
Ball State University Actuarial Science Research Course          
 

Ball State University Actuarial Science Research Course, Spring 2007  1 

Parameterizing the Loss Simulation Model 

Ball State University Research Course 

CAS Loss Simulation Model Working Party 
 

 
             
Abstract:  

 
Motivation. The Loss Simulation Model Working Party (“LSMWP”) of the Casualty Actuarial Society has 
developed a prototype Loss Simulation Model.  The students from a Ball State University Research Class in 
Actuarial Science parameterize this model using claim transaction data.     
 
Method.   The students use statistical models to fit the data to select distributions, emphasizing the 
methods covered in the material for Exam 4 from the Spring 2007 CAS Exam Syllabus.  The predominant 
method uses spreadsheet software to construct and maximize the loglikelihood function.  A second method 
uses parametric survival models from the statistical software package “R.”  
 
Results.  This project provides practical methods for parameterizing report lag, settlement lag, and claim 
size distributions for the Loss Simulation Model or other predictive models.  These methods are accessible 
even if the modeler does not have access to specialized statistical software.  This paper provides methods 
for determining how model parameters may vary with covariates.  Existing statistical methods (e.g., 
parametric survival models) are suitable for modeling these variables with covariates.   
 
Conclusions.  The types of distributions that the Simulation model provides are very useful for modeling 
lags and claim size on the automobile collision and bodily injury data provided.  Based on examining state 
and loss year as covariates, the model should have the flexibility to allow the parameters to depend on 
covariates.  There is a limited capability in the current model to allow this. 

This project demonstrates how the academic community and the actuarial profession can collaborate on 
research.   
          
Availability. Both Microsoft Excel and the R statistical package were used in the investigation.  The R 
package is free and can be downloaded by accessing the Internet address “http://cran.r-project.org/”.. 
 
Keywords. Simulation, Generalized Linear Modeling, Survival Model, Extreme Value, Severity, Personal 
Automobile, Parameterize. 
 

               

1. INTRODUCTION 

Actuaries can now simulate property-casualty insurance claims and test these models on 

large data sets due to today’s extremely powerful computers.  The Loss Simulation Model 

Working Party (“LSMWP”) has developed a prototype Simulation Model (the “Simulator”) 
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to make available to its members.  A vital step in the modeling process is to parameterize the 

model using actual insurance data.  This is labor-intensive because of the large size of the 

data sets, the need to manipulate the data to a format usable by software packages, and the 

sheer volume of analysis.  The Ball State University students enrolled in the Spring 2007 

Actuarial Science Research Course (the “Research Course”) parameterized the model using 

claim transaction data supplied by an anonymous “Source.”   

1.1 Research Context 

 This is a practical paper with two primary purposes: 

1) develop methods to determine parameters for the Loss Simulation model, and 

2) apply these methods to a set of actual insurance data. 

The source data consists of Personal Automobile Bodily Injury and Collision claim 

transactions.  The modeling uses both the free statistical software “R” and spreadsheet-type 

software Microsoft Excel.  The researchers found suitable modeling methods, some 

developed outside of insurance.  For example, parametric survival models are very useful in 

modeling “time” variables such as report lag and settlement lag.  The medical research field 

employs these models extensively, as do researchers studying machine failure times and Life 

Insurance actuaries.  This paper references work from these fields.  

The research focuses on finding models for lag and claim size that follow the 

distributions programmed into the current Simulation Model.  For modeling lags, these are 

the Weibull, exponential, and lognormal distributions.  The Simulator uses the Weibull, 

lognormal, and Pareto distributions for generating claim sizes.  Note that the Weibull and 

lognormal distribution are used for modeling both lags and claim size.  Therefore, many of 

the techniques for modeling lags apply to modeling claim size. 

Whenever possible, this paper references material from the first four CAS Actuarial 

Examinations.   
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The research seeks suitable covariates for the models.  Obvious examples include state1 

and accident year.   

1.2 Objective 

The CAS Loss Simulation Model Working Party is developing a Loss Simulator for 

practicing actuaries.  This is the first time that the Simulator has been parameterized using a 

body of actual insurance data.   

Much of the published research assumes that the practitioner has extensive knowledge of 

statistical modeling, possesses sophisticated statistical software, and/or has a sufficiently 

powerful computer.  This paper addresses the needs of those who may lack one or more of 

these tools.  The research uses spreadsheet software for much of the modeling.  The 

techniques presented are suitable for the university environment, where students may not 

know a powerful statistical language. 

The language “R” was used for the portion of the research using a statistical package.  

This language is becoming very popular in actuarial research and can be downloaded free of 

charge. 

1.3 Disclaimer  

None. 

1.4 Outline 

The paper proceeds as follows. Section 2 discusses the background, scope and methods 

for each step in the modeling process.  Subsections discuss specific topics: 

2.1.  Terminology. 

2.2.  Univariate modeling of lags and claim size using covariates 

                                                           
1 The term “state” refers to jurisdictions within the United States. 
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2.3.  Correlation between Settlement Lag and Claim Size for Auto BI 

2.4.  Zero modification of the Claim Size distribution. 

2.5.  Effect of Deductibles on Collision Losses; Pareto Model 

2.6.  Interaction of Report Lag and Settlement Lag 

2.7.  Data Processing 

Section 3 presents the results.  Section 4 presents the conclusions. 

Appendices provide additional details.  Appendix A discusses criteria for comparing 

models.  Appendix B discusses the effects of censoring and truncation in the modeling.  

Appendix C discusses the grouping of data for use in a spreadsheet model.  Appendix D 

shows an example of a model coded in the “R” programming language.  Appendix E 

discusses the results of analyzing univariate distributions of report lag, settlement lag, and 

claim size using spreadsheet software.  Appendix E also discusses how to construct the 

models.  Appendix F contains the Figures in the paper.  

2. BACKGROUND, SCOPE, AND METHODS 

The “Source” supplied Personal Automobile claim transaction data for the years 1992-

2006.  This data includes all payment and reserve change transactions.  Separate files contain 

the claim transactions for initial reserve values, reserve modifications, and payments.2   

This project analyzes the report lag, settlement rate and severity for Auto Bodily Injury 

Liability and Collision.   

Limitations of Scope: 

This research fits models for report lag, settlement lag, and claim size, including 

interactions.  This is not the complete set of variables used in the Simulation Model.  The 

claim transaction amounts were summarized to a “life-to-date”, or cumulative, basis as of the 

                                                           
2 More precisely, each of the three transaction types are contained in separate “tables” within a Microsoft 
Access database. 
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latest valuation date, 12/31/2006.  This research does not therefore include loss 

development or the timing of multiple claim payments.  At the time this research was 

performed, the premium and exposure data had not been built.  Therefore, the research does 

not address the frequency of claims, which is a variable included in the simulation model.    

2.1 Terminology 

 
• Bivariate normal distribution3 :  A distribution with joint density function 
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• Censored data:  Data for which the values of a variable are limited by a certain value.  

The limiting can be from “above” (or “right”), where the indicated value is a maximum; or 

from “below” (or “left”), where the indicated value is a minimum.  Almost all censoring in 

insurance loss data is from the right.  The “limit” can vary with each observation.4   As an 

example, liability claim size is typically right-censored at the policy limit. 

• Correlation coefficient: measures how two variables depend on each other.  

• Covariate: An independent variable, or predictor, in a regression equation.  

• Exponential distribution5 (with parameter θ):  

A distribution with density
θ

θ/

)(
xexf

−

=  for x > 0. 

                                                           
3 See Hogg, McKean, and Craig [2], p. 174     
4 This definition along with Standard deviation, Nested model, Truncation, Covariates, and PP plot are taken 
from Klugman, Panjer, and Willmot [1], pp. 27, 297, 405-406, 424-425.  
5 This definition, along with those for the lognormal, normal, Pareto, and Weibull distributions are taken 
from Klugman, Panjer, and Willmot [1], Appendix A.   
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• Extreme (Minimum) Value or Least Extreme Value distribution ( μ , σ)6 : 

A distribution with F(y) = 1 – exp ( - exp (z) ) and  

f (y) = σ -1 exp ( z – exp (z) ),  where z = 
σ
μ−y  . 

An important relationship is that if X is Weibull (θ , τ) , then Y = ln (X) follows an Extreme 

Value distribution with μ = ln(θ) and σ = τ-1 . 

• Lognormal distribution ( μ, σ):   

A distribution with )2/exp(
2

1)( 2z
x

xf −=
πσ

, where z=
σ

μ−xln  , x > 0. 

• Nested model: a model that is a “subset” or “special case” of another.  For example, 

a model with fewer covariates is nested within a model with more covariates.  An 

exponential model is a special case of a Weibull model, with τ = 1. 

• No-Fault system:  A modification of the traditional American legal system whereby 

the injured party’s ability to sue for damages is curtailed in exchange for an ability to receive 

compensation for injuries without proving the other party was “at fault.”  

• Normal distribution ( μ, σ):  

 A distribution with ( )
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• Pareto distribution (α , θ) :   

 A distribution with 
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• PP plot (“percent-percent” plot):  A plot of the ordered pairs <G(x), F(x)> from 

two cumulative distribution functions.  This plot fits into the unit square and is a 45-degree 

                                                           
6 Tableman and Kim [3], p 58   
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line if the two distribution functions are equal.  In a common application, F(x) is a “fitted” 

distribution from a model and G(x) = Fn(x) is the empirical distribution of actual values.  

The model fits well if the graph is close to the 45-degree line connecting <0,0> and <1,1>.   

• Report Lag: number of days from the incident to the report date of a claim.  

• Settlement Lag: number of days from the report date to the final payment of a claim. 

• Standard extreme value distribution:  An extreme (minimum) value distribution with 

μ = 0 and σ = 1.  If a random variable Y has this distribution, then X = exp(Y) has an 

exponential distribution with θ = 1.   

• Truncation: a modification of the data where all values that do not satisfy a certain 

preset requirement are not included in the data 

• Weibull distribution (θ , τ) :  

A distribution with ( ) ( )

x
exxf

x τθτθτ //)(
−

=  and F(x) = 1 - ( ) )/( τθxexp − . 

 

2.2 Using Covariates for Initial Modeling. 

The Loss Simulator accepts the following distributions for the lags and claim size: 

1) Weibull, exponential, and lognormal for Report Lag and Settlement Lag. 

2) Weibull, lognormal, and Pareto for Claim Size. 

The Simulator also allows for “zero-modification” of each distribution.  A zero-modified 

distribution is a mixture of an initial distribution and a distribution with all its probability at 

zero.7   

A major question in modeling is whether the parameters of a hypothesized distribution 

vary with a set of covariates (also called predictors).  For example, GLMs address whether a 

                                                           
7 Klugman, Panjer, and Willmot [1], p. 85   
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function of the mean μ varies linearly with a set of covariates.  Parametric survival models 

handle the situation where the distribution acts like a time variable and may be censored or 

truncated. 

The Loss Simulation Model allows the modeler to vary parameter values on distinct 

subsets of the data.  The modeler can, with enough work, define the subsets by unique 

values of the predictors and thereby reproduce distributions whose parameters are 

determined by GLMs, Survival Models, or other methods. 

The researchers investigated state and loss year as possible covariates in studying the 

univariate distribution of the lags and claim sizes.  State is a natural covariate because the 

legal system under which automobile accident damages are determined varies by state.  The 

coefficient of loss year measures trend over time. 

There were two main goals for the initial modeling: 

determine the best way to categorize states and whether to use loss year (i.e., accident 

year) as an additional covariate; and 

using the covariates from the first step, determine the best parametric model to use from 

among those supported by the CAS Loss Simulator8. 

Nine states are represented in the data.  The largest states are New Jersey and 

Pennsylvania, which are both “No-Fault” states.  Four groupings of state were investigated, 

ranging from not using state at all to considering each state as its own category.  For each 

grouping, modeling was performed with and without loss year (numeric value of loss year).  

The data for studying report lag and settlement lag included loss years 1996 through 

2005 only.  The year 2006 was excluded because many of its settlement lag values are 

censored by the valuation date 12/31/2006.  Loss years 1992 through 2006 were used for 

                                                           
8 With statistical software, one can try all combinations of covariates (8) with all model forms (3) for each 
coverage (2), a total of 48 models in all for each variable.  This was not practical for the initial models, 
which were programmed using Excel spreadsheets.  Using spreadsheets, the initial modeling first selected 
the optimal covariates using one model (8 runs), then selected from among model types (3 runs).  For two 
coverages, the total number of model runs was 22.     
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claim size modeling. 

In calculating maximum likelihood parameter estimates, truncation and censoring apply 

to some of the variables of interest.  Settlement lag for claims open as of 12/31/2006 is 

censored with a value equal to the difference in days between 12/31/2006 and the report 

date.  For Auto BI, the claim size is censored at the policy limit.  For Collision, the claim size 

is left-shifted and truncated by the amount of the deductible.9   

This modeling for the lags uses only records where the lag > 0, while the model for 

claim size uses only records where incurred amount > 0.  Section 2.4 describes how to 

model the probability that the claim size equals zero. 

The methods developed can apply to covariates other than state and loss year.   

The following subsections discuss the findings from the modeling of each of the lag and 

claim size variables.  Appendix E describes in more detail the modeling and findings from 

the spreadsheet models.  The researchers also ran a model in “R” using the covariates and 

model types selected from the spreadsheet runs.   

In all cases but one, the model using loss year and each individual state as covariates was 

selected.  The only exception was Report Lag for Collision, where the loss year was dropped. 

2.2.1 Report Lag for Auto BI 

The table below shows the cumulative distribution of report lag in days. 

 

Lag 0 5 10 15 90 180 365 Total 

Cum # 9,007 28,062 29,623 30,419 32,535 32,902 33,102 33,375 

Cumulative 

Distribution 27.0% 84.1% 88.8% 91.1% 97.5% 98.6% 99.2% 100.0%

 

                                                           
9 See Klugman, Panjer, and Willmot [1], section 11.1, p. 297 for a definition of these terms. 
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The mean report lag is 12 days and the standard deviation is 65 days.  The modeling data 

includes loss years through 2005, with the claims evaluated as of 12/31/2006.  The report 

lag is right-truncated only if it exceeds the difference in days between the valuation date and 

the loss date.  Since 2005 is the latest loss year used, the smallest possible value of this 

difference is 365 days.  Since over 99% of the claims are reported within one year of the loss 

date, the possible effect of truncation can be ignored in the modeling.  This simplifies the 

modeling. 

One cannot ignore the effect of truncation for a line of business where the report lag is 

long, such as Medical Malpractice,  and where the model uses data from the most recent loss 

year. 

The final spreadsheet model for Report Lag is lognormal with parameters μ and σ = 

1.3508.  The linear predictors of μ and their coefficients follow:   

1 XCT XDE XKY XME XMD XOH XNJ XPA Loss year 
0.773 0.282 0.052 1.000 0.071 0.117 0.508 0.617 0.253 -0.02039

 

The ith fitted value μi is calculated μi = j
j

ji bX∑ , where the variables X are the ones 

listed in the top line of the table, and the coefficients b are listed in the second line. 

For the fitted model, σ = 1.3508.  This model has a total loglikelihood (ln L) of -41,904 

with AIC = 83,828. 

The lognormal model is superior to the Weibull model.  The best Weibull model has ln L 

= -49,221 with AIC = 98,462.   

As a check, the following parametric survival model in “R” fit the log of the Report Lag 

to an Extreme Value distribution:  

temp1 <- Surv(log(data1$report.lag),data1$report.event) 

data1$modyr <- data1$lossyear - 1995 
Call: 
survreg(formula = temp1 ~ factor(NUM.ST.CD) + modyr, data = data1,  
    weights = claim.count, dist = "extreme", x = T, y = T) 
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Coefficients: 
(Intercept)     factor(NUM.ST.CD)7 factor(NUM.ST.CD)18 factor(NUM.ST.CD)19  
 1.350108745         0.126497948         0.006884314         0.140446756  
factor(NUM.ST.CD)29 factor(NUM.ST.CD)34 factor(NUM.ST.CD)37 factor(NUM.ST.CD)45  
 0.889014350         0.783759088         0.495624055        -0.131643763  
 modyr  
 -0.025849189  
 
Scale= 1.821328  
 
Loglik(model)= -49221.1   Loglik(intercept only)= -49550.4 
        Chisq= 658.62 on 8 degrees of freedom, p= 0  
n= 2097  
 

A parametric survival model in “R” using the “survreg” command requires a response 

variable of type “surv,” generated using the function “surv”.  The “surv” function requires 

two vectors as input: 

the response variable of interest, and 

a corresponding “event” vector that equals 0 if the response variable is censored and 

equals 1 if the response the variable is uncensored.  

In this case, the response variable is ln (Report Lag) and the event variable is always 1, 

since no report lags are censored.   

The loglikelihood, scale σ, and AIC match the spreadsheet fit to the Weibull distribution.  

The coefficients do not appear to match.  However, this is mainly because the spreadsheet 

run uses state indicators for all states except VA, while the R run eliminates the indicator for 

CT10.    

The PP Plot in Figure 1 shows that the fit is poor.   

This is not an interesting variable to model, as 84% of the Report Lags are five days or 

less.   

                                                           
10 In modeling a categorical variable with n categories, only n-1 indicator variables are used in the model. 
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2.2.2 Settlement Lag for Auto BI 

Auto BI Settlement Lag has a mean of 485 days and a standard deviation of 418 days.  

The graph below shows the cumulative distribution.  The censored observations (for those 

claims that have not settled by 12/31/2006) are recorded at their censored values.  

Therefore, the settlement lag will have a slightly higher mean when all claims are settled.  

The modeling needs to consider this censoring effect, since 1,306 of the 33,375 Auto BI 

claims were not settled by 12/31/2006.  

 

Auto BI Settlement Lag CDF
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0 500 1000 1500 2000 2500
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D

F

 
 

The final spreadsheet model is Weibull with parameters σ =0.932492 and μ.  The linear 

predictors of μ and their coefficients follow: 

   
1 XCT XDE XKY XME XMD XOH XNJ XPA Loss year 
5.914 0.395 0.486 1 -0.352 -0.050 0.143 0.741 0.513 -0.04521

 

This model has a loglikelihood (ln L) of -51,211 with AIC = 102,442. 

The parametric survival model in R produced the same results.  Settlement lag is 

censored because the latest data is as of 12/31/2006.  In this model, the loss year used is the 

actual loss year minus 1995.  The PP Plot and Residual Plot in Figures 3 and 4 suggest that 

this model works well. 
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2.2.3 Report Lag for Collision. 

The table below shows the cumulative distribution of Collision report lag in days. 

Lag 0 5 10 15 90 180 365 Total 

Cum # 42,147 113,983 120,081 122,731 125,724 125,790 126,104 126,200

Cumulative 

Distribution 
33.4% 90.3% 95.2% 97.3% 99.6% 99.7% 99.9% 100.0%

 

The mean report lag is 3.6 days and the standard deviation is 22 days.  The modeling 

data includes loss years through 2005, with the data as of 12/31/2006.  Over 99% of the 

claims are reported within 90 days of the loss date.  For the same reasons as given for Auto 

BI report lag, the effect of truncation can be ignored in the modeling. 

The final spreadsheet model is lognormal with parameters σ = 1.0949 and μ.  The linear 

predictors of μ and their coefficients follow:   

1 XCT XDE XKY XME XMD XOH XNJ XPA Loss year 
0.916 -0.097 -0.080 1.000 0.272 -0.140 -0.043 -0.006 -0.064 n/a

 

This model has loglikelihood (ln L) of -131,466, with AIC = 262,950.  The loglikelihood 

is virtually unchanged by the inclusion of loss year as a predictor.  Therefore, loss year is 

dropped from the final model. 

The PP-Plot indicates a poor fit.  This is not an interesting variable to study, as about 

90% of the claims are reported within 5 days of the incident.. 

2.2.4 Settlement Lag for Collision.   

The Collision Settlement Lag has a mean of 25 days and a standard deviation of 43 days.  

The graph below shows the cumulative distribution.  The censored observations (for those 

claims that have not settled by 12/31/2006) are recorded at their censored values.  

Therefore, the settlement lag may have a slightly higher mean when all claims are settled.  

The censoring effect is negligible for collision because only two of the 129,233 claims were 

not settled by 12/31/2006.  
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Collision Settlement Lag CDF

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 50 100 150

Settlement lag (days)

C
D

F

 
The final spreadsheet model is lognormal with parameters σ =1.110642 and μ.  The 

linear predictors of μ and their coefficients follow: 

   
1 XCT XDE XKY XME XMD XOH XNJ XPA Loss year 
2.965 -0.091 -0.113 1.000 -0.069 -0.278 -0.482 -0.087 -0.148 -0.04405

 

This model has loglikelihood = -194,502 with AIC = 389,024. 

To verify the calculations, a survival model in R was run using the “extreme” (R 

terminology for Least Extreme Value) distribution.  The loglikelihood of -206,393 matches 

that of spreadsheet Model 1 in Appendix E.  

Settlement lag is censored because the latest data is as of 12/31/2006.  In this model, the 

loss year used is the actual loss year minus 1995.  The PP Plot and Residual Plot in Figures 7 

and 8 suggest that this model works well. 

The results of the R model (using the extreme value distribution) follow: 

Call: 
survreg(formula = temp1 ~ factor(NUM.ST.CD) + modyr, data = data1,  
    weights = claim.count, dist = "extreme", x = T, y = T) 
 
Coefficients 
(Intercept)  factor(NUM.ST.CD)7 factor(NUM.ST.CD)18 factor(NUM.ST.CD)19  
 3.10112379          0.41943563          0.01985678          0.25002789  
factor(NUM.ST.CD)29 factor(NUM.ST.CD)34 factor(NUM.ST.CD)37 factor(NUM.ST.CD)45  
0.37343553          0.34091344          0.32152650          0.44334618  
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Modyr 
-0.05262430  
 
Scale= 1.130781  
 
Loglik(model)= -206369.3   Loglik(intercept only)= -207379.5 
        Chisq= 2020.43 on 8 degrees of freedom, p= 0  
n= 7158 

 

2.2.5 Auto Bodily Injury Claim Size 

The claim size distribution (given that a claim has non-zero value) follows: 

Size range Number of Claims Distribution 

1 - 499 1,259 4.6% 
500 - 1499 2,392 8.7% 
1500 - 2499 1,345 4.9% 
2500 - 3499 1,496 5.4% 
3500 - 4999 1,784 6.5% 
5000 - 9499 6,281 22.8% 
9500 - 24499 8,672 31.4% 
24500 - 49999 2,610 9.5% 
50000 - 99999 1,276 4.6% 
100000 - 199999 439 1.6% 
200000 - 299999 53 0.2% 
over 299999 0 0.0% 
 
Total 27,607 100.0% 

 

Approximately 9% of the claim amounts are censored at the policy limit.   

The spreadsheet model fit both the Weibull and lognormal distributions.  The final 

spreadsheet model is lognormal with parameters σ =  1.451282 and μ.  The linear predictors 

of μ and their coefficients follow:   

1 XCT XDE XKY XME XMD XOH XNJ XPA Loss year 
8.018 1.321 0.418 0.000 0.148 0.153 -0.047 1.027 0.814 0.01915
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This model has loglikelihood =  -131,466, with AIC = 262,950.  The loss year used is the 

actual loss year minus 1992. 

There is a complication in comparing the results with the results from an R model.  The 

claim sizes for this model are grouped according to the method described in Appendix C.  

This means that ni claims in the size interval (L i , R i ] contribute the amount  

ni ]lnln[ln ⎟
⎠
⎞

⎜
⎝
⎛ −

Φ−⎟
⎠
⎞

⎜
⎝
⎛ −

Φ
σ

μ
σ

μ ii LR  to the total loglikelihood.   

See Appendix B for an explanation. 

In running the parametric survival R model, the event variable amtincd.event indicates 

whether the claim size is censored by the policy limit.  Both the spreadsheet and R models 

calculate the loglikelihood the same way for censored amounts. 

The R model uses the individual claim sizes rather than grouping them into intervals.  

This means that the loglikelihood for an individual (uncensored) claim size y i  equals 

]ln[ln ⎟
⎠
⎞

⎜
⎝
⎛ −

σ
μ

φ iy
 - ln (σ) 

The results for the R model follow: 
 

 temp1b= Surv ( log (AMT.INCD), amtincd.event) 

data3$modyr = loss year – 1992 

Call: 
survreg(formula = temp1b ~ factor(NUM.ST.CD) + data3$modyr, data = data3,  
    dist = "gaussian", x = T, y = T) 
 
                                     Value        Std. Error             z                         p 
(Intercept)                     9.3340       0.07954       117.34                0.00e+00 
factor(NUM.ST.CD)7  -0.9087      0.08818        -10.30                6.73e-25 
factor(NUM.ST.CD)18 -1.1608     0.20075          -5.78                7.36e-09 
factor(NUM.ST.CD)19 -1.1738     0.08562        -13.71                8.88e-43 
factor(NUM.ST.CD)29 -0.2957     0.08142          -3.63                2.82e-04 
factor(NUM.ST.CD)34 -1.3825     0.12111        -11.41                3.54e-30 
factor(NUM.ST.CD)37 -0.5088     0.08139          -6.25                4.08e-10 
factor(NUM.ST.CD)45 -1.3269     0.09132        -14.53                7.80e-48 
data3$modyr                   0.0195     0.00217          8.95                 3.60e-19 
Log(scale)                       0.3793     0.00453        83.71                0.00e+00 
 
Scale= 1.46  
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Gaussian distribution 
Loglik(model)= -47703   Loglik(intercept only)= -48368.9 
        Chisq= 1331.75 on 8 degrees of freedom, p= 0  
Number of Newton-Raphson Iterations: 3  
n= 27607  

 

The results of the R model are close to those from the spreadsheet.  The loglikelihoods 

are quite different because the loglikelihood calculation for uncensored observations in the 

spreadsheet uses the cdf, while those in the R model use the density function.  The implied 

annual severity trend is exp(.0195) = + 1.97% annually.  Figures 9 and 10 show that the 

model fits fairly well. 

2.2.6 Collision Claim Size. 

The claim size distribution (given that a claim has non-zero value) follows: 

Size range 

Number of

Claims Distribution 

1 - 149 2,208 1.8%
150 - 249 2,354 2.0%
250 - 349 2,860 2.4%
350 - 549 6,279 5.2%
550 - 999 13,430 11.2%
1000 - 1999 27,861 23.3%
2000 - 2999 18,875 15.8%
3000 - 4999 21,579 18.0%
5000 - 9999 16,694 13.9%
10000 - 25549 7,314 6.1%
over 25500 307 0.3%
 
Total 119,761 100.0%

 

The spreadsheet model fit both the Weibull and lognormal distributions.  The final 

spreadsheet model is lognormal with parameters σ =  0.87887 and μ.  The linear predictors 

of μ and their coefficients follow:   
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1 XCT XDE XKY XME XMD XOH XNJ XPA Loss year 
-43.061 0.252 -0.010 0.118 -0.262 0.061 0.017 0.277 0.226 0.02534
 

The loglikelihood is -521,780 with AIC = 1,043,581. 

The collision loss amounts are grouped as described in Appendix C.  Adding the 

deductible d to each grouped loss produces the grouped “ground up” loss and the grouping 

interval, as described in section 2.5.  The likelihood function must account for the fact that 

ground up loss is truncated at d.  The ground-up loss X equals the actual loss Y plus the 

deductible d.  The likelihood that X lies in the interval (l , u ] is given by 
)(1

)()(
θ
θθ

dF
lFuF

−
−

, 

where F is the cdf of the ground up distribution and θ is the set of parameters over which 

the likelihood function is maximized.   

Appendix E shows the detailed results for this modeling. 

2.3 Correlation between Settlement Lag and Claim Size 

The Simulator allows the modeler to input the correlation between settlement lag and 

claim size.  This section discusses this correlation for Auto BI and provides a practical 

method to estimate the correlation using a bivariate normal distribution.  

The following result makes it easy to calculate the correlation ρ for a bivariate normal 

random vector ( X , Y ): 11  

Y│X=x is Normal with mean μy + ρ
X

Y
σ
σ

( x - μx ) and variance σy
2 (1 – ρ2).       (2.3.1)         

Fitting a bivariate normal distribution requires finding the five parameters μx , σx , μy , σy , 

and ρ.  To fit (X,Y) to a bivariate normal distribution, first fit X and Y separately to normal 

distributions.  This produces the first four of the bivariate normal parameters.  Then use 

(2.3.1) to determine ρ, recognizing that  μx , σx , μy , and σy are constants for this calculation.   

                                                           
11 Hogg and Tanis [5], section 5.6, pp. 305-311  
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To improve the fit, we introduce covariates T , with T0 =1, T1 = XNJ (Indicator function 

for New Jersey), T2=XPA, and T3 = Loss year minus 199012. 

Using maximum likelihood estimation for fitting X to a normal distribution, X|T is 

normal with mean μx|t = 5.5493 + .971195*T1 + .698352*T2 - .00753*T3, and constant 

standard deviation σx = 0.861097.  Similarly Y|T is normal with mean μy|t = 8.26265 + 

.77642*T1 + .563806*T2 - .014975*T3, and constant standard deviation σy = 1.46849.  These 

two models determine all the parameters of the bivariate normal distribution except the 

correlation coefficient ρ. 

The loglikelihood function for the joint observation (x,y) is the sum of 1) the 

loglikelihood function determined by the modeling of X, and 2) the loglikelihood for the 

conditional (normally distributed) random variable Y|X.  The latter is determined from the 

relationship (2.3.1) above.  For individual uncensored observations, this quantity is the sum 

of the loglikelihoods calculated using two normal density functions. 

The discussion above is a simplification of the actual modeling, since the settlement lag 

is grouped, and both the claim size and settlement lag are subject to censoring.   

The settlement lags were grouped into 14-day intervals with an assumed lag equal to that 

at the midpoint.  For example, settlement lags in the interval 1 to 14 days are all assumed to 

equal 7.5, resulting in X = ln(7.5).  The claim sizes are rounded to the nearest 100 dollars.   

The loglikelihood calculation must be modified if the settlement lag is censored.  In this 

case, the cumulative normal cdf is used in the loglikelihood calculation rather than the 

density.  If X = ln(settlement lag) is censored at xi , then we only know that X is somewhere 

in the interval [ xi , ∞].  A practical adjustment is to replace xi with a value whose probability 

is halfway between F(xi ) and 1.  This means finding xi*, the point for which  

FX(xi*) = 
2

)(1 ixF+
.  Use xi* rather than xi in calculating the loglikelihood for Y|X. 

                                                           
12 The number of state indicators was reduced from nine to two since this section is illustrative. 
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The maximum likelihood estimate for the correlation coefficient is ρ  = .4289.  See 

Figures 13 and 14 for a surface plot and contour plot using the joint distribution.  

Modeling the relationship between settlement lag and claim size can be tricky if there 

have been changes in claim reserving practices during the time period studied.  The claim 

size includes both the paid amount and a case reserve, i.e., an amount estimated by claims 

personnel that will be sufficient to cover the unpaid portion of the claim.  A  change in 

reserving practice, for example, would occur when the company sets case reserves using a 

“formula” and then switches to having all case reserves set by a claim adjuster.  The 

relatively simple models in this section assume that the method of setting case reserves has 

remained relatively constant.         

2.4 Zero modification of the Claim Size Distribution 

The models described in Section 2.2 model claim size X, given that X > 0.  This section 

includes the positive probabilities that X = 0 in the modeling.  The basic idea is that the 

claim size X is the mixture of two distributions: 

The zero distribution, with Pr[X=0] = 1 and         

The conditional distribution of X | X >0. 

The mixing probabilities are p = Pr [X=0] and 1-p.    (2.4.1) 

The entire paper, except for this section, is concerned with modeling the second 

distribution.  This section discusses models to determine p.  Much of the modeling includes 

the variable IS, the indicator for whether the claim has settled.  

We will model p = Pr [X=0] with the loss year y as a covariate and define py = Pr[X=0 
│loss year = y ].  For this database, X = 0 only if IS  = settlement.event = 1 (that is, if the 
claim has closed).  Open claims with zero amounts are very rare for this data.  The 
probability that a claim is settled should decrease with the loss year, since claims that are 
more recent have had less time to close.  We write: 

Pr[ X = 0 │ y ] = Pr[ X=0│IS =1 ] times Pr[ IS =1│y ] in steps.  
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The two subsections that follow described how each factor on the right-hand side is 
calculated. 

 

2.4.1    Model the Probability that a Claim is settled, given Loss Year. 

The probability that a claim is settled should decrease with the loss year, since losses 
from more recent years have had less time to settle.  We can use logistic regression to model 
this probability.  Letting the loss year y be a numeric covariate, the logistic model assumes 

that  logit(p) = ln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− p
p

1
 is a linear function b0 + b1*y of loss year.  The inverse of the logit 

function is ilogit(x) = 
)exp(1

)exp(
x

x
+

.   The fitted probability Pr [ IS = 1 | y ] equals ilogit (b0 + 

b1*y ) once b is determined by maximum likelihood.   

One nice feature of logistic regression is that summarized observations can be used in 

the modeling.  The necessary summarized data is the number of settled claims n y 1 (i.e., the 

number of claims for loss year y with IS=1) and the number of unsettled claims n y 2 for each 

loss year y.  Let η = b0 + b1*y  be the linear predictor and ny be the total number of claims for 

loss year y. 

The loglikelihood is given by13  

l (b) =   ∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−

y y

y
yyy n

n
enn y

1
1 ln)1ln( ηη  

It is generally easier to calculate the loglikelihood directly than it is first to calculate 

the likelihood, because the latter may involve calculating large factorials, while the 

loglikelihood can use the simpler lngamma function.   

                                                           
13 See, for example, Faraway [6] pp. 27-28      
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The following table shows the model data and results. 

y n2  n1 n  η py  

lossyear  # Open # Settled  # Total 
Loglikeli

hood 
Linear 

predictor Fitted p 
Empirical 

p 
1 0 2131 2131 -0.001 14.183 1.000 1.000 
2 0 3228 3228 -0.006 13.180 1.000 1.000 
3 0 3238 3238 -0.017 12.177 1.000 1.000 
4 0 3082 3082 -0.043 11.174 1.000 1.000 
5 0 3432 3432 -0.131 10.171 1.000 1.000 
6 1 3763 3764 -1.327 9.167 1.000 1.000 
7 1 3366 3367 -1.001 8.164 1.000 1.000 
8 16 3370 3386 -17.870 7.161 0.999 0.995 
9 9 3174 3183 -2.374 6.158 0.998 0.997 
10 13 3149 3162 -3.022 5.154 0.994 0.996 
11 43 3185 3228 -3.323 4.151 0.984 0.987 
12 124 3006 3130 -3.407 3.148 0.959 0.960 
13 375 3077 3452 -4.089 2.145 0.895 0.891 
14 724 2551 3275 -8.097 1.141 0.758 0.779 
15 1406 1493 2899 -6.424 0.138 0.535 0.515 

 

A graph of fitted versus empirical probabilities follows: 

Fitted Vs Empirical Probability
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In this model, b0 = 15.187 and  b1= - 1.0032.  The graph shows a reasonably close fit.  

Loss year 1 is 1992 and loss year 15 is 2006.      

2.4.2  Model the Probability that Claim Size = 0 given that the claim is settled. 

We again use logistic regression, with the covariates being the indicator variables for state.  
The summarized data by state is shown in the table below. 
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In this case, the logistic regression attempts to find probabilities by state x 

px = Pr { Claim size =0 | State = x and IS = 1 }. 

Models 1 thru 4 were run with different groupings of state: 

Model 1 uses indicators for each state. 

Model 2 uses indicators for New Jersey and for Pennsylvania. 

Model 3 uses one indicator for ( Pennsylvania or New Jersey) 

Model 4 uses no predictors. 

Model 1 is not useful because it has as many predictors as data points.  The fitted and 
empirical probabilities match exactly.   
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The comparison of nested models shows the following: 

Model 
Number 

parameters Loglikelihood 
Likelihood 

ratio  P-Value AIC 
1 8 -30.677 21.814 0.00057 77.354
2 3 -41.584 2.574 0.10862 89.168
3 2 -42.871 1010.815 0.00000 89.742
4 1 -548.278   1098.557

 

We select Model 3 to carry forward to the remainder of this section.   

x n1 n2 n  η px  

State  

# of 
zero-size 

claims 

# of 
claims 

>0 
# in 

State 
Loglikeli

hood 
Linear 

predictor Fitted p 
Empirical 

p 
6 113 344 457 -5.140 -0.900 0.289 0.247 
7 627 1,497 2,124 -4.162 -0.900 0.289 0.295 

18 30 63 93 -2.678 -0.900 0.289 0.323 
19 955 2,228 3,183 -5.105 -0.900 0.289 0.300 
29 8,402 9,153 17,555 -5.796 -0.068 0.483 0.479 
34 62 257 319 -10.397 -0.900 0.289 0.194 
37 9,707 10,229 19,936 -5.778 -0.068 0.483 0.487 
45 454 1,124 1,578 -3.815 -0.900 0.289 0.288 

TOTAL 20,350 24,895 45,245   

 

2.4.3  Put the two models together. 

The original goal of the modeling was to develop predictors for the probability that a 
claim is settled for zero value.  This subsection is an example of how to do this given the 
modeling in subsections 2.4.1 and 2.4.2.  Section 2.4.1 produced predicted values for  

Pr [ IS = 1 | loss year y ].   Section 2.4.2 provided predicted values for Pr [ Size = 0 | IS = 1 
and state x ].   Multiplying these quantities gives an estimate of Pr [ Size =0 | Loss year y and 
state x ].   These are precisely the mixing probabilities in equations 2.4.1 at the beginning of 
section 2.4.   
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The two-way table of these factors follows: 

 
Actual loss yr 

 
 1998 1999 2000 2001 2002 2003 2004 2005 2006 

Loss yr   7 8 9 10 11 12 13 14 15 
 CT 6 0.289 0.289 0.288 0.287 0.285 0.277 0.259 0.219 0.154
 DE 7 0.289 0.289 0.288 0.287 0.285 0.277 0.259 0.219 0.154
 ME 18 0.289 0.289 0.288 0.287 0.285 0.277 0.259 0.219 0.154

STATE MD 19 0.289 0.289 0.288 0.287 0.285 0.277 0.259 0.219 0.154
 NJ 29 0.483 0.483 0.482 0.480 0.476 0.463 0.432 0.366 0.258
 OH 34 0.289 0.289 0.288 0.287 0.285 0.277 0.259 0.219 0.154
 PA 37 0.483 0.483 0.482 0.480 0.476 0.463 0.432 0.366 0.258
 VA 45 0.289 0.289 0.288 0.287 0.285 0.277 0.259 0.219 0.154

 

The probabilities for loss years prior to 1998 match those for year 1998.  These values 
represent probabilities that the claim size equals zero as of the valuation date.  To obtain the 
fitted probabilities that the ultimate claim size equals zero requires a more sophisticated 
analysis of loss development. 

The two-way probability table above assumes that the component conditional 

probabilities in sections 2.4.1 and 2.4.2 are independent.  Whether this is true or not, we 

have shown that there are covariates that influence the mixing probabilities.  In this case, the 

predictors are 1) the indicator for states NJ or PA and 2) loss year. 

2.5 The Effect of Deductibles on Collision Claim Frequency and Severity 

The model for collision claim size described in section 2.2.6 is a model for the “ground 

up” loss distribution W.14  The collision data is left-shifted and truncated by the amount of 

the deductible.  The algorithm for converting this data to a “ground up” basis follows the 

“unshifted” approach15 .  This section discusses the nature of the per loss and per payment 

distributions under various deductibles, which depend on the form of the claim size model. 

The model selected (Section 2.2.6) for the “ground up” collision loss size is lognormal with 

                                                           
14 The references frequently use X for the “ground up” distribution.  We use W because X refers to 
covariates in this section. 
15  As described in Klugman, Panjer, and Willmot [1], pp. 341-343  
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μi = ∑
j

jij xb and σ constant.  The array Xij is the model matrix, with column vectors X0 = 

1,  X1 through X8 set as indicators for eight of the nine states represented in the data, and X9 

the loss year.  The lognormal distribution has the following desirable property: 

The jth moment distribution of a lognormal distribution with parameters μ and σ2 is also a 

lognormal distribution with parameters μ+j σ2  and σ2 respectively.16 

We can now discuss the distributions of Y P and Y L for an ordinary deductible d, where 
Y P and Y L are the “per payment” and “per loss” variables:17  

Y L = 0 if W ≤ d,  Y L = W - d if W >d.              

Y P  = Y L │ Y L > 0.   

2.5.1  Expected Value by Deductible for given μ. 

From the initial modeling described in subsection 2.2.6 and in Appendix E, the 
lognormal provides a good fit for collision loss size.  The expected values of LY and PY are 
as follows: 

))(1()ln()
2
1exp()

2
1exp()(

2
22 dFddYE W

L −−
−−

Φ+−+=
σ

σμσμσμ  

))(1(/)()( dFYEYE W
LP −=  

where )ln()(
σ

μ−
Φ=

wwF . 

The formula for E(YL) follows from the fact that YL = W – (W^d) and the formula for 
the limited moments of a lognormal distribution18.   

                                                           
16  Bickerstaff [4], p 73  
17  Klugman, Panjer, and Willmot [1], p. 116  
18 Klugman, Panjer, and Willmot [1], p. 638-639      
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For μ = 7.7, the table below shows how different deductibles d affect the values of 
)( LYE  and )( PYE : 

d 100 250 500 1000  μ  7.7 

)( LYE  3124 2975 2730 2285  σ  0.87 

)( PYE  3125 2993 2855 2790    

To show that 7.7 is a representative value of μ, observe that b0 = -43.06 and the coefficient 
of loss year is 0.02534 (see section 2.2.6).  For loss year 2000, the linear predictor   

μ = -43.06 + 0.02534 * 2000 + coefficient of state = 7.63 + coefficient of state.  

The coefficients of the state indicators range from -0.262 to +0.277. 

Following is a graph of the data above: 
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2.5.2  Expected Value for various μ given Deductible d. 

Recall that μi is a linear function of the covariates (Xi,j ; j = 0, 1 2, …p), where p=9 in this 
case.  The following table shows how different values of μ  affect the value of )( LYE  and 

)( PYE under a fixed deductible of 250:     
μ  7.6 7.65 7.7 7.75 7.8 sigma 0.87

)( LYE  2667.886 2817.389 2974.572 3139.827 3313.566 d 250 
)( PYE  2690.607 2837.852 2992.945 3156.273 3328.241    
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Since the coefficient of loss year is 0.025 and the increments in μ in the table are .05, the 

adjacent entries in each row show the approximate effect of two years’ inflation. 

In the graph below, E(Y L ) and E(Y P ) are close together because the $250 deductible is 

much smaller than the average loss.   
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We have discussed the expected values of LY and PY  of a lognormal distribution.  We 

now examine the distributions themselves. 

 

Discrete probability ⎟
⎠
⎞

⎜
⎝
⎛ −

Φ=
σ

μdyf LY

ln)(  = FW(d ) ,     if y =0   

Density )( yf LY =  FW(y+d) = 
πσ 2)(
))2/(exp( 2

dy
z

+
− , if y>0,      where 

σ
μ−+

=
)ln( dyz  

)( yf PY  = )( yf LY ))(1(/ dFW−   
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From this, we can graph the density of PY  under a fixed deductible of 250:  
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2.5.3  Effect of Loss Year and deductible on Losses.   

Loss year and deductible are covariates that impact the size of collision losses.  Here we 
single out this impact and give an illustrative example.  Consider collision loss in New Jersey. 
In the model,  

μ = 0b + NJb + yearb *year, where 0b  = -43.0607, NJb = 0.277003, yearb = 0.025344. 

Here μ applies to the lognormal distribution of “ground up” losses, and σ = 0.87. 

We show how deductible and loss year together affect the expected value of collision 
losses.  Following are the values of )( LYE  for loss years 1996 to 2006 under different 
deductibles, followed by a graph of the same information. 
 1996 1998 2000 2002 2004 2006

μ =  7.80308 7.85376 7.90445 7.95514 8.00583 8.05652
       

0 3574 3760 3956 4161 4378 4605
100 3474 3660 3856 4061 4278 4505
200 3374 3560 3756 3961 4178 4405
500 3079 3264 3459 3664 3880 4107

1000 2623 2804 2995 3196 3409 3633
2000 1907 2069 2242 2426 2622 2830
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E(YL) by Loss Year and Deductible
Lognormal Model, New Jersey
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2.5.4  Pareto Model   

The Pareto is one of the severity distributions programmed into the Loss Simulator.  
Section 2.2 examined distributions that the R statistical language can model in its parametric 
survival model package.  The Pareto distribution is not one of them. 

This section discusses the Pareto distribution using the same covariates as for the 
lognormal model.  The modeling is performed by maximizing the loglikelihood using the 
Excel Solver.   

The Pareto distribution has the desirable property that if the “ground up” loss W is 

Pareto(θ, α), then the “per payment” variable Y P under a deductible d is distributed 

Pareto(θ+d, α)19.   From this result, we obtain: 

E(Y P ) = ( θ + d ) / ( α – 1)  and then 
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E(Y L ) = E(Y P ) * (1-FW(d ) ) = E(Y P ) *
α

θ
θ

⎟
⎠
⎞

⎜
⎝
⎛

+ d
 . 

We developed a similar model as the lognormal to fit the collision losses.  The density 
function of LY is: 

Discrete probability ( )
α

θ
θ

⎟
⎠
⎞

⎜
⎝
⎛

+
−=

d
yf LY 1         , if y = 0 

Density             =     
( ) 1+++ α

α

θ
αθ
dy

      , if y>0   

In modeling the Pareto using covariates, the linear predictor μ = Xb is an estimate of the 
mean, which equals θ/(α-1).  Thus, in setting up the Pareto model, one re-parameterizes the 
distribution as Pareto(μ ,α ), with θ then calculated as  θ = μ (α-1).20   

As in section 2.5.3, the table below shows the value of )( LYE  for New Jersey from loss 
year 1996 to 2006 under different deductibles. 

 
 

Loss year 1996 1998 2000 2002 2004 2006
μ =  3136.04 3323.81 3511.57 3699.33 3887.10 4074.86
θ = 34523.67 36590.71 38657.74 40724.78 42791.82 44858.85

Table of 
E(YL)             

0 3136 3324 3512 3699 3887 4075
100 3038 3225 3413 3601 3788 3976
200 2943 3130 3318 3505 3693 3880
500 2677 2863 3048 3234 3420 3607

1000 2290 2470 2651 2832 3014 3197
2000 1687 1850 2015 2182 2351 2521

 

                                                                                                                                                 
19 Klugman, Panjer, and Willmot [1] See Example 5.2, p. 117    
20 Klugman, Panjer, and Willmot [1], pp. 413-414   
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E(YL) by Loss Year and Deductible
Pareto Model, New Jersey
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2.6 The Interaction of Report Lag and Settlement Lag 

This section discusses the correlation between report lag and settlement lag for Auto BI 

and Collision.  For each coverage, the joint distribution of ln(report lag) and ln(settlement 

lag) is fit to a bivariate normal, using the procedure described in section 2.3.  The first step in 

this fitting is to determine the lognormal parameters for report lag and settlement lag 

separately.  In doing this, we looked at grouping each variable into 14-day intervals as well as 

using the variable “as is.”  After fitting the variables separately, we calculate the correlation 

coefficient ρ and test its significance.          

 
2.6.1.   Report lag and settlement lag for Collision 

The normal distributions were fit to the variables X = ln(report lag) and Y = 
ln(settlement lag) for both the actual lags (“as is” model) and the lags grouped into intervals 
with a length of 14 days.    
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The loglikelihoods for the “as is” models use the density function for uncensored 
observations.  To provide a comparable loglikelihood for the interval model, the 
loglikelihood was calculated using the density at the midpoint of the interval.21   

Following are some statistics from the univariate models: 

 As is X Interval X As Is Y Interval Y

mu  0.5868 2.1038 2.5511 2.7228

sigma 0.9876 0.4145 1.1476 0.8923

loglikelihood -181,763 -69,559 -201,171 -168,655

Empirical mean 0.586759 2.5511 

The empirical mean for the “As Is” settlement lag Y is censored for all claims still open 
as of 12/31/2006. 

We select the “as is” model for report lag X because the mean from the interval model is 
not close to the empirical mean.  When the report lag is grouped, all lags between 0 and 14 
days are mapped to 7.5.  This overstates the mean report lag, since there is a preponderance 
of claims with very short report lags.  We select the interval model for Y. 

The value of the correlation coefficient ρ is 0.05659 for the bivariate normal distribution, 

using the methods of section 2.3.  One way to test for the significance of ρ is to compare the 

loglikelihood for the model containing ρ against a model without ρ.  The latter model is one 

where X and Y are independent.   

An approximate test relies on the fact that W = (1/2) ln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

r
r

1
1 is approximately normal 

with mean = (1/2) ln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+
ρ
ρ

1
1 and variance 1/(n-3).  Note that if ρ =0, mean(W) = 0.  To 

                                                           
21 The theoretically correct method uses the difference in the cdf between the ending and beginning point of 
the interval.  The density is used here to make the loglikelihood comparable to other models tested. 
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test the hypothesis that ρ = 0, construct Z=[Sqrt(n-3)/2]*[ln(1+r) – ln (1-r)].  For this model 

Z = 20.365, much larger than the 5% critical value 1.9622.     

2.6.2  Report lag and settlement lag for BI 

The normal distributions were fit to the variables X = ln(report lag) and Y = 
ln(settlement lag) for both the actual lags (“as is” model) and the lags grouped into intervals 
with a length of 14 days.    

The comments from the previous subsection apply to this section also.   

Following are some statistics from the univariate models: 

 As is X Interval X As Is Y Interval Y 

mu  0.78068 2.20469 5.69340 5.70539 

sigma 1.27138 0.67610 1.34862 1.30396 

loglikelihood -49,937 -30,928 -51,319

 

-50,330 

 

We select the “interval” model for both X and Y.   

The value of the correlation coefficient ρ is 0.00075 for the bivariate normal distribution, 

using the methods of section 2.3.  Using the same test as that used for settlement lag, 

construct Z=[Sqrt(n-3)/2]*[ln(1+r) – ln (1-r)].  For this model, Z = 0.129649, much smaller 

than the 5% critical value 1.9623. 

Therefore, the null hypothesis that X and Y are independent is not rejected.  

2.7 Data Processing 

The data came in from the anonymous “Source” as a Microsoft Access database with the 
claim transactions in three separate “tables”24:  1) Initial reserve transactions, 2) Reserve 

                                                           
22 Hogg, McKean, and Craig [2], p. 500  
23 Hogg, McKean, and Craig [2], p. 500    
24 The term “tables” is used for relational databases.  If the data were organized as separate “flat files”, each 
table would correspond to a flat file. 
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changes, and 3) Payments.  A fourth table contains descriptive information for each claim.  
Approximate 30-40% of the entire project consisted of processing the data into a format 
suitable for the statistical models.  Processing this data strained the capacity of the 
computers processing the information. 

To model report lag, settlement lag, and claim size required merging the transaction 
tables to produce a table of incurred-to-date loss information by claim.  In the research class, 
a subgroup of students learned relational database concepts and performed this processing.  
This type of work must be “custom-tailored” according to the format of the incoming data. 

Important relational database concepts to understand include primary key, inner join, 
and outer join.  The following website contains useful material for understanding relational 
databases: 

 http://support.microsoft.com/kb/283698/EN-US/ 

Follow the directions to download a Word document. 

A useful website for understanding “joins” is the following: 

 http://office.microsoft.com/en-us/access/HA100963201033.aspx 

This project does not treat the parameterizing of frequency or exposures.  Such work 
requires processing the premium/exposure transactions.  The necessary information was not 
available at the time the course met.  This work would require more computer capacity than 
handling the loss transactions. 

2.7.1 Suggestions for the Data Processing 

For this project, the data processing was started by the Source and the primary author 

during the semester before the start of the class.  Much of the “data scrubbing” took place at 

this time.  For projects of this nature, the data processing should take place early and on a 

“crash” basis.  Otherwise, the project may not be completed during the course period 

because students will be waiting for the data to be cleaned. 

3. RESULTS AND DISCUSSION 

This project uses actual insurance data to parameterize the report lag, settlement lag, and 
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claim size distributions for the Casualty Actuarial Society’s Loss Simulator.  Researchers 

developed models using spreadsheets that optimize25 likelihood functions.  Models were also 

developed in the statistical language R. 

The models were run separately for Auto BI and Auto Collision for each of the variables 

above.  They fit lags to the Weibull, Exponential, and Lognormal distributions, while fitting 

claim sizes to Weibull, Lognormal, and Pareto distributions.  The settlement lags and the 

Auto BI claim size are censored variables.  Parametric survival models in the R language can 

fit censored variables to all the distributions above except the Pareto.  

The models produced good results for settlement lag and claim size, as long as suitable 

covariates are included.  They produced poor results for report lag.  The report lags are very 

short for these two coverages.   

Bivariate normal models determine correlation coefficients between settlement lag and 

report lag, and between settlement lag and claims size.  Natural logarithms of all variables 

were used in these models.  The results show a small but significant correlation between 

report lag and settlement lag for Collision and an insignificant correlation for Auto BI.  A 

significant positive correlation of 0.429 exists between settlement lag and claim size for Auto 

BI.  The Simulator provides for entry of the correlation coefficient.   

Section 2.5 presents some of effects of Collision deductibles on the payment severity and 

mean payments.  This section illustrates some of the results of modeling the “ground up” 

loss distribution as a lognormal variable.  This special topic is presented because deductibles 

truncate and left-shift the loss payments.  This is a more complex phenomenon than 

handling censored data.  The language R does not handle this adjustment automatically.26 

Section 2.4 provides a model for determining the (discrete) probability that claim size 

equals zero, when only the latest valuation is available for each claim.  If the entire valuation 

history for each claim were used, a more sophisticated model could be developed. 

                                                           
25 In Microsoft Excel, the “Solver” is the optimizer.  See Klugman, Panjer, and Willmot [1], Appendix F, 
pp. 659-669 for a discussion. 
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The results support the model types programmed in the Simulator, once covariates are 

included.  For example, the modeling shows that state is clearly an important covariate and 

that including loss year as a predictor produces an estimated “trend”.  The PP Plots and 

Standard Residual Plots provide a way to evaluate the models visually.  The Simulator 

currently allows covariates only in the sense that each level of a categorical predictor (such as 

state) can be assigned to a different “type”, i.e., grouping of data, in the Simulator. 

A second goal of the project is to promote understanding of the predictive models 

presented and to illustrate how to perform predictive modeling without using high-powered 

software.  This is a reason why the models were done in Excel rather than an advanced 

statistical language.   

Modeling using spreadsheets requires a great effort.  Some datasets were too large to fit 

into a spreadsheet, requiring that the observations be grouped.  This requires more data 

processing and more effort in programming the likelihood functions.  Had the basic model 

been programmed in a statistical language, the class could have tested many other covariates 

beyond state and loss year.  Changing covariates requires substantial work in a spreadsheet 

environment.  However, the modeling that was performed using covariates shows the 

necessity of including these covariates in the Simulator.   

This project provides an example of how universities and professional actuarial bodies 

can collaborate on research.       

4. CONCLUSIONS 

The models described in this paper provide a way to parameterize the Casualty Actuarial 

Society’s Claim Simulator, which is in the development stage.  These models deal specifically 

with modeling report lags, settlement lags, claims sizes, and their interactions.  We found 

that the Simulator provides a useful set of distributions for simulating these variables.  The 

caveat is that the models need to use covariates (predictors) to refine the estimate of the 

                                                                                                                                                 
26 SPlus, the commercial available version of S, does handle left-shifting and truncation in the censorReg 
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means of the distributions.  This implies that the Simulator needs to handle covariates. 

The models were developed using spreadsheets.  This enabled the students to 

understand thoroughly the calculation of maximum likelihood estimates.  Spreadsheets are 

labor intensive and limited in their capability for developing these models.  Further model 

development should take place using a statistical language.  The language “R” performs this 

task well, is open source, and is available free of charge.  Other languages such as SPlus (a 

commercial counterpart to “R”), SAS, and SPSS can perform this modeling.  A subgroup of 

the students performed modeling in “R”, with some source code and results included in this 

paper.  

Parametric survival models and Generalized Linear Models are useful modeling tools for 

analyzing lags and claim sizes.  Logistic regression was used to model the probability that the 

claim size is zero.   

This project goes beyond the typical statistics work at universities because of the large 

volume of data.  The processing of the data uses relational database concepts.  Partly 

because of the data processing requirement, the scope is limited to fitting a subset of the all 

Simulator’s parameters.  For example, this paper does not discuss parameters relating to 

frequency and distribution of exposure.  The paper does not analyze loss development.  

Data from another line of business, such as Medical Malpractice, is needed to provide non-

trivial report lags.  

A main goal of the research is to explore ways in which the academic community and the 

learned actuarial bodies (such as the CAS or SOA) can collaborate on research.  This is one 

of the most rewarding results of the project.  The CAS supplied the data and considerable 

consulting on the modeling.  Ball State University provided the human resources, the 

facilities, and academic knowledge.  

                                                                                                                                                 
procedure.  This was not tested by the modelers.  
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Appendix A 
 

Two tests for comparing models are the Likelihood Ratio test and the Akaike 

Information Criteria (AIC).  The Likelihood Ratio test applies to nested models, while 

the AIC can compare models where one is not a special case of the other. 

Likelihood Ratio Test:     

For this test, the distributions compared must be nested.  The “null hypothesis” H0 

is that the model with fewer parameters is sufficient.  Klugman, Panjer and Willmot [1], 

section 13.4.4, discusses this test.  The alternate hypothesis H1 is that the more complex 

model is needed.   

The likelihood ratio test constructs a test statistic T = 2 (ln L1 – ln L0), where L is the 

likelihood associated with each model.  If T > a critical value for the Chi-square 

distribution, the null hypothesis is rejected.27 

Akaike Information Criterion (AIC)   

AIC applies more generally than the likelihood ratio test because it requires neither 

that the models be nested nor that they have the same error distribution.  In the general 

case,  

)ln(22 LpAIC −=  

where p is the number of parameters, and L is the maximum likelihood.   

The “preferred” model has the lowest AIC.  Note that adding parameters introduces 

into the AIC a penalty that may offset the gain in loglikelihood.  In this way AIC 

discourages using unneeded parameters28.  The result is that the AIC method produces 

an optimal model using the fewest number of parameters.29  

                                                           
27 See Klugman, Panjer, and Willmot [1], page 346.  
28 There is debate over whether the term “2p” in the penalty is large enough for datasets with many 
observations. 
29 See Hogg, McKean, and Craig [2], page 106. 



Ball State University Actuarial Science Research Course          
 

 

42 Ball State University Actuarial Science Research Course, Spring 2007 

Appendix B 
Modeling Censored and Truncated Variables 

 
B. 1. Introduction 

Estimation by method of moments and percentile matching is often easy to do, but these 

estimators tend to perform poorly. The main reason for this is that they use a few features of 

data, rather than the entire set of observations. It is particularly important to use as much 

information as possible when the population has a heavy tail. 

Another drawback of these methods is that they require that all the observations be from 

the same random variable.  Otherwise it is not clear what to use for the population moments 

or percentiles.  For example if half of the observations have a deductible of 50 and half have 

a deductible of 100, it is not clear what sample mean should be equated30. 

Of many possibilities, the only one used here is the maximum likelihood estimator.  To 

define the maximum likelihood estimator, let the dataset consist of n events A1 , … ,An , 

where Aj is whatever was observed for the jth observation. 

The likelihood function is 

∏
=

∈=
n

j
jj AXL

1

)|Pr()( θθ  

and the maximum likelihood estimate of θ is the vector that maximizes the likelihood 

function. 31  

There is no guarantee that the function has the maximum at eligible parameter values.  It 

is possible that various parameters become zero or infinite, the likelihood function will 

continue to increase.  The likelihood function is the probability of obtaining the sample 

                                                           
30 One way to rectify this drawback is to first determine a data-dependent model such as the Kaplan-Meier 
estimate, then use percentiles or moments from that model. 
31 Some authors write the likelihood as L(θ|x), where the vector x represents the observed data. Because 
observed data can take many forms, the dependence of the likelihood function on the data is suppressed in 
notation. 
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results that were obtained for the hypothesized type of model, given a particular parameter 

value θ.  One of the major attractions of this estimator is that it is almost always available32. 

It is often easier to maximize the logarithm of the likelihood function. Because it occurs 

so often, we denote the loglikelihood function as )()( θθ lnLl =  

B. 2 Complete, Individual Data 

When there is no truncation and no censoring, and the value of each observation is 

recorded, it is easy to write the likelihood and loglikelihood functions: 

),|()(
1

θθ j

n

j
x xfL

j∏
=

=     ∑
=

=
n

j
jx xfl

j
1

).|(ln)( θθ  

As an illustration, for the exponential distribution, the value θ̂  that maximizes l (θ) is 

determined: 

  ∑
=

−− −−=−−=
n

j
j xnnxl

1

11 ,ln)ln()( θθθθθ  

  ,0)( 21 =+−=′ −− θθθ xnnl  

  xnn =θ  

  .ˆ x=θ  

B. 3 Complete, Grouped Data 

 

The following material describes how to handle complete, grouped data33: 

When data are complete and grouped, the observations may be summarized as 
follows.  Begin with a set of numbers, c0<c1 <…..<ck, where c0 is the smallest 
possible observation, (usually zero), and ck is the largest possible observation, (usually 
infinity).  For such data, the likelihood function is 

                                                           
32 See Klugman, Panjer, and Willmot [1], pages 337-339 for a more complete discussion. 
33 Klugman, Panjer, and Willmot [1], p. 341  
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  ∏
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Its logarithm is 
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B. 4 Truncated or Censored Data. 

Handling censored data is not complicated – simply treat the data as lying in the interval 

running from the censoring point to infinity.  Truncated data, however, presents a great 

challenge.  There are two ways to proceed; one is to shift the data by subtracting the 

truncation point from each observation, and the other is to accept the fact that there is no 

information about values below the truncation point. 

We have seen that insurance data is often truncated from below and censored from 

above.  Models for time-till-event variables are often called “Survival Models.”  Examples 

are report lag and settlement lag.  Many of the same techniques apply to claim size 

distributions, which frequently arise from policies written with a deductible (truncation 

point) and a policy limit (censoring point).   

The observed claim sizes from a policy issued with deductibles are truncated and left-

shifted.  That is, if X is the “ground up” distribution and X > d, the observed claim amount 

equals X-d rather than X.  

For example, for a Pareto distribution with parameters α and θ, the likelihood function 

using the shifting approach34 is: 

  ∏
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34 Klugman, Panjer, and Willmot [1], pp. 341-343  
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The likelihood function using the unshifted approach is: 
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B.5.   Lognormal Log-Likelihood Functions and their Partials 35 

The general log-likelihood function (without the constant) for the lognormal distribution 

is composed of three summation portions: 
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where: 

• Fe is the number of unique exact data points 

• Ni is the number of exact observations whose value is Ti . 

• μ´ and Tσ are the mean and standard deviation of the natural logarithms of 

the observations (unknown a priori, the are the two parameters to be found) 

• Ti is the observed value in ith group of exact observations 

• S is the number of unique values for the censored data points 

• iN ′  is the number of observations whose censored value equals iT ′  

                                                           
35 See the website [7].  Navigate to the topic “Lognormal distribution – Estimation of Lognormal 
parameters.” 
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• iT ′ is the observed value in the ith censored data group 

• FI is the number of grouping intervals for grouped observations. 

• iN ′′ is the number of observations in the ith grouped data interval 

• LiT ′′ is the beginning of the ith interval 

• and RiT ′′ is the ending of the ith interval  

The formula above assumes that the dataset groups all the like observations and contains 

the field N with the number of observations.  If the data for the first two summations 

consists of individual observations, then  Ni and iN ′ all equal one, and the T values are not 

necessarily unique.   

There are several approaches to finding the values of μ and σ that maximize the 

loglikelihood.  An analytical solution can be found by solving for a pair of parameters  

(μ´ , Tσ ) so that 
μ∂
Λ∂   = 0 and  

Tσ∂
Λ∂   = 0.   

This project uses numerical methods.  In spreadsheet software, such as Excel, one 

constructs the likelihood function using the formula above, and then uses the “Solver” to 

maximize this function by changing the variables μ´ and σT. 

In the statistical language R there are two approaches.  One approach is to construct the 

likelihood function as above  and then use the “optim” function to maximize its value by 

changing the two parameters. 

Fortunately, the problem above can be solved using “parametric survival” models that 

are part of the “R” language.  This eliminates the need to construct the likelihood function.  

It does require that an “event” variable be constructed.  If censoring is the only 

modification, the event variable equals 0 if the observation is censored and 1 if the 

observation is exact.                                              
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Appendix C 

Grouping of Data. 
 

In performing predictive modeling, one ideally models individual observations.  

Statistical software, such as “R,” handles individual observations well.  Much of this project 

uses spreadsheet software (Microsoft Excel) rather than a statistical package.  Excel has a 

limitation of approximately 65,500 rows36 (observations).  To use Excel for modeling on 

large datasets requires ones to group the data so that the number of unique combinations of 

the variable of interest (lag or claim size) and covariates fits within this limitation.  For 

example, in the claim size studies described in section 2.2, the claim sizes (for claims above 

$0) were grouped as follows: 

Claims sized 1-49 were grouped at 25. 

Claims sized 50-9499 were rounded to the nearest 100. 

Claims sized 9500-99499 were rounded to the nearest 1000 

Claims 99500 and above retained their individual values. 

Grouping of data for spreadsheets changes the computation of the maximum likelihood 

function.  For exact values from a hypothesized continuous distribution Y, the likelihood for 

an individual observation uses the density function fY.  For an observation grouped into an 

interval (cj-1 , cj] the likelihood function L equals FY(cj )-FY(cj-1 ).   

If all observations are grouped into intervals with endpoints c0 < c1 <c2< ….ck , the total 

loglikelihood in the jth interval equals nj ln[FY(cj)-FY(cj-1)], where nj is the number of 

observations falling into the jth interval.37  An observation right-censored at c has 

loglikelihood ln[ 1 - FY(c)]. 

Grouping and censoring add complication to the modeling.  Consider the plot of 

standardized residuals for a censored observation.  All we know about an observation 

                                                           
36 “Excel 7” was introduced in 2007 and can reportedly accommodate one million rows.  
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censored at c is that Y ≥ c .  For plotting residuals and PP plots, we substitute y* = FY
-1(F*), 

where F* is randomly chosen from the interval [FY(c),1].  The rationale follows:   

The variable FY(Y) is uniformly distributed on [0,1], since38  

Pr[FY(Y) ≤  w] = Pr[Y ≤  FY
-1 (w)] = FY FY

-1 (w) = w. 

Therefore FY │Y>c is uniformly distributed in (FY(c), 1], showing the 

reasonableness of the choices F* and y* above.  

Another way to handle the plotting for data with censored observations is to use a 

distribution function derived from Kaplan-Meier estimates.39  The “PP Plot” in this case 

would graph the Kaplan-Meier distribution function values (x axis) versus the model 

probabilities for the uncensored points.  This plot for Auto BI settlement lag was virtually 

indistinguishable from the PP Plot described above.       

For portions of this project, the settlement lag and report lag were grouped because 

grouping them produced more reasonable results than trying to assert that a one-day 

difference in lag is meaningful. 

                                                                                                                                                 
37 See Klugman, Panjer, and Willmot [1], page 341.  
38 Here we assume that Y has a continuous strictly increasing cumulative distribution function. 
39 Klugman, Panjer, and Willmot [1], pages 297-303. 
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Appendix D 

Example of a Model in R 
 

This section contains the “R” source code to model the Auto BI size of loss.  This 

model fits natural log of the Claim Size distribution to a Normal (Gaussian) distribution with 

covariates state (categorical variable) and loss year (numeric variable).  The models 1 through 

3 refer to three different grouping of state: 

Model 1:  Separate indicator variables for each state. 

Model 2:  Separate indicators for NJ and PA, all other states combined. 

Model 3:  Combined indicator for NJ-PA, all other states combined.  

The Claim Size is censored at the policy limits.  The model uses the parametric survival 

modeling procedure “survreg” in R.  This procedure performs the correct likelihood 

calculation for a censored dependent variable. 

The R code and the output from Model 1 follow: 

 

infileBi <- "  insert name of data file here “ 
 
data2BI <- 
read.csv(file=infileBi,na.strings="#N/A",colClasses="character") 
names(data2BI) 
dim(data2BI) 
 
sapply(data2BI,class) 
 
temp1 <- sapply(data2BI,is.factor) 
any(temp1) 
 
dataBI <- data2BI 
 
dataBI$AMT.INCD <- as.numeric(dataBI$AMT.INCD) 
dataBI$amtincd.event <- as.numeric(dataBI$amtincd.event) 
dataBI$lossyear <- as.numeric(dataBI$lossyear) 
dataBI$NUM.ST.CD  <- as.numeric(dataBI$NUM.ST.CD) 
dataBI$AUTO.USE.CODE  <- as.factor(dataBI$AUTO.USE.CODE) 
dataBI$POL.TP.CD <- as.factor(dataBI$POL.TP.CD) 
dataBI$LimitType <- as.factor(dataBI$LimitType) 
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## removing zeros for logarithmic processing: 
## Use only non-zero records 
 
temp1 <- dataBI$AMT.INCD==0 
data1 <- dataBI[ ! temp1 , ] 
 
attach(dataBI) 
detach(dataBI) 
attach(data1) 
 
##  Add state indicator variables to database 
 
StateLabel <- c("CT","KY","ME","MD","NJ","OH","PA","VA") 
State_<- factor(data1$NUM.ST.CD,levels = 
sort(unique.default(data1$NUM.ST.CD)),labels=StateLabel) 
StateCode <- model.matrix( ~ State_ - 1) 
data2 <- cbind(data1,StateCode) 
detach(data1) 
attach(data2) 
 
 
#Model1 <- StateCode; 
OtherStates <- apply(StateCode[,-c(5,7)],1,sum) 
OtherStates <- as.numeric(OtherStates) 
Model2 <- cbind(StateCode[,c(5,7)],OtherStates) 
NJ_PA_State <- apply(StateCode[,c(5,7)],1,sum) 
NJ_PA_State <- as.numeric((NJ_PA_State)) 
Model3 <- cbind(NJ_PA_State,OtherStates) 
 
data3 <- cbind(data2,Model2, Model3) 
detach(data2) 
attach(data3) 
 
 
library(MASS) 
library(survival) 
library(eha) 
 
temp1a <- Surv(AMT.INCD,amtincd.event) 
temp1b <- Surv(log(AMT.INCD),amtincd.event) 
 
#temp2a <- Surv(AMT.INCD,Limit.Event) 
#temp2b <- Surv(log(AMT.INCD),Limit.Event) 
 
 
data3$modyr <- lossyear - 1992 
NormFit_Model1_Amtincd_BI <- 
survreg(temp1b~factor(NUM.ST.CD)+data3$modyr,dist='gaussian',x=T,y=T,da
ta=data3) 
 
StatForLNorm1 <- summary(NormFit_Model1_Amtincd_BI) 
StatForLNorm1  
 
 
#################   Output from R Starts From Here    
###################### 
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> StatForLNorm1 
 
Call: 
survreg(formula = temp1b ~ factor(NUM.ST.CD) + data3$modyr, data = 
data3,  
    dist = "gaussian", x = T, y = T) 
                      Value Std. Error      z        p 
(Intercept)          9.3340    0.07954 117.34 0.00e+00 
factor(NUM.ST.CD)7  -0.9087    0.08818 -10.30 6.73e-25 
factor(NUM.ST.CD)18 -1.1608    0.20075  -5.78 7.36e-09 
factor(NUM.ST.CD)19 -1.1738    0.08562 -13.71 8.88e-43 
factor(NUM.ST.CD)29 -0.2957    0.08142  -3.63 2.82e-04 
factor(NUM.ST.CD)34 -1.3825    0.12111 -11.41 3.54e-30 
factor(NUM.ST.CD)37 -0.5088    0.08139  -6.25 4.08e-10 
factor(NUM.ST.CD)45 -1.3269    0.09132 -14.53 7.80e-48 
data3$modyr          0.0195    0.00217   8.95 3.60e-19 
Log(scale)           0.3793    0.00453  83.71 0.00e+00 
 
Scale= 1.46  
 
Gaussian distribution 
Loglik(model)= -47703   Loglik(intercept only)= -48368.9 
        Chisq= 1331.75 on 8 degrees of freedom, p= 0  
Number of Newton-Raphson Iterations: 3  
n= 27607 
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Appendix E 
General description: 

The initial univariate models effort considered six response (“dependent”) variables 
using State and Loss Year as covariates (“independent variables”).  The six response 
variables are report lag, settlement lag, and grouped claim size for both Collision and Auto 
BI.  The models were run using software that allows a limited number of observations40.  
This is the reason that the claim sizes are grouped.  State was chosen as a covariate because 
the legal system varies by state, and loss year was chosen as a measure of trend. 

To determine optimal sets of covariates, eight models using different combinations were 
run for each response variable.  The models are designated accordingly: 

 

State Grouping used 
 

Loss Year 
Included 

Loss Year Not 
Included 

Each state as a separate level (nine levels) Model 1 Model 2 
NJ, PA, and all other (3 levels) Model 3 Model 4 
NJ/PA combined, all other (2 levels) Model 5 Model 6 
State not used Model 7 Model 8 

 

State is included as a categorical variable, while Loss Year is a numeric variable.  New 
Jersey and Pennsylvania contain the largest number of records in the database by far.   

In the models, the categorical variables are converted to indicator (dummy) variables.  
We designate the state indicators as XCT, XDE, XKY, XME, XMD, XOH, XNJ,  XPA  and XVA , 
respectively.  In fitting the models, the last state indicator variable (XVA) is dropped because 
the constant 1 is automatically set up as the first covariate.  Depending on the model in 
question, the Loss Year is either the actual loss year or the actual loss year minus a constant. 

Models 1 through 8 were fitted using a maximum likelihood estimate to either a Weibull 

or Lognormal distribution.  More precisely, the procedures fit the natural log (ln) of the 

response variable to a “least extreme value” or Gaussian distribution, respectively.   

Least Extreme Value Distribution. 

                                                           
40 The maximum number of observations is 65,535 for the Micosoft Excel software used. 
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The “least extreme value” distribution is the distribution for the natural log of a Weibull 

random variable.  If we define X to be a 10-column matrix with columns:  

X0 = 1;  

X1 through X8: the first eight state indicators from above;  

X9 : the loss year;  

and define b to be a vector length 10, with each respective bj corresponding to Xj , then the 

coefficients b0 through b9 and σ are chosen to maximize the loglikelihood function of μ and 

σ, where μ = Xb.  This is accomplished by first standardizing the natural log of the data: 

σ
μ ii

i
YW −

=
)ln(

,  where Y is the response variable.  The resulting loglikelihood 

contribution of an observation, for the Least Extreme Value distribution, depends on 

whether the observation is censored: 

 
             )exp( ii Wl −=  if the observation is censored at Yi .   

             li = )ln()exp( σ−− ii WW if uncensored. 

            ∑= ii lnl , where ni is the number of observations if the data is grouped. 

Deciding among Models. 

In deciding on the best model among the various covariate combinations, we use either 
the AIC criterion or, if models in question are nested, a likelihood ratio T-test.      

We next apply the Weibull, Exponential, and lognormal models using the chosen 
covariates.  The best model type is chosen using the AIC or the likelihood ratio test.  The 
final model uses the best model type with the chosen set of covariates.  

The subsection numbers below match those in the Section 2 of the paper. 

2.2.1  Report Lag for Auto BI. 

Report lag is uncensored.  The observations for which report lag = 0 are removed, since 

the model fits Y = ln(Report lag).  Models 1-8 are fit using the Weibull distribution, with the  

coefficients and other results summarized: 
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In this model, the Loss Year is the actual Loss Year minus 1995.  The coefficient for KY 

is 1 because there are no Kentucky records.  Model 1 is best using the AIC criteria.  This 

model also comes out the best in the “nested model” tests.  For example, the likelihood ratio 

statistic for testing model 1 versus model 3 equals 2*(98499-98442) = 114, with 5 degrees of 

freedom.  This is clearly significant, leading to rejection of Model 3, the less complex model. 

We have so far selected the model with each state and loss year as covariates.  We now 

select a distribution type.  The table below compares the total loglikelihood and the AIC for 

the three model types that are currently programmed into the Claim Simulator.   

Step 2 -- choose the best model from different distributions: 

Models Total Loglikelihood AIC
Weibull -49221 98462
Exponential -66477 132974
lognormal -41904 83828

 
It is important to note that in comparing loglikelihoods between the Weibull and 

lognormal models, the response variables must be on the same scale.  The loglikelihood for 

the lognormal model above is calculated by fitting ln(report lag) to the Gaussian (i.e., 

Normal) distribution.  The Weibull model, therefore, must fit ln(report lag) to the Least 

Extreme Value distribution.  The Exponential model is a Weibull model with σ = 1.     

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 
1 1.218463 1.069081 1.444614 1.295364 1.43744 1.292642 1.971992 1.822052 
XCT 0.13164 0.247981       
XDE 0.258141 0.268167       
XKY 1 1       
XME 0.138545 0.259498       
XMD 0.272092 0.276301       
XOH 0.915405 1.01844       
XNJ 1.020659 1.036112 0.803555 0.808617     
XPA 0.62727 0.644415 0.409933 0.416818     
Loss year -0.02585  -0.02779  -0.02697  -0.02891  
XPA_NJ     0.616817 0.622545   
Log 
likelihood -49221.1 -49240.5 -49238.5 -49261.2 -49357.5 -49378.9 -49526.1 -49550.4 

Parameters 10 9 5 4 4 3 2 1 
AIC 98462 98499 98487 98530.4 95723 98763.9 99056.2 99102.8 
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We select the lognormal model because it has the lowest AIC.  The coefficients of the 

selected model are given below. 

 Coefficients of final lognormal model41 for Report Lag for Auto BI: 

1 XCT XDE XKY XME XMD XOH XNJ XPA Loss year 
0.773 0.282 0.052 1.000 0.071 0.117 0.508 0.617 0.253 -0.02039

 

with σ = 1.3508. 

2.2.2  Settlement Lag for Auto BI. 

Settlement lag has both censored and uncensored values.  If a claim is still open at 

12/31/2006, the settlement lag is censored at a value equal to the difference between the 

report date and 12/31/2006.  Models 1-8 are fit using the Weibull distribution.  The step 1 

coefficients and other results are summarized: 

The table below summarizes the coefficients and other results for Model runs 1-8:   

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 
1 5.913837 5.65694 6.078474 5.811978 6.086181 5.809899 6.50678 6.234676 
XCT 0.39489 0.580192       
XDE 0.486021 0.502767       
XKY 1 1       
XME -0.35192 -0.15005       
XMD -0.04979 -0.08378       
XOH 0.142887 0.31611       
XNJ 0.741003 0.776737 0.585875 0.619843     
XPA 0.513409 0.534165 0.3582 0.376455     
Loss year -0.04521  -0.04739  -0.04902  -0.05269  
XPA_NJ     0.047093 0.49835   
Log 
likelihood -51211.2 -51483.2 -51391.3 -51691.8 -51586.1 -51908.2 -52083.9 -52446.8 

Parameters 10 9 5 4 4 3 2 1 
AIC 102442.4 102984.5 102792.5 103391.6 103180.2 103822.4 104171.8 104895.6 
 

In this model, the Loss Year is the actual Loss Year minus 1995.  The coefficient for KY 

is 1 because there are no Kentucky records.  Model 1 is best using the AIC criteria.  This 

model also comes out the best in the “nested model” tests.  For example, the likelihood ratio 

                                                           
41 The models exclude records with zero report lag, to avoid complications in taking logarithms.  This 
means that the models overpredict the report lag slightly. 
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statistic for testing model 1 versus model 3 equals 2*(102792-102442) = 700, with 5 degrees 

of freedom.  This is clearly significant, leading to rejection of Model 3, the less complex 

model. 

We have so far selected the model with each state and loss year as covariates.  We now 

choose a distribution type using the following results: 

 
Models Total Loglikelihood AIC
Weibull -51211 102442
Exponential -51324 102670
lognormal -55492 111003

 
The Weibull (via fitting ln(settlement lag) using the full set of covariates to the Least 

Extreme Value distribution) is the selected type.  Coefficients for the final selected Weibull 

model are those listed in Model 1 table of coefficients above. 

2.2.3   Report Lag for Collision. 

The table below summarizes the coefficients and other results for Model runs 1-8:   

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 
1 3.906511 1.633738 7.756 1.471234 10.50934 1.471253 1.476665 1.487037 
XCT -0.34968 -0.35122       
XDE -0.19921 -0.19879       
XKY 1 1       
XME 0.314352 0.331701       
XMD -0.3236 -0.32434       
XOH -0.17691 -0.166       
XNJ -0.1167 -0.11678 0.04495 0.04491     
XPA -0.16016 -0.15996 0.00113 0.00168     
Loss year -0.00114  -0.00314  -0.00452  0.00184  
XPA_NJ     0.01807 0.018631   
Log 
likelihood -157390 -157390 -157450 -157448 -157460 -157455 -157455 -157456 

Parameters 10 9 4 3 3 2 2 1 
AIC 314801 314797 314909 314901 314927 314914 314913 314914 

 
The loss year variable equals the actual loss year unmodified.  Note that the coefficient 

of loss year is insignificant for all models42.   

                                                                                                                                                 
 
42 Including loss year actually produces slightly lower loglikelihoods.  For example, compare Model 5 to Model 
6.  This is a logical impossibility and is probably related to the optimization routine used in the spreadsheet. 
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Step 2 -- choose the best distributions using the covariates from Model 2: 

 
Models Total Loglikelihood AIC 
Weibull -157389 314796 
Exponential -180703 361424 
Lognormal -131466 262950 

 

Coefficients of final lognormal model43 for Report Lag for Collision: 

1 XCT XDE XKY XME XMD XOH XNJ XPA Loss year 
0.916 -0.097 -0.080 1.000 0.272 -0.140 -0.043 -0.006 -0.064 n/a 
 

with σ = 1.0949. 

2.2.4  Settlement Lag for Collision. 

The table below summarizes the coefficients and other results for Model runs 1-8, using 

the Weibull distribution:   

 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 
1 3.54444 3.243865 3.477206 3.150904 3.474883 3.150773 3.448188 3.144896 
XCT -0.44328 -0.21589       
XDE -0.02388 -0.03551       
XKY 1 1       
XME -0.42354 -0.20413       
XMD -0.1933 -0.26813       
XOH -0.10243 0.090488       
XNJ -0.06988 -0.07354 0.002154 0.018864     
XPA -0.12179 -0.11536 -0.04993 -0.02294     
Loss year -0.05262  -0.05349  -0.05314  -0.05288  
XPA_NJ     -0.0298 -0.00696   
Log 
likelihood -206369 -207254 -206433 -207362 -206460 -207379 -206466 -207380 

Parameters 10 9 4 3 3 2 2 1 
AIC 412758.6 414525.7 412873.6 414730.4 412925.4 414762.4 412935.1 414761.1 

 
 The loss year variable equals actual loss year minus 1995. 

Step 2 -- choose the best model from different distributions: 

                                                           
43 The models exclude records with zero report lag, to avoid complications in taking logarithms.  This 
means that the models overpredict the report lag slightly. 
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Models Total Loglikelihood AIC
Weibull -206369 412758
Exponential -208502 417024
lognormal -194502 389024

 

Coefficients of final model for Report Lag for Collision (Model 1 – lognormal) 

1 XCT XDE XKY XME XMD XOH XNJ XPA Loss year 
2.965 -0.091 -0.113 1.000 -0.069 -0.278 -0.482 -0.087 -0.148 -0.04405

 
with σ = 1.110642. 
 
 
2.2.5  Claim Size for Auto BI. 
 

The table below summarizes the coefficients and other results for Model runs 1-8:   

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 
1 8.018206 8.190601 8.303077 8.407196 8.304788 8.407276 8.840928 8.924454 
XCT 1.32073 1.183873       
XDE 0.417502 0.386438       
XKY 0 0.000013       
XME 0.147621 0.00905       
XMD 0.1525 0.119146       
XOH -0.00468 -0.15845       
XNJ 1.026733 0.982928 0.772356 0.766713     
XPA 0.813895 0.772005 0.560175 0.555989     
Loss year 0.019146  0.014664  0.663923  0.012215  
XPA_NJ     0.014435 0.6591069   
Log 
likelihood -125932 -125971 -126061 -126085 -126117 -126140 -126583 -126599 

Parameters 10 9 4 3 3 2 2 1 
AIC 251884 251961 252130 252176 252239 252283 253170 253200 
 

Loss year = Actual loss year minus 1995. 

Step 2 -- choose the best model from among different distributions: 

Models Total Loglikelihood AIC
Weibull -126206 252432
lognormal -125932 251884

Coefficients of final model for Claim Size for Auto BI (Model 1 – lognormal) 

1 XCT XDE XKY XME XMD XOH XNJ XPA Loss year 
8.018 1.321 0.418 0.000 0.148 0.153 -0.047 1.027 0.814 0.01915
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with σ = 1.451282. 

2.2.6  Claim Size for Collision. 

 
All models in this section use the ground-up loss as their response variable.  The ground-up 
loss is not right censored. 
 
Models 1-8 were run fitting ln(grouped amt) to the Normal distribution: 
 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 
1 -43.06066 1.0541514 -36.92875 7.649928 -32.4874 7.6498 -39.4234 7.831118 
XCT 0.252122 -1.189919       
XDE -0.010184 -0.942964       
XKY 0.11826 -0.804627       
XME -0.251515 0.521119       
XMD 0.061232 0.244522       
XOH 0.01697 -0.664438       
XNJ 0.277003 -1.148186 0.255692 0.250249     
XPA 0.225533 -1.140877 0.204388 0.200411     
Loss year 0.025344  0.022294  0.020079  0.023629  
XPA_NJ     0.22447 0.221071   
Log 
likelihood -521780 -522581 -521889 -522634 -521951 -522668 -522337 -523110 

Parameters 11 10 5 4 4 3 3 2 
AIC 1043581 1043788 1043788 1045276 1043910 1045341 1044680 1046225 

 
Step 2 -- choose the best model from different distributions: 

 
Models Total Loglikelihood AIC
Weibull -544376 1088757
lognormal -521780 1043581

 

Coefficients of final model for Claim Size for Collision (Model 1 – lognormal) 

1 XCT XDE XKY XME XMD XOH XNJ XPA Loss year 
-43.061 0.252 -0.010 0.118 -0.262 0.061 0.017 0.277 0.226 0.02534

 
with σ = 0.87887 
 

The results from the R model are not presented here because R apparently can not 

account for left-shifted and truncated response variables. 

Figures 11 and 12 show that the model appears to fit reasonably well. 
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Appendix F: Plots for the loss Simulation Model 
 

Figure 1: P-P Plots for Report Lag (Lognormal) 
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Figure 2: Standardized residual plot for Auto BI (Lognormal) 
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Figure 3: Plots for the Settlement Lag Auto BI (least extreme value) 
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Figure 4: Standardized Residual for Settlement Lag Auto BI 
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Figure 5: P-P Plot for Report Lag Collision (Lognormal) 
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Figure 6: Standardized Residual for Collision 
(Lognormal)
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Figure 7: P-P Plot for Settlement Lag Collision (Lognormal) 
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Figure 8: Standardized Residual for Settlement Lag Collision (Lognormal) 
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Figure 9: P-P Plot Claim Size for Auto BI (Lognormal) 
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Figure 10: Standardized residual for Claim Size Auto BI 
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Figure 11: P-P Plot for Claim size Collision (Lognormal) 
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Figure 12: Standardized residual for Claim size Collision (Lognormal) 

Standardized Residual for Claim size Collision

-4

-3

-2

-1

0

1

2

3

4

5

7 7.2 7.4 7.6 7.8 8 8.2

mu-i

R
es

id
ua

ls

Claim size for Collision

 
 



Ball State University Actuarial Science Research Course          
 

 

66 Ball State University Actuarial Science Research Course, Spring 2007 

 
 

Figure 13: 3D surface plot for Settlement Lag and Claim Size (Auto BI) 

 
 
 

Figure 14: Contour plot for Settlement Lag and Claim Size (Auto BI) 
 

 


