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Abstract

The minimum bias method is a natural tool to use
in parameterizing classification ratemaking plans. Such
plans build rates for a large, heterogeneous group of in-
sureds using arithmetic operations to combine a small
set of parameters in many different ways. Since the arith-
metic structure of a class plan is usually not wholly ap-
propriate, rates for some individual classification cells
may be biased. Classification ratemaking therefore re-
quires measures of bias, and minimum bias is a natural
objective to use when determining rates.

This paper introduces a family of linear bias mea-
sures and shows how classification rates with minimum
(zero) linear bias for each class are the same as those
obtained by solving a related generalized linear model
using maximum likelihood. The examples considered in-
clude the standard additive and multiplicative models
used by the Insurance Services Office (ISO) for pri-
vate passenger auto ratemaking and general liability
ratemaking (see ISO [11] and Graves and Castillo [8],
respectively).

Knowing how to associate a generalized linear model
with a linear bias function is useful for several rea-
sons. It makes the underlying statistical assumptions ex-
plicit so the user can judge their appropriateness for a
given application. It provides an alternative method to
solve for the model parameters, which is computation-
ally more efficient than using the minimum bias iterative
method. In fact not all linear bias functions allow an it-
erative solution; in these cases, solving a generalized
linear model using maximum likelihood provides an ef-
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fective way to determine model parameters. Finally, it
opens up the possibility of using statistical techniques
for parameter estimates, analysis of residuals and model
fit, significance of effects, and comparison of different
models.
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1. INTRODUCTION

History and Background

Bailey and Simon [2, 3], first considered bias in classification
ratemaking and introduced minimum bias models. Since clas-
sification plans use fewer variables than underwriting cells and
impose an arithmetic structure on the data, fitted rates in some
cells may be biased, that is, not equal to the expected rate. Bias
is a feature of the structure of the classification plan and not a
result of a small overall sample size; bias could still exist even
if there were sufficient data for all the cells to be individually
credible. Of course, in such a situation an actuary would not use
a classification plan.

Bailey and Simon [3] proposed their famous list of four cri-
teria for an acceptable set of relativities:

BaS1: It should reproduce experience for each class and over-
all (balanced for each class and overall).

BaS2: It should reflect the relative credibility of the various
groups.
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BaS3: It should provide the minimum amount of departure
from the raw data for the maximum number of peo-
ple.

BaS4: It should produce a rate for each sub-group of risks
which is close enough to the experience so that the
differences could reasonably be caused by chance.

Condition BaS1 means that classification rates for each class
should be balanced, that is, have zero bias. Obviously, zero bias
by class implies zero bias overall.

Bailey points out that since more than one set of rates can
be unbiased in the aggregate, it is necessary to have a method
for comparing them. The average bias has already been set to
zero, by criteria BaS1, and so it cannot be used. Bailey sug-
gests the average absolute deviation and the chi-square statistic,
particularly if cells are large enough to assume normality. He
mentions that neither of these statistics has a known theoretical
distribution and stresses that they should be used for compari-
son between models and not for tests of significance. This paper
shows there is a natural correspondence between linear bias func-
tions and generalized linear models. The theory of generalized
linear models can then be used to define and analyze various
measures of fit statistically, improving upon Bailey’s more ad
hoc methods.

In 1988, Brown [5] revisited minimum bias. His approach
was to replace the bias function with an expression from the
likelihood function and then solve for parameters to maximize
its value. By assuming a distribution for the underlying quantity
being modeled, he converts the problem to “an exercise in sta-
tistical modeling.” This paper takes the opposite approach and
goes from a particular class of bias functions fo a statistical dis-
tribution. Brown also comments that “[t]o this point we have not
been able to use GLIM [generalized linear models] to reproduce
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results obtained by Bailey’s additive model”’; see Section 4 below
for such a reconciliation.

Venter’s review [26] of Brown considers four alternatives to
Bailey’s methods:

V1: Alternatives to the balance principle.

V2: More general arithmetic functions to determine classifi-
cation rates.

V3: Allow individual cells to vary from an arithmetically de-
fined base.

V4: Do not use an arithmetic function to determine classifica-
tion rates.

Venter comments that Brown’s paper is mainly concerned
with V1. This paper is largely concerned with V1 and V2, but
also has comments on V3 and V4. Link functions, introduced
below, allow more general arithmetic functions. The Box—Cox
transformation, which Venter mentions, is an example of a link
function. Section 10 mentions a method related to mixed mod-
els which is exactly what Venter proposed in V3 to determine
unbiased rates.

Venter also comments that “the connection with general linear
models does not seem to be the primary emphasis of [Brown’s]
paper.” This paper builds on Brown’s initial work by focusing
on the connection between the minimum bias methods and gen-
eralized linear models, and by providing a more in-depth ex-
planation of generalized linear models based on ideas already
familiar to actuaries. Showing how they provide a unified treat-
ment of minimum bias models will give actuaries another reason
to learn more about generalized linear models. Other actuarial
applications of generalized linear models have been proposed
in McCullagh and Nelder [17], Renshaw [23], Haberman and
Renshaw [9], and Wright [27].



MINIMUM BIAS AND GENERALIZED LINEAR MODELS 397

Contents

Section 2 recalls some familiar material about linear models
and sets up the progression from general linear models to gen-
eralized linear models by analyzing the three components of a
general linear model.

Section 3 explains the non-uniqueness of solutions to a clas-
sification plan and how to get around the problem.

Section 4 explains the elementary, but unfamiliar, relation-
ship between the cross classification ratemaking notation used
in minimum bias models and the standard statistical, matrix no-
tation used in linear models. It derives a matrix version of Bai-
ley’s minimum bias equations, and shows how Bailey’s additive
model is a simple linear model. The section ends with a gen-
eral matrix formulation of balance and introduces a numerical
example.

Section 5 introduces a family of linear bias functions and an
associated measure of model fit called deviance, both related to
a variance function. By construction, minimum linear bias cor-
responds to the minimum deviance best-fit model. It also shows
how, in some cases, the minimum bias solution can be obtained
using iterative equations.

Section 6 defines the exponential family of distributions and
gives several examples. It explains the relationship between vari-
ance functions and distributions, which is then used to convert
the minimum bias models of Section 5 into fully defined statis-
tical models.

Section 7 introduces generalized linear models and their con-
nection with minimum linear bias. This correspondence holds
regardless of whether an iterative method can be used to solve
the minimum bias problem, so generalized linear models extend
the existing family of models. A detailed set of examples, com-
paring different linear bias assumptions, is also given.
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Section 8 discusses measures of model fit associated with gen-
eralized linear models. Fit is discussed at several different levels,
ranging from selection of covariates to selection of link functions
and variance functions.

Section 9 is concerned with numerical computations. It ex-
plains how and when the iterative equations obtained using Bai-
ley’s minimum bias equations converge. It also discusses how
to solve generalized linear models using iteratively re-weighted
least squares. Appendix B gives SAS computer code illustrating
a hands-on example of this approach.

Section 10 gives some suggestions for future work. It touches
on some recent work of Lee and Nelder [19] on mixed mod-
els and hierarchical generalized linear models, which can be
regarded as an extension of the work in this paper and which
provides unbiased predictors for all cells.

The theory is illustrated throughout with simple examples the
reader can reproduce.

In the first seven sections of the paper, most concepts are de-
veloped from first principles and very little background in statis-
tics is assumed. Sections 8 and 9 make greater demands on the
reader, assuming more statistical and mathematical background,
respectively.

Notation

Random variables will be denoted by capitals and realized
values in lower case. Vectors will be denoted by bold lower
case letters. Matrices will be denoted by bold upper case let-
ters, typically A, B, X and W. The (ij)th element of a ma-
trix X will be denoted Xjj» X;j OF X(i,j). Some matrices will
be given in block form. If W is a block matrix, then Wij will
denote the block in the (i, j)th place. Superscript ¢ denotes trans-

pose. Random observations are denoted r, r;, rijs Greek letters
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typically refer to model parameters or fitted values. Matrix di-
mensions are denoted m x n.

2. LINEAR MODELS

A statistical model is defined by specifying a probability dis-
tribution for the quantity being modeled. Fitted values, predicted
by the model, can then be determined from the relevant probabil-
ity distribution, usually as the mean. The goal of using a model
is to replace the data, which may have many thousands of obser-
vations, with a far smaller set of parameters without losing too
much information. A good model helps the actuary better under-
stand the data and make reasonable predictions from it. Models
can be designed to facilitate the construction of classification
ratemaking tables.

In a basic linear model the fitted values are linear combina-
tions of the model parameters. Examples of linear models include
analyses of variance (ANOVA), linear regression, and general
linear regression.

In order to find model parameter values, it is necessary to
select an objective function. The objective function can measure
the deviance between the underlying data and the fitted values for
different parameter choices, or it can be based on other criteria
such as minimum variance amongst unbiased estimators. Least
squares and maximum likelihood are two common examples of
the former type of objective function. A single statistical model
can give rise to different parameter solutions depending upon the
objective function used. Therefore it is necessary to include the
objective function in an effective description of the model.

The input data for all models considered here can be given
as a two-dimensional array. The rows correspond to the differ-
ent observations or units. The first column corresponds to the
response variate which can be continuous (such as pure pre-
mium, frequency or severity) or discrete (such as claim count).
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The remaining columns correspond to the explanatory variates,
or covariates, whose values are supposed to explain the values
of the response. Covariates can be qualitative or quantitative.
A qualitative covariate, called a factor, takes on non-numerical
values called levels, such as vehicle-use, vehicle type or sex.
Quantitative covariates have numeric values. Examples include
age, time, weight of vehicle, or price of vehicle. Age group is
a qualitative covariate. If the covariates are all factors, then the
rows of the input can be labeled by the levels of the factors
(as in Example 2.1 below). Classification ratemaking naturally
uses these coordinates. However, they are generally not used

if some of the some covariates are continuous, as in Example
2.2.

ExampLE 2.1 A two-way analysis of variance with no interac-
tions assumes each observation r;; is a realization of an indepen-
dent, normally distributed random variable with mean a; + b ; and

variance o2. Parameters are selected using either maximum like-
lihood, minimum square error, or minimum variance amongst
unbiased estimators; the three are equivalent for this model. The
a; and b; are the effects corresponding to the different levels
of the two factors (classification variables). In texts on linear
models this example is often presented in the equivalent form
r;j = a; + bj + ¢;;, where the errors ¢;; are independent, normally

distributed random variables with mean 0 and variance o2. For
example, r;; could be the observed pure premium in cell 7, of
an auto classification plan, with q; the factor for age of operator
group i and b; the factor for vehicle use group j. If r;; is the av-
erage of w;; exposures, then it is a realization of a variable with

variance o2 /w; ; and w;; 1s called the weight of the 7, jth cell.

EXAMPLE 2.2 A linear regression model assumes each observa-
tion r; is a realization of an independent, normally distributed
random variable with mean a + bx; and variance o2. There is a
single continuous covariate whose values are given by x;. The
same three objectives can be used to solve for a and b. The
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model can also be written r; = a + bx; + ¢;, where ¢; are inde-
pendent, normally distributed random variables with mean 0 and
variance o2. Actuaries use linear regression to compute trends,
in which case r; is the observed pure premium, or log of pure
premium, at time i and x; =i.

The input data for a linear model can be compactly de-
scribed using vectors and matrices. Suppose there are n obser-
vations. The responses can be put into an n x 1 column vector
r = (ry,...,r,)". The covariates can be arranged into a design ma-
trix X which has one row for each observation and one column
for each parameter of the model. Let p be the number of param-
eters and let x; be the ith row of X, so x; is a 1 X p row vector.
If all the covariates are factors, then the design matrix has one
column for each level of each factor and consists of 0’s and 1’s.
In Example 2.1, if there are three age groups and three vehicle
use classes, then the design matrix would have six columns. In
Example 2.2, X has two columns, corresponding to a and b. The
first column is all 1’s, corresponding to the constant term; the
second is given by (x,...,x,)".

The parameters of a linear model can be arranged into a
p x 1 column vector 3 = (5,..., ﬂp)t. Finally, let u; = E(R;) be
the fitted value of the ith response and let g = (uy,...,1,)". A
general linear model, which includes both analysis of variance
and linear regression as special cases, assumes

r=X8+e, p=X3, 2.1)

where the error term e = (ey,...,¢,)" has ¢; independent, normally
distributed with mean 0 and variance o2. Thus R; is assumed to
be independent, normally distributed with mean p; = x;8 and
variance o°.

Three important assumptions underlie a general linear model:

1. Constant variance: the o2 term does not vary between
different responses. When the ith response is an average
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of w; individual responses, each with variance o2, then
the variance is o2 /w;, and again o does not vary between
observations. The w; are prior weights.

2. Normality of errors: the errors e; are independent, iden-
tically distributed normal random variables.

3. Linear: the fitted value y; =x,8 =3%;%;;3; is a linear
combination of the parameters, so the systematic effects
are additive.

In actuarial work it is common that the responses are averages
from populations with different sizes. In Example 2.1, there are
typically more exposures in the mature operator classes than in
youthful and senior operator classes. General linear models allow
for such differences in variance by using prior weights which
vary by observation—as in assumption (1) above.

The second assumption, normal errors, is frequently a prob-
lem in actuarial applications. Losses, severities, pure premiums
and frequencies are all positive and generally positively skewed;
they are therefore not normally distributed. The log transforma-
tion is often applied to the data prior to using a linear model in
order to improve normality. The log transformation is also ap-
plied in order to convert multiplicative effects into additive ones.

ExampLE 2.3 Example 2.1 modeled R;; as normally distributed
with mean a; + b; and variance o2 /w; ;» where w;; is the number
of exposures in the i, jth cell. Applying the log transformation
to the response, we can consider the same model for log(R;;).
On the untransformed scale, the model for R; ; is lognormal with
parameters ¢; +b; and o? /w;; (see the Appendix to Hogg and
Klugman [10] or Appendix A of Klugman, Panjer and Will-
mot [16]). The systematic effects are now multiplicative. Also
E(R;;) = exp(a; + b i+ o/ 2w;;), and the variance depends on the
fitted mean because Var(R; j) = (E(R; J-))z(exp(a2 /2w; J-) —1).
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Generalized Linear Models

In order to set up generalized linear models, consider a general
linear model as split into three components:

GLMI: A random component: observations r; are assumed to
come from an independent normal distribution R; with
E(R)) = 1.

GLM2: A systematic component: the covariates x; = (x;q,...,
xl-p)’ give a linear predictor

n = injﬂj-
i

GLM3: A link between the random and systematic compo-
nents:

n=p

The parameters are selected using the maximum likelihood ob-
jective.

A generalized linear model allows extensions to GLM1 and
GLM3. GLM2 is retained since the model is still assumed to be
linear.

Assumption GLM1 is generalized to allow the R; to have a
distribution from the exponential family, defined in Section 6.
The exponential family includes the normal, Poisson, binomial,
gamma and inverse Gaussian distributions. The lognormal dis-
tribution is not a member of the exponential family. The recent
book by Jgrgensen [13] is a good reference on exponential dis-
tributions.

In GLM3, the identity link 7; = y1; between the random and
systematic components is generalized to allow 7, = g(y;) for
any strictly monotonic, differentiable function g. Three common
choices are g(x) = x, g(x) = log(x) and g(x) = 1/x. The log-link
has been discussed above. The reciprocal-link can be understood



404 MINIMUM BIAS AND GENERALIZED LINEAR MODELS

as representing rates: premium is the dollar rate per year; the re-
ciprocal of premium is therefore years of coverage per dollar of
premium. While not something that has been tried to date in ac-
tuarial applications, there is no reason why the systematic effects
should not be additive on the reciprocal scale. McCullagh and
Nelder [17, Section 8.4] gives an insurance example.

In a general linear model, scale transformations may be ap-
plied to the responses prior to fitting in order to increase the va-
lidity of GLM1-3. However, the three assumptions may be mutu-
ally incompatible and so the question of an appropriate scale can
be very problematic (see [17, Section 2.1] for an example). For a
generalized linear model, normality and constant variance are no
longer required. The choice of link-function (scale) is therefore
driven solely by the need to ensure additivity of effects. Since
transformations in generalized linear models are used to achieve
one end, rather than three in a general linear model, there is more
flexibility in the modeling process.

ExampLE 2.4 The next three items illustrate how generalized
linear models include, extend, and differ from general linear
models:

(a) A generalized linear model with identity link function and
normal errors is a general linear model.

(b) A generalized linear model version of Example 2.1 with
gamma error distribution and a reciprocal link, would
model R;; as an independent gamma random variable with
E(Rl]) = ILLIJ : 1/(ai‘ + b]) and Var(Rij) = /,L%]Qb/wl]. The con-
stant ¢ acts like o in Example 2.1.

(c) A generalized linear model with log link and normal errors
is not the same as applying a general linear model to the
log responses. The generalized linear model assumes R;; is
normally distributed with mean exp(a; + b;) and variance
o?/w; ;- The general linear model applied to the log trans-
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formed data (Example 2.3) assumes that R;; is lognormally
distributed and that log(R;;) has mean g; + b; and variance
o2 /w; ;- In the generalized linear model the log-link is only
trying to achieve additivity of effects; the error distribution
is specified separately. Exhibit 8, described fully in Section
7, shows the differences between these models applied to
an example dataset.

3. UNIQUENESS OF PARAMETERS

Going back to Example 2.1, it is clear that the parameters of
a linear model need not be unique. If y;; = a; + b;, then

for all constants «. Similarly, if 11;; = a;b; then p;; = (aa;)(b;/)
for all constants « # 0. If the model is y;j, = a; + b; + ¢, then the
situation is even worse: there are two degrees of freedom because
tije = (@ + ap + ay) + (b; —ay) + (¢ — ) for all o) and a,. In
general, it is easy to see there are g — 1 degrees of freedom when
there are ¢ classification variables. Therefore it is necessary to
select ¢ — 1 base classes in order to have unique parameters. This
is familiar from setting up rate classification plans. For example,
the personal auto plan has one base rate for the married, aged
25-50, pleasure-use, single standard vehicle, zero-points class,
and deviations for all other classes.

There is no canonical method for selecting the base classes
needed to ensure unique parameters. Here is one possible ap-
proach. First select one classification cell as a base. Then, select
one classification variable which will not have a base. Finally,
set the parameters corresponding to the base class in all the other
classification variables to zero (additive models) or one (multi-
plicative models). This specifies the values of g — 1 parameters
and so removes all degrees of freedom. Now the parameters
for all the non-base classification variables are deviations from
the base class for that variable. Picking different base classes
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leads to different parameters, but the fitted values remain the
1

same.

In Example 2.1, we could select mature drivers and pleasure-
use as the base cell, and age as the base classification. This forces
pleasure-use to be the base class in the vehicle-use classification,
and so the parameter for pleasure-use is set to zero. Since b,
corresponds to pleasure use, this choice is the same as selecting
a = b, in Equation 3.1.

In conclusion, a linear model or minimum bias method which
uses all the available parameters will generally not have a unique
solution. However, the non-uniqueness is of a trivial nature and
the fitted values will be unique. After making an arbitrary se-
lection of base classes, the remaining parameters will be unique.
This is what Bailey and Simon [3] mean when they say “[the pa-
rameters] can only be regarded in relationship to the coordinate
system in which they find themselves.”

4, MATRIX FORMULATION

As Venter [26] noted, it is not clear to those unfamiliar with
linear models how they are related to minimum bias methods.
Moreover, the translation from statistical linear models to min-
imum bias methods is hampered by different uses of the same
notation. We will follow Brown’s notation as much as possible,
since actuaries are probably most familiar with his approach.
This section explains the relationship between linear models and
minimum bias methods and provides a dictionary to translate
between the two. In order to keep difficulties of notation in the

I'Selecting base classes corresponds to deleting columns from the design matrix. Selecting
g — 1 base classes ensures that the resulting design matrix X has maximal rank. This in
turn implies X’X is invertible and so the normal equations can be solved uniquely for the
remaining parameters. In general linear models, non-uniqueness is handled by computing
the generalized inverse of X’X. The generalized inverses can be regarded as a method
for picking base classes. See Rao [22, Chapter 1b.5], for more details.
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background, we consider only a simple additive model with two
variables. Extensions to more general models are easy to work
out—indeed the point of this section is to convince the reader
they will work out just as expected. The auto classification plan
will be used to provide examples.

Minimum Bias Method Language

The generic minimum bias method attempts to explain a
collection of observed values r;; with two sets of parameters x;
and Vjs i=1,...,n, j=1,...,n,. For example, rij could be the
pure premium in the (i,j)th cell, x; may correspond to the
ith age classification, and y; to the jth vehicle use classification
such as pleasure, drive to work, or business. Let Wi denote
the number of exposures in the (i,j)th cell. Minimum bias

methods then give iterative equations to solve for the x;’s and

b

y;'s.

For example, Bailey’s additive method models r;; as x; +y;
(hence the appellation ‘“additive”) in such a way that, for
all i,

Zwij(”ij—(xi+yj)) =0, 4.1)
J

and similarly for j. Equation 4.1 means that the model is bal-
anced (i.e., has zero weighted bias) for each class i and in total
(summing over i), and so minimizes bias. Rearranging Equation
4.1 gives the familiar form of Bailey’s additive method:

X; = Zwij(rij yj)/Zwij, 4.2)
J J

and similarly

yj = ZWU(’U —xi)/ZWij- (4.3)



408 MINIMUM BIAS AND GENERALIZED LINEAR MODELS

This notation is shorthand for an iterative procedure, where the
transition from the /th to [ + 1st iteration is

1+1 1
D=3y _y;))/zwij’
j ]

and similarly for yj.l”) in terms of x!*'. The final result of

the iterative procedure is given by x; = lim,;_, xl@, and similarly
for y.

Translation

The key to translating from minimum bias notation to linear
model notation is how the observations are indexed. In linear
models they are indexed by one parameter, whereas in the mini-
mum bias method they are indexed by two parameters (or more
generally, by the number of classification variables). The trans-
lation is described by the following correspondences. In all cases
the left hand side gives the minimum bias notation and the right
hand side the linear model notation. Also, in this section commas
are inserted between subscript indices for clarity. The difference
in how observations are indexed is illustrated by the following
two correspondences between n;n, x 1 column vectors:

rl’l rl Wl,l Wl

rl’z r2 Wl’z W2

ry ) r'lz Wl,nz W"z

i | o Ty +1 and wor | o Wi, rl
T Py —Dna+1 Whi i W=y +1
r r w w

ny,ny ninz ny,ny ninz
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The different levels of the two classifications (or effects) corre-
spond as

X1 61
%, Ba,
e : 4.4)
N 5n1+1
y”z ﬁnl +n,

Let n = nyn, be the number of observations, and p = n; + n, be
the number of model parameters. Our translation assumes there
are observations for each of the n = nyn, possible combinations
of x; and y;. If necessary, the model can be brought into this
form by using zero weights in any empty cells.

Linear Model Language

A statistical linear model attempts to explain a collection of
observed values r; using linear combinations of a smaller number
of parameters. In our setting, the model explains pure premiums
r;, i =1,...,n, using linear combinations of parameters 3,... ,ﬂp
given by

ri = lejﬁj + ei,
J

where ¢; is a random error term. In matrix language this can be
written

r=Xg3+e,

where X = (x;;) is the n x p design matrix of covariates, and
r=(ry,....1r,)', e =(ey,....e,), and B =(By,...,0,) are column
vectors.
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The design matrix corresponding to the two-variable additive
linear model is the n x p matrix

A 1
X=1] : :f, 4.5)
Anl I
where
O - 1 - 0
A= . ¢ - i, (4.6)
O - 1 - 0

with dimension n, x n;, has zero entries except for 1’s in the
ith column, and I is the n, x n, identity matrix. Using the block
matrix form of X, and the translation Equation 4.4, it is easy to
see that

X1+
X1 X1 +yn2
Xy + Y1
Xg=x|"m
- yl - x2 +yn2 ’
ynz xnl +y1
Xn, ¥ Vn,

dimensions (n x p)(p x 1) = n x 1, demonstrating the translation
between minimum bias notation and linear model notation.
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Solution of Linear Models

It is well known that the maximum likelihood estimator ,é
satisfies the following normal equations under the assumption of
independent and identically distributed normal errors (see Rao
[22, Section 4a.2])

X'X3 = X'r. (4.7)
If observation i has weight w;, the solution satisfies
X'WX3 = X'Wr, (4.8)

where W = diag(wy,...,w,) is the diagonal matrix of weights.

Next we compute Equation 4.8, for the two-variable additive
model using the definitions and translations introduced above. In
minimum bias notation, the matrix of weights can be written as
a block matrix

W, -~ 0
W= Do : dimension n X n, 4.9)
0 W,
where
wy - 0
W= : . dimension n, X n,.
0 - wy,

Using the block matrix form of X and W, it is a simple compu-

tation to show
, B C
X'WX = ,
C D
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dimension p x p, where B, C and D are given by

Zwlj 0
J

B = : : dimension n; x n,
0 o Z W”]j
J
w11 Win,
C= : : dimension n; X n,,
wnll Wnln2
and
> Wi 0
i
D= : : dimension n, X n,.
0 e Z Win2
i
Therefore

X
X'WX3 = X'WX ( >
y

(e 0)3)

(Bx+Cy>
- C'x + Dy ’
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giving the p x 1 vector equality

X| ) Wi+ D Wiy,
j j

xn1 it anljyj

szlx + ) szl

X'WX3 =

Zwmz i + yn ZW
On the other hand,

ZWUVU
j

anljrnlj
X'Wr = dimension p x 1.

Zwilril
i

E w;
in, 1112

413

(4.10)

(4.11)

Equating corresponding rows of Equation 4.10 and Equation
4.11—the normal equations—gives exactly Equation 4.2 and
Equation 4.3, respectively, demonstrating that the results of a
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two-effect additive general linear model are the same as the Bai-
ley additive method.

This is a significant result for several reasons. First, it shows
the minimum bias parameters are the same as the maximum like-
lihood parameters assuming normal errors, which the user may
or may not regard as a reasonable assumption for his or her ap-
plication. Second, it is much more efficient to solve the normal
equations than perform the minimum bias iteration, which typ-
ically converges quite slowly (see Section 9). Third, knowing
that the result is the same as a linear model allows the statistics
developed to analyze linear models to be applied. For exam-
ple, information about residuals and influence of outliers can be
used.

General Theory and a Matrix Formulation of Balance

It is easy to generalize the preceding discussion to the case of
a general linear model with ¢ classification variables. Let the ith
classification variable have n; levels, i = 1,...,q. Thus there are
p=n; +---+n, different parameters and, assuming no empty
cells, n=ny-- ‘n, observations.

The minimum bias notation associates an n x n; design ma-
trix A; and an n; x 1 parameter vector a; with the ith clas-
sification variable. The n x 1 vector of modeled rates p =

(1, 1oe s g
a
[,L:(Al"'Aq) :Alal +"'+Aqaq. (412)

In linear model language, the design matrix X has dimension
n x p and equals the horizontal concatenation (A, ---A,). The
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parameter vector 3 has dimension p x 1 and equals (al,...,aq)’ ,
and Equation 4.12 becomes p = X/3.

Note that the linear model notation makes it possible to use
two-dimensional matrix notation to describe models with any
number of classification variables.

Using this notation and the same approach used to derive
Equation 4.10 and Equation 4.11 shows that the normal equation
condition

X'W(r—p) =0 (4.13)

is exactly a matrix formulation of condition BaS1—that relativi-
ties be balanced by class. This interpretation of Equation 4.13 is
important and will be used repeatedly below.

To see why Equation 4.13 is the balance condition, first use
the translation of Equation 4.2 to write it as:

A}
XWr—p) =] : |Wrk—p)
A,
ALW(r — p)
= : = 0. (4.14)
ALW(r — p)

Consider balance over the first level of the first classification
variable. By permuting columns of X, this can be done with-
out loss of generality. Similarly, by permuting the observations,
assume that A; has the form:
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10 0
10 0
01 0
0 1 0]
0 0 1
00 - 1

the vertical concatenation of n; different matrices each with
ny---n, rows and n; columns and one column of ones. Then
the first row of Equation 4.14 is given by the sum product of the
first column A, (i.e., the first row of A}) with W(r — p), which
gives

D Wi, T, = Hijpes,) = 05
ey

exactly the sum over all other classes required by the balance
condition.

Numerical Example

We now introduce a numerical example which will be used
throughout the paper to illustrate the theory. The data, shown
in Exhibit 1, gives average claim severity for private passenger
auto collision.? The severities have been adjusted for severity
trend. There are n = 32 observations and two classification vari-
ables: age group and vehicle-use. Age group has eight levels and

2The data is derived from McCullagh and Nelder’s example [17, Section 8.4].
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vehicle-use four. The response variable r is average claim sever-
ity. The weights w are given by the number of claims underlying
the average severity. Exhibit 2 gives the one-way weighted av-
erage severities.

Exhibit 3 gives the design matrix A corresponding to the age
group classification. A has the block form shown in Equation 4.6.
Exhibit 4 gives the design matrix B corresponding to the vehicle-
use classification. Pleasure-use has been selected as the base (as
in Section 3) and the corresponding column of the design matrix
has been deleted; this accounts for the rows of zeros. The design
matrix for the whole model is X = (A B). Except for the deleted
column in B, X has the form given in Equation 4.5.

Exhibit 5 uses the iterative method, Equation 4.2, to fit an
additive minimum bias model to the data. There are 50 iterations
shown (column 1). Column 2 shows the length of the change in
the parameter vector from one iteration to the next. Columns 3—
13 show how the parameters change with each iteration. Columns
14—-17 will be explained in Section 9. Exhibit 6 shows the so-
lution to the normal equations Equation 4.8. The resulting pa-
rameters are all within 2 cents of the values in the last row of
Exhibit 5 as expected. Had more iterations been performed the
results would have been closer.

This example will be continued in Sections 7, 8 and 9.

5. BIAS FUNCTIONS AND DEVIANCE FUNCTIONS

Bailey’s first criterion for a set of classification relativities,
that rates be balanced (unbiased) for each class and in total,
makes it necessary for the actuary to be able to measure the
bias in a set of rates. Bailey’s third and fourth conditions, which
require a minimum departure from the raw data and a departure
that could be caused by chance, make it necessary to measure
the deviance between the fitted rates and the data and to quantify
its likelihood.
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In the papers on minimum bias discussed in the Introduction,
none of the authors differentiated between a measure of bias and
a measure of deviance. A measure of bias should be proportional
to the predicted value minus the observed value, and can be pos-
itive or negative. A measure of deviance, or model goodness of
fit, should be like a distance: always positive with a minimum
of zero for an exact fit (zero bias). Deviance need not be sym-
metric; we may care more about negatively biased estimates than
positively biased ones or, vice versa.

This section will introduce three concepts: variance functions,
linear bias functions and deviance functions, and then show how
they are related. All three concepts have to do with specifying
distributions—a key part of a statistical model. However, they
are independent of the choice of covariates.

In this section r denotes the response, with individual units
being r;, or r;; in the example. The fitted means are p or ;.

Ordinary bias is the difference r —  between an observation
r and a fitted value . When adding the biases of many obser-
vations and fitted values, there are two reasons why it may be
desirable to give more or less weight to different observations.
First, if the observations come from cells with different numbers
of exposures then their variances will be different. As explained
in Section 2, this possibility is handled by using prior weights
for each observation.

The second reason to weight the biases of individual observa-
tions differently is if the variance of the underlying distribution
is a function of its mean (the fitted value). This is a very impor-
tant departure from normal distribution models where the prior
weights do not depend on the fitted values. In Example 2.1,
is a sample from R;; Wthh is normally distributed with mean
pij =a; +b; and vanance o2. The variance is independent of the
mean. In Example 2.4(b), r;; is a sample from R;; which has a
gamma distribution with mean p;; and variance ¢N; ; (assuming
all weights are 1). Now the variance of an individual observation
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is a function of the fitted cell mean ;. Clearly, large biases from
a cell with a large mean are more likely, and should be weighted
less, than those from a cell with a small mean. In this situation we
will use variance functions to give appropriate weights to each
cell when adding biases. Once again, it is important to realize
that variance functions are not a feature of normal distribution
models and that they represent a substantial generalization.

A variance function, typically denoted V, is any strictly pos-
itive function of a single variable. Three examples of variance
functions are V(i) = 1 for p € (—o0,00), V(1) = p for p € (0,00),
and V() = 2 also for i € (0,00). It should not be a surprise that
the first can arise from the normal distribution, and the last can
arise from the gamma distribution.

Combining variance functions and prior weights—the two
reasons to weight biases from individual cells differently—we
define a linear bias function to be a function of the form

w(r — 1)
b(rip) = ———;
V(w)
where V is a variance function and w is a prior weight. The
weight may vary between observations, but is not a function of
the observation or of the fitted value.

In applications there would be many observations r;, each with
a fitted value y; and possibly different weights w;. The total bias
would then be

R N Uil 1))
;b(ri’:u@) - ; V(Ml) .

The functions r — p1, (r — 1)/ 11, and (r — 1) /pi* are three examples
of linear bias functions, each with w = 1, corresponding to the
variance functions given above.

A deviance function is some measure of the distance be-
tween an observation r and a fitted value p. The deviance d(r; 1)
should satisfy the following two conditions common to a dis-
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tance:

Devl: d(r;r) =0 for all r, and
Dev2:  d(r;p) >0 for all r # p.

The weighted squared difference d(r; 1) = w(r — p)>, w > 0, is an
example of a deviance function.

An important difference between bias and deviance is that
deviance, which corresponds to distance, is always positive while
bias can be positive or negative. Deviance can be regarded as a
value judgment: “how concerned am I that r is this far from p?7”
Deviance functions need not be symmetric about r = p.

It is possible to associate a deviance function with a linear
bias function by defining

r _
d(rip) = 2w /ﬂ (:/ (t)t) dr. (5.1)
Clearly this definition satisfies Devl and Dev2. Note that by the
Fundamental Theorem of Calculus,

od _  (r—p)

— = 2w .
Op Vi)

Examples of Deviance Functions

(a) If b(r; ) = r — p is ordinary bias, then
dip) =2 [ =i = ?
Iz

is the squared distance deviance, with weight w = 1.

(b) If b(r;p) = (r — )/ p? corresponds to V() = p? for p €
(0,00), then
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FIGURE 1
GAMMA DISTRIBUTION DENSITY
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again with weight w = 1. In this case the deviance is not sym-
metric about r = u. Figures 1 and 2 show plots of the gamma
density and corresponding deviance function for three different
means /.

(c) The deviance d(r;u) =w|r—pl, w>0, is an example
which does not correspond to a linear bias function.

Returning to the case of multiple observations r; with fitted
values 4, the total deviance is

D = Zd,. = Z d(rs; 1)

Suppose p; = h(x;3) is a function of a linear combination of
covariates X; = (X;1,...,X;,) and parameters 8 = (fi,...,5,), as it
would be in the generalized linear model setting.> We find the

3The function A is the inverse of the link function which will be introduced in Section
6. The link function g relates the linear predictor to the mean: x,3 = g(u,)-
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FIGURE 2
GAMMA DISTRIBUTION DEVIANCE
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minimum deviance over the parameter vector 3 by solving the
system of p equations

oD

— =0,
dp;

(5.2)

for j =1,...,p. Using the chain rule and assuming the deviance
function is related to a linear bias function as in Equation 5.1
gives:

oD ad,
7%, ~ 25,
_ 94 0ny
- ; Op; 05,
= 2% Mk’(xiﬁ)xlj. (5.3)

V()

i
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Let X be the design matrix with rows x;, W be the diagonal
matrix of weights with iith element w;/'(x,8)/V (11;), and p equal
(h(x;8),...,h(x,3))". Then Equation 5.3 can be written as

X'W(r—p)=0 (54)

which by Equation 4.13 is the zero bias equation. This shows
that Bailey and Simon’s balance criteria, BaS1, is equivalent to
a minimum deviance criteria when bias is measured using a linear
bias function, and weights are adjusted for the link function and
form of the model using /'(x;3).

The adjustment in Equation 5.3, given by /'(x;3)x;; ;» depends
upon the form of the underlying statistical model. This shows
clearly how the bias function (which is related to the underlying
distribution) and the form of the linear model (link and covari-
ates) both impact the minimum bias parameters. The separation
mirrors that between the error distribution and the link function
exhibited in GLM1 and GLM3.

Examples of Minimum Bias Models

(a) V=1 and h(x) = x reproduces the familiar additive mini-
mum bias model which has already been considered in Section 4.

(b) Let V() = p and h(x) = €*. Using the minimum bias no-
tation from Section 4, the minimum deviance condition Equation
5.3, which sets the bias for the ith level of the first classification
variable to zero, is

n, Wl](r 7ea +b])

7 a;tb a+b
> e f‘ZWu(r — ) =0,

j=t e

including the link-related adjustment. Therefore

el = Zwijrij/z:wijebi
J J
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and similarly
ebj = Zwijrij/ZWijeai
i i
giving Bailey’s multiplicative model.

See Section 7 for many more examples.

Summary

The definitions of linear bias function and deviance function
have set up a natural correspondence:

)
. o0 . . .
Deviance —% Linear Bias Function,

od
d(y;p) — B
1
/ b(r:D)dt —> —b(ry),  and
1

Minimum Deviance — Zero bias by class.

It follows from these definitions that the balance criterion sets the
average bias to zero. However, except in trivial cases, the total
minimum deviance is non-zero and is available as a model-fit
statistic which can be used to select between models. This is an
important step, especially since deviance has a reasonably well
understood distribution. It is developed in Section 8.

Many minimum bias equations can now be derived using dif-
ferent link functions and linear bias functions, several of which
lead to iterative equations. Everything in this section has been
developed with no explicitly defined statistical model—since no
probability distributions have been mentioned. Leaving out the
statistical model makes the presentation more elementary and
focuses on the intuitively reasonable roles of bias and deviance.
In order to put minimum bias methods onto a firm statistical
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footing, a goal of the paper, we turn next to the theory of gener-
alized linear models and exponential distributions and its relation
to linear bias functions and deviance.

6. EXPONENTIAL DISTRIBUTIONS

The following diagram gives a schematic of Section 5 for the
normal distribution.

Balanced by class <—— Linear Bias Function =r — p
Differentiation T T Differentiation

Least Squares <—— Deviance Function = (r — p1)?
Maximum Likelihood Parameters <—— Normal Distribution.

To generalize to arbitrary linear bias functions, we need a family
of distributions extending the normal which fills out the lower
right hand corner of the diagram. It should have a likelihood
function related to the given deviance function in the same way
as the normal likelihood is related to the square distance de-
viance. Solving maximum likelihood for x should correspond
to minimum deviance, and will give balanced (according to the
appropriate notion of bias) classification factors. The required
family of distributions is called the exponential family. This sec-
tion will define it and derive some of its important properties.

The exponential family of distributions* is the two-parameter
family whose density functions can be written in the form

1

1) = crdrexp (5

d(r;u)> , ©.1)

4This definition is slightly different from that in McCullagh and Nelder [17] and other
sources on generalized linear models. See Appendix A for a reconciliation with the usual
definition. The approach here is derived from Jgrgensen [13] and McCullagh and Nelder
[17, Chapter 9].
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where d is a deviance function derived from a linear bias func-
tion using Equation 5.1. Using the squared distance deviance,
unit weights w = 1, and ¢ = o> shows that the normal distri-
bution is in the exponential family, and that it corresponds to
V(1) = 1. The gamma, binomial, Poisson and inverse Gaussian®
distributions are also members of the exponential family. The ex-
ponential distribution, being a special case of the gamma, is also
in the exponential family. It is important in Equation 6.1 that the
function ¢ depends only on r and ¢; the same constant has to
hold for all values of . This is a hard condition to satisfy. For
example, it can be shown there is no such ¢ when the deviance
is derived from the variance function V(u) = u¢ with 0 < ¢ < 1.

Equation 6.1 and the definition of linear bias functions in
terms of variance functions imply that an exponential family dis-
tribution is determined by the variance function.

If a random variable R has an exponential family distribution
given by Equation 6.1 then

ER) = pn (6.2)

and
Var(R) = %V(M), (6.3)

which helps to explain the choice of 4 as the first parameter and
also why V is called the variance function. Because of its role in
Equation 6.3, ¢ is called the dispersion parameter. Equations 6.2
and 6.3 follow immediately from two well-known results about
the loglikelihood function [ = I(u, ¢;r) = log f(r; i, ®). The first

) 5(2) -0 ”

SFor more information on the inverse Gaussian, see Johnson, Kotz and Balakrishnan [12]
and Panjer and Willmot [21]. It is similar to the lognormal distribution and can be used
to model severity distributions.
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(E@1/op) =E(f'/f)= [ f' =8/0p] f =9/9u(1) = 0). Equation
6.4 implies Equation 6.2. The second is

o921 oL\ ?
e(5e) x| ()

which is derived similarly and which implies Equation 6.3.

=0, (6.5)

The next two subsections derive the deviance functions as-
sociated with the gamma distribution and the inverse Gaussian
distribution. The gamma example starts with the density and de-
rives the variance function. The inverse Gaussian example goes
in the opposite direction and starts with a variance function. In
both cases the reader may (correctly) suspect the calculations
are easier if one knows what the answer is going to be! Simi-
lar calculations can be performed for the Poisson and binomial
distributions.

Gamma Distribution in the Exponential Family

The usual parameterization of the gamma density is

f(l"'Oz 6) — Ba raflefﬂr

b b 1—\ (a) 2
which has mean o/ and variance «o//(3%. Since the parameter of
interest is the mean, it makes sense to reparameterize to p = o/
and v = a. The variance becomes ;?> /v and the density becomes

r\” 1
(ru,v) = (—> — e/,
feen =) e
Assuming weight w, Equation 6.3 gives ¢u’/w = p?/v, so v =
w/¢. Rearranging the density gives:
Vl/rfl

flrip,v) = T

e on(52((52) ()

(6.6)

exp(vlog(r/p) —vr/ )
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Since the deviance d = 2((r — )/ —log(r /1)) corresponds to
the variance function V(;?)—see Example 5.1(b)—the gamma
distribution is in the exponential family.

Exponential Density Corresponding to the Variance Function
Vp) = p?

The deviance function corresponding to V(y) = 4 is given by

"r—t
d(r,,u) =2A [_3dt

1 r72

o p

_ =
prro

The corresponding exponential family distribution when w =1
is

1 o 2
Fri18) = c(r,d)exp (E(r Mz‘j) ) ,

which is exactly the inverse Gaussian distribution. The term

c(r,¢) is given by
b
2mgr3’

The usual parameters for the inverse Gaussian are 1/¢ and 1/p.

The variance function corresponding to the Poisson distri-
bution is V(i) = p; for the binomial distribution it is V(u) =
(1= p).

The modeling interpretation of V is clear from its role in linear
bias functions. Now that we know how some variance functions
and distributions match up we can make some further observa-
tions. The normal distribution model assumes constant variance,
which is why the second important adjustment in Section 5 is not
present in normal theory models. The Poisson model assumes the
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variance is proportional to the mean. The gamma model assumes
the variance is proportional to the square of the mean, that is,
that the coefficient of variation is constant. The inverse Gaussian
assumes that the variance is proportional to the cube of the mean.
The form of the variance function is very important in modeling,
since the modeler will generally attempt to give smaller weights
to observations with larger variances. Allowing the variance to
be a function of the fitted mean gives generalized linear models
a significant advantage over normal, constant variance, models.

Section 8 and Jgrgensen [13] discuss other members of the
exponential family. In particular see Jgrgensen’s Chapter 4 and
Table 4.1.

7. GENERALIZED LINEAR MODELS AND THEIR CONNECTION
WITH MINIMUM LINEAR BIAS

This section will explain how to solve generalized linear mod-
els using a maximum likelihood objective function, and show the
connection between such solutions and solutions of minimum
deviance models using linear bias functions. A thorough under-
standing of generalized linear models requires a more detailed
treatment than can be given in this paper. The book by McCul-
lagh and Nelder [17] is an excellent source for those desiring
more information.

Section 2 divided general linear models into three compo-
nents. The components were a random part, a systematic part and
a link between the two—see GLM1-3. The random component
can be any member of the exponential family, rather than just
the normal distribution. The link function can be any monotonic
function. Common choices include 7 = p, n =log(un), n=1/p,
n =1/u* and the logit function 7 = log(x/(1 — 1)). The link in
a generalized linear model is a function of the predicted mean,
n = g(u), as opposed to the inverse link functions % used in Sec-
tion 5 which are functions of the linear predictor p = h(n).
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Specification of a Generalized Linear Model

The full specification of a generalized linear model consists
of:

e input data,
e model and distribution assumptions, and

e an objective function.

The input data comprises n observations r = (r,...,r,), n
prior weights w = (wy,...,w,)’, and p covariates X; = (X;,...,%;),
for each observation i = 1,...,n. The covariates are the rows of

the design matrix X.

The model and distribution assumptions mirror the descrip-
tion GLMI1-3. Observations r; are assumed to be sampled from
an exponential family distribution with mean y; and second pa-
rameter ¢/w;. The mean is related to the linear predictor using a
link function

i =h(n), = gy,

and the linear predictor is related to the covariates by
N = injﬁj =x;0
J
for parameters 3 = (ﬁl,...,ﬂp)’ . Finally, the parameters are se-
lected using the maximum likelihood objective.

The differences between a generalized and general linear
model are the link function and the exponential family error dis-
tribution.

Maximum Likelihood Equations for a Generalized Linear Model

Let d be the deviance function associated with the exponential
distribution used to define the model. From the definition of
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TABLE 1
PARAMETERS FOR EXPONENTIAL FAMILY DISTRIBUTIONS
Quantity Normal Gamma Inverse Gaussian
V() 1 I w
Deviance, d(r; 1) r—p)? 2 (_r —log ( d )) =" D
H H urr
Dispersion, ¢ ¢ =1/v ¢
c Qrg)~1/2 v le”’ /T W) Q@rer3)~1/2

the exponential family, Equation 6.1, the loglikelihood is given
by

n

[=1(8;r) =

B0 =3 53
To help the reader work through some explicit examples, Table
1 gives a summary of the functions introduced so far for the
normal, gamma and inverse Gaussian distributions. If the weights
w # 1, then replace ¢ with ¢/w.

d( ;1) + log(ce(r;, @)). (7.1)

We find the maximum likelihood parameters ,@ by solving the

system of p equations ol

= =0
98,
for j=1,..., p Calculating from Equation 7.1 gives:
1 0d(ry; 1)
86, Z 29 Op;

w: 0 Tir— Ou;
S N R ) d —t
; 2¢ 8,u,- ( H; V(t) t) aﬂ]
ﬁrl — ,LLL' 8h(Xl,3)
i ¢ V(Mi) 35j

N — n
& Va1 O
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since x;3 = >_;x;;0;. Equating to zero, the ¢ cancels out (just as
o cancels out of normal error linear models) giving the maximum
likelihood equations for 3;:

n
ZVA"i(”i - Mi)xij =0, (7.2)
i=1

where the adjusted weight is defined as
~ _ wil'(x,3)
W, = ———.

V()

Let W be the n x n diagonal matrix of adjusted weights w;. Then
writing Equation 7.2 in matrix notation gives

(7.3)

X'W(r — p) = 0. (7.4)

As expected from the definition of exponential densities, Equa-
tion 7.4 is the same as the minimum deviance equations Equation
5.4. We have shown that the solution to the generalized linear
model specified above is the same as the solution to the min-
imum bias model with the same covariates, link function, and
associated variance function.

Special cases of the correspondence between generalized lin-
ear models and minimum linear bias models include:

Normal <~ V(u) =1,
Binomial < V(i) = p(1 — p),

Poisson <« V() = p,

Gamma < V(u) = 2, and

Inverse Gaussian < V(u) = 1.

The correspondence holds for all link functions. It also holds
regardless of whether the minimum linear bias problem can be
converted into a set of iterative equations. If the iterative equa-
tions exist, they can be used to solve for the parameters. In all
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cases, the theory of generalized linear models can be used to find
the model parameters.

Canonical Link

If w; = w; in Equation 7.3, then £ is called the canonical link
corresponding to the variance function V. Clearly the canonical
link satisfies the differential equation V (h(n)) = h'(n). For exam-
ple, if V(i) = p, then h(n) = €" is the canonical link. It is easier
to find the maximum likelihood parameters using the canonical
link because the weight matrix W is independent of the fitted
values. If the canonical link is used, then adjusted balance is the
same as balance in Bailey’s definition. Despite its name, there
is no need to use the canonical link associated with a particular
variance function.

Explicit Examples

This subsection presents some explicit forms of the corre-
spondence laid out above, including six of the eight different
minimum bias models given by Brown [5].

Assume there are two classification variables and use the min-
imum bias notation from Section 4. Thus i and j are used to label
both the observations and the parameters. Equation 7.4 translates
into

Zwlj(”lj*lﬁlj)
J

Zﬁ)nlj(rnlj _:u’nlj)
0=XWr—p=|" R , dimension p x 1,
> Winry = pir)

Z Win2 (rin2 - /Linz)

i
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(compare with Equation 4.9 and Equation 4.10). An equation
from the first block gives

”2
> wii(rij— i) =0, i=1,...,ny, (7.5)
=1

while one from the second block gives

Zw,j( —m)=0,  j=1...n. (7.6)

The basic symmetry of the minimum bias method is already clear
in the above equations.

a) Identity Link Function

For the identity link function, 7;; = 11;; and dn Jdu =1, so

Wi = .

Y V()

Moreover, using an additive model, Nij =X+ Y and so ;=

x; +y;. Substituting into the maximum likelihood equation Equa-
tion 7.5 gives

0= ZWU( :U’lj

SN Wi
= 2 G i~ )

e Wi Wi

J 2
=S Gy )5 Y s,
i V(,u,'j) Y / lj:] V(Mij)

fori=1,...,n,. Hence

xp =3 Wiy =yp/V ) [ 3wV, (17)
P =1
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and similarly
n n
Yi=Y wiri—x)/VQ) [ > wii V() (7.8)
i=1 i=1

for j=1,...,n,.

For the normal distribution, V(1) = 1. Substituting into Equa-
tion 7.7 gives

X = ZWU(”U _yj)/zwij’ (7.9)
J J
which is Bailey’s additive model discussed in Section 4.

For the Poisson distribution, V(1) = u, and so Equation 7.7
gives

x; = wii(ry —y,-)/uij/ZwU/uij, (7.10)
J J

which is a new minimum bias method. For the gamma distribu-
tion, V(1) = p4%, and so Equation 7.7 gives

X; = Zwij(rij —yj)/ﬂizj/zwij/ﬂizj, (7.11)
j j

which is another new method. Finally, for the inverse Gaussian
distribution, V(1) = 13, and so Equation 7.7 gives

X; = Zwij(rij _yj)/ﬂ?j/zwij/ugj’ (7.12)
j j

which is a third new method. The binomial distribution, with
V() = (1 — p), also gives a new method.

The models in Equations 7.10 to 7.12 give progressively less
and less weight to observations with higher predicted means

Hij-
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b) Log Link Function

For the log link function, n = log(u), so dn/du = 1/u, which
gives
A Wijllij
Wi = ——=.
Y V()

In this case, y;; = exp(n;;) = exp(x; +y;) =: q;b;. As expected the
log link converts an additive model into a multiplicative one.
Substituting into Equation 7.5 gives:

0= ZWU( /’Ll]

n
B iwualb] Cab))
ivj
w::r;:b; " w..b?
_Z Yijtijvio Z ijY)
Vi) S V)
fori=1,...,n,. Hence
)
a; =Y wiriib; V() Zwu V), (1.13)
j=1

and similarly for b;.
Now substituting V’s for the normal, Poisson, gamma and

inverse Gaussian distributions gives the following four minimum
bias methods:

4 _ZWU i ]/ZWU J’ (7.14)
a; =Zwij /ZWU i (7.15)
J
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al:ZWUrU/bJ/ZWU, and (7.16)
J J
_ 2
ai—Zwijrij/bj/Zwij/bj. (7.17)
J J

Equation 7.15 is Bailey’s multiplicative model, and Equation
7.16 is Brown’s exponential model—which Venter comments
also works for the gamma. Equations 7.14 and 7.17 appear to
be new. Again, going from Equation 7.14 to Equation 7.17, the
models give less and less weight to observations with high pre-
dicted means.

¢) Ad Hoc Methods

Other functions besides the identity, log, and logit can be used
as links. Two common choices are 7 = 1/p and 1 = 1/4%. For the
inverse function, dn/du = —1/p?, so w = wu?/V(u), and Lij =
1/m;j = 1/(x; +y;). Substituting into Equation 7.5, it is easy to
see that only the inverse Gaussian produces a tractable minimum
bias method. For the inverse Gaussian, V(1) = >, so Equation
7.5 gives

)
0= Wyrij — hy)
j=1
=2 = )
7 Hij
Wijlij
=> . Vi
j lul]
=Y wri (g +y) —wyj

J
=X Z Wijtij + Z WijlijYj — Z Wij
j j j
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and hence we get another new iterative method:

.xi = ZWU(l _rijyj)/zwijrij' (7'18)
j J

In this method one set of parameters will be negative and the
other positive.

Other Variance Assumptions

Brown proposes two models where the variance of r;; is pro-
portional to 1/ wizj rather than 1/w;;. Although, as Venter points
out, the latter is a more natural choice, the former assumption
can be handled within our framework by simply using weights
wizj rather than w;;. For example, Equation 7.9 becomes

x; = wi(r; —yj)/Zw?j, (7.19)
J J
which is Brown’s model 7.

Correspondence with Brown’s Models

For the reader’s convenience, this subsection identifies our
models with the nine models in Brown’s paper:

B1: Poisson, multiplicative, Equation 7.15.
B2: Normal, additive, Equation 7.9.

B3: Bailey—Simon, multiplicative—see [3, Equation 7] for
derivation. This method comes from minimizing a y>-
statistic, rather than maximizing a likelihood function.
Since generalized linear models rely on maximum like-
lihood, we would not expect to be able to reproduce it.
Unlike B4, it does not use the Newton method.

B4: Bailey—Simon, additive—see [3, p. 12] for derivation.
This method (which certainly puzzled the author as a
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Part 9 exam candidate!) also minimizes a y>-statistic. Its
derivation uses the Newton method.

B5: Gamma, multiplicative, Equation 7.16; note the exponen-
tial is a special case of the gamma.

B6: Normal, multiplicative with variance proportional to 1/w?,
Equation 7.14, upon replacing w with w?.

B7: Normal, additive, with variance proportional to 1/w?,
Equation 7.19.

B8: The same as B1.

B9: Normal, multiplicative, Equation 7.14. Brown derives B9
using least squares and Venter uses maximum likelihood.
The two approaches agree because the likelihood of a nor-
mally distributed observation is proportional to its squared
distance from the mean.

Numerical Example, Continued

We now present the results of fitting ten generalized linear
models to the data presented in Section 4. The models are de-
scribed in Table 2 below.

So far we have not been concerned with the value of the pa-
rameter ¢. It is well known that in general linear models, param-
eter estimates and predicted values are independent of the vari-
ance of the error term (usually labeled o rather than ¢). Since ¢
does not appear in Equation 7.4, the same is true of generalized
linear models. However, just as for general linear models, it is
necessary to estimate ¢ in order to determine statistics such as
standard errors of predicted values. In general linear models,

5% = Zwi(ri — )/ (n = p)

is used as an estimator of o2, where n is the number of obser-
vations and p is the number of parameters. In generalized linear
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TABLE 2
DESCRIPTION OF MODELS

Model Error Link Variance
Number Distribution Function Function
1 Normal Identity V(p) =1
2 Normal Log V(p) =1
3 Normal Inverse V(w) =1
4 Gamma Identity V() = p2
5 Gamma Log V() = p2
6 Gamma Inverse V() = p2
7 Inverse Gaussian Identity Vip) = 13
8 Inverse Gaussian Log Vip) = 13
9 Inverse Gaussian Inverse Vip) = 13
10 Inverse Gaussian Inverse Square Vip) =13

models, ¢ is estimated using the moment estimator

9 1 (r; — Mi)z
= , . 7.20

It can also be estimated using

D 1
n—p n—p

¢ = Zd(ri’ﬂi), (7.21)
where D is the total deviance (see McCullagh and Nelder [17]).
Note that the weights are included in the deviance d in Equation
7.21. Another way to estimate ¢ is to use the maximum likeli-
hood estimate. Equation 7.1 ensures that the maximum likelihood
parameters are unchanged whether or not ¢ is estimated. SAS’s
“proc genmod” uses maximum likelihood by default (see [24]),
and the statistics reported below are based on it unless otherwise
noted.

Exhibit 7 gives the parameters corresponding to the ten mod-
els in Table 2. Each panel of Exhibit 7 shows the parameter
estimates, the standard error of the estimate, the y?-statistic to



MINIMUM BIAS AND GENERALIZED LINEAR MODELS 441

test if the parameter is significantly different from zero, and the
corresponding p-value from the x2-distribution. (See Section 8
for more discussion of the y?-statistic.) When the link function
is not the identity, Exhibit 7 also shows the parameter estimates
transformed by the inverse link. For example, in the first row
of Exhibit 7-2, 265.22 = ¢78%_ The final row gives the scale
function, which is equal to /¢ for the normal and inverse Gaus-
sian distributions, and 1/¢ for the gamma distribution. Again,
maximum likelihood is used to estimate ¢.

Examining Exhibit 7 shows that all parameters except “drive
to work (DTW) less than 10 miles” are significantly different
from zero for all models. All models indicate there is not a sta-
tistically significant difference between “drive to work less than
10 miles” and pleasure-use. The other two use classifications
are significantly different from one another. The estimates and
standard errors within the age classifications show there is not
a statistically significant difference among all levels. For exam-
ple, the 35-39 and 4049 classes are not significantly different
for most models, although exact results depend on the choice of
¢. In the gamma model with identity link using maximum like-
lihood gives the estimate ¢ = 0.9741, and the contrast between
these two classes has a Xz—statistic of 4.07, which is significant at
the 5% level (p = 4.4%). However, using Equation 7.20 results
in an estimate ¢ = 1.4879 with a y2-statistic of 2.839 which is
not significant at the 5% level (p = 9.2%). In the first case the
standard error of the 35-39 class is 8.13 (Exhibit 7-4); in the
second it is 10.04.

Exhibit 8 compares the fitted values from three models: the
standard linear model (column 5), a general linear model applied
to log(severity) (column 6), and a generalized linear model with
normal errors and log link (column 7). As pointed out in Example
2.4(c), the three are distinct and give different answers.

Exhibit 9 summarizes the predicted severities by class, by
model. The choice of link function and error distribution has a
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considerable impact on the predicted means in some cells. Us-
ing a gamma or inverse Gaussian error term generally results in a
greater range of estimates, as does the log or reciprocal link func-
tion. Since this is only illustrative data we will not comment on
the specific results. See Renshaw [23] for a more detailed analy-
sis of similar data, together with other suggestions for modeling
and assessing model fit.

Exhibit 10 gives the average bias

Zwij(rij - ,uij)/zwij (7.22)
i i
for each j and
> wijryj = i) / Wi
J J

for each i, for each model. For the normal/identity model, the
average bias is zero, since this model is Bailey’s additive model.
The gamma/inverse model and inverse Gaussian/inverse square
models are also balanced because the respective link functions
are the canonical links (as discussed earlier in this section), and
so the adjustment to the weights in Equation 7.3 equals 1, re-
ducing Equation 7.4 to Equation 7.22. In the other cases, the
parameters are zero bias according to the relevant adjusted bias
function, but not according to that given by Equation 7.22. This
provides an interesting example of Venter’s V1—alternatives to
bias functions.

Exhibit 11 gives the average absolute bias suggested by Bailey

[2]:
> wijlri; :uij|/zwij (7.23)

for each i, and similarly for j. The gamma/identity model has the
lowest average absolute bias. Finally, the value of the likelihood
is available as a fit statistic, since these models were fit using
maximum likelihood over all parameters (including ¢). The re-
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TABLE 3
MODEL LOGLIKELIHOODS
Model Distribution Link Loglikelihood
1 Normal Identity —144.303
2 Normal Log —144.435
3 Normal Inverse —145.792
4 Gamma Identity —140.753
5 Gamma Log —141.055
6 Gamma Inverse —143.267
7 Inverse Gaussian Identity —141.078
8 Inverse Gaussian Log —141.347
9 Inverse Gaussian Inverse —143.343
10 Inverse Gaussian Sqr Inverse —147.224

sults are shown in Table 3. Other statistics that can be used to
select between models are discussed in Section 8.

These examples hint at the power of the statistical viewpoint.
Using a minimum bias approach not within the statistical frame-
work, it would be impossible to discuss the standard error of
predicted values and parameters, or to ask whether two param-
eters are statistically significantly different. Having the tools to
answer such questions can provide useful information to help in
designing and parameterizing classification plans. The statistical
model also gives information on model fit, discussed in the next
section, which helps select covariates, as well as link and variance
functions within parameterized families. Again, these tools are
not available with the minimum bias approach. Fundamentally
it is the connection between variance functions and exponential
family distributions that makes the statistical viewpoint possible.

8. MODEL FIT STATISTICS

Generalized linear model and minimum bias methods allow
the actuary to consider a large number of models: different
choices of covariates, different link functions and different vari-
ance functions. It is obviously important to be able to determine
if one model fits the data better than the others. The specifica-
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tion of a generalized linear model in Section 7 shows there are
at least four distinct model fit questions:

1. comparing different sets of covariates for a given link
function and variance function (error distribution),

2. comparing different link functions and covariates for a
given variance function,

3. comparing different variance functions for a given set of
covariates and link function, and

4. simultaneously comparing different link and variance
functions and covariates.

In this section we will discuss some of the available statistical
tests of model fit. These methods extend the earlier work of
Bailey and Simon.

Comparing Sets of Covariates

The simplest test of model fit looks for information about the
best set of covariates assuming given link and variance func-
tions. In the numerical example, is anything really gained from
adding a vehicle-use classification? Analysis of variance is used
in normal-error model theory to assess the significance of ef-
fects and answer such questions. For generalized linear models,
we look at an analysis of deviance table, obtained from a nested
sequence of models. Unfortunately, unlike the normal-error the-
ory where the x2- and F-distributions give exact results, only
approximations and asymptotic results are available for gener-
alized linear models. McCullagh and Nelder [17] recommend
analysis of deviance as a screening device for models and regard
this as an area where more work is required.

Consider the gamma distribution model with identity link.
With two explanatory variables available, we can consider a
nested sequence of four models: intercept only, age only, age
and vehicle type with no interaction, and age and vehicle type
with interaction. The last model is complete—it has as many
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TABLE 4
ANALYSIS OF DEVIANCE
Degrees of Mean
Model Deviance A Deviance Freedom Deviance

Intercept 347.0331
Age 264.8553 82.1778 7 11.74
Age + Vehicle 31.2453 233.6100 3 77.87
Complete 0 31.2453 21 1.49

parameters as there are observations and so fits perfectly. Table
4 shows the resulting analysis of deviance. For each model, it
shows the deviance, the reduction in deviance from adding co-
variates, the number of incremental degrees of freedom, and the
mean incremental deviance per degree of freedom. The degrees
of freedom are computed as the incremental number of param-
eters from one model to the next. The model with an intercept
has only one parameter. Including age variables adds seven more
parameters, and so on. The complete model has one parameter
for each of the 32 observations.

The mean deviance has an approximate y2-distribution.
Adding the age variable and then the vehicle type variable both
significantly improve the model fit. When more explanatory vari-
ables are available, an analysis of deviance is helpful in deciding
which to use in a model, and in particular, in assessing which
interaction effects are significant and should be included.

Comparing Link Functions

The models discussed in Section 7 used the identity, inverse
and log links, all of which belong to the power-link family®

w for X #0,
log(p) for A=0.
%Considering (;* — 1)/ instead of y* makes the family appear more natural, because

(u* —1)/X — log(p) as A — 0. This form of the power-link function is called the Box—
Cox transformation. It is mentioned in Venter’s review [26].
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TABLE 5
DEVIANCE VS. LINK POWER A
A Deviance
—1.800 43.828
—1.300 38.966
—0.800 35.190
—0.300 32.724
0.200 31.464
0.700 31.129
1.200 31418
1.450 31.717

According to Nelder and Lee [18, Section 2.3], we can use the
deviance to compare different link functions as well as different
covariates. Table 5 shows the deviance for various values of A,
again using the gamma distribution.

The deviance is relatively flat across the range 0.325 <\ <
1.075, which includes the identity link. The deviance for the
inverse link A = —1 is substantially greater than for A in this
range.

More on Variance Functions

Before discussing tests over sets of variance functions, we
must mention a few facts about them. Jgrgensen, [13] and [14],
discusses the exponential families corresponding to variance
functions beyond the simple examples we have considered so
far. His results include the following which are of interest to
actuaries:

1. V() = p¢ for 1 < ¢ <2 corresponds to the Tweedie dis-
tribution, which is a compound distribution with Poisson
frequency component and gamma severity component.
It is a mixed distribution with a non-zero probability of
taking the value zero, which makes it useful in modeling
aggregate distributions. Jgrgensen and deSouza [15] fit
the Tweedie model to Brazilian auto data.
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2. V(u) = p for ¢ < 0 corresponds to an extreme stable dis-
tribution. Non-normal stable distributions are thick tailed
distributions which may be useful in fitting loss data.

3. V(u) = p for 2 < ¢ < o0, ¢ # 3 corresponds to a positive
stable distribution.

4. V(p) =ps for 0 < ¢ <1 does not give an exponential
family distribution.

5. V(u) = u(1 + p/v) corresponds to the negative binomial
distribution.

6. V(i) = u(1 + 74?) corresponds to the Poisson-inverse
Gamma distribution. Renshaw [23] gives the deviance
functions for both of the last two distributions.

The power variance function family leads naturally to the
question of determining the best estimate for ¢, to which we
now turn.

Comparing Variance Functions

The deviance cannot be used to select an optimal ¢ because the
deviance of an individual observation (r — )/ — 0 as ¢ — 0o
for ;o> 1. This means a deviance-based objective would gen-
erally claim ¢ should be very large and that the model fit was
excellent. Clearly it is necessary to include some measure of
the likelihood of ¢ in the objective function to counter-balance
the effect of the variance function on the deviance. In general,
according to Nelder and Lee [18], deviance cannot be used to
compare different variance functions on the same data.

One way to include the likelihood of ¢ would be to use the full
likelihood function for the corresponding density. This method
was used in the examples shown in Section 7 for the normal,
gamma and inverse Gaussian distributions—where the densities
are known. Unfortunately, for most exponential family distri-
butions, including the Tweedie and stable distributions, there is
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no simple closed form expression for the density or distribution
function. It is therefore not possible to write down the likelihood
function.

The way out of this impasse is to use a tractable approximation
to the density function, such as the saddlepoint approximation.
Details of the derivation are beyond the scope of this paper, but
the result is to replace the deviance function

Tir; —t
) = 2w, L 1
d(ri ) = 2w, / o (8.1)
with an extended deviance function (extended quasi-likelihood
in the literature)

Wl' Ty
d(rizp) = 2% /;

L

r;—t
Vo dt +log(eV (ry)). (8.2)

The added term grows with V, thus providing the desired
counter-balance to the first term, which shrinks. Note that V is
evaluated at the responses r; rather than the fitted means 4. In-
cluding the scale parameter ¢ allows Equation 8.2 to be used
both for inference over parameterized families of variance func-
tions and for different values of ¢. Jgrgensen [13, Example 3.1 p.
104] explains the saddlepoint approximation for a gamma distri-
bution, which is just Stirling’s formula for the gamma function.
See McCullagh and Nelder [17, Chapter 9], Nelder and Lee [18],
and Renshaw [23] for more about extended deviance functions.
[18] also defines and compares other extensions of deviance.

Table 6 shows the extended deviances for various values of ¢
modeled with the identity link function. The table shows a rea-
sonable range 1.95 < ¢ < 3.45, which includes both the gamma
distribution ¢ = 2 and inverse Gaussian distribution ¢ = 3. Com-
bining the results of Tables 5 and 6 shows the gamma or in-
verse Gaussian distribution with identity link is still a reasonable
choice even if we are free to select from the power link family
and power variance function family. These conclusions are in
line with the full likelihood results in Table 3 and the average
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TABLE 6
EXTENDED DEVIANCE VS. VARIANCE FUNCTIONS V(M) = ,u<

¢ Deviance
1.20 372.740
1.45 372.020
1.70 371.422
1.95 370.946
2.20 370.597
245 370.374
2.70 370.282
2.95 370.321
3.20 370.494
345 370.800

absolute deviations in Exhibit 11, where the gamma/identity and
inverse Gaussian/identity models show the best results.

Deviance Profiles and Comparing Link and Variance Functions

The last step we will consider combines the power link and
variance functions and looks for the overall minimum extended
deviance estimators. Figure 3 shows a contour plot of extended
deviance over ¢ and A. The results are as expected from the one
dimensional calculations. The dotted rectangle shows a range of
A from log link to the identity and ¢ from gamma distribution to
inverse Gaussian.

9. COMPUTATIONS

Section 9 is in two parts. The first discusses the iterative
method for solving minimum bias models. For the additive model
with identity link, it gives a sufficient condition for the iterative
method to converge (no matter the initial conditions), explains
precisely how it converges in terms of the eigenvectors of a par-
ticular matrix, and gives a telescoping argument that jumps to
the solution of the iterative process once the first iteration has
been computed.
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FIGURE 3
DEVIANCE PROFILE POWER LINK AND VARIANCE FUNCTIONS
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The second section discusses how to find the maximum like-
lihood parameters in a generalized linear model. Even though
commercial software exists to solve generalized linear models, it
is instructive to perform the calculations by hand, and we explain
how to do this. Examples of SAS code to solve generalized linear
models using both the SAS/Stat procedure “genmod” and a “bare
hands” approach using matrix algebra are given in Appendix B.

At several points this section discusses a notion of compu-
tational efficiency. Two algorithms are of similar computational
efficiency if they will run in about the same time for all sizes of
input. (Technically, if n is the problem size, and f(n) and g(n) are
the number of elementary operations required to solve the prob-
lem using two methods, then they are of the same computational
efficiency if f = O(g) and g = O(f), Borwein and Borwein [4,
Chapter 6]. Recall f = O(g) means there is a constant K so that
f(n) <Kg(n) for all n.)

Iterative Methods

Bailey’s original paper [2] introduces the additive and mul-
tiplicative models and suggests the iterative method for finding
parameters:

Using a predetermined set of estimators for each ter-
ritory, construction, and protection, we can solve the
[minimum bias] formula for the estimator for each oc-
cupancy. We can then use these calculated estimators
for each occupancy to calculate a revised set of esti-
mators for each territory using a similar formula, and
continue this process until the estimators stabilize.

Since Bailey’s paper, it has become common for actuaries to use
this iterative method. For example, ISO [11] explicitly describes
the three-way minimum bias model for the personal auto classi-
fication plan as iterative.

Just because the minimum bias model suggests using an iter-
ative method to solve for the parameters, it does not follow that
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such a method is the best method to use. Section 4 showed that
the usual additive model is simply a general linear model; and
so it is far more computationally efficient to solve the normal
equations (no iterations, few matrix multiplications and one in-
verse) than it is to use the iterative method. Any actuaries still
using iterative methods should investigate whether the general-
ized linear model approach outlined in this paper would speed up
their calculations—as well as providing them with more useful
diagnostic information.

This section considers the iterative method for the additive
model with identity link which is used by ISO for the personal
auto class plan. The iterative method is considered in detail de-
spite its shortcomings, because many actuaries may have tried
the method (perhaps as Part 9 students) and may have wondered
what initial conditions are required for convergence and may also
have noted the strange way the models converge. We explain the
convergence in detail and also show it is not necessary to perform
many iterations, even if the iterative paradigm is followed. How-
ever, the final message of this section is do not use the iterative
method for Bailey’s additive model—solve the normal equations
instead!

We will use the notation of Section 4 and consider two classi-
fication variables—extensions are immediate. Assume that base
classes have been selected so that the sum-of-squares and prod-
ucts matrix X’WX is invertible, a has dimension n; x 1 and b
has dimension n, x 1. Finally assume n, < ny; if this is not the
case then swap a and b. For this example the adjusted weights
w = w (see Equation 7.3).

From Equation 4.14 the minimum bias equations can be writ-

ten as
(A B)’W(r(A B)(E))

B A'W(r — Aa—Bb) _o ©.1)
" \A'W@r—Aa—Bb) ) mrmxl '
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Re-arranging Equation 9.1 gives
a = (A'WA) 'A"W(r — Bb), and 9.2)
b = (B'WB) 'B'W(r — Aa). (9.3)

The iterative solution starts with some initial choice b(®> and
uses Equation 9.2 to solve for a(l). Substituting a‘") into the Equa-
tion 9.3 gives an expression for b(1. Iterating gives a®, b®, and
so forth. The procedure stops when the difference between suc-
cessive iterations is sufficiently small. Set v = b —ptm—1
equal to the difference in the m and (m — 1)th iterations for b.
Note there is an asymmetry between the a-iterations and the
b-iterations based on where we choose to start.

Set
M = (B'WB) 'B'WA(A'WA) 'A’WB, (9.4)

an n, X n, matrix. A straightforward telescoping argument shows
that

b=>I-M)'vD +p©, (9.5)

provided M™ — 0. We can guarantee that M” — 0 as m — oo
if all the eigenvalues of M have absolute value less than 1.
This gives a necessary condition for the iterative method to
converge, and, moreover, Equation 9.5 shows how to “jump”
straight to the final solution after computing only one itera-
tion, a’ and b, This method of solving the minimum bias
problem will run much faster than the iterative method, but
will still be slower than solving the normal equations (comput-
ing M alone involves eleven matrix multiplications and two in-
verses).

It is also possible to show that v(™ tends to a scalar multiple of
the eigenvector associated with the largest eigenvalue of M, and
the iterative method converges along the direction of that eigen-
vector. Moreover, the distance between subsequent iterations of
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b decreases by approximately the absolute value of the largest
eigenvector for m large enough.

Numerical Example, Continued

Exhibit 5 illustrates the above theory. Column 2 gives the
length of v, Column 14 gives the ratio of successive iterations of
v, and Columns 15-17 give the three components of v(™. The
ratio of lengths of v should converge to the largest eigenvalue of
the matrix M defined by Equation 9.4. For the data underlying
Exhibit 5:

0.457572 0.300972 0.118435
M =] 0431800 0.306347 0.122798 |, (9.6)
0.428349 0.309565 0.126608

which has eigenvalues 0.000541, 0.010541 and 0.859445. This
explains the 0.85944’s that appear in Exhibit 5; their appearance
is quick since the largest eigenvalue is so much greater than the
other two. The overall convergence of the model is quite slow,
since 0.859 is close to 1.0.

Exhibits 12 and 13 show how the iterative method converges
for two other models: gamma/identity and gamma/inverse, re-
spectively. Convergence is particularly slow for the latter; after
25 iterations the parameters are nowhere near their final values.
The methods of this section do not apply to non-canonical link
functions because the weight matrix W must be re-evaluated be-
tween each iteration, and so the telescoping argument will not
hold.

Solving Generalized Linear Models

One conclusion of this paper is that many useful minimum
linear bias models correspond in a natural way with general-
1zed linear models. However, not all minimum linear bias mod-
els have a tractable iterative solution. It is therefore useful to
know how to solve generalized linear models. Since there are
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pre-programmed routines for generalized linear models® we give
only a brief overview here. This section follows McCullagh and
Nelder [17]. The notation is the same as the first part of Sec-
tion 7.

From Equation 7.4 the maximum likelihood equations for the
generalized linear model are given by

X'W(r—p) =0,
where W is the diagonal matrix with entries w; = w;/'(x;3)/V (11;).

To find the maximum likelihood it is necessary to solve
ol/9B; =0, for j=1,...,p. This can be done using a method
related to the Newton—Raphson method. In one dimension the
Newton—Raphson method solves an equation f(x) = 0 by iterat-
ing x,,, =x,—f(x,)/f'(x,). We are trying to solve the vector
equation u(3) = 0, where

u(B) = u=01/08 = 91/9B,,...,01/98,).

Looking at Newton—Raphson suggests trying 3,,; = 3, — (Ou/
0B)~'u. The term Ou/03 is called the Hessian. The negative
Hessian is called the observed information matrix (see Hogg and
Klugman [10, p. 121]); it is generally a random quantity. Fisher’s
scoring method simplifies the Newton—Raphson method by using
the expected value of the Hessian rather than the Hessian itself;
it often results in more staightforward calculations.

To apply Fisher’s scoring method, let
9%l (au>
H=-E|(————- | =-E(—
(aﬂjaﬂk) o

8 As well as GLIM, mentioned by Brown, SAS now includes a procedure, “proc genmod”
to solve generalized linear models in its SAS/Stat package. “Proc genmod” has the same
syntax as “proc glm”.
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be the negative expected value of the Hessian matrix. Given an
estimate 3, of 3, we find the next adjustment a by solving Ha =
u. (The adjustment term in the Newton—Raphson method, a =
f(x,)/f(x,), satisfies f'(x,)a = f(x,). Here, f <~ uand f' < H.)
From Equation 7.4, u = X'W(r — ), and so

- -5 (55)
- E (%XtW(r - u))
-5 (? (gtﬂw) (r— )+ (X’W)%(r —w) O
-E <Xfwg—g) (9.8)
= X'WX, (9.10)

which is the weighted sums of squares and products matrix for
the model with weights

V()

Equation 9.7 uses the chain rule; Equation 9.8 uses the fact that
E(r) = p and 0r/0B8 =0 (r is a vector of numbers); Equation
9.9 uses the chain rule and the fact that n = X3; and, finally,
Equation 9.10 uses the fact that X is constant. Since 3,,; =
B,+a, H3,,., = H3, + Ha = H3, + u, and hence

- (W (x.R)2
Wzdiag<M>_

X'WX3,,, = X'WX3, +u
= X'W, + XW e )
dp

- X'W (nn + Z’Z (r— u)) : ©.11)
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Equation 9.11 is the normal equation for a linear weighted least-
squares model of the data n, + (dn, /dp)(r — p) using design ma-
trix X and weights W.

Note that
d
g+ (r—pg' (W) =n+@r— u)ﬁ

is a linear approximation to g(r) = h~'(r), and that

2 ~
Var(g(u) + (r — g (1) = V(30) (;’—Z) _ W

up to a factor involving ¢.

In order to implement this iteratively re-weighted least squares
method we can start by taking p = r. Certain observations may
need to be adjusted, for example zero values when the log or
inverse power links are used. The method is easy to implement
in a matrix programming language such as MATLAB, APL or
SAS IML. Annotated SAS IML code is given in Appendix B.

10. FUTURE RESEARCH

Bailey [2] points out that in statistics the best estimator is a
minimum variance unbiased estimator, but that in classification
ratemaking there are typically no unbiased estimators.

Venter’s third suggestion, of allowing individual cells to vary
from an arithmetically defined base, gives a way to produce unbi-
ased estimators. Credibility weighting the model pure premium
with the experience would give asymptotically unbiased rates,
because in a large enough sample each cell would be fully cred-
ible. Venter notes such an approach was used in the 1981 Mas-
sachusetts auto rate hearings. The credibility factor used was
Buhlmann credibility

n K = Expected process variance
n+K’ ~ Variance of hypothetical means’

(10.1)

7 =

where 7 is the number of exposures in the cell.
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A credibility approach was also hinted at by Bailey, who
discusses the problem of combining information about youth-
ful drivers and business classes into youthful business drivers:
“[The data] may be insufficient to be fully reliable but it will
always provide some information.”

The statistical theory of mixed models provides a method of
credibility weighting fitted values and raw data. The details of
mixed models are beyond the scope of this paper; the interested
reader should consult Searle, et al. [25]. In fact, Equation 42
on page 57 of Searle uses mixed models to give an unbiased
predictor for a cell pure premium as

(1 —Z) x model fit + Z x cell average,

where credibility Z is given by Equation 10.1. A very nice re-
cent paper by Nelder and Verrall [20] extends the same result
to a certain family of generalized linear mixed models and dis-
cusses some possible actuarial applications. Lee and Nelder [19]
gives a more detailed description of the theory, together with
some (non-actuarial) examples. Aside from their application to
credibility theory, mixed models could also be used in territo-
rial ratemaking, just as they are currently used in geophysical
statistics (see Cressie [6]).

11. CONCLUSION

We have introduced generalized linear models by making a
connection between them and minimum bias models, with which
actuaries are already familiar. The connection is made possi-
ble by using variance functions to define linear bias functions
and then relating them to the exponential family of distribu-
tions. The definitions imply that minimum bias corresponds to
the maximum likelihood solution of the associated generalized
linear model. By starting with the known and familiar we have
provided an introduction to generalized linear models, which is
easier to understand than descriptions which start from abstract
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definitions. We have also explained how generalized linear mod-
els extend the well known ANOVA and regression analyses. Two
by-products of the exposition were to clarify uniqueness of pa-
rameters for class plans, and to explain the different notations
used in linear models and minimum bias methods. Finally, the
iterative paradigm for solving minimum bias models is shown
not to be useful given the more efficient algorithms available for
solving generalized linear models. Actuaries should not imple-
ment the iterative method. Whenever possible, they should use
explicit statistical models.

Linear bias functions are an alternative to the usual measure of
bias and so extend Venter’s first alternative to Bailey’s methods.
Link functions, introduced as part of the definition of general-
ized linear models, allow for more general arithmetic functions
to determine classification rates. However, since the models are
still linear they do not allow functions such as r;; = x;y; +z
suggested by Venter.

In jumping from actuaries of the second kind, who use risk
theory and probabilistic models, to actuaries of the third kind
who use stochastic models and financial tools [see 7, p. 45],
I believe the profession may have overlooked an important in-
termediate step: the statistical actuary—perhaps actuary of the
5/2nds kind? A statistical approach is perfect for data-intensive
lines, such as personal auto and homeowners. I hope this and
other statistical papers which have appeared recently will en-
courage actuaries working in data-intensive lines to take statis-
tics beyond that which is required for an Associateship in either
North American actuarial society, and to start taking advantage
of its power in their work.
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UNDERLYING DATA FOR NUMERICAL EXAMPLES

MINIMUM BIAS AND GENERALIZED LINEAR MODELS

EXHIBIT 1

Age Claim
Observation ~ Group Vehicle-Use Severity Count

1 17-20 Pleasure 250.48 21

2 17-20 Drive to Work < 10 miles 274.78 40

3 17-20 Drive to Work > 10 miles 244.52 23

4 1720 Business 797.80 5

5 21-24 Pleasure 213.71 63

6 21-24 Drive to Work < 10 miles 298.60 171

7 21-24 Drive to Work > 10 miles 298.13 92

8 21-24 Business 362.23 44

9 25-29 Pleasure 250.57 140
10 25-29 Drive to Work < 10 miles 248.56 343
11 25-29 Drive to Work > 10 miles 297.90 318
12 25-29 Business 34231 129
13 30-34 Pleasure 229.09 123
14 30-34 Drive to Work < 10 miles 228.48 448
15 30-34 Drive to Work > 10 miles 293.87 361
16 30-34 Business 367.46 169
17 35-39 Pleasure 153.62 151
18 35-39 Drive to Work < 10 miles 201.67 479
19 35-39 Drive to Work > 10 miles 238.21 381
20 35-39 Business 256.21 166
21 40-49 Pleasure 208.59 245
22 40-49 Drive to Work < 10 miles 202.80 970
23 40-49 Drive to Work > 10 miles 236.06 719
24 40-49 Business 352.49 304
25 50-59 Pleasure 207.57 266
26 50-59 Drive to Work < 10 miles 202.67 859
27 50-59 Drive to Work > 10 miles 253.63 504
28 50-59 Business 340.56 162
29 60+ Pleasure 192.00 260
30 60+ Drive to Work < 10 miles 196.33 578
31 60+ Drive to Work > 10 miles 259.79 312
32 60+ Business 342.58 96
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Claim

Age Group Vehicle-Use Severity Count
All All 241.46 8,942
All Pleasure 206.00 1,269
All Drive to Work < 10 miles 213.62 3,888
All Drive to Work > 10 miles 259.50 2,710
All Business 338.54 1,075
17-20 All 290.61 89
21-24 All 291.60 370
25-29 All 278.74 930
30-34 All 271.32 1,101
35-39 All 215.03 1,177
40-49 All 234.45 2,238
50-59 All 230.21 1,791
60+ All 222.59 1,246
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EXHIBIT 3
DESIGN MATRIX FOR AGE GROUP CLASSIFICATION

Age Group

60+

17-20 21-24 25-29 30-34 35-39 40-49 50-59

Observation

10

11

12
13
14
15
16
17
18
19
20
21

22
23

24
25

26
27

28

29

30
31

32
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EXHIBIT 4
DESIGN MATRIX FOR VEHICLE-USE CLASSIFICATION

Vehicle-Use Classification

Observation  Drive to Work < 10 miles Drive to Work > 10 miles  Business

1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1
5 0 0 0
6 1 0 0
7 0 1 0
8 0 0 1
9 0 0 0
10 1 0 0
11 0 1 0
12 0 0 1
13 0 0 0
14 1 0 0
15 0 1 0
16 0 0 1
17 0 0 0
18 1 0 0
19 0 1 0
20 0 0 1
21 0 0 0
22 1 0 0
23 0 1 0
24 0 0 1
25 0 0 0
26 1 0 0
27 0 1 0
28 0 0 1
29 0 0 0
30 1 0 0
31 0 1 0
32 0 0 1
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EXHIBIT 6
GENERAL LINEAR MODEL PARAMETERS

Parameter Value

Age 17-20 265.29

Age 21-24 258.40

Age 25-29 238.71

Age 30-34 229.76

Age 35-39 175.34

Age 40-49 195.35

Age 50-59 198.86

Age 60+ 194.82

Drive to Work < 10 miles 8.76
Drive to Work > 10 miles 53.96

Business 132.28
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PARAMETER VALUES AND STATISTICS FOR NORMAL MODEL,
IDENTITY LINK

Standard Chi
Parameter Level Estimate Error Squared p value
Age 17-20 265.29 31.536 70.769 0.000
Age 21-24 258.40 16.797 236.658 0.000
Age 25-29 238.71 12.144 386.375 0.000
Age 30-34 229.76 11.773 380.880 0.000
Age 35-39 175.34 11.459 234.139 0.000
Age 4049 195.35 9.992 382.258 0.000
Age 50-59 198.86 10.197 380.313 0.000
Age 60+ 194.82 10.814 324.582 0.000
Vehicle-Use DTW < 10 8.76 9418 0.865 0.353
Vehicle-Use DTW > 10 53.96 9.936 29.498 0.000
Vehicle-Use Business 132.28 12.124 119.041 0.000
Scale 291.56 36.32
EXHIBIT 7-2
PARAMETER VALUES AND STATISTICS FOR NORMAL MODEL,
LoOG LINK
Transformed Standard Chi
Parameter Level Estimated  Estimate Error Squared  p value
Age 17-20 5.581 265.22 0.108 2,650.726  0.000
Age 21-24 5.514 248.21 0.063 7,611.630 0.000
Age 25-29 5.444 231.37 0.051 11,339.710  0.000
Age 30-34 5421 226.18 0.050 11,635.699  0.000
Age 35-39 5.186 178.76 0.055 9,038.202  0.000
Age 40-49 5.289 198.19 0.047 12,821.908  0.000
Age 50-59 5.301 200.49 0.048 12,326.811  0.000
Age 60+ 5.286 197.55 0.051 10,887.200  0.000
Vehicle-Use DTW <10  0.041 1.04 0.045 0.822  0.365
Vehicle-Use DTW >10  0.231 1.26 0.045 26.090 0.000
Vehicle-Use  Business 0.495 1.64 0.048 107.072  0.000
Scale 291.75 36.47
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EXHIBIT 7-3

PARAMETER VALUES AND STATISTICS FOR NORMAL MODEL,
INVERSE LINK

Transformed Standard Chi
Parameter Level Estimated Estimate Error Squared  p value
Age 17-20 3.7615e-03  265.85 0.0004 110.100 0.000
Age 21-24 4.2575e-03  234.88 0.0003 273.197 0.000
Age 25-29 4.4685e-03  223.79 0.0002 376.913 0.000
Age 30-34 4.5015e-03  222.15 0.0002 394.962 0.000
Age 35-39 5.4337¢-03  184.04 0.0003 433.329 0.000
Age 40-49 4.9521e-03  201.93 0.0002 498.633 0.000
Age 50-59 4.9256e-03  203.02 0.0002 470.954 0.000
Age 60+ 4.9756e-03  200.98 0.0002 432.339 0.000
Vehicle-Use DTW < 10 —1.8560e-04 N/A 0.0002 0.690 0.406
Vehicle-Use DTW > 10 —9.7374e-04 N/A 0.0002 20.430 0.000
Vehicle-Use  Business —1.8592e-03 N/A 0.0002 75.130 0.000
Scale 304.39 38.05
EXHIBIT 7-4

PARAMETER VALUES AND STATISTICS FOR GAMMA MODEL,

IDENTITY LINK

Standard Chi
Parameter Level Estimate Error Squared p value

Age 17-20 257.79 29.673 75475 0.000
Age 21-24 261.08 15.670 277.578 0.000
Age 25-29 241.05 10.114 568.048 0.000
Age 30-34 228.18 9.442 584.056 0.000
Age 35-39 179.60 8.126 488.552 0.000
Age 4049 194.89 7.016 771.627 0.000
Age 50-59 198.46 7.195 760.810 0.000
Age 60+ 193.04 7.600 645.146 0.000

Vehicle-Use DTW < 10 8.63 6.571 1.727 0.189

Vehicle-Use DTW > 10 53.74 7.482 51.590 0.000

Vehicle-Use Business 131.44 11.629 127.745 0.000
Scale 1.03 0.256
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EXHIBIT 7-5
PARAMETER VALUES AND STATISTICS FOR GAMMA MODEL,
LoG LINK
Transformed Standard Chi
Parameter Level Estimate Estimate Error Squared  p value
Age 17-20 5.541 254.89 0.108 2,624.365  0.000
Age 21-24 5.536 253.70 0.058 9,118.370  0.000
Age 25-29 5.460 235.18 0.041 17,358.976  0.000
Age 30-34 5.418 225.37 0.040 18,045.458  0.000
Age 35-39 5.201 181.47 0.040 17,179.268  0.000
Age 40-49 5.280 196.33 0.034  23,972.547  0.000
Age 50-59 5.295 199.34 0.035  23,125.662  0.000
Age 60+ 5.273 195.00 0.037  20,170.519  0.000
Vehicle-Use DTW <10 0.041 1.04 0.032 1.610 0.205
Vehicle-Use DTW > 10  0.234 1.26 0.034 47.306  0.000
Vehicle-Use  Business 0.497 1.64 0.042 143.183  0.000
Scale 1.007 0.25
EXHIBIT 7-6

PARAMETER VALUES AND STATISTICS FOR GAMMA MODEL,
INVERSE LINK

Transformed Standard Chi

Parameter Level Estimate Estimate Error Squared p value
Age 17-20 3.9881e-03  250.75 0.000 97.894  0.000
Age 21-24 4.1205e-03  242.69 0.000 319.554  0.000
Age 25-29 4.3830e-03  228.15 0.000 557.756  0.000
Age 30-34 4.5016e-03  222.14 0.000 598.102  0.000
Age 35-39 5.4096e-03  184.86 0.000 733.982  0.000
Age 40-49 5.0241e-03  199.04 0.000 867.415  0.000
Age 50-59 4.9727e-03  201.10 0.000 813.669  0.000
Age 60+ 5.055%e-03  197.79 0.000 736.713  0.000

Vehicle-Use DTW < 10 —1.8995e-04 N/A 0.000 1.312  0.252
Vehicle-Use DTW > 10 —1.0005e-03 N/A 0.000 36.478  0.000
Vehicle-Use  Business —1.8767e-03 N/A 0.000 115.193  0.000

Scale 8.7803e-01 0.2189
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EXHIBIT 7-7

PARAMETER VALUES AND STATISTICS INVERSE GAUSSIAN
MODEL, IDENTITY LINK

Standard Chi

Parameter Level Estimate Error Squared p value
Age 17-20 255.91 30.274 71.460 0.000
Age 21-24 261.83 16.277 258.748 0.000
Age 25-29 241.72 9.987 585.880 0.000
Age 30-34 227.34 9.032 633.606 0.000
Age 35-39 180.52 7.341 604.698 0.000
Age 4049 194.90 6.246 973.654 0.000
Age 50-59 198.27 6.428 951.478 0.000
Age 60+ 192.28 6.747 812.169 0.000
Vehicle-Use DTW < 10 8.72 5.862 2.211 0.137
Vehicle-Use DTW > 10 53.77 7.000 59.003 0.000
Vehicle-Use  Business 131.24 12.620 108.154 0.000

Scale 0.0616 0.0077

EXHIBIT 7-8

PARAMETER VALUES AND STATISTICS FOR INVERSE GAUSSIAN
MODEL, LOG LINK

Transformed Standard Chi
Parameter Level Estimate Estimate Error Squared  p value
Age 17-20 5.532 252.65 0.112 2,440.618  0.000
Age 21-24 5.544 255.68 0.060 8,532.551 0.000
Age 25-29 5.466 236.62 0.040 18,319.266  0.000
Age 30-34 5416 224.87 0.039 19,731.991  0.000
Age 35-39 5.205 182.20 0.036  20,832.767  0.000
Age 40-49 5.277 195.85 0.031 29,507.021  0.000
Age 50-59 5.293 198.91 0.031  28,397.992  0.000
Age 60+ 5.268 193.96 0.033  24,828.173  0.000
Vehicle-Use DTW <10  0.041 1.04 0.029 2.025 0.155
Vehicle-Use DTW > 10  0.236 1.27 0.032 55.575  0.000
Vehicle-Use  Business 0.499 1.65 0.043 134.646  0.000

Scale 0.062 0.008
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EXHIBIT 7-9

473

PARAMETER VALUES AND STATISTICS FOR INVERSE GAUSSIAN
MODEL, INVERSE LINK

Transformed Standard Chi
Parameter Level Estimate Estimate Error Squared p value
Age 17-20 4.0365e-03  247.74 4.2843e-04 88.766  0.000
Age 21-24 4.0590e-03 24636  2.3219e-04  305.595 0.000
Age 25-29 4.3454e-03  230.13  1.7757e-04  598.851 0.000
Age 30-34 4.5071e-03  221.87 1.7487e-04 664.311 0.000
Age 35-39 5.4073e-03 18494 1.8031e-04 899.289 0.000
Age 40-49 5.0537¢-03  197.87 1.5568e-04 1,053.840 0.000
Age 50-59 4.9939¢-03  200.24  1.5895e-04 987.095 0.000
Age 60+ 5.0932¢-03  196.34  1.6946e-04  903.299 0.000
Vehicle-Use DTW < 10 —1.9182e-04 N/A 1.4885e-04 1.661 0.198
Vehicle-Use DTW > 10 —1.0146e-03 N/A 1.5237e-04 44.340  0.000
Vehicle-Use  Business —1.9018e-03 N/A 1.7072e-04  124.096 0.000
Scale 6.6167¢-02 8.2708e-03

MODEL, INVERSE SQUARE LINK

EXHIBIT 7-10
PARAMETER VALUES AND STATISTICS FOR INVERSE GAUSSIAN

Transformed Standard Chi
Parameter Level Estimate Estimate Error Squared p value

Age 17-20 1.7319¢-05  240.29 3.1178e-06  30.858  0.000
Age 21-24 1.8382e-05  233.24 1.9533e-06 88.561  0.000
Age 25-29 2.0061e-05  223.27 1.6907¢-06 140.795  0.000
Age 30-34 2.0853e-05 21898 1.6894e-06 152.372  0.000
Age 35-39 2.8057e-05  188.79 1.9110e-06 215.555  0.000
Age 40-49 2.4743e-05 201.04 1.6212¢-06 232938  0.000
Age 50-59 24391e-05 202.48 1.6577e-06 216.488  0.000
Age 60+ 2.5133e-05 199.47 1.7745e-06 200.608  0.000

Vehicle-Use DTW < 10 —1.7550e-06 N/A 1.6060e-06 1.194  0.275

Vehicle-Use DTW > 10 —8.6033e-06 N/A 1.5708e-06  30.000  0.000

Vehicle-Use  Business —1.4323e-05 N/A 1.5899¢-06  81.153  0.000
Scale 0.0747 9.3373e-03
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EXHIBIT 8

PARAMETER VALUES AND STATISTICS FOR GENERALIZED
LINEAR MODEL WITH LOG LINK AND NORMAL ERRORS,
AND GENERAL LINEAR MODEL APPLIED TO LOG RESPONSES

V) 2 3) (C)] 5) Q) (N
General
Normal/ Linear Normal/
Vehicle- Claim Identity Model on Log

Age Use Severity Count Link Log(severity) Link
17-20  Pleasure 250.48 21 265.29 248.57 265.22
17-20 DTW <15 27478 40 274.05 259.50 276.34
17-20 DTW > 15 24452 23 319.26 314.74 334.23
17-20  Business 797.80 5 397.58 407.54 435.21
21-24  Pleasure 213.71 63 258.40 251.48 248.21
21-24 DTW <15 298.60 171 267.16 262.54 258.61
21-24 DTW>15 298.13 92 312.37 31843 312.79
21-24  Business 362.23 44 390.68 412.31 407.29
25-29 Pleasure 250.57 140 238.71 234.64 231.37
25-29 DTW <15 248.56 343 247.46 244.96 241.06
25-29 DTW>15 297.90 318 292.67 297.10 291.57
25-29  Business 34231 129 370.99 384.70 379.65
30-34  Pleasure 229.09 123 229.76 225.07 226.18
30-34 DTW <15 22848 448 238.52 234.97 235.66
30-34 DTW>15 293.87 361 283.72 284.98 285.04
30-34  Business 367.46 169 362.04 369.01 371.15
35-39 Pleasure 153.62 151 175.34 180.50 178.76
35-39 DTW< 15 201.67 479 184.09 188.44 186.25
35-39 DTW>15 23821 381 229.30 228.55 225.27
35-39  Business 256.21 166 307.62 295.94 293.33
40-49 Pleasure 208.59 245 195.35 195.89 198.19
4049 DTW<15 202.80 970 204.11 204.50 206.50
40-49 DTW>15 236.06 719 249.32 248.04 249.76
40-49  Business 352.49 304 327.63 321.17 325.22
50-59 Pleasure 207.57 266 198.86 199.02 200.49
50-59 DTW <15 202.67 859 207.62 207.77 208.90
50-59 DTW>15 253.63 504 252.82 252.00 252.66
50-59  Business 340.56 162 331.14 326.30 328.99

60+ Pleasure 192.00 260 194.82 194.61 197.55

60+ DTW<15 196.33 578 203.58 203.17 205.83

60+ DTW>15 259.79 312 248.78 246.42 248.95

60+ Business 342.58 96 327.10 319.08 324.16
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APPENDIX A
RECONCILIATION OF NOTATION WITH THE LITERATURE

McCullagh and Nelder [17] define the exponential as a two-
parameter family of distributions whose density functions can be
written in the form:

f(r;0,¢) = exp((rf — b(0))/a() + c(r,9)). (A.1)

Generally a(¢) = ¢/w where w is a known prior weight. We will
assume a has this form. Thus to reconcile Equation A.1 with 6.1
it is enough to explain what is meant by the identity

m(r—t)
Yo dt. (A.2)

We must define the function b. Differentiating Equation A.2 with
respect to 6 gives

0 b(0) = —3d(r:1) =

—nudp
_pl) = K
PO =y
because r is a constant. Taking expected values over r shows . =
b'(0) since E(r) = ;1 by Equation 6.2, and so the right hand side
vanishes. Substituting for i and canceling » — 1 shows V(u) =
b"(0). Thus the function b satisfies the differential equation

V('(9) =b"(0), (A.3)

which is enough to determine b; 6 is simply an argument.

Example 6.1 Revisited

Example 6.1 showed that the gamma distribution belongs to
the exponential family by deriving the deviance function from
the density function. We now assume the form of the variance
function and derive the density using the function b. V(u) = 12
corresponds to the gamma distribution, so Equation A.3 gives

b'(0))* = b"(0),
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whence {
p=b'0) =~

and
b(0) = —log(—0).
Plugging into Equation A.1 gives exactly Equation 6.6 with ¢ =
1/v.
Connection with Generalized Linear Models

To solve for the parameters of a generalized linear model us-
ing maximum likelihood directly from Equation A.1, it is neces-
sary to differentiate the log likelihood of an observation r;:

IO, ¢:r) =1 =w(r;0 = b(0))/d + c(r;,9)
with respect to 3;. Using the chain rule and substituting ;. = b'(0),
du/df = b"(0) = V() gives
O _ oLdo dy o
_wir; =b'(0) 1 d_ux
- ¢ b"(0) dn”"
_wii—p 1 dp

__x .
¢ V(wdn Y
which is Equation 5.3 for one observation r; = r, up to a factor
of ¢ which cancels out.



484 MINIMUM BIAS AND GENERALIZED LINEAR MODELS

APPENDIX B
COMPUTER SOLUTION OF GENERALIZED LINEAR MODELS

This section contains annotated SAS IML code to compute
the parameters for a generalized linear model with log link and
gamma errors.

The dataset CARDATA contains the following variables:

1. AGE, the age group classification

2. VUSE, the vehicle-use classification

3. LOSS, the average severity

4. NUMBER, the number of claim counts,

as shown in Exhibit 1.

Comments in SAS are enclosed between * and ;. In IML the
statement * denotes matrix multiplication, # denotes componen-
twise multiplication, and ## denotes componentwise exponenti-
ation.

The SAS IML code is as follows:

DATA CARDATA;

INPUT AGE VUSE LOSS NUMBER;
CARDS;

data lines

PROC IML;

* READ ALL VARIABLES INTO IML VARIABLES AGE, VUSE, R AND W ;
USE CARDATA;

READ ALL VAR AGE INTO AGE;

READ ALL VAR VUSE INTO VUSE;

READ ALL VAR LOSS INTO R;

READ ALL VAR NUMBER INTO W;
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* COMPUTE DESIGN MATRICES ;

A = DESIGN(AGE);

B = DESIGN(VUSE);

* SELECT A BASE CLASS BY DELETING A COLUMN OF B ;

*,1:3] MEANS SELECT COLUMNS 1 THRU 3 ;

B = B[,1:3];

* MODEL DESIGN MATRIX = HORIZONTAL CONCATENATION OF A AND B ;
X =A|B;

* DEFINE A FUNCTION TO COMPUTE THE VARIANCE FUNCTION FOR A ;
* GAMMA DISTRIBUTION ;

START VARFUN(MUIN);

RETURN(MUIN# MUIN); * COMPONENTWISE MULTIPILCATION ;

FINISH;

* WEIGHTS FOR THE LOG LINK, PER Equation 7.3 ;
START W(MUIN);

ANS = MUIN# # 2 / VARFUN(MUIN);

RETURN(ANS);

FINISH;

* INITIALIZE WITH DATA ;
MU = R;
ETA = LOG(MU);

* SET UP HOLDERS FOR CURRENT AND PREVIOUS PARAMETERS ;

* J(NCOL(X),1,10) RETURNS A NCOL(X) x 1 MATRIX WITH VALUE 10, ETC ;
LASTBETA = J(NCOL(X),1,10);

BETA = J(NCOL(X),1,0);

* WHILE SQUARED DISTANCE BETWEEN BETA AND LAST BETA IS LARGE DO ;
DO WHILE((BETA-LASTBETA)* * (BETA-LASTBETA) > 1E-9);

* COMPUTE AUXILLARY VARIABLE ;

Z =ETA + (R - MU) # DETADMU(MU);

* SAVE LAST BETA VECTOR ;
LASTBETA = BETA;

* DO WEIGHTED LEAST SQUARES;
* NOTE: GINV = INVERSE ;
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WEIGHT = W(MU) # W;
BETA = GINV(X‘ * ( WEIGHT # X)) * X * (WEIGHT # 2);

* COMPUTE PREDICTED VALUES ;
ETA = X * BETA;
MU = EXP(ETA);

END;

* PRINT OUT PARAMETERS ;
PRINT | BETA[F = 8.4];

* NOW COMPUTE THE VARIOUS STATS, DEVIANCE AND SO FORTH ;
* MU AND ETA ALREADY HOLD THE LAST ESTIMATES OF PRED VALUES ETC;

* COMPUTE VAR;
VAR = VARFUN(MU);

* COMPUTE GAMMA DEVIANCE :
DEV =2 # W # (-LOG(R / MU) + ((R-MU) / MU));

* PEARSON RESIDUAL AND DEVIANCE RESIDUALS ;
PEARES = (R - MU ) / SQRT(VARY);
DEVRES = SIGN(R - MU) # SQRT(DEV);

NOBS = NROW(X); * NUMBER OF OBSERVATIONS ;
NPARAM = NCOL(X); * NUMBER OF PARAMETERS ;
DF = NOBS - NPARAM; * NUMBER OF DEGREES OF FREEDOM ;

PEARSON = (PEARES# PEARES)[+]; * [+] = SUM OVER COMPONENTS ;
DEVIANCE = DEV[+];

PRINT PEARSON, (PEARSON / DF)[LABEL = "DISPERSION = PEARSON/DF”],
DEVIANCE, (DEVIANCE / DF)[LABEL ="DEVIANCE/DF”];

* LOGLIKELIHOOD FOR GAMMA DISTRIBUTION ;
PHI = DEVIANCE / DF; * ESTIMATE FOR PHI ;
LLH = (W/PHI) # LOG(W # R / (PHI # MU))

-W # R/ (PHI # MU) - LOG(R) - LGAMMA(W/PHI);
* LGAMMA = LOG(GAMMA FUNCTION) ;

PRINT (LLH[+]);
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** ABOVE CODE WILL GIVE THE SAME RESULT AS THE FOLLOWING CODE ;
** USING THE BUILT-IN SAS GENERALIZED LINEAR MODEL ROUTINE, PROC ;
** GENMOD ;

PROC GENMOD DATA = CARDATA;

CLASS AGE VUSE;

SCWGT NUMBER;

MODEL R = AGE VUSE / NOINT DIST = GAMMA LINK = LOG DSCALE;
RUN;



