,000 ____________ ____________

4,000 ____________ ____________

5,000 ____________ ____________

6.22	 Verify the calculation of the pure premium amounts used in equation (6.44).
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A.1.  Distribution Approximation
Normal Distributions

The cumulative distribution function of the standard normal random variable Z is 
defined by the integral

∫ ( )( )Φ =
π

− −∞ < < ∞−∞

1
2

exp , .1
2

2z u du zz

This integral cannot be evaluated by the elementary method involving an antiderivative 
of the integrand. Consequently, mathematicians have developed approximation formulas 
involving easily calculated expressions. One such formula, based on a rational function, is 
cited by Abramowitz and Stegun:56

z
Q z z

Q z z
( )

( )
( )

Φ ≈
− −∞ < <

− ≤ < ∞







if 0

1 if 0 ,
(A.1)

where

Q z a zk
k

k
∑( ) = +



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−1
2

1
1

6 16

and

a a a

a a a

= = =

= = =







0.0498673470 0.0211410061 0.0032776263

0.0000380036 0.0000488906 0.0000053830.

1 2 3

4 5 6

The error in approximation (A.1) is bounded by 1.50 × 10-7.
For users of Microsoft Excel, the built-in worksheet function norm.s.dist provides 

an approximation with precision similar to that of (A.1):

56	 Abramowitz and Stegun [1], p. 932. Formula (A.1) is one of several approximations to F included in this standard 
reference work.

Appendix
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In addition, Excel provides the related worksheet function norm.dist, which returns 
values of the distribution functions for the normal random variable Y = sZ + µ with 
parameters µ and s (µ > 0, s > 0):

( )

( )( ) ( )

( ) ( )

( )

( )

µ σ ≈ = Φ − µ σ − ∞ < < ∞

µ σ ≈ =
πσ

− − µ σ .
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2
exp (A.3)1

2
2 2
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y f y y

Y

YFALSE

NORM.S.DIST TRUE

NORM.S.DIST

For the purpose of Monte Carlo simulation it is also useful to have available 
an approximation to the inverse function F-1(u). Abramowitz and Stegun offer the 
following rational function (as usual, log x denotes the natural logarithm function):57

u x
b x b x b x

c x c x c x
( )Φ ≈ −

+ +
+ + +

− ,
1
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2log if 0 0.5
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b b b

c c c

= = =

= = =







2.515517 0.802853 0.010328

1.432788 0.189269 0.001308.

0 1 2

1 2 3

The error in (A.4) is bounded by 4.50 × 10-4. Excel also provides the useful worksheet 
function

u u u( ) ( )≈ Φ < <−NORM.S.INV , 0 1. (A.5)1

Gamma Distributions
The gamma function, defined by the convergent improper integral

x u e du xx u∫( )Γ = < < ∞− −∞ , 0 ,1
0

57	 Ibid., p. 933.
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can be approximated on the interval 1 ≤ x ≤ 2 by the polynomial

x d x xk
k

k
∑( ) ( )Γ ≈ + − ≤ ≤
=

1 1 , 1 2, (A.6)
1

8
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d d d
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0.577191652 0.988205891 0.897056937

0.918206857 0.756704078 0.482199394

0.193527818 0.035868343.

1 2 3

4 5 6

7 8

This approximation, of course, can be extended to all positive x by use of the recursive 
formula G(x) = (x - 1)G(x - 1). Error in (A.6) is bounded by 3 × 10-7.58 In Microsoft 
Excel, G(x) can be calculated by using the composition of two worksheet functions: 
exp(gammaln(x)) ≈ G(x) for x > 0.

In Section 2.3 we showed that the gamma cumulative distribution function (2.16) 
can be expressed by the formula
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(A.7)

where G(x, a) is the incomplete gamma function:

x u e du xux
∫( ) ( )Γ α = α > ≤ < ∞α− −, 0 , 0 . (A.8)1
0

The incomplete gamma function (A.8) has a power series expansion:
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α −

=

∞
α −

=

∞

,
1 1

1
1 . . .

,
0 1

so that the gamma distribution function (A.7) has a corresponding power series 
representation

F x
x e x

k

x k

k
∑( ) ( )

( )
( )

( ) ( )=
β

Γ α +
+

β
α + α +







α − β

=

∞

1
1

1 . . .
. (A.9)

1

An approximation to the gamma distribution function (A.7) can thus be obtained by 
using an appropriate partial sum of the series (A.9).

58	 Ibid., p. 257.
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Again, for users of Microsoft Excel, the worksheet function gamma.dist 
provides an approximation to both the probability density and the cumulative 
distribution functions:

x f x x e x

x F x f x dx

x

x
∫

( ) ( ) ( )

( ) ( ) ( )

α β ≈ =
β Γ α

≤ < ∞

α β ≈ =

α
α− − β

GAMMA.DIST FALSE

GAMMA.DIST TRUE

,, , ,
1

0 ,

, , , . (A.10)

1

0

In addition, the worksheet function gamma.inv returns an approximation to the 
inverse cumulative distribution function:

u F u u( ) ( )α β ≈ ≤ <−GAMMA.INV , , , 0 1. (A.11)1

Lognormal Distributions
For the lognormal distribution function Microsoft Excel provides two worksheet 

functions. lognorm.dist approximates the lognormal density and cumulative distri
bution functions with parameters µ and s (µ > 0, s > 0):

x F x x x

x
x

x( )

( )( ) ( ) ( )

( ) ( )

µ σ ≈ = Φ − µ σ < < ∞

µ σ ≈
σ π

− − µ σ

LOGNORM.DIST TRUE

LOGNORM.DIST FALSE

,

.

, , , log 0 ,

, , ,
1
2

exp log (A.12)1
2

2 2

lognorm.inv provides values of the inverse c.d.f.:

u F u u( ) ( )µ σ ≈ ≤ <−LOGNORM.INV , , , 0 1. (A.13)1

Weibull Distributions
As in the case of the previously mentioned distributions, the single Excel worksheet 

function weibull.dist provides an approximation to both the probability density and 
the cumulative distribution functions of the Weibull distribution with parameters b 
and d (b > 0, d > 0):

x F x x x

x f x x x

( )

( )

( ) ( ) ( )

( ) ( ) ( )

δ β ≈ = − − β ≤ < ∞

δ β ≈ = δ
β

− β

δ

δ
δ− δ

WEIBULL.DIST TRUE

WEIBULL.DIST FALSE

, , , 1 exp , 0 ,

, , , exp . (A.14)1

A.2.  Answers to Selected Problems

1.1	 (b)  Hint: (Ec ∪ Fc)c = E ∩ F.
	 (c)  S = {∅, {a}, {d }, {a, d }, {b, c}, {a, b, c}, {b, c, d }, W}.
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1.2	 (a)  P(E ) + P(Ec) = P(E ∪ Ec) = P(W) = 1.
	 (e)  P(F ) = P(F ∩ E ) + P(F ∩ Ec) = P(E ) + P(F ∩ Ec) ≥ P(E ).

1.3	 (a)  limn→∞ P(En) = limn→∞ P(∪n
k =1 Ek) = P(∪n En).

1.4	 (a)  0.1429.        (b)  0.2857.        (c)  0.8571.

1.5	 (b) � P(E ∪ F ) = P(E ) + P(F ) - P(E )P(F ) = P(E )P(Fc) + P(F ) =  
P(E )P(Fc) + 1 - P(Fc) = 1 - P(Ec)P(Fc).

1.7	 (a)  0.2500.      (b)  0.1875.      (c)  0.8125.      (d )  3.8125.      (e)  1.7773.

1.10	 (b)  (1 - p)/p.        (c)  E[N ] = 1/(1 - p), Var[N ] = p/(1 - p)2.

1.11	 (a)  0.7500.        (b)  0.        (c)  0.8484.        (d )  0.0597.         
(e)  0.5000.        ( f )  1.7500.

1.12	 (b)  Pr{X = x} = 0 implies Pr{X < x} = Pr{X ≤ x} = F(x) for all x.

1.13	 (a)  2/3.        (b)  4.        (c)  1.        (d )  15.

1.14	 (a)  1.5.        (b)  3.        (c)  0.125 + 0.375et + 0.375e2t + 0.125e3t.

1.15	 (a) 
1
2

(a + b).        (b) 
1
3

(a2 + ab + b2).        (c)  (ebt - eat)/((b - a)t).

1.16	 (b)  E[X ] = 180, Var[X ] = 35,600.

1.17	 E[X ] = 
1
2

(a + b), Var[X ] = 
1

12
(b - a)2.

1.18	 E[Xa] = 75.00, Var[Xa] = 9,375.

1.19	 E[Y ] = µ, Var[Y ] = s2.

1.20	 (b)  exp(µt + 1
2 s2t2).

1.21	 (a)  pet/[1 - (1 - p)et], t < log(1 - p).        (b)  1/p.        (c)  (1 - p)/p2.
	 (d )  p/[1 - (1 - p)2].

1.23	 b̂ = M1.

2.1	 (a)  1,500.	 (b)  750,000.	 (c)  0.1250.	 (d )  1,375.

2.2	 (a)  875.	 (b)  does not exist.	 (c)  0.2500.	 (d )  687.50.

2.3	 (200)(1 - e-y/250).

2.4	 E[X̂ ] = 1,532; E[X̂ ; 1,000] = 892, E[X̂ ; 1,500] = 1,203.

2.6	 M1 ≈ 
n
1 Sm

k=1 nk ak.
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2.7	 E[X; x] ≤ ∫
x
0 u dF(u) + x < ∞.

2.9	 (a) 
d
dx

[∫
x
0 u f (u)du + x(1 - F(x))] = 1 - F(x).        (b)  Use E[X; 0] = 0 with (a).

2.10	 (b)  Set v = u2.        (c)  Set v = log(1/u).

2.11	 (b)  Integration by parts.        (d ) Apply (2.18) inductively to G(x + 1)/G(x) = x.

2.13	 a = 1, b = E[X ].

2.14	 Pr{X > a + bX > a} = Pr{X > b}.

2.15	 (a)  wb1 + (1 - w)b2.	 (b)  wb2
1 + (1 - w)b2

2 + w(1 - w)(b1 - b2)2.

2.16	 Excel Solver yields (â, b̂) = (4.7432, 337.31).59

2.17	 (b)  556.        (d )  0.1461.        (e)  0.2108.        ( f )  1,023.        (g)  9,689.

2.18	 (b)  (µ̂, ŝ) = (7.235292, 0.477366).

2.19	 (b)  1,040.        (d )  0.1866.        (e)  0.3254.        ( f )  1,347.        (g)  6,500.

2.20	 Var[X ] = 
α

α − 2
(E[X])2 > (E[X ])2.

2.21	 b(log(x + b) - log b).

2.24	 (a)  b log 2.        (b)  eµ.        (c)  b(21/a - 1).

2.25	 (a)  1,282.        (b)  1,315.        (c)  1,428.

2.26	 Hint: E[(L(X ) - E[L(X )])3] = a3E[(X - E[X ])3], Var[L(X )] = a2Var[X ].

2.27	 L(X ) = b(X/g - 1).

2.28	 (a)  exponential (2).        (b)  shifted Pareto (a, b).        (c)  Burr (a, b, d).
	 (d )  Weibull (b, d).        (e)  exponential (1/a).

2.29	 (a)  bm/d G(a - m/d) G(1 + m/d)/G(a), ad > m.

2.30	 (a)  F y

y

y
y

Y ( )( )( ) =

−∞ < ≤

Γ β α
Γ α

< < ∞









0 if 1

log ,
( )

if 1 .
        (b)  E[Y m] = (1 - mb)-a.

2.31	 CV X Var X E X CV X CV X[ ] [ ] [ ] [ ] [ ]( )τ = τ τ = τ τ = .

59	 Results obtained by an iterative algorithm applied by the Excel Solver may vary slightly, depending on how the 
problem is set up in the worksheet and the process is initiated.
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2.32	 t∼ = tE [X ; tl/t]/E [X; l ] = t.

2.33	 (a)	 Weibull (abb+1, 1/(b + 1)).        (b)  Burr (a, abb+1, 1/(b + 1)).
	 (c)	 Weibull (abb+1, d/(b + 1)).        (d )  Burr (a, abb+1, d/(b + 1)).

2.34	 (a)	 0.6321.        (b)  G(a, a)/G(a).        (c)  F(s/2).        (d )  1 - (1 - 1/a)a.

2.37	 (a)	 none.        (b)  b.        (c)  none.        (d )  b.        (e)  b.        ( f )  none.

2.38	 fcq(x) = (1/c) fq(x/c) = (1/cq) f1(x/c q).

2.39	 (a)	 Excel Solver yields (µ̂, ŝ) = (9.778102, 1.444776).
	 (c)	 c2 = 5.89 < c2

0.95(5) = 11.1.

2.40	 Excel Solver yields (µ̂, ŝ) = (9.701968, 1.535797).

2.41	 (a)  F y
F y F l y l

l y
Y

X X ( )
( )

( )
=

−∞ < <

≤ < ∞







if

1 if .

2.42	 (a)  F y

y a

F y F a
F a

a y
Y X X

X

( )
( )

( ) ( )=

−∞ < ≤

−
−

≤ < ∞









0 if

1
if .

2.43	 (a)  Excel Solver yields (µ̂, ŝ) = (9.495111, 1.084180).
	 (b)  M1 = 14,840, E[Y ] = 14,930.

3.1	 (a)  M ′N(0) = mp, M″N(0) = mp + m(m - 1)p2.

	 (b)  M t
m

e e
m
mp

N
m

t
m

t( ) ( )( )( ) = + λ −



 = λ −

→∞
=λ

→∞
lim lim 1 1 exp 1 .

3.3	 (b)  2.50, 0.7576.        (c)  6.25, 0.1303.        (d )  2.00, 0.8571.         
(e)  4.00, 0.4335.

3.4	 (a)  0.0012.        (b)  0.0069.        (c)  0.0164.

3.7	
d
dλ

log L(l) = -m + Sm
i=1 ni/l.

3.8	 Integrate ∫∞
l tne-t dt/n! by parts n times.

3.10	 (a)  E N n
u e

n
f u du n

u e
n

f u du

u u f u du E E

n

n u n u

n
∑ ∫ ∑∫

∫

[ ]

[ ][ ]

( ) ( )

( ) ( )

= =










= + = λ + λ

=

∞ −

λ

∞ −

=

∞∞

λ

λ
∞

! !

.

2 2

0
0

2

0
0

0
22

3.11	 (a)  2.        (b)  4.        (c)  0.8125.

3.12	 0.9070, 0.0864, 0.0062, 0.0004.
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3.13	 (b)  0.7500, 0.8175, 1.3125.
	 (c)  n\i (1) (2) (3)

0 0.4724 0.4869 0.5714

1 0.3543 0.3373 0.2449

2 0.1329 0.1283 0.1050

3 0.0332 0.0365 0.0450

4 0.0062 0.0087 0.0193

5 0.0009 0.0018 0.0083

3.14	 (a)  Excel Solver yields l̂1 = 0.114493, l̂2 = 0.797855, p̂1 = 0.986380.

3.15	 Method-of-moments estimates are (â, n̂) = (0.685714, 0.120000). Using 4 cells 
{0, 1, 2, ≥3 claims}, c2 = 0.3288 < 3.8415 = c2

0.95(1).

3.16	 ( )( ) ( ) ( ) ( ) ( )( )−



 =

− − − − − − − +
= −

+ − + +1 2 . . . 1
!

1
1 . . . 2 1

!
.

r
n

r r r r n
n

r n r r r
n

n

3.19	 a = 1 - q, b = (r - 1)(1 - q).

3.21	 (a)  Set r = 1, q = p in (3.19).        (b)  E[N ] = (1 - p)/p, Var[N ] = (1 - p)/p2.

3.22	 (a)  fN(n) = 1/((n + 1)(n + 2)).        (b)  fN(n) = (0.9)n+1/((n + 1)log 10).

3.23	 (a)  Substitute b = n/a into (2.26).

3.24	 â = M 2
1/(M2 - M 2

1 - M1), n̂ = M1.

3.25	 (a)  0.6316.        (b)  0.6316.        (c)  0.6667.

3.26	 (a)  g = 0.05.        (b)  0.8000, 0.8077, 0.7692, 0.8000.
	 (c)  0.0034, 0.0342, 0.1538, 0.3761, 0.4325.

3.27	 Hint: Divide numerator and denominator of (3.26) by cm. Observe that

	
/ / /( ) ( ) ( )+ =

γ
+ + = −

γ
+ + + =

γ
+1

,
1

,
1

.w ic c i r ic c
p

p
i w r ic c

p
i

3.28	 0.4019, 0.3349, 0.1674, 0.0651, 0.0217, 0.0065.

3.29	 (a)  g = 0.1000.

3.30	 0.5543.

3.31	 624.

3.32	 limm→∞ gm = 0.

3.33	 (a) 
d
dt

F t
t e
k

t e
k

t e
nn

k t k t

k n

n n t

∑( ) ( ) ( )
( ) ( )

=
λ λ

−
−

λ λ





= λ
−

− −λ −λ

=

∞ − −λ

1 ! ! 1 !
.

1 1

	 (b)  E [Tn] = n/l, Var [Tn] = n/l2.

3.34	 (a)  4.651 years.        (b)  0.1935, 0.1560.        (c)  0.0201, 0.0497.

3.35	 N * is Poisson-distributed with parameter pl.
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4.1

     

Amount s FS (s) Amount s FS (s)

0 0.2000

500 0.2400 3,500 0.9047

1,000 0.4025 4,000 0.9507

1,500 0.5427 4,500 0.9781

2,000 0.6795 5,000 0.9934

2,500 0.7580 5,500 0.9988

3,000 0.8418 6,000 1.0000

4.4	 (a)  FS(s) = fN(0) + fN(1)FX(s).
	 (b)  FS(s) = fN(0) + fN(1)FX(s) + fN(2)(FX * FX)(s).

4.6	 if s e
s

n n
F s e

n
s
k

sS
s

n n

n
n

S
s

n k

k
k nn

∑ ∑∑( ) ( ) ( )= λ
β −

= λ
β

>−λ− β

=

∞
−λ− β

=

∞

=

∞

! 1 !
,

! !
, 0.

1 0

4.7	 See Problem 4.13 solution.

4.11	 m m m m( )( )( ) ( ) ( ) ( )χ ≈ Φ − +−2 9 0.95 2 9 1 .0.95
2 1 3

4.12	

4.13

d.f. m c2
0.95(m) W-H Rel Error

  5 11.070 11.044 –0.24%

10 18.307 18.292 –0.08%

15 24.996 24.985 –0.04%

20 31.410 31.402 –0.03%

25 37.652 37.645 –0.02%

30 43.773 43.767 –0.01%

Amount s FS (s) Normal
Relative 

Error
Normal 
Power

Relative 
Error

Shifted 
Gamma

Relative 
Error

Wilson-
Hilferty

Relative 
Error

          0 0.0003 0.1241 — 0.0756 — 0.0263 — 0.0312 —

  3,000 0.3420 0.2819 –17.57% 0.3654 +6.84% 0.3362 –1.70% 0.3322 –2.87%

  6,000 0.6070 0.5000 –17.63% 0.5981 –1.47% 0.6054 –0.26% 0.6043 –0.44%

  9,000 0.7774 0.7181 –7.63% 0.7608 –2.14% 0.7782 +0.10% 0.7797 +0.30%

12,000 0.8782 0.8759 –0.26% 0.8642 –1.59% 0.8793 +0.13% 0.8810 +0.32%

15,000 0.9349 0.9584 +2.51% 0.9257 –0.98% 0.9356 +0.07% 0.9367 +0.19%

18,000 0.9658 0.9895 +2.45% 0.9605 –0.55% 0.9661 +0.03% 0.9666 +0.08%

21,000 0.9823 0.9981 +1.61% 0.9796 –0.27% 0.9824 +0.01% 0.9824 +0.01%

24,000 0.9910 0.9997 +0.88% 0.9896 –0.14% 0.9909 –0.01% 0.9908 –0.02%

27,000 0.9954 1.0000 +0.46% 0.9948 –0.06% 0.9953 –0.01% 0.9952 –0.02%
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4.15	 All terms in the sum (4.33) for which k > m̂ are zero.

4.16	

4.17	 g(0) + Sm̂-1 
k-1 g(k) + g(m̂) = 

	 F h F h F m h F m hX X X X[ ]( )( ) ( )( ) ( ) ( )− + − + − − =ˆ 1 ˆ 1.1
2

1
2

1
2

1
2

4.20	 If Y = FX(X ), then FY( y) = Pr{FX(X ) ≤ y} = Pr{X ≤ F -1
X ( y)} = y for 0 < y < 1.

4.21	 F
∼-1(u) = b(-log(1 - u))1/d, 0 < u < 1.

4.22	 n = 5.

4.23	
Trial

Uniform 
u

Exponential 
x1

Pareto 
x2

Lognormal 
x3

Weibull 
x4

(1) 0.2097 471 296 30 55

(2) 0.3562 881 578 79 194

(3) 0.6970 2,388 1,837 553 1,426

(4) 0.8245 3,480 3,017 1,384 3,028

(5) 0.9882 8,879 14,716 25,871 19,711

4.25	 (a)  Because E{Un} = 
1
2

 and Var[Un] = 
1

12
, E[X ] = 0 and Var[X ] = 1. The Central 

		       Limit Theorem implies that X is approximately normal.

5.1	 (a)  865; 440,343.        (b)  7.4.        (d )  6.6%, 9.5%, 16.7%.

5.2	 (a)  500.        (b)  1,250.        (c)  2,000.        (d )  3,500.        (e)  8,518.

5.7	 (a)  e-x/b.        (b)  ((d + b)/(x + d + b))a.

5.9	 (a)  e x
u dF u u dF u x dF u

dF u

u x dF u

dF u
X

x

x

x
x

x

∫∫∫
∫

∫
∫

( )( )
( ) ( ) ( )

( )
( ) ( )

( )
=

− +

−
=

−
∞∞ ∞

∞1
.00

0

5.10	 (a)  1.1551, 1.5959.        (b)  136.38, 1.1487, 2.2616.

Amount s FS (s)

0 0.2592

500 0.2942

1,000 0.4366

1,500 0.5606

2,000 0.6838

3,000 0.8306

4,000 0.9223

5,000 0.9670

6,000 0.9872
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5.11	 (a)  1.        (b) 
α

α1
.         (c)  ( )σ −exp 1.2       

	 (d )  ( )α α − 2 .        (e) 
1
3

3.

5.12	

5.13	 Hint: µ1 = E [X; b1], µk = (E [X; bk] - E [X; bk-1])/pk, 1 < k < m.

5.14	 (b)  l(F(b) - F(a)).        (c)  E[X | a < X ≤ b] = ∫b
a x dF(x)/∫b

a dF(x).

5.15	 Interval means: 60; 317; 604; 1,405; 3,214; 4,400; 7,500.
	 Layer means: 96; 339; 342; 694; 1,371; 743; 2,500.

5.16	 ∑ ∑

∑ ∑

∑

[ ]

[ ]( ) [ ] [ ]

( ) { }

{ } ( )

{ }

= 



 − =

= = 



 −

= = + − = + −

=

∞

=

∞ −

=

∞ −

=

=

∞

1 Pr

Pr 1

Pr .

2 2

0

0

2

0

2 2 2 2 2 2

0

E N n
k
n

p p N k

N k n
k
n

p p

N k k p kp kp E N p E N p E N p

a
n k n

n k n

k

n k n

n

k

k

5.18	 Var N E N
E N

p Var N p p p
p

Var N
a

a a

a

[ ] [ ]
[ ]

[ ] [ ]
( )

( )γ =
−

=
+ − λ − λ

λ
=

− λ
λ

= γ
1

.2

2

2 2 2

5.20	 �
E X E X a

E X E X aS X
X X

X
[ ][ ]

[ ] [ ]
( )τ = τ

− τ τ
−

= τ
;

;
.

5.21	 (a)  8.9%.        (b)  11.5%.

5.22	 (a)  9.5%.        (b)  10.2%.

5.23	 (a)  (µ̂, ŝ) = (7.960294, 1.428801).        (b)  125.

5.24	 E[X ] - E[X; x] = ∫∞
0(1 - F(u))du - ∫x

0(1 - F(u))du.

6.1	 (a)  4.50.        (b)  1.875.        (c)  11,250.        (d )  1.3333.        (e)  6.00.	
( f )  15,000.

6.2	 (a)  6.1905.        (b)  3.8690.        (c)  0.0003888.        (d )  0.8166.	
(e)  8,125.        ( f )  0.3750.

6.3	 (a)  6.1905.        (b)  3.8333.        (c)  0.0003853.        (d )  0.8090.	
(e)  8,050.

Layer L PL E[NL] E[XL] E[SL]

[0, 100] 1.0000 5.0000 97.08 485

(100, 3000] 0.9423 4.7116 1,513.66 7,132

(3000, ∞) 0.2441 1.2207 4,000.00 4,883
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6.4	 (a)  0.1912.	 (b)  0.4751.

6.5	

6.7	 ILFs: 1.0000, 1.5317, 1.6488, 1.7122, 1.8427, 1.9038, 1.9405, 1.9655.

6.8	 (a) 

6.9	 1 + d = Var[N ]/E[N ] = (E[N ] + g(E[N ])2)/E[N ] = 1 + gE[N ].

6.10	

6.11	 (a)  0.0209.	 (b)  0.0142.	 (c)  0.0112.	 (d )  0.0093.	 (e)  0.0081.

6.12	 (a)  $40,447.	 (b)  $844.

6.13	 (a)  62,200; 0.2635.	 (b)  80,200; 0.0503.

6.14	 (a)  50,900; 0.3973.	 (b)  68,900; 0.1841.

Limit l E [X; l ] ALAE [a] I(l ) [a] ALAE [b] I(l ) [b]

100,000 9,178 2,500 1.0000 2,295 1.0000

250,000 12,548 2,500 1.2885 3,137 1.3671

500,000 15,180 2,500 1.5139 3,795 1.6539

1,000,000 17,702 2,500 1.7299 4,426 1.9288

2,000,000 19,968 2,500 1.9240 4,992 2.1756

5,000,000 22,404 2,500 2.1325 5,601 2.4410

Limit l E [X; l ] ALAE r(l ) I(l ) w/o RL I(l ) w/ RL

1,000 796 159 447 1.0000 1.0000

2,000 1,313 263 778 1.6490 1.6787

3,000 1,667 333 1,034 2.0940 2.1645

4,000 1,920 384 1,238 2.4123 2.5267

5,000 2,107 421 1,404 2.6478 2.8055

7,500 2,407 481 1,710 3.0247 3.2805

10,000 2,578 516 1,919 3.2392 3.5759

Limit l E [X; l ] r(l ) I(l ) Layer Factor

4,000K 4,223 3,374 2.1014 0.3556

5,000K 4,459 4,429 2.4585 0.3571

6,000K 4,660 5,533 2.8194 0.3609

7,000K 4,836 6,678 3.1849 0.3655

8,000K 4,994 7,859 3.5553 0.3705

9,000K 5,137 9,074 3.9309 0.3755

10,000K 5,268 10,319 3.4114 0.3806



200	 Casualty Actuarial Society

Distributions for Actuaries

6.16	

6.17	

6.21 	 (a) Ded # Claims % BL Prem (b) Ded # Claims % BL Prem

1,000 242 7.4% 1,000 234 7.1%

2,000 299 12.5% 2,000 292 12.0%

3,000 331 16.6% 3,000 324 16.1%

4,000 353 20.2% 4,000 346 19.5%

5,000 368 23.3% 5,000 362 22.6%
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