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Abstract

This paper presents a set of tools for modeling and
combining correlated risks. Various correlation struc-
tures are generated using copula, common mixture, com-
ponent, and distortion models. These correlation struc-
tures are specified in terms of (i) the joint cumulative
distribution function or (ii) the joint characteristic func-
tion and lend themselves to efficient methods of aggre-
gation by using Monte Carlo simulation or fast Fourier
transform.
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1. INTRODUCTION

A good introduction for this research paper is the original
Request For Proposal (RFP) drafted by the CAS Committee on
Theory of Risk. In the following paragraph, the original RFP is
restated with minor modification.

Aggregate loss distributions are probability distribu-
tions of the total dollar amount of loss under one or
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a block of insurance policies. They combine the sep-
arate effects of the underlying frequency and severity
distributions. In the actuarial literature, a number of
methods have been developed for modeling and com-
puting the aggregate loss distributions (see Heckman
and Meyers [8], Panjer [21], and Robertson [23]). The
main issue underlying this research project is how to
combine aggregate loss distributions for separate but
correlated classes of business.

Assume a book of business is the union of dis-
joint classes of business each of which has an ag-
gregate distribution. These distributions may be given
in many different ways. Among other ways, they
may be specified parametrically, e.g., lognormal or
transformed beta with given parameters; they may be
given by specifying separate frequency and severity
distributions; e.g., negative binomial frequency and
Pareto severity with given parameters. The classes
of business are not independent. For this project, as-
sume that we are given a correlation matrix (or some
other easily obtainable measure of dependency) and
that the correlation coefficients vary among differ-
ent pairs of classes. The problem is how to cal-
culate the aggregate loss distribution for the whole
book.

In traditional actuarial theory, individual risks are usually as-
sumed to be independent, mainly because the mathematics for
correlated risks is less tractable. The CAS recognizes the impor-
tance of modeling and combining correlated risks and wishes
to enhance the development of tools and models that improve
the accuracy of the estimation of aggregate loss distributions for
blocks of insurance risks. The modeling of dependent risks has
special relevance to the current on-going project of Dynamic Fi-
nancial Analysis (DFA).
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In general, combining correlated loss variables requires
knowledge of their joint (multivariate) probability distribution.
However, the available data regarding the association between
loss variables is often limited to some summary statistics (e.g.,
correlation matrix). In the special case of a multivariate normal
distribution, the covariance matrix and the mean vector, as sum-
mary statistics, completely specify the joint distribution. For gen-
eral loss frequency or severity distributions, specific dependency
models have to be used in conjunction with summary statistics.
Given fixed marginal distributions and a correlation matrix, one
can construct infinitely many joint distributions. Ideally, models
for dependency structure should be easy to implement and re-
quire relatively few input parameters. As well, the choice of the
dependency model and its parameter values should reflect the
underlying correlation-generating mechanism.

In developing dependency models, we are aiming at simple
implementation by Monte Carlo simulation or by fast Fourier
transform. To this end, we will take the following approaches to
modeling and combining correlated risks:

Sections 2 to 5 serve as a background before major correlation
models are discussed in later parts of this paper. Section 2 re-
views some basic concepts for a discrete probability distribution,
including probability generating function and fast Fourier trans-
form (FFT). Section 3 reviews the aggregate loss model and the
FFT method of calculating aggregate loss distributions. Section 4
introduces some basic concepts and tools for multivariate vari-
ables, including the joint cumulative distribution function and the
joint probability generating function, which will form the basis
of the whole paper. Section 5 reviews some basic measures of de-
pendency, including (Pearson) correlation coefficients, Kendall’s
tau, and Spearman’s rank correlation coefficient.

Sections 6, 7, and 8 investigate various correlation structures
by using the concept of copulas (i.e., multivariate uniform dis-
tributions) as well as the associated simulation techniques. In
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particular, the Cook-Johnson copula and the normal copula lead
to efficient simulation techniques.

Sections 9, 10, and 11, with due consideration to the un-
derlying correlation-generating mechanism, present a variety of
dependency models by using common mixtures and common
shocks. These dependency models allow simple methods of ag-
gregation by Monte Carlo simulation or by fast Fourier trans-
form.

Section 12 presents a multivariate negative binomial model
which lends itself to an efficient FFT method of combining the
correlated risk portfolios. Section 13 gives an example of this
method.

For the reader’s convenience, an inventory of commonly used
univariate distributions is given in Appendix A, including both
discrete and continuous distributions. As a convention, X, Y,
and Z represent any random variables (discrete, continuous, or
mixed), while N and K represent only discrete variables defined
on non-negative integers.

2. PROBABILITY GENERATING FUNCTION AND FFT

This section introduces some basic concepts for discrete prob-
ability distributions.

2.1. Discrete Probability Distributions

Let X be a discrete random variable defined on non-negative
integers, 0,1,2, : : : . It may represent

! the number of claims arising from a specified block of insur-
ance contracts within a pre-specified time period (such as one
year); or

! the claim amount from a single claim count, with a pre-
specified convenient monetary unit (such as $1,000).
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The random variable X can be fully described by a probability
vector

fX = [fX(0),fX(1),fX(2), : : : ,fX(R)],

or simply
fX = [f0,f1,f2, : : : ,fR],

with fX(i) = fi = Pr"X = i#. In this representation, the maximal
possible value of X cannot exceed R. When R is finite, X has
infinitely many vector representations of the form

[f0,f1,f2, : : : ,fR,0,0, : : : ,0],

where a number of zeros are added to the right.

For a discrete variable X with a probability vector fX =
[f0,f1,f2, : : : ,fR], the probability generating function (p.g.f.) is de-
fined by a symbolic series:

PX(t) = f0 +f1t
1 +f2t

2 +f3t
3 + $ $ $+fRtR,

which is also the expected value of tX; i.e., E[tX].

EXAMPLE 2.1 If a discrete variable N has the following proba-
bilities

Pr"N = 0#= 0:5, Pr"N = 2#= 0:4, Pr"N = 5#= 0:1,
(2.1)

then it can be represented by a vector

fN = [0:5,0,0:4,0,0,0:1,0, : : : ,0],

and it has a probability generating function

PN(t) = 0:5+0:4t
2 +0:1t5:

EXAMPLE 2.2 If a discrete variable K has the following proba-
bilities

Pr"K = 1#= 0:4, Pr"K = 2#= 0:3, Pr"K = 3#= 0:3,
(2.2)
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then it can be represented by a vector

fK = [0,0:4,0:3,0:3,0, : : : ,0],

and it has a probability generating function

PK(t) = 0:4t+0:3t
2 +0:3t3:

2.2. Fast Fourier Transforms

First we need to review some basics of complex numbers. Let
i =
%&1 represent a symbol with the property that i2 =&1. The

complex multiplication is defined as

(a+bi)(c+di) = (ac&bd)+ (ad+ bc)i:
An important formula for complex numbers is the Euler formula

eiz = cos(z)+ isin(z):

Now we are ready to define the fast Fourier transform. The
following description of the FFT method draws on Klugman,
Panjer, and Willmot [18] and Brigham [1].

The fast Fourier transform is a one-to-one mapping of n points
into n points. For any n-point vector (f0,f1, : : : ,fn&1), the fast
Fourier transform is the mapping

FFT : f= [f0,f1, : : : ,fn&1] '( f̃= [f̃0, f̃1, : : : , f̃n&1]

defined by

f̃k =
n&1!
j=0

fj exp
"
2¼i
n
jk

#
, k = 0,1, : : : ,n&1: (2.3)

This one-to-one mapping has an inverse mapping:

fj =
1
n

n&1!
k=0

f̃k exp
"
&2¼i
n
kj

#
, j = 0,1, : : : ,n&1: (2.4)



854 AGGREGATION OF CORRELATED RISK PORTFOLIOS

Note that the inverse fast Fourier transform (IFFT) is almost
identical to the FFT except for a sign change and a division by
n. In general, the FFT depends on the vector length n.

The fast Fourier transform in Equation 2.3 can also be viewed
as a simple matrix multiplication:

f̃=Wf=

$%%%%%%%%%%&

1 1 1 $ $ $ 1

1 ! !2
... !n&1

1 !2 !4
... !2(n&1)

...
...

...
...

...

1 !n&1 !2(n&1) $ $ $ !(n&1)2

'(((((((((()
f,

where ! = exp(2¼i=n).

The inverse FFT in Equation 2.4 is just W&1f̃, where

W&1 =
1
n

$%%%%%%%%%%&

1 1 1 $ $ $ 1

1 !&1 !&2
... !&(n&1)

1 !&2 !&4
... !&2(n&1)

...
...

...
...

...

1 !&(n&1) !&2(n&1) $ $ $ !&(n&1)2

'(((((((((()
:

EXAMPLE 2.3 Reconsider the vector associated with the proba-
bility distribution in Equation 2.1. If we use the 5-point vector
representation

f= [0:5,0,0:4,0,0,0:1],

the fast Fourier transform yields

f̃= [1,0:35&0:2598i,0:25+0:433i,
0:8,0:25&0:433i,0:35+0:2598i]:
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If we use the 6-point vector representation by (p)adding an ad-
ditional zero

f= [0:5,0,0:4,0,0,0:1,0],

the fast Fourier transform yields a different vector f̃ as

[1,0:3887&0:2925i,0:0495+0:1302i,0:8117+0:2345i,
0:8117&0:2345i,0:0495&0:1302i,0:3887+0:2925i]:

The fast Fourier transform is a “fast” computing algorithm
because of the following properties: a fast Fourier transform of
length n= 2r can be rewritten as the sum of two fast Fourier
transforms, each of length n=2 = 2r&1, the first consisting of the
even numbered points and the second the odd numbered points.

f̃k =
n&1!
j=0

fj exp
"
2¼i
n
jk

#

=
n=2&1!
j=0

f2j exp
"
2¼i
n
2jk

#
+
n=2&1!
j=0

f2j+1 exp
"
2¼i
n
(2j+1)k

#

=
m&1!
j=0

f2j exp
"
2¼i
m
jk

#
+exp

"
2¼i
n
k

#m&1!
j=0

f2j+1 exp
"
2¼i
m
jk

#
,

where m= n=2 = 2r&1. Hence

f̃k = f̃
a
k +exp

"
2¼i
n
k

#
f̃bk : (2.5)

Each of f̃ak and f̃
b
k can, in turn, be written as the sum of two

transforms of length m=2 = 2r&2. This can be continued succes-
sively.

The successive splitting of transforms into transforms of half
the length will result, after r times, in transforms of length 1.
Knowing the transform of length 1 will allow one to succes-
sively compose the transforms of length 2, 22, 23, : : : ,2r by using
Equation 2.5.
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Based on the above observations, the following comments are
in order:

! To fully utilize the FFT speed, it is better to use a probability
vector of length n= 2r. This can be easily done by adding a
number of zeros to the right.

! Thanks to the fact that many computer packages have already
programmed FFT as a built-in function, we don’t have to carry
out the above steps by ourselves. The main purpose of the
above paragraph is to illustrate why FFT is a fast algorithm.

It should be pointed out that many authors define the trans-
form in Equation 2.3 as a discrete Fourier transform. The fast
Fourier transform is simply a method for computing the discrete
Fourier transform. On the other hand, in some applications such
as Microsoft Excel, the term FFT is used to refer to the more
general discrete Fourier transform. To simplify the terminology,
this paper uses the term FFT for both the transform in Equation
2.3 and the special evaluation technique when n= 2r.

As a theoretical note, the FFT should be viewed as a dis-
cretized version of the Fourier transform or characteristic func-
tion:

Á(z) =
* )

&)
f(x)eizx dx:

The characteristic function maps a continuous probability density
function to a complex-valued continuous function, while the FFT
maps a vector of n values to a vector of n values of complex
numbers. This analog to characteristic functions is crucial to the
understanding of various FFT algorithms presented in this paper.

2.3. Convolution

Suppose that N and K are independent discrete random vari-
ables defined on non-negative integers. Let J =N+K represent
the sum of N and K. The probability distribution of J represents
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the convolution of the probability distributions of N and K and
is defined by

Pr"J = j#=
j!
n=0

Pr"N = n#Pr"K = j&n#, j = 0,1,2, : : : :

EXAMPLE 2.4 For the random variables defined in Equations 2.1
and 2.2, we have

Pr"J = 5#= Pr"N +K = 5#=
5!
n=0

Pr"N = n#Pr"K = 5& n#:

Since many of the terms are zero, we have

Pr"J = 5#= 0+0+Pr"N = 2#Pr"K = 3#+0+0+0 = 0:12:
Now let X represent a discrete claim severity distribution de-

fined on non-negative integers. For a fixed number of k claims,
the total claim amount has a distribution that can be evaluated
through repeated convolutions

f*kX (x) =
x!
y=0

f*(k&1)X (x& y)fX(y), x= 1,2, : : : , (2.6)

with the convention that

f*0(0) = 1:

We call f*k the kth fold convolution of f.

2.3.1. Convolution by probability generating function

Note that

PN+K(t) = E[t
N+K] = E[tN $ tK] = E[tN]E[tK] = PN(t) $PK(t)

due to the independence of N and K. In other words, the prob-
ability generating function of the sum N +K is the product of
PN(t) and PK(t).
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EXAMPLE 2.5 For the random variables defined in Equations
2.1 and 2.2, in terms of probability generating function we
have

PJ (t) = PN(t) $PK(t) = (0:5+0:4t2 +0:1t5)(0:4t+0:3t2 +0:3t3):
After expansion we get

PJ (t) = 0:20t+0:15t
2 +0:31t3 +0:12t4

+0:12t5 +0:04t6 +0:03t7 +0:02t8:

The coefficients of tj give the probability that J = j; e.g.,
Pr"J = 5#= 0:12.

2.3.2. Convolution by FFT

In terms of a characteristic function we have

ÁN+K(t) = E[e
it(N+K)] = E[eitN $ titK]

= E[titN]E[titK] = ÁN(t) $ÁK(t)
due to the independence of N and K. In other words, the
characteristic function of the sum N +K is the product of N
and K.

Because of this relation in terms of characteristic func-
tion, FFT can also be used to perform convolutions. The
FFT for the sum of two independent discrete random vari-
ables is the product of the FFTs of two individual vari-
ables, provided that enough zeros are added (or padded) to
each individual probability vector. Note that FFT is a one-
to-one mapping from n points to n points, which requires
that input and output vectors be the same length. On the
other hand, a longer vector is generally required for a dis-
crete representation of the sum variable than for each compo-
nent, since the sum variable will take on larger values with
non-zero probability. If there is not enough room in the dis-
crete vector, then the tail probabilities for the sum will wrap
around and reappear at the beginning. Therefore, it is crucial
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to add enough zeros to the right of each individual probability
vector.

2.3.3. FFT Algorithm of convolution

If f= [f0,f1, : : : ,fm&1] and g= [g0,g1, : : : ,gk&1] represent two
probability vectors, then the following process can be used to
evaluate their convolution:

! Pad zeros to the given vectors f and g such that each is of
length n+m+ k.

! Apply FFT to each of the vectors: f̃= FFT(f) and g̃= FFT(g).
! Take the product (complex number multiplication), element by
element, of the two vectors: h̃= f̃ $ g̃.

! Apply IFFT to h̃ to recover a probability vector, as the convo-
lution of f and g.

3. AGGREGATE LOSS MODELS AND THE FFT METHOD

In evaluating insurance losses for a book of business, the fre-
quency/severity approach is the most flexible method, where the
estimated mean frequency and mean severity are used to esti-
mate the average aggregate loss. In order to facilitate a dynamic
analysis of the underlying risk, the aggregate loss distribution is
needed to quantify the inherent variability in the aggregate loss
cost. In such situations, in addition to an estimate of the mean
frequency and mean severity, probability distributions are needed
to describe the possible variations in the number of claims and
in the dollar amount of each individual claim. The aggregate loss
distribution combines the effects of both the claim frequency and
claim severity distributions.

This section introduces the basics of aggregate loss models
and how FFT can be used to calculate the aggregate loss distri-
bution.
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3.1. Claim Frequency Distributions

In modeling the frequency of random processes in many fields
of applications, the Poisson distribution is usually the starting
point, although the parameter uncertainty regarding the Poisson
mean often leads to a negative binomial frequency distribution
(see Appendix A.3). Actuaries have found that in most cases
the claim frequency can be modeled by the Poisson or negative
binomial distributions.

! A Poisson distribution with mean ¸ > 0 is defined by a prob-
ability function:

Pr"N = n#= e&¸ ¸
n

n!
, n= 0,1,2, : : : :

The Poisson (¸) distribution has a probability generating func-
tion

PN(t) = E[t
N] = e¸(t&1),

with mean and variance both equal to ¸; i.e., E[N] = Var[N]
= ¸.

! A negative binomial distribution, with parameters ®,¯ > 0, has
a probability function:

pn = Pr"N = n#=
¡ (®+n)
¡ (®)n!

"
1

1+¯

#®" ¯

1+¯

#n
,

n= 0,1,2, : : : :

It has a probability generating function

PN(t) = [1&¯(t&1)]&®,
with E[N] = ®¯ and Var[N] = ®¯(1+¯). In general, for a neg-
ative binomial distribution, the variance exceeds the mean. The
variance to mean ratio is

Var[N]
E[N]

= 1+¯:
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Some actuaries consistently use the variance to mean ratio to
specify a negative binomial distribution. Heckman and Mey-
ers [8] used the contagion parameter, c, to specify a negative
binomial distribution, where

Var[N] = E[N](1+ c $E[N]):

3.2. Claim Severity Distributions

Models for claim severity are very diverse. In many cases, a
theoretical loss distribution is used. A list of the most commonly
used theoretical distributions is given in Appendix A, includ-
ing Pareto, gamma, Weibull and lognormal distributions. Among
the commonly used two-parameter distributions, the ordering of
heaviness (from most heavy to least heavy) of tails is as follows
(see Wang [25]):

Distribution Ranking

Pareto 1
lognormal 2

exponential inverse Gaussian 3
inverse Gaussian 4

Weibull 5
gamma 6

If a large data set is available, an empirical loss distribution
can be used.

Once a severity distribution is selected, in order for fast com-
puter implementation, it is necessary to construct a discrete sever-
ity distribution on multiples of a convenient monetary unit h, the
span. If a theoretical continuous distribution is employed, the fol-
lowing methodology can be used to approximate it by a discrete
distribution.
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3.2.1. The rounding method

Suppose that we are given a continuous distribution with cu-
mulative distribution FX(t) = Pr"X , t#. Choose a span h as ap-
propriate (such that the number of points are sufficient but not ex-
cessive). Let fj denote the probability placed at jh, j = 0,1,2, : : : .
Then set

f0 = FX

"
h

2

#
,

fj = FX

"
jh+

h

2

#
&FX

"
jh& h

2

#
, j = 1,2, : : : :

(3.1)

This method splits the probability between (j+1)h and jh and
assigns it to j+1 and j. This, in effect, rounds all amounts to the
nearest convenient monetary unit, h, the span of the distribution.
For example, the span h can be chosen as every $1000, $5000, or
$10,000. As the monetary unit of measurement becomes small,
the discrete distribution function needs to approach the true dis-
tribution function.

While the main advantage of this rounding method is its sim-
plicity, it has a drawback of not preserving the mean severity of
the continuous distribution.

3.2.2. The matching-mean method

To avoid the drawback of mismatch of mean severity, one can
use a method that forces the matching of the mean.

For a severity distribution with cumulative distribution func-
tion FX , we first evaluate the limited expected values at multiples
of h:

E[X;j $h] =
* j$h

0
[1&FX(u)]du, for j = 1,2, : : : :
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Then we calculate the probability vector by:

f0 = Pr"X = 0 $h#= 1&E[X;h]=h, (3.2)

fj = Pr"X = j $ h#
= (2E[X;j $ h]&E[X; (j&1) $h]&E[X; (j+1) $ h])=h,

j = 1,2, : : : , (3.3)

By doing so, the mean severity of the continuous distribution
is preserved in the discrete distribution. One can verify this by
taking the sum of fi, i= 0,1,2, : : : .

Recall that by taking the second-order derivative of the limited
expected value function we get a probability density function. In
the above method, we first obtain a discrete vector of limited
expected values; by taking the second-order finite difference, we
get a discrete probability function.

3.3. The Aggregation of Frequency and Severity

The aggregate losses are represented as a sum, Z, of a random
number, N, of individual payment amounts (X1,X2, : : : ,XN).

The random sum

Z = X1 +X2 + $ $ $+XN (3.4)

has a probability distribution

fZ(x) = Pr(Z = x)

=
)!
n=0

Pr(N = n)Pr(Z = x -N = n)

=
)!
n=0

Pr(N = n)f*nX (x), (3.5)

where fX(x) = Pr(X = x) is the common probability distribution
of the Xjs.
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A direct evaluation by Equation 3.5 of the aggregate loss dis-
tribution is usually very complicated and time consuming, even
with today’s fast-speed computers. The next subsection intro-
duces the FFT technique for computing the aggregate loss dis-
tribution.

3.3.1. Computing aggregate loss distribution by FFT

In the aggregate loss model in Equation 3.4, we have in terms
of characteristic function:

ÁZ(t) = E[e
it(Z)] = EN[E[e

it(X1+$$$+XN ) -N]]
= EN[ÁX(t)

N] = PN(ÁX(t)),

where PN is the probability generating function of N. This re-
lation in terms of characteristic function suggests the following
FFT algorithm for calculating the aggregate loss distribution:

1. Choose n= 2r for some integer r; n is the number of
points desired in the distribution fZ(x) of aggregate
losses. In other words, the aggregate loss distribution
has negligible probability outside the range [0,n]. This
range should be determined before one knows the exact
aggregate loss distribution. Knowledge of the mean and
standard deviation of the aggregate loss amount should
be helpful.

2. Transform the severity probability distribution from a
continuous one to a discrete one. The selection of
the span h should depend upon the probable range of
the severity distribution, as well as the intended ap-
plication (central range or the extreme right tail). Let
(f0,f1, : : : ,fm&1) represent the discrete claim severity dis-
tribution.

Add zeros to the given severity probability vector so
that it is of length n. We denote the padded discrete sever-
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ity distribution by

fX = [fX(0),fX(1), : : : ,fX(n&1)]:

3. Apply FFT to the severity probability vector: f̃X =
FFT(fX).

4. Apply the probability generating function of the fre-
quency, element by element, to the FFT of the severity
vector: f̃Z = PN(f̃X).

5. Apply IFFT to recover the aggregate loss distribution:
fZ = IFFT(f̃X).

As a simple example of the above algorithm, let severity be
the degenerate distribution $1 with certainty, and let frequency
be negative binomial. Thus the aggregate distribution is the neg-
ative binomial. By choosing the number of points, n, the discrete
severity distribution is an n-point vector (0,1,0, : : : ,0). The FFT
of the severity vector gives a vector of roots of unity. One can
check that the FFT algorithm closely reproduces the negative bi-
nomial distribution if the number of points used is sufficiently
large.

The FFT and IFFT algorithms are available in many computer
software packages including Microsoft Excel. This makes the
implementation of the FFT method widely accessible.

3.4. Techniques for Combining Multiple Lines of Business

3.4.1. Combining two lines of business by convolution

Suppose that we are combining two lines of business:

! Line 1 has a claim frequency N and a discrete claim severity X.
! Line 2 has a claim frequency K and a discrete claim severity Y.
! Assume that N, X, K, and Y are mutually independent.
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! We are interested in the probability distribution of the aggre-
gate losses for the combined portfolio:

Z = (X1 + $ $ $+XN)+ (Y1 + $ $ $+YK):

Under the above assumptions, we have

ÁZ(t) = PN(ÁX(t)) $PK(ÁY(t)):
This relation in terms of characteristic function suggests the fol-
lowing FFT procedure:

Let g̃ and h̃ represent the FFT of the aggregate loss distribu-
tions for Line 1 and Line 2, respectively:

g̃= PN(f̃X), h̃= PK(f̃Y):

Before applying IFFT to each of g̃ and h̃, we take the complex
product (element by element) of g̃ and h̃. Then apply the IFFT
to the product g̃ $ h̃ to recover the aggregate loss distribution for
Line 1 and Line 2 combined:

fZ = IFFT(g̃ $ h̃):
Under this approach, the aggregate claim frequency is the

convolution of individual claim frequency distributions. If each
individual line has a negative binomial frequency distribution, the
aggregate frequency distribution obtained by convolution may no
longer be a negative binomial distribution.

3.4.2. The Poisson model

Here is a basic Poisson model for combining different lines
of business:

Assume that we are combining k lines of business. For j =
1,2, : : : ,k, assume that Line j has a Poisson frequency with mean
¸j and a severity distribution Fj . We assume that losses from
different lines of business are independent.
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In terms of characteristic function we have

ÁZ(t) =
k+
j=1

PNj
(ÁXj (t))

=
k+
j=1

e
¸j (ÁXj

(t)&1)

= e¸(ÁX(t)&1),

where ¸= ¸1 + $ $ $+¸k, and

ÁX(t) =
¸1
¸
ÁX1(t) + $ $ $+

¸k
¸
ÁXk
(t):

Therefore, the aggregate losses for the k lines of business
combined have a Poisson frequency with mean

¸= ¸1 +¸2 + $ $ $+¸k (3.6)

and a severity distribution that is a weighted average of each
individual severity distribution:

F(x) =
¸1
¸
F1(x)+

¸2
¸
F2(x)+ $ $ $+

¸k
¸
Fk(x): (3.7)

In summary, under the assumption of mutual independence
between lines and a Poisson frequency model for each line, the
aggregate loss distribution fork lines can be calculated as if you
had a single line, provided that the frequency and severity are
adjusted using Equations 3.6 and 3.7.

Next, we must consider the following complications: (i) the
presence of parameter risk and (ii) possible correlation between
lines. These two factors are often interrelated.

As an alternative to the Poisson model, the negative binomial
distribution is commonly used to adjust for parameter uncer-
tainty. Recall that a negative binomial distribution can be ob-
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TABLE 1

FREQUENCY/SEVERITY DISTRIBUTIONS

Mean Frequency Var/Mean Severity
Line Frequency Ratio Distribution

1 E(N1) 1+¯1 F1
2 E(N2) 1+¯2 F2
...

...
...

...

k E(Nk) 1+¯k Fk

tained by assuming a gamma distribution for the unknown Pois-
son mean (see Appendix A.3).

With the presence of parameter uncertainty, we have to re-
evaluate the independence assumption between lines. The com-
mon parameter uncertainty may have a similar effect (i.e., over-
or under-estimate) on our estimates of individual line mean fre-
quencies. In such cases, the individual claim frequencies may
be correlated as a result of the common estimation error (due
to the same underlying data quality, variations of the under-
writing and claim handling practices of an insurer from the
industry average, or bias in the trend and development factors
used).

3.4.3. Negative binomial model

In general, consider k lines of business with the frequency/
severity distributions shown in Table 1.

Regardless of which specific frequency model is used, the
following general relationships hold:

! The mean of the aggregate frequency is the sum of each indi-
vidual line mean frequency:

E[Nagg] = E[N1]+E[N2]+ $ $ $+E[Nk]: (3.8)
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! The total variance of the aggregate frequency can be calculated
by:

Var[Nagg] = Var

,- k!
i=1

Ni

./= k!
i=1

Var[Ni]+ 2
!
i<j

Cov[Ni,Nj]:

(3.9)

A simple and direct approach to incorporating claim count
parameter uncertainty is to assume a negative binomial distri-
bution for the aggregate frequency for all lines combined. With
this aggregate approach, the negative binomial parameters can be
readily estimated from E[Nagg] and Var[Nagg] in Equations 3.8
and 3.9. The severity distribution for all lines combined can be
calculated as the weighted average of individual severity distri-
butions:

F(x) =
E[N1]
E[Nagg]

F1(x)+
E[N1]
E[Nagg]

F2(x) + $ $ $+
E[Nk]
E[Nagg]

Fk(x):

(3.10)

Here is the rationale for this approach: Suppose that after ap-
plying trend factors and development factors to losses by line of
business, we blend all the trended ultimate losses (or in a reinsur-
ance application, losses in an excess layer) from all lines com-
bined. By considering these consolidated losses from all lines
of business, the empirical aggregate frequency has a mean as
given in Equation 3.8, and the empirical aggregate severity has
a severity distribution as in Equation 3.10. The only difference
between the aggregate and individual approaches is the follow-
ing: The individual approach assumes that each line of business
has a negative binomial frequency, while the aggregate approach
assumes that the aggregate frequency for all lines combined has
a negative binomial distribution.

One major advantage of this approach is its simplicity. By
simply adjusting the variance to mean ratio in the aggregate neg-
ative binomial frequency, one can easily take account of the pa-
rameter uncertainty for each line, as well as correlations between
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lines. Suppose that we have the following correlation matrix be-
tween Njs: $%%%%%&

½11 ½12 $ $ $ ½1k

½21 ½22 $ $ $ ½2k
...

...
...

...

½k1 ½k2 $ $ $ ½kk

'((((() ,

then we can calculate the overall variance to mean ratio using
Equation 3.9 and the relation

Cov[Ni,Nj] = ½ij
0
Var[Ni]

0
Var[Nj]:

The above method may not be theoretically exact if each in-
dividual line (instead of the aggregate of all lines) has a negative
binomial frequency, as assumed in the Request for Proposal by
the CAS Committee on Theory of Risk. Sections 11 and 12 dis-
cuss some exact methods for combining individual lines, each
having a negative binomial frequency.

3.5. Other Methods for Calculating the Aggregate Loss
Distributions

Over the past two decades there have developed a number of
methods for calculation of the aggregate loss distribution from
given frequency and severity distributions.

1. Panjer’s [21] recursive algorithm is easy to explain and
implement. In Appendix C we give a brief introduction
of this method.

2. The Heckman–Meyers [8] method utilizes direct inver-
sion of characteristic functions.

3. Robertson [23] presented a FFT method using piecewise
uniform severity distributions, instead of a discrete sever-
ity distribution.
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4. The proposed FFT method in this paper uses a discrete
severity distribution that has, after padding zeros, n= 2r

points. This is to exploit the fast speed of the FFT algo-
rithm and to facilitate spreadsheet calculations. Another
advantage of the FFT method is that it allows a direct
extension to multivariate variables, as we will see later
in this paper.

5. The recursive method may encounter some numerical
problems such as overflow/underflow with a large ex-
pected claim count. On the other hand, the Heckman–
Meyers method performs well with large claim frequen-
cies. Panjer and Willmot [22] discuss ways of dealing
with large frequency problems for the recursive meth-
od. For the FFT method, the problem with a large
claim count is setting the span small enough to cap-
ture features of the severity distribution, but large
enough that n times span gives enough room for the
aggregate distribution. For divisible frequency distri-
butions like the Poisson and negative binomial, one
can get around the problem by building the aggregate
distribution in pieces (say a small number of claims at
a time) and adding the resulting distributions by con-
volution.

4. SOME TOOLS FOR MULTIVARIATE DISTRIBUTIONS

4.1. Review of Univariate Case

Let X be a non-negative random variable of discrete, con-
tinuous, or mixed type. Let fX(x) be the probability (density)
function of X; i.e.,

fX(x) =

123
Pr"X = x#, if X is discrete
d

dx
FX(x), if X is continuous.
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! The probability generating function (p.g.f.) of X is defined by

PX(t) = E[t
X] =

45
fX(x)t

x if X is discrete6
fX(x)t

x dx if X is continuous.

! The moment generating function (m.g.f.) of X is defined by
MX(t) = E[e

tX] = PX(e
t):

! The characteristic function (ch.f.), also called Fourier trans-
form, is defined by

ÁX(t) = E[e
itX] = PX(e

it) =MX(it),

where i =
%&1 is the imaginary unit.

! It holds that PX(1) =MX(0) = ÁX(0) = 1, and

E[X] =
7
d

dt
PX(t)

8
t=1
=
7
d

dt
MX(t)

8
t=0
=&i

7
d

dt
ÁX(t)

8
t=0
:

4.2. Multivariate Framework

For a set of random variables (X1, : : : ,Xk), let fX1,:::,Xk be their
joint probability (density) function; i.e.,

fX1,:::,Xk
(x1, : : : ,xk) =19293

Pr"X1 = x1, : : : ,Xk = xk#, if the Xj are discrete

@k

@x1 $ $ $@xk
FX1,:::,Xk

(x1, : : : ,xk), if the Xj are continuous.

For any subset of "X1,X2, : : : ,Xk#, their (joint) probabil-
ity distribution is called a marginal probability distribution of
fX1,X2,:::,Xk

. As special cases, fX1 is a univariate marginal distribu-
tion of fX1,X2,:::,Xk , and fX1,X2 is a bivariate marginal distribution
of fX1,X2,:::,Xk .

As standard tools for multivariate random variables (X1, : : : ,
Xk), the joint probability generating function, joint moment gen-
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erating function, and joint characteristic function are defined as
follows (see Johnson et al., [16, pp. 2–12]):

PX1,:::,Xk
(t1, : : : , tk) = E[t

X1
1 $ $ $ t

Xk
k ];

MX1,:::,Xk (t1, : : : , tk) = E[e
t1X1+$$$+tkXk ] = PX1,:::,Xk (e

t1 , : : : ,etk );

ÁX1,:::,Xk (t1, : : : , tk) = E[e
i(t1X1+$$$+tkXk)] = PX1,:::,Xk (e

it1 , : : : ,eitk ):

Note that in terms of the probability (density) function we have

PX1,:::,Xk (t1, : : : , tk) =:5
(x1,:::,xk)

fX1,:::,Xk (x1, : : : ,xk)t
x1
1 $ $ $ txkk , discrete case6)

&) $ $ $
6)
&)fX1,:::,Xk (u1, : : : ,uk)t

u1
1 $ $ $ tukk du1 $ $ $duk, continuous case.

The joint probability generating function PX1,:::,Xk or the joint
characteristic function ÁX1,:::,Xk completely specifies a multivari-
ate distribution. Equivalent results are obtained either in terms
of probability generating function or in terms of characteristic
function.

! The probability generating function or characteristic function
for the univariate marginal distribution FXj can be obtained by

PXj
(tj) = PX1,:::,Xj ,:::,Xk (1, : : : ,1, tj ,1, : : : ,1),

ÁXj
(tj) = ÁX1,:::,Xj ,:::,Xk (0, : : : ,0, tj,0, : : : ,0):

! If the variables X1, : : : ,Xk are mutually independent, then

PX1,:::,Xk (t1, : : : , tk) =
k+
j=1

PXj (tj):

! If two sets of variables "X1, : : : ,Xm# and "Y1, : : : ,Yn# are inde-
pendent, then

PX1,:::,Xm,Y1,:::,Yn(t1, : : : , tm,s1, : : : ,sn)

= PX1,:::,Xm(t1, : : : , tm)PY1,:::,Yn(s1, : : : ,sn):
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! The covariances can be evaluated by Cov[Xi,Xj] = E[XiXj]&
E[Xi]E[Xj] with

E[XiXj] =
@2

@ti @tj
PX1,:::,Xm

(1, : : : ,1)

=& @2

@ti @tj
ÁX1,:::,Xm

(0, : : : ,0):

This can be seen from the expression

@2

@ti @tj
PX1,:::,Xk

(t1, : : : , tk)

=
!
xixjfX1,:::,Xk (x1, : : : ,xk)t

x1
1 $ $ $ t

xi&1
i $ $ $ txj&1j $ $ $ txkk :

! For a discrete multivariate distribution, the joint probability
function is

fX1,:::,Xk
(x1, : : : ,xk) =

@x1+$$$+xk
(@t1)

x1 $ $ $(@tk)xk
PX1,:::,Xk

(0, : : : ,0)
k+
i=1

1
xi!
:

4.3. Aggregation of Correlated Variables

THEOREM 1 For any k correlated variables X1, : : : ,Xk with joint
probability generating function PX1,:::,Xk and joint characteristic
function ÁX1,:::,Xk , the sum Z = X1 + $ $ $+Xk has a probability gen-
erating function and a characteristic function:

PZ(t) = PX1,:::,Xk (t, : : : , t), ÁZ(t) = ÁX1,:::,Xk (t, : : : , t):

Proof PZ(t) = E[t
X1+$$$+Xk ] = E[tX1 $ $ $ tXK ] = PX1,:::,Xk (t, : : : , t).

If we know the joint characteristic function of the k corre-
lated variables X1, : : : ,Xk, it is straightforward to get the char-
acteristic function for their sum ÁZ(t) = ÁX1,:::,Xk (t, : : : , t). Then
the probability distribution of Z can be obtained by inverse
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Fourier transform. In actual computer implementation, a discrete
version (FFT method) can be used. The relation ÁX1+$$$+Xk (t) =
ÁX1,:::,Xk

(t, : : : , t), along with its associated FFT algorithm, can be
used to

! combine correlated risk portfolios if we let Xi represent the
aggregate loss distributions for each individual risk portfo-
lio,

! evaluate the total claim number distribution if we let Xi rep-
resent the claim frequency for each individual risk portfolio,
or

! combine individual claims if we let Xi represent the claim size
for each individual risk.

4.4. Aggregation of Risk Portfolios with Correlated Frequencies

Consider the aggregation of two correlated risk portfolios:

Z = (X1 + $ $ $+XN)+ (Y1 + $ $ $+YK),
where N and K are correlated, while the pair (N,K) is indepen-
dent of the claim sizes X and Y, and the Xis and Yjs are mutually
independent. We have

PZ(t) = E[t
Z] = E[t(X1+$$$+XN )+(Y1+$$$+YK )]

= EN,KE[t
(X1+$$$+Xn)+(Y1+$$$+Ym) -N = n, K =m]

= EN,K[PX(t)
NPY(t)

K]

= PN,K(PX(t),PY(t)):

In terms of characteristic function we have

ÁZ(t) = PN,K(ÁX(t),ÁY(t)): (4.1)
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5. MEASURES OF CORRELATION

5.1. Pearson Correlation Coefficients

For random variables X and Y, the (Pearson) correlation co-
efficient, defined by

½(X,Y) =
Cov[X,Y]
¾[X]¾[Y]

,

always lies in the range [&1,1]. The Pearson correlation coef-
ficient is also called a linear correlation coefficient. Note that
½(X,Y) = 1 if and only if X = aY+b for some constants a > 0
and b. If there is no linear relationship between X and Y, the
permissible range of ½(X,Y) is further restricted.

EXAMPLE 5.1 Consider the case that logX .N(¹,1) and logY .
N(¹¾,¾2). The maximum correlation between X and Y is ob-
tained when the deterministic relation Y = X¾ holds. Thus, for
random variables with these fixed marginal distributions we have
[see Appendix A.4.2]

max"½(X,Y)#= exp(¾)& 10
exp(¾2)&1%e&1

:

Observe that

! max"½(X,Y)#= 1 when ¾ = 1 (i.e., X = Y),
! max"½(X,Y)# decreases to zero as ¾ increases to ), and
! max"½(X,Y)# decreases to 1=%e&1 as ¾ decreases to 0.
For a set of k random variables X1, : : : ,Xk, the correlation ma-

trix $%%&
½(X1,X1) $ $ $ ½(X1,Xk)

...
...

...

½(Xk,X1) $ $ $ ½(Xk,Xk)

'(() , &1, ½(Xi,Xj), 1,
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is always positive definite, as it is symmetric and diagonally dom-
inant.

5.2. Covariance Coefficients

For non-negative random variables X and Y, we define the
covariance coefficient as

!(X,Y) =
Cov[X,Y]
E[X]E[Y]

= ½(X,Y)
¾[X]
E[X]

¾[Y]
E[Y]

= ½(X,Y)CV(X)CV(Y),

where CV refers to the coefficient of variation. Note that the per-
missible range of !(X,Y) depends on the shape of the marginal
distributions.

EXAMPLE 5.2 Reconsider the variables X and Y in Example 5.1.
It can be shown that

max"!(X,Y)#= e¾&1:
Observe that

! max"!(X,Y)#= e&1 when ¾ = 1 (i.e., X = Y),
! max"!(X,Y)# increases to infinity as ¾ increases to infinity,
and

! max"!(X,Y)# decreases to zero as ¾ decreases to zero.
For k non-negative random variables, X1, : : : ,XK , we define

the matrix of covariance coefficients as$%%&
!(X1,X1) $ $ $ !(X1,Xk)

...
...

...

!(Xk,X1) $ $ $ !(Xk,Xk)

'(() :
One should exercise caution when choosing a parameter value

for !(X,Y), as its permissible range is sensitive to the marginal
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distributions. A practical method for obtaining the maximal pos-
itive and negative covariances between risks X and Y is given in
Equations 5.1 and 5.2.

5.3. Frechet Bounds, Comonotonicity, and Maximal Correlation

Now consider the bivariate random variables (X,Y). Let

FX,Y(x,y) = Pr"X , x,Y , y#, SX,Y(x,y) = Pr"X > x, Y > y#
be the joint cumulative distribution function and the joint sur-
vivor function of (X,Y), respectively. Note that

FX,Y(x,)) = FX(x),
FX,Y(),y) = FY(y), for &)< x,y <)
SX,Y(x,y) = 1&FX(x)&FY(y)+FX,Y(x,y) /= 1&FX,Y(x,y):

If X and Y are independent, then FX,Y(x,y) = FX(x) $FY(y) and
SX,Y(x,y) = SX(x) $ SY(y). In general, the joint cumulative distri-
bution function F(x,y) is constrained from above and below.

LEMMA 1 For any bivariate cumulative distribution function FX,Y
with given marginal distributions FX and FY, we have

max[FX(x)+FY(y)&1,0], FX,Y(x,y),min[FX(x),FY(y)]:

Proof The first inequality results from the fact that S(x,y)+
0, and the second inequality can be proven using P(A0B),
min[P(A),P(B)].

The upper bound

Fu(x,y) = min[FX(x),FY(y)]

and the lower bound

Fl(x,y) = max[FX(x)+FY(y)&1,0]
are called Frechet bounds.
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Closely associated with Frechet bounds is the concept of co-
monotonicity. The upper Frechet bound is reached if X and Y
are comonotonic. The lower Frechet bound is reached if X and
&Y are comonotonic.

DEFINITION 1 Two random variables X and Y are comonotonic if
there exists a random variable Z such that

X = u(Z), Y = v(Z), with probability one,

where the functions u and v are non-decreasing.

Recall that X and Y are positively perfectly correlated if and
only if Y = aX +b, a > 0. This linear condition is quite restric-
tive. Comonotonicity is an extension of the concept of perfect
correlation to random variables with non-linear relations. Con-
sider the following excess reinsurance arrangement of risk Z:
the ceding company retains the first portion of any loss, and the
reinsurer pays the excess portion. Putting it mathematically, the
payments of the ceding company and the reinsurer will be

X =

4
Z, Z , d
d, Z > d,

Y =

4
0, Z , d
Z& d, Z > d

respectively. Note that X and Y are not perfectly correlated since
one cannot be written as a function of the other. However, since
X and Y are always non-decreasing functions of the original risk
Z, they are comonotonic. They are bets on the same event, and
neither of them is a hedge against the other.

5.4. Comonotonicity and Monte Carlo Simulation

The concept of comonotonicity can also be explained in terms
of Monte Carlo simulation by inversion of random uniform num-
bers.

Assume that X has a cumulative distribution function FX and
a survivor function SX(x) = 1&FX(x). We define F&1X and S&1X as



880 AGGREGATION OF CORRELATED RISK PORTFOLIOS

follows:

F&1X (q) = min"x : FX(x)+ q#, 0< q < 1

S&1X (q) = min"x : SX(x), q#, 0< q < 1:

Note that F&1X is non-decreasing, S&1X is non-increasing, and
S&1X (q) = F

&1
X (1& q):

The traditional Monte Carlo simulation method is based on
the following result.

LEMMA 2 For any random variable X and any random variable
U which is uniformly distributed on (0,1), X and F&1X (U) have the
same cumulative distribution function.

Proof P"F&1X (U), x#= P"U , FX(x)#= FX(x).

A Monte Carlo simulation of a random variable X can be
achieved by first drawing a random uniform number u from U.
Uniform(0,1) and then inverting u by x= F&1X (u).

In order to simulate comonotonic risks X and Y, the same
sample of random uniform numbers can be used in an inversion
by FX and FY, respectively. By contrast, if X and Y are indepen-
dent, two independent samples of random uniform numbers have
to be used in an inversion by FX and FY, respectively.

For given marginal distributions FX and FY, the maximal pos-
sible correlation exists when X and Y are comonotonic. Based
on the Monte Carlo method of generating comonotonic risks, we
can calculate the maximal possible covariance between two risks
with given marginal probability distributions by:

1
n

n!
j=1

F&1X

"
j

n+1

#
F&1Y

"
j

n+1

#

&
$&1
n

n!
j=1

F&1X
"

j

n+1

#')$&1
n

n!
j=1

F&1Y
"

j

n+1

#') (5.1)
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for some large number n. The maximal negative correlation exists
when X and &Y are comonotonic, in which case an approxima-
tion of the covariance can be obtained from

1
n

n!
j=1

F&1X

"
j

n+1

#
F&1Y

"
n+1& j
n+1

#

&
$&1
n

n!
j=1

F&1X

"
j

n+1

#')$&1
n

n!
j=1

F&1Y

"
n+1& j
n+1

#')
(5.2)

for some large number n.

As we have seen, the permissible range for the Pearson cor-
relation coefficient can be quite limited and subject to change
under a transformation of the random variable. To overcome the
shortcomings of the (linear) correlation coefficient, we can use
distribution-free measures of correlation such as Kendall’s tau
and Spearman’s rank correlation coefficient.

5.5. Kendall’s Tau and Spearman’s Rank Correlation
Coefficient

Kendall’s tau is a nonparametric correlation measure defined
as

¿ = ¿(X,Y)

= Pr"(X2&X1)(Y2&Y1)+ 0#&Pr"(X2&X1)(Y2&Y1)< 0#,
in which (X1,Y1) and (X2,Y2) are two independent realizations of
a joint distribution.

Another nonparametric correlation measure is Spearman’s
rank correlation coefficient:

RankCorr(X,Y) = 12E
;
(FX(X)&0:5)(FY(Y)&0:5)

<
:
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Both Kendall’s tau and Spearman’s rank correlation coeffi-
cient satisfy the following properties (see for example, Genest
and Mackay [7]):

! &1, ¿ , 1; &1,RankCorr, 1,
! if X and Y are comonotonic, then ¿ = 1 and RankCorr = 1,
! if X and &Y are comonotonic, then ¿ =&1 and RankCorr =
&1,

! if X and Y are independent, then ¿ = 0 and RankCorr = 0,
! ¿ is invariant under strictly monotone transforms, that is, if
f and g are strictly increasing (or decreasing) functions, then
¿(f(X),g(Y)) = ¿(X,Y) and

RankCorr(f(X),g(Y)) = RankCorr(X,Y),

! if FX and FY are the cumulative distribution functions of
two continuous random variables, we have ¿(FX(X),FY(Y)) =
¿(X,Y) and RankCorr(FX(X),FY(Y)) = RankCorr(X,Y). Thus,
Kendall’s tau and rank correlation coefficient are often mea-
sured in terms of uniform random variables over [0,1]1 [0,1].
Kendall’s tau can be calculated, with due attention to singu-

larity, as

¿(X,Y) = 4
* 1

0

* 1

0
FX,Y(x,y)d

2FX,Y(x,y)&1:

Assume that we have available a random sample of bivariate
observations, (Xi,Yi), i= 1, : : : ,k. A non-parametric estimate of
Kendall’s tau is

¿̂(X,Y) =
2

k(k&1)
!
i<j

sign[(Xi&Xj)(Yi&Yj)],

where sign[z] equals 1, 0, or &1 when z is positive, zero, or
negative, respectively.
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TABLE 2

A SAMPLE OF INCURRED LOSSES AND ALAE

Claimant # Amount of Incurred Losses Amount of ALAE

98001 50 5.0
98002 65 4.0
98003 28 0.0
98004 75 6.5
98005 38 4.5

Average 51.2 4
Std. Dev. 17.15 2.168

EXAMPLE 5.3 Suppose that we have a set of data for incurred
losses and allocated loss adjusted expense as shown in Table 2.

The Pearson correlation coefficient can be estimated by:

(50&51:2)(5:0&4:0)+ $ $ $+(38&51:2)(4:5&4:0)
5(17:15)(2:168)

= 0:78:

Kendall’s tau can be estimated by

¿̂(X,Y) =
2

k(k&1)
!
i<j

sign[(Xi&Xj)(Yi&Yj)] = 0:6:

To calculate the rank correlation coefficient, we first rank each
claim by the ordering of losses and ALAE as shown in Table 3.

The Spearman rank correlation coefficient can be calculated
as the ordinary Pearson correlation coefficient between the ranks
of the losses and ALAE:

(3&3)(4& 3)+ $ $ $+(2&3)(3& 3)
5
%
2
%
2

= 0:7:

The choice between Kendall’s tau and the rank correlation
coefficient depends on their relative simplicity for the intended
application. Some commonly used random number generators
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TABLE 3

RANK ORDERING OF LOSSES AND ALAE

Claimant # Rank of Incurred Losses Rank of ALAE

98001 3 4
98002 4 2
98003 1 1
98004 5 5
98005 2 3

Median 3 3

Average 3 3
Std. Dev.

%
2

%
2

(e.g., Palisade @Risk, which is a Microsoft Excel add-in) have
implemented a method from Iman and Conver [12] to induce a
given rank correlation structure.

6. THE CONCEPT OF COPULA

Recall that a Monte Carlo simulation of a random variable X
can be achieved by first drawing a random uniform number u
from U .Uniform(0,1) and then inverting u by x= F&1X (u). In a
similar way, a Monte Carlo simulation of k variables, (X1, : : : ,Xk),
usually starts with k uniform random variables, (U1, : : : ,Uk). If
the variables (X1, : : : ,Xk) are independent (or correlated), then
we need k independent (or correlated) uniform random variables
(U1, : : : ,Uk). For a set of given marginal distributions, the corre-
lation structure of the variables (X1, : : : ,Xk) is completely deter-
mined by the correlation structure of the uniform random vari-
ables, (U1, : : : ,Uk).

DEFINITION 2 A copula is defined as the joint cumulative distri-
bution function of k uniform random variables

C(u1, : : : ,uk) = Pr"U1 , u1, : : : ,Uk , uk#:
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For any set of arbitrary marginal distributions, the formula

FX1,:::,Xk
(x1, : : : ,xk) =C(FX1 (x1), : : : ,FXk (xk)) (6.1)

defines a joint cumulative distribution function with marginal
cumulative distributions FX1 , : : : ,FXk . The formula

SX1,:::,Xk
(x1, : : : ,xk) = C(SX1(x1), : : : ,SXk (xk)) (6.2)

defines a joint survivor function with marginal survivor function
SX1 , : : : ,SXk .

The multivariate distributions given by Equations 6.1 and 6.2
are usually different, although they both have the same set of
Kendall’s tau and the same set of rank correlation coefficients.

7. THE COOK–JOHNSON FAMILY OF DISTRIBUTIONS

Let (U1, : : : ,Uk) be a k-dimensional uniform distribution with
support on the hypercube (0,1)k and having the joint cumulative
distribution function

F(®)U1,:::,Uk
(u1, : : : ,uk) =

123
k!
j=1

u
&1=®
j & k+1

=>?
&®

, (7.1)

where uj 2 (0,1), j = 1, : : : ,k, and ® > 0. This multivariate uni-
form distribution has a Kendall’s tau:

¿(Xi,Xj) = ¿(Ui,Uj) =
1

1+2®
:

On the other hand, for this family of multivariate distributions,
there is no simple analytic form for the rank correlation coeffi-
cient.

Cook and Johnson [3] studied the family of multivariate uni-
form distributions given by Equation 7.1. They showed that

lim
®(0

F(®)U1,:::,Uk
(u1, : : : ,uk) = min[u1, : : : ,uk],
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and

lim
®()F

(®)
U1,:::,Uk

(u1, : : : ,uk) =
k+
j=1

uj:

Thus, the correlation approaches its maximum (i.e., comono-
tonicity) when ® decreases to zero, and the correlation ap-
proaches zero when ® increases to infinity.

Cook and Johnson also gave the following simple simula-
tion algorithm for the multivariate uniform distribution given by
Equation 7.1:

STEP 1 Let Y1, : : : ,Yk be independent and each have an exponen-
tial (1) distribution.

STEP 2 Let Z have a gamma(®,1) distribution.

STEP 3 Then the variables

Uj = [1+Yj=Z]
&®, j = 1, : : : ,k, (7.2)

have a joint cumulative distribution function given by Equation
7.1.

For a set of arbitrary marginal distributions, FX1 , : : : ,FXk , we
can define a joint cumulative distribution function by

FX1,:::,Xk (x1, : : : ,xk) =

123
k!
j=1

FXj (xj)
&1=®& k+1

=>?
&®

: (7.3)

Alternatively, we can define a joint survivor function by

SX1,:::,Xk
(x1, : : : ,xk) =

123
k!
j=1

SXj
(xj)

&1=®& k+1
=>?
&®

: (7.4)

Note that Kendall’s tau for this multivariate distribution is also
1=(1+2®), which is determined by the underlying copula and is
invariant under monotone transforms.
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Consider the task of aggregating k risk portfolios, (X1, : : : ,Xk),
where each Xj may represent the aggregate loss amount for the
jth risk portfolio. If we assume that (X1, : : : ,Xk) have a multivari-
ate distribution given by Equation 7.3, a simulation of (X1, : : : ,Xk)
can be easily implemented by:

STEP 4 Invert the (U1, : : : ,Uk) in Equation 7.2 using (F
&1
X1
, : : : ,

F&1Xk ).

Alternatively, if we assume that (X1, : : : ,Xk) have a multivari-
ate distribution given by Equation 7.4, a simulation of (X1, : : : ,Xk)
can be easily implemented by:

STEP 4* Invert the (U1, : : : ,Uk) in Equation 7.2 using (S
&1
X1
, : : : ,

S&1Xk ).

In the multivariate uniform distribution given by Equation 7.1,
all correlations are positive. Negative correlations can be accom-
modated by applying the transforms U*i = 1&Ui to some, but not
all, uniform variables in Equation 7.2.

In this dependency model, no restriction is imposed on the
marginal distributions, FXj or SXj , j = 1, : : : ,k. However, the cor-
relation parameters are quite restricted in the sense that the
Kendall’s taus have to be the same for any pair of risks. To over-
come this restriction in the correlation parameters, the normal
copula permits arbitrary correlation parameters, ¿ij = ¿(Xi,Xj). It
is explained in the next section.

8. THE NORMAL COPULA AND MONTE CARLO SIMULATION

In general, the modeling and combining of correlated risks are
most straight-forward if the correlated risks have a multivariate
normal distribution. In this section, we will use the multivariate
normal distribution to construct the normal copula, and then use
it to generate multivariate distributions with arbitrary marginal
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distributions. The normal copula enjoys much flexibility in the
selection of correlation parameters. As well, it lends itself to
simple Monte Carlo simulation techniques.

Assume that (Z1, : : : ,Zk) have a multivariate normal distribu-
tion with standard normal marginal distribution Zj .N(0,1) and
a positive definite correlation matrix

§ =

$%%%%%&
1 ½12 $ $ $ ½1k

½21 1 $ $ $ ½2k
...

...
...

½k1 ½k2 $ $ $ 1

'((((() ,

where ½ij = ½ji is the correlation coefficient between Zi and Zj.
Then (Z1, : : : ,Zk) have a joint probability density function:

f(z1, : : : ,zk) =
1@

(2¼)n-§- exp
A
&1
2z
3§&1z

B
,

z= (z1, : : : ,zk): (8.1)

From the correlation matrix § we can construct a lower tri-
angular matrix

B=

$%%%%%&
b11 0 $ $ $ 0

b21 b22 $ $ $ 0
...

...
...

bk1 bk2 $ $ $ bkk

'((((() ,

such that § = BB3. In other words, the correlation matrix §
equals the matrix product of B and its transpose B3. The elements
of the matrix B can be calculated from the following Choleski’s
algorithm (see Burden and Faires [2, Section 6.6]; Johnson [17,
Section 4.1]):

bij =
½ij &

5j&1
s=1 bisbjs0

1&5j&1
s=1 b

2
js

, 1, j , i, n, (8.2)
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with the convention that
50
s=1($) = 0. It is noted that:

! For i > j, the denominator of Equation 8.2 equals bjj.
! The elements of B should be calculated from top to bottom
and from left to right.

The following simulation algorithm can be used to gener-
ate multivariate normal variables with a joint probability density
function given by Equation 8.1. See Herzog [9], and Fishman
[5, pp. 223–224].

STEP 1 Construct the lower triangular matrix B= (bij) by Equa-
tion 8.2.

STEP 2 Generate a column vector of independent standard nor-
mal variables Y= (Y1, : : : ,Yk)

3.

STEP 3 Take the matrix product Z= BY of B and Y. Then Z=
(Z1, : : : ,Zk)

3 has the required joint probability density function
given by Equation 8.1.

Let ©($) represent the cumulative distribution function of the
standard normal distribution:

©(z) =
* z

&)
1%
2¼
e&t

2=2dt:

Then ©(Z1), : : : ,©(Zk) have a multivariate uniform distribution
with Kendall’s tau (e.g., Frees and Valdez [6, pp. 25])

¿(©(Zi),©(Zj)) = ¿(Zi,Zj) =
2
¼
arcsin(½ij),

and (Spearman) rank correlation coefficient

RankCorr(©(Zi),©(Zj)) = RankCorr(Zi,Zj) =
6
¼
arcsin

"
½ij
2

#
,

where arcsin(x) is an inverse trigonometric function such that
sin(arcsin(x)) = x.
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Let’s state this result more formally as a theorem due to its
importance.

THEOREM 2 Assume that (Z1, : : : ,Zk) have a multivariate normal
joint probability density function given by Equation 8:1, with cor-
relation coefficient ½ij = ½(Zi,Zj). Let H(z1, : : : ,zk) be their joint
cumulative distribution function. Then

C(u1, : : : ,uk) =H(©
&1(u1), : : : ,©

&1(uk))

defines a multivariate uniform cumulative distribution function—
called the normal copula.

For any set of given marginal cumulative distribution functions
F1, : : : ,Fk, the variables

X1 = F
&1
1 (©(Z1)), : : : ,Xk = F

&1
k (©(Zk))

have a joint cumulative distribution function

FX1,:::,Xk
(x1, : : : ,xk) =H(©

&1(F1(x1)), : : : ,©
&1(Fk(xk)))

with marginal cumulative distribution functions F1, : : : ,Fk. The mul-
tivariate variables (X1, : : : ,Xk) have Kendall’s tau

¿(Xi,Xj) = ¿(Zi,Zj) =
2
¼
arcsin(½ij)

and Spearman’s rank correlation coefficients

RankCorr(Xi,Xj) = RankCorr(Zi,Zj) =
6
¼
arcsin

"
½ij
2

#
:

Although the normal copula does not have a simple analytical
expression, it lends itself to a very simple Monte Carlo simulation
algorithm.

Suppose that we are given a set of correlated risks (X1, : : : ,Xk)
with marginal cumulative distribution functions FX1 , : : : ,FXk and
Kendall’s tau ¿ij = ¿(Xi,Xj) or rank correlation coefficient
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RankCorr(Xi,Xj). If we assume that (X1, : : : ,Xk) can be described
by the normal copula in Theorem 2, then the following Monte
Carlo simulation procedure can be used:

STEP 1 Convert the given Kendall’s tau or rank correlation coef-
ficient to our usual measure of correlation for multivariate normal
variables:

½ij = sin
"
¼

2
¿ij

#
= 2sin

"
¼

6
RankCorr(Xi,Xj)

#
,

and construct the lower triangular matrix B= (bij) by Equation
8.2.

STEP 2 Generate a column vector of independent standard nor-
mal variables Y= (Y1, : : : ,Yk)

3.

STEP 3 Take the matrix product of B and Y: Z= (Z1, : : : ,Zk)
3 =

BY.

STEP 4 Set ui =©(Zi) for i= 1, : : : ,k.

STEP 5 Set Xi = F
&1
Xi
(ui) for i= 1, : : : ,k.

Theorem 2 and the associated simulation algorithm provide
a powerful tool for generating correlated variables. The normal
copula is very flexible as it allows any (symmetric, positive def-
inite) matrix of rank correlation coefficients (or alternatively,
Kendall’s tau). The use of this algorithm implicitly assumes that
the underlying variables can be described by a normal copula.
Of course, there are many correlation structures that differ from
a normal copula, for example, the Cook–Johnson distribution in
Equation 7.1. In many practical situations, we only have some in-
dication of the correlation parameters without knowing the exact
underlying multivariate distribution. In such situations, a normal
copula leads to a simple method of simulating the correlated
variables.
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Appendix B gives an overview of various other families of
copulas and the associated Monte Carlo simulation techniques.

9. COMMON MIXTURE MODELS

In many situations, individual risks are correlated since they
are subject to the same claim generating mechanism or are in-
fluenced by changes in the common underlying economic/legal
environment. For instance, in property insurance, risk portfolios
in the same geographic location are correlated, where individual
claims are contingent on the occurrence and severity of a nat-
ural disaster (hurricane, tornado, earthquake, or severe weather
condition). In liability insurance, new court rulings or social in-
flation may set new trends that affect the settlement of all liability
claims for one line of business.

One way of modeling situations where the individual risks
"X1,X2, : : : ,Xn# are subject to the same external mechanism is to
use a secondary mixing distribution. The uncertainty about the
external mechanism is then described by a structure parameter,
µ, which can be viewed as a realization of a random variable £.
The aggregate losses of the risk portfolio can then be seen as a
two-stage process: First the external parameter £= µ is drawn
from the distribution function, F£, of £. Next, the claim fre-
quency (or severity) of each individual risk Xi (i= 1,2, : : : ,n) is
obtained as a realization from the conditional distribution func-
tion, FXi-£(xi - µ), of Xi -£.

9.1. Common Poisson Mixtures

Consider k discrete random variables N1, : : : ,Nk. Assume that
there exists a random parameter £ such that

(Nj -£= µ). Poisson(µ¸j), j = 1, : : : ,k,

where the variable £ has a probability density function ¼(µ) and
a moment generating functionM£. For any given £ = µ, the vari-
ables (Nj - µ) are independent and Poisson (¸jµ) distributed with
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a conditional joint probability generating function

PN1,:::,Nk -£(t1, : : : , tk - µ) = E[t
N1
1 $ $ $ t

Nk
k -£= µ]

= eµ[¸1(t1&1)+$$$¸k(tk&1)]:

However, unconditionally, N1, : : : ,Nk are correlated as they de-
pend upon the same random parameter £. The unconditional
joint probability generating function for N1, : : : ,Nk is

PN1,:::,Nk (t1, : : : , tk) = E£[E[t
N1
1 $ $ $ t

Nk
k -£]]

=
* )

0
eµ[¸1(t1&1)+$$$+¸k(tk&1)]¼(µ)dµ

=M£(¸1(t1&1)+ $ $ $+¸k(tk &1)):
It has marginal probability generating functions PNj (tj) =
M£(¸j(tj &1)) with E[Nj] = ¸jE[£].
Note that

Cov[Ni,Nj] = E£Cov[Ni -£,Nj -£] +Cov[E[Ni -£],E[Nj-£]]
= Cov[£¸i,£¸j] = ¸i¸jVar[£]:

The covariance coefficient between Ni and Nj (i /= j) is

!(Ni,Nj) =
Cov[Ni,Nj]

E[Ni]E[Nj]
=
Var[£]
"E[£]#2 ,

where ! is the same for all i and j.

EXAMPLE 9.1 If £ has a gamma(®,1) distribution with moment
generating function M£(z) = (1& z)&®, then

PN1,:::,Nk
(t1, : : : , tk) = [1&¸1(t1&1)&$$ $ &¸k(tk& 1)]&®

(9.1)

defines a multivariate negative binomial with marginal distribu-
tions NB(®,¸j) and covariance coefficients !(Ni,Nj) = 1=®.
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EXAMPLE 9.2 If£ has an inverse Gaussian distribution, IG(¯,1),
with a moment generating function M£(z) = e

1=¯[1&
%
1&2¯z], then

PN1,:::,Nk
(t1, : : : , tk)

= exp
:
1
¯
& 1
¯

0
1&2¯[¸1(t1&1)+ $ $ $+¸k(tk& 1)]

C
defines a multivariate Poisson inverse Gaussian with marginal
distributions P-IG(¯¸j ,¸j) and covariance coefficients !(Ni,Nj)
= ¯.

Consider combining k risk portfolios. Assume that the fre-
quencies Nj , j = 1, : : : ,k, are correlated via a common Poisson-
gamma mixture and have a joint probability generating function
given by Equation 9.1. If the severities Xj , j = 1, : : : ,k, are mu-
tually independent and independent of the frequencies, there is
a simple method of combining the aggregate loss distributions.
Given ¸= ¸1 + $ $ $+¸k and

PX(t) =
¸1
¸
PX1(t)+ $ $ $

¸k
¸
PXk
(t),

then

PN1,:::,Nk
(PX1(t), : : : ,PXk (t)) = [1&¸(PX(t)&1)]

&®:

In other words, the total loss amount for the combined risk
portfolios has a compound negative binomial distribution with
the severity distribution being a weighted average of individual
severity distributions. In this case, dependency does not compli-
cate the computation; in fact, it simplifies the calculation. It is
simpler than combining independent compound negative bino-
mial distributions.

In this multivariate Poisson-gamma mixture model, the k
marginal distributions, negative binomial (®,¸j), are required to
have the same parameter ®. This requirement limits its applica-
bility in combining risk portfolios; in many practical cases the
frequencies, negative binomial (®j ,¸j), have different parameter
values, ®j . Section 10 and Section 12 overcome this limitation by
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extending the Poisson-gamma mixture model to allow arbitrary
negative binomial frequencies.

Similar arguments can be made about the Poisson inverse
Gaussian distributions.

9.2. Common Exponential Mixtures

Consider k continuous random variables X1, : : : ,Xk. Assume
that there exists a random parameter £ such that (Xj -£ = µ) is
exponentially distributed with parameter ¸jµ and survivor func-
tion

SXj -£(tj - µ) = Pr"Xj > tj -£ = µ#= e
&µ¸jtj , j = 1, : : : ,k,

where the variable £ has a probability density function ¼(µ) and
a moment generating function M£.

For any given £ = µ, the variables (Xj - µ), j = 1, : : : ,k, are
conditionally independent and have a conditional joint survivor
function

SX1,:::,Xk -£(t1, : : : , tk - µ) = Pr"X1 > t1, : : : ,Xk > tk -£ = µ#
= e&µ[¸1t1+$$$+¸ktk]:

However, unconditionally, X1, : : : ,Xk are correlated as they de-
pend upon the same random parameter £. The unconditional
joint survivor function for X1, : : : ,Xk is

SX1,:::,Xk
(t1, : : : , tk) =

* )

0
e&µ[¸1t1+$$$+¸ktk]¼(µ)dµ

=M£(&¸1t1&$$ $ &¸ktk):

EXAMPLE 9.3 If £ has a gamma(®,1) distribution with moment
generating function M£(z) = (1& z)&®, this defines a family of
multivariate Pareto distributions

SX1,:::,Xk
(t1, : : : , tk) = [1+¸1t1 + $ $ $+¸ktk]&®,

with marginal distributions being Pareto(®,1=¸j).
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EXAMPLE 9.4 If£ has an inverse Gaussian distribution with mo-
ment generating function M£(z) = e

1=¯[1&
%
1&2¯z], this defines a

family of multivariate exponential inverse Gaussian distributions

SX1,:::,Xk
(t1, : : : , tk) = exp

7
1
¯
& 1
¯

0
1+2¯(¸1t1 + $ $ $+¸ktk)

8
,

with marginal distributions being exponential inverse Gaussian,
E-IG(¯¸j ,¸j).

Now we consider the aggregation of k individual claim
amounts. Suppose that the k individual claim amounts X1, : : : ,Xk
are identically distributed with Xi . Pareto(®,¯). But they are
correlated by a common exponential-gamma mixture with a joint
survivor function

SX1,:::,Xk
(t1, : : : , tk) =

7
1+

1
¯
(t1 + $ $ $+ tk)

8&®
:

Then the sum X1 + $ $ $+Xk has a Pareto(®,n¯) distribution.
This is because, for any given £ = µ, (X1 + $ $ $+Xk - µ). ex-
ponential(µ=n).

Alternatively, this common exponential mixture model can
be obtained by applying the Cook–Johnson copula to k iden-
tical marginal survivor functions, Pareto(®,¯). In other words,
the Cook–Johnson copula can be viewed as an extension of the
common exponential mixture model.

10. EXTENDED COMMON POISSON MIXTURE MODELS

The common Poisson mixture model in the previous section
has a simple correlation structure and is easy to use. However,
it is quite restricted in the sense that it does not permit arbitrary
parameter values in the marginal distributions. In this section we
extend the common Poisson mixture model so that the marginal
distributions may have arbitrary parameter values. This extended
model permits simple implementation by Monte Carlo simula-
tion.
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Suppose that there exist random variables (£1, : : : ,£k) such
that for a given set of values (£1 = µ1, : : : ,£k = µk), the condi-
tional variables (N1, : : : ,Nk) are independent Poisson(µj) variables
with

PN1,:::,Nk -(£1,:::,£k)(t1, : : : , tk - µ1, : : : ,µk)

=
k+
j=1

PNj (tj - µj) =
k+
j=1

eµj(tj&1),

where M£1,:::,£k (t1, : : : , tk) = E£1,:::,£k [e
t1£1+$$$+tk£k ] is the joint mo-

ment generating function of (£1, : : : ,£k).

The unconditional joint probability generating function is

PN1,:::,Nk (t1, : : : , tk) = E(£1,:::,£k)PN1,:::,Nk (t1, : : : , tk -£1, : : : ,£k)
=M£1,:::,£k ((t1& 1), : : : , (tk& 1)):

By taking the first and second order partial derivatives of this
joint probability generating function at (1, : : : ,1), we obtain

E[Ni] = E[£i] and Cov[Ni,Nj] = Cov[£i,£j]:

We observe a one-to-one correspondence between the correlation
structures of the variables (N1, : : : ,Nk) and the mixing parameters
(£1, : : : ,£k).

Now consider the case that £j . gamma(®j,¯j) and thus
Nj .NB(®j ,¯j), with arbitrary parameter values, ®j,¯j > 0. We
further assume that the variables£j , j = 1, : : : ,k, are comonotonic
and thus can be simulated by using the same set of uniform ran-
dom numbers. For i /= j, the covariance Cov[£i,£j] can be nu-
merically calculated by using Equation 5.1. For this dependency
model, we have a simple Monte Carlo simulation algorithm:

STEP 1 Generate a uniform number, u, from U .Uniform(0,1).

STEP 2 Let µj = F
&1
£j
(u), where£j . gamma(®j,¯j), j = 1, : : : ,k.
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STEP 3 Simulate (N1, : : : ,Nk) from k independent Poisson(µj)
variables, j = 1, : : : ,k.

If the ®js are the same, we get the common Poisson mixture
model in Example 9.1.

11. COMPONENT MODELS

Consider the aggregation of different lines of business. For a
multi-line insurer, the correlation between lines of business may
differ from one region to another. Therefore, it may be more
appropriate to divide each line into components and model the
correlation separately for each component (e.g., by geographic
region). There may exist higher correlations between lines in a
high catastrophe risk region where the presence of the catastro-
phe risk may generate a common shock or a common mixture.

Note that many families of frequency and severity distribu-
tions are infinitely divisible. A family of distributions is infinitely
divisible if any member can be obtained as an independent sum
of other members in the same family. Let X 4Y represent the
sum of two independent random variables and FY4FY represent
the convolution of two probability distributions. We have

! Poisson(¸1)4Poisson(¸2) = Poisson(¸1 +¸2)
! negative binomial: NB(®1,¯)4NB(®2,¯) = NB(®1 +®2,¯)
! Poisson inverse Gaussian:

P-IG(¯,¹1)4P-IG(¯,¹2) = P-IG(¯,¹1 +¹2)
! gamma(®1,¯)4gamma(®2,¯) = gamma(®1 +®2,¯)
! inverse Gaussian: IG(¯,¹1)4 IG(¯,¹2) = IG(¯,¹1 +¹2).

Infinitely divisible distributions are especially useful for di-
viding risks into independent components. Consider k infinitely
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divisible risks Xj(®j), j = 1, : : : ,k, with ®j as the divisible param-
eter.

Consider a decomposition:

X1(®1)=X11(®11)4$$ $4X1n(®1n)
...

...
...

Xk(®k) =Xk1(®k1)4$$ $4Xkn(®kn)
, ®js + 0: (11.1)

Then we can generate correlation structures component by com-
ponent:

PX1,:::,Xk =
n+
s=1

QX1s,:::,Xks ,

where the joint probability generating function QX1s,:::,Xks for the
sth components can be modeled by using a common mixture, a
common shock (described below), or by assuming independence,
as appropriate. It can be verified that for the component model
in Equation 11.1 we have

Cov[Xi,Xj] =
n!
s=1

Cov[Xis,Xjs]:

11.1. Common Shock Models

Let Xj = Xja4Xjb, j = 1, : : : ,k, be a decomposition into two
independent components

PX1,:::,Xk
(t1, : : : , tk) = E[t

X1a
1 $ $ $ tXkak ]E[t

X1b
1 $ $ $ tXkbk ]:

If X1a = $ $ $= Xka = X0, we obtain
PX1,:::,Xk

(t1, : : : , tk) = E[(t1 $ $ $ tk)X0 ]E[tX1b1 $ $ $ tXkbk ]:

In particular, if the Xibs are independent, we have Cov[Xi,Xj] =
Var[X0]. The only source of correlation comes from the common
shock variable X0.
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EXAMPLE 11.1 Consider the aggregation of two correlated com-
pound Poisson distributions:

! Portfolio 1. The claim frequency N1 has a Poisson(¸1) dis-
tribution, and the claim severity X has a probability function
f1(x).

! Portfolio 2. The claim frequency N2 has a Poisson(¸2) dis-
tribution, and the claim severity Y has a probability function
f2(y).

! Assume that X, Y are independent and both are independent
of (N1,N2). However, N1 and N2 are correlated via a common
shock model

N1 =N04N1b, N2 =N04N2b,
where N0 . Poisson(¸0), N1b . Poisson(¸1&¸0), and N2b .
Poisson(¸2&¸0).

In this common shock model (N1,N2) have a joint probability
generating function:

PN1,N2(t1, t2) = E[t
N1
1 t

N2
2 ]

= exp[¸1(t1&1)+¸2(t2& 1)+¸0(t1&1)(t2&1)],
with Cov[N1,N2] = Var[X0] = ¸0. It can be shown that the aggre-
gate losses for the combined risk portfolio,

S = (X1 + $ $ $+XN1) + (Y1 + $ $ $+YN2),
have a compound Poisson(¸1 +¸2&¸0) distribution with a se-
verity probability function

f(z) =
¸1&¸0

¸1 +¸2&¸0
f1(z)+

¸2&¸0
¸1 +¸2&¸0

f2(z)

+
¸0

¸1 +¸2&¸0
f1*2(z),
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where f1*2 represents the convolution of f1 and f2. Thus, existing
methods can be applied.

This common shock model can be easily extended to any
higher dimension (k > 2). For illustrative purposes, we now give
an example involving three frequency variables.

EXAMPLE 11.2 The joint probability generating function

PN1,N2,N3 (t1, t2, t3)

= exp

123
3!
i=1

¸ii(ti&1)+
!
i<j

¸ij(titj &1)+¸123(t1t2t3& 1)
=>?

(11.2)

defines a multivariate Poisson distribution with marginal distri-
butions

Nj . Poisson
$&¸123 + 3!

i=1

¸ij

') , j = 1,2,3,

and for i /= j, Cov[Ni,Nj] = ¸ij +¸123.
We let

! Kii . Poisson(¸ii), for i= 1,2,3,
! Kij . Poisson(¸ij), for 1, i < j , 3,
! Kij =Kji, for 1, i,j , 3,
! K123 . Poisson(¸123),
! Nj = K1j 4K2j 4K3j 4K123, for j = 1,2,3.
Then the resulting (N1,N2,N3) have a joint probability gener-

ating function given by Equation 11.2. In this model, K123 repre-
sents the common shock among all three variables (N1,N2,N3). In
addition, for i /= j, Kij =Kji represents the extra common shock
between Ni and Nj.
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Note that we can easily simulate the correlated frequencies,
(N1,N2,N3), component by component.

Subject to scale transforms, the common shock multivariate
Poisson model can be extended to gamma variables.

EXAMPLE 11.3 Consider two variables X1 . gamma(®1,¯1) and
X2 . gamma(®2,¯2). Suppose there is a decomposition

X1 = ¯1(X04X1b), X2 = ¯2(X04X2b),
where X0 . gamma(®0,1) with ®0 ,min"®1,®2#, X1b . gamma
(®1&®0,1) and X2b . gamma(®2&®0,1). Then Cov[X1,X2] =
¯1¯2Var[X0] = ®0¯1¯2, and

X1 +X2 = (¯1 +¯2)X04¯1X1b4¯2X2b:

11.2. Peeling Method

Recall that the common Poisson-gamma mixture requires that
the marginal distributions Nj .NB(®,¸j) must have the same pa-
rameter value ®. Now we shall illustrate that, by using the com-
ponent method, we can construct correlated multivariate negative
binomials with arbitrary parameters (®j,¸j).

Suppose that we are given k marginal negative binomial dis-
tributions:

N1 .NB(®1,¸1), : : : ,Nk .NB(®k,¸k):

Model 1. Let ®0 ,min"®1, : : : ,®k#, and let each Nj (j = 1, : : : ,k)
have a decomposition:

Nj =Nja4Njb, Nja .NB(®0,¸j), Njb .NB(®j &®0,¸j):
Note that the Njas have the same parameter ®0, and thus can be
modeled by a common Poisson-gamma mixture

PN1a,:::,Nka
(t1, : : : , tk) = "1&¸1(t1&1)&$$ $ &¸k(tk &1)#&®0 :
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If we assume that the Njbs are independent, then (N1, : : : ,Nk) have
a joint probability generating function

PN1,:::,Nk
(t1, : : : , tk) = "1&¸1(t1& 1)& $$ $&¸k(tk &1)#&®0

1
k+
j=1

"1&¸j(tj &1)#®0&®j :

Note that

Cov[Ni,Nj] = ®0¸i¸j =
®0
®i®j

E[Ni]E[Nj]:

Simple methods exist for combining the individual aggregate loss
distributions, provided that the severities are mutually indepen-
dent and independent of (N1, : : : ,Nk).

Model 2. Assume that the ®j are in an ascending order, ®1 ,
$$ $ , ®k. The decomposition

NB(®j,¸j) = NB(®1,¸j)4NB(®2&®1,¸j)
4$$ $ 4NB(®j &®j&1,¸j)

can be used in conjunction with common mixture models to gen-
erate the following joint probability generating function:

PN1,:::,Nk
(t1, : : : , tk) = "1&¸1(t1&1)&$$ $ &¸k(tk &1)#&®1

1"1&¸2(t2&1)&$$ $ &¸k(tk &1)#®1&®2
1$$ $1"1&¸k(tk& 1)#®k&1&®k :

It can be verified that the marginal univariate probability gen-
erating function is PNj (tj) = [1&¸j(tj &1)]

&®j and the marginal
bivariate probability generating function is

PNi,Nj
(ti, tj) = "1&¸i(ti&1)&¸j(tj & 1)#&®i

1"1&¸j(tj &1)#®i&®j , i < j,
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with
Cov[Ni,Nj] = ®i¸i¸j =

1
®j
E[Ni]E[Nj]:

11.3. Mixed Correlation Models

Assume that the joint probability generating functions PX1,:::,Xk
and QX1,:::,Xk have the same set of marginal probability generating
functions PX1 , : : : ,PXk . Then the mixed joint probability generating
function

qPX1,:::,Xk (t1, : : : , tk)+ (1&q)QX1,:::,Xk (t1, : : : , tk), (0< q < 1),

also has marginal probability generating functions PX1 , : : : ,PXk .
For this mixed joint probability generating function, we have

Cov[Xi,Xj] = (1& q)CovP[Xi,Xj]+qCovQ[Xi,Xj],
where CovP and CovQ represent the covariances implied by the
joint probability generating functions P and Q, respectively.

A mixture of joint probability generating functions can be
used to represent a set of possible scenarios. For instance, we
can let P represent the joint probability generating function under
the scenario of major catastrophe occurrence, Q correspond to
zero catastrophe occurrence, and q represent the probability of
the catastrophe occurrence.

12. THE DISTORTION METHOD

Let X1, : : : ,Xk be k random variables (discrete, continuous,
or multivariate variables) with probability generating functions
PX1(t1), : : : ,PXk (tk), respectively. If the Xjs are mutually indepen-
dent, we have

PX1,:::,Xk
(t1, : : : , tk) =

k+
j=1

PXj
(tj):

Let g be a strictly increasing function over [0,1] with g(1) = 1
and whose inverse function is g&1. In a quite loose sense, we



AGGREGATION OF CORRELATED RISK PORTFOLIOS 905

assume that g 5PX1,:::,Xk specifies a joint probability generating
function with marginal probability generating functions g 5PXj ,
(j = 1, : : : ,k). By assuming that the distorted joint probability
generating function g 5PX1,:::,Xk has non-correlated marginal prob-
ability generating functions, namely,

g 5PX1,:::,Xk (t1, : : : , tk) =
k+
j=1

g 5PXj (tj),

a correlation structure is introduced to the original joint proba-
bility generating function:

PX1,:::,Xk
(t1, : : : , tk) = g

&1
123

k+
j=1

g 5PXj (tj)
=>? :

For mathematical convenience we introduce h(x) = lng(x) which
is a strictly increasing function over [0,1] with h(1) = 0. In terms
of h, the above equation can be expressed as

PX1,:::,Xk (t1, : : : , tk) = h
&1
123

k!
j=1

h 5PXj (tj)
=>? : (12.1)

Note that Equation 12.1 may not define a proper multivari-
ate distribution, as the only constraint on the joint probability
(density) function is that it sums to one. It defines a proper mul-
tivariate distribution if and only if the joint probability (density)
function, fX1,:::,Xk , is non-negative everywhere.

Recall that for a discrete distribution,

fX1,:::,Xk
(x1, : : : ,xk) =

@x1+$$$+xk
(@t1)

x1 $ $ $ (@tk)xk
PX1,:::,Xk

(0, : : : ,0)
k+
i=1

1
xi!
,

which can also be derived using multivariate Taylor series expan-
sion. Thus, PX1,:::,Xk defines a proper joint probability distribution
if and only if its partial derivatives at t1 = $ $ $= tk = 0 are all non-
negative.
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THEOREM 3 Suppose that Equation 12:1 defines a joint probabil-
ity generating function; we have

Cov[Xi,Xj] =&
:
h33(1)
h3(1)

+1
C
E[Xi]E[Xj]:

Proof We take the second order partial derivative, @2=@ti @tj,
(i /= j), on both sides of the equation

h 5PX1,:::,Xk (t1, : : : , tk) =
k!
j=1

h 5PXj (tj):

We obtain zero by taking the second order partial derivative,
@2=@ti @tj, (i /= j), on the right-hand side. Thus we should also
get zero for the second order partial derivative on the left-hand
side:

0 =
@2

@ti@tj

A
h 5PX1,:::,Xk

B
=
@

@ti

4
h3(PX1,:::,Xk )

@PX1,:::,Xk
@tj

D
,

which further yields that

h33(PX1,:::,Xk )
@PX1,:::,Xk
@ti

@PX1,:::,Xk
@tj

+h3(PX1,:::,Xk )
@2PX1,:::,Xk
@ti@tj

= 0:

Setting the values ts = 1 for s= 1, : : : ,k, we get

h33(1)E[Xi]E[Xj]+h
3(1)E[XiXj] = 0:

This family of multivariate distributions has a symmetric
structure in the sense that !ij is the same for all i /= j. It would
be suitable for combining risks in the same class, where any two
individual risks share the same covariance coefficient.

Questions remain as to which distortion function to use and
whether the distortion method in Equation 12.1 defines a proper
multivariate distribution. In general, the feasibility of the distor-
tion method depends on the marginal distributions.

The next section shows how the distortion method is inher-
ently connected to the common Poisson-mixture models.
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12.1. Links with the Common Poisson Mixtures

Reconsider the common Poisson mixture model in Section 9:
for any given µ, (Nj -£ = µ), j = 1, : : : ,k, are conditionally inde-
pendent Poisson variables with mean ¸jµ. If the random param-
eter £ has a moment generating function M£, then (N1, : : : ,Nk)
has an unconditional joint probability generating function

PN1,:::,Nk
(t1, : : : , tk) =M£(¸1(t1&1)+ $ $ $+¸k(tk &1)),

with marginal probability generating function

PNj
(tj) =M£(¸j(tj &1)):

LEMMA 3 For a non-negative random variable £, the inverse of
the moment generating function, M&1

£ , is well defined over the
range [0,1] with (d=du)M&1

£ (u)> 0, M&1
£ (0) =&), and M&1

£ (1)
= 0.

If we define h(y) =M&1
£ (y), then the joint probability gener-

ating function for the common Poisson mixture model satisfies

PN1,:::,Nk (t1, : : : , tk) = h
&1
123

k!
j=1

h 5PNj (tj)
=>? :

EXAMPLE 12.1 If £ has a gamma(1=!,1) distribution with mo-
ment generating function M£(z) = (1& z)&1=!, then h(y) = 1&
y&!, and we get the following joint probability generating func-
tion:

P(!)N1,:::,Nk
(t1, : : : , tk) =

A
PN1(t1)

&! + $ $ $+PNk (tk)
&!& k+1

B&1=!
,

! /= 0,
with

Cov[Ni,Nj] = !E[Ni]E[Nj] and

lim
!(0

P(!)N1,:::,Nk
= PN1(t1) $ $ $PNk (tk):
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EXAMPLE 12.2 If £ has an inverse Gaussian distribution,
IG(!,1), with a moment generating function

M£(z) = exp
:
1
!
[1&%1&2!z]

C
,

then h(y) = lny&!=2(lny)2, and we get the following joint
probability generating function:

P(!)N1,:::,Nk
(t1, : : : , tk)

= exp

19293 1! &
EFFFG 1
!2
&

k!
j=1

7
2
!
lnPNj (tj)& (lnPNj (tj))2

8=9>9? ,
with

Cov[Ni,Nj] = !E[Ni]E[Nj] and

lim
!(0

P(!)N1,:::,Nk
= PN1(t1) $ $ $PNk (tk):

12.2. A Family of Multivariate Negative Binomial Distributions

As an example of the distortion method, we now discuss a
family of multivariate distributions with arbitrary negative bino-
mial marginal distributions, NB(®j,¯j), j = 1, : : : ,k.

THEOREM 4 The joint probability generating function

PN1,:::,Nk
(t1, : : : , tk) =

123
k!
j=1

[1&¯j(tj &1)]®j!& k+1
=>?
&1=!

,

! /= 0, (12.2)

defines a multivariate negative binomial distribution with marginal
distributions NB(®j ,¯j) when either of the following conditions
holds:

! 0< ! <min"1=®j, j = 1, : : : ,k#,
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! ! < 0 such that PN1,:::,Nk (0, : : : ,0)> 0 and 1=! is a negative in-
teger.

Proof Equation 12.2 can be rewritten as

PN1,:::,Nk (t1, : : : , tk) =Q(t1, : : : , tk)
&1=!,

where

Q(t1, : : : , tk) =
k!
j=1

[1+¯j &¯jtj]®j!& k+1:

(i) For 0< ! <min"1=®j , j = 1, : : : ,k#, we have ®j! , 1; and
the partial derivatives (@x1+$$$+xk=(@t1)x1 $ $ $ (@tk)xk )PN1,:::,Nk
are the sum of terms of the following form:

aQ(t1, : : : , tk)
&b

k+
j=1

[1+¯j &¯jtj]&cj , a,b,cj + 0:

Thus, the joint probability function

fN1,:::,Nk (x1, : : : ,xk) =
@x1+$$$+xk

(@t1)
x1 $ $ $ (@tk)xk

PN1,:::,Nk (0, : : : ,0)
k+
i=1

1
xi!

is always non-negative. Therefore Equation 12.2 does de-
fine a proper joint distribution.

(ii) When ! < 0 such that PN1,:::,Nk (0, : : : ,0)> 0 and 1=! is a
negative integer, we have

P(t1, : : : , tk) =Q(t1, : : : , tk)
n,

where n=&1=! is a positive integer,
which can be viewed as the n-fold convolutions of
Q(t1, : : : , tk). Note that [1+¯j &¯jtj]®j! represents the
probability generating function of NB(&®j!,¯j). Thus,
Q(t1, : : : , tk) defines a proper multivariate distribution as
long as PN1,:::,Nk (0, : : : ,0)> 0.
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Note that the joint probability generating function in Equation
12.2 requires that !ij be the same for all i and j, but it allows
arbitrary marginal negative binomial distributions, NB(®j ,¸j).
In the special case that all ®j are the same, ®j = ®, the fam-
ily of joint distributions in Equation 12.2 returns to the common
Poisson-Gamma mixture model with ! = 1=®. This special case
corresponds to the usual definition of multivariate negative bino-
mial distributions in Johnson, Kotz and Balakrishnan [16, p. 93].
Thus, Equation 12.2 extends the usual class of multivariate neg-
ative binomial distributions.

Remark Consider k individual risk portfolios that are speci-
fied by their frequencies and severities: (Nj ,Xj), j = 1, : : : ,k. As-
sume that (N1, : : : ,Nk) has a joint probability generating function
as in Equation 12.2, and the only correlation exists between the
frequencies. Based on Equation 4.1, the aggregate loss, Z, for
the combined risk portfolios has a characteristic function

ÁZ(t) =

123
k!
j=1

[1&¯j(ÁXj (t)&1)]
®j!& k+1

=>?
&1=!

, ! /= 0:

Thus FFT can be used to evaluate the aggregate loss distribution.

13. AN EXAMPLE OF CORRELATED FREQUENCIES

Consider two correlated risk portfolios with frequency/sever-
ity distributions specified as follows:

! Portfolio 1 has a negative binomial frequency with mean = 10
and variance = 20. It has a probability generating function:
PN1(t) = [1& (t&1)]&10: Portfolio 1 has a Pareto(®= 2, ¯ =
50,000) severity subject to a policy limit of $200,000. Its av-
erage severity is $39,960.

! Portfolio 2 has a negative binomial frequency with mean = 6
and variance = 15. It has a probability generating function:
PN2(t) = [1&2(t& 1)]&4: Portfolio 2 has a Pareto(®= 1:5, ¯ =
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40,000) severity subject to a policy limit of $300,000. Its av-
erage severity is $52,560.

! The two claim frequencies are correlated with a covariance
coefficient !12 = 0:2; i.e., Cov[N1,N2] = 0:2 $E[N1] $E[N2].

! The claim severities X1 and X2 for the two risk portfolios are
mutually independent; they are also independent of the fre-
quencies (N1,N2).

Method I. We approximate the combined frequency N by a
negative binomial distribution with

E[N] = E[N1] +E[N2] = 16,

and

Var[N] = Var[N1]+Var[N2]+2Cov[N1,N2] = 59:

This negative binomial distribution has a probability generating
function:

PN(t) =
7
1& 256

43
(t&1)

8&43=16
:

The combined severity distribution can be calculated by

fX(x) =
E[N1]
E[N]

fX1(x)+
E[N2]
E[N]

fX2(x),

where fX1 and fX2 are the severity distributions for Portfolios 1
and 2, respectively.

Method II. Assume that N1 and N2 have a bivariate negative
binomial distribution with a joint probability generating function
(see Equation 12.2):

PN1,N2(t1, t2) = "[1& (t1&1)]
2 + [1&2(t2&1)]0:8&1#&5:

Based on the earlier result in Equation 4.1, the aggregate loss,
Z, for the combined risk portfolios has a characteristic function

ÁZ(t) = "[1& (ÁX1(t)&1)]
2 + [1&2(ÁX2(t)&1)]

0:8&1#&5:



912 AGGREGATION OF CORRELATED RISK PORTFOLIOS

Thus FFT can be used to evaluate the aggregate loss distribu-
tion.

Some details of the calculation steps are as follows:

1. First we approximate the severity distribution by a dis-
crete probability distribution. We choose the number of
points for the FFT computation at 4096 = 212. This is the
maximum number of points for the Microsoft Excel FFT
routine. In some other computer languages such as MAT-
LAB, a higher number of points is allowed. We choose a
span of h= $1,000 and use the “matching-mean” method
to approximate each individual severity distribution by
a discrete one. For a severity distribution with cumula-
tive distribution function FX , we first evaluate the limited
expected values at multiples of h:

E[X;j $ h] =
* j$h

0
[1&FX(u)]du, for j = 1,2, : : : :

Then we apply the following method:

Pr"X = 0 $h#= 1&E[X;h]=h,
Pr"X = j $h#= (2E[X;j $ h]&E[X;(j&1) $h]

&E[X;(j+1) $h])=h, j = 1,2, : : : :

Note that the severity distribution for the two risk
portfolios are subject to policy limits of $200,000 and
$300,000, respectively. Given that the span was chosen
at $1,000, the maximum severity points with non-zero
probabilities are 200 and 300, respectively. It is critical
to pad (i.e., add) enough zeros to the discrete severity vec-
tors so that each severity vector has the same length, 4096
in this case, as the target aggregate loss distribution. Let
fX1 and fX2 represent the discrete severity vectors for the
two risk portfolios, each of which is of length 4,096.
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One should exercise caution in the selection of the
span, h, for the discrete severity distributions. Too large
a span would affect the accuracy of the discrete distri-
bution. Too small a span may produce some “wrapping”
(non-zero probabilities at the high points near 4,096) in
the calculated aggregate loss distributions.

2. Method I: Let

fX(j) =
10
16 fX1(j) +

6
16 fX2(j), j = 0,1, : : : ,4095:

Perform FFT on the severity vector fX . Let f̃X = FFT(fX)
represent the resulting vector (of length 4,096). Apply
the frequency probability generating function, element
by element, to the vector f̃X :

f̃Z(j) = [1& 256
43 (f̃X(j)& 1)]&43=16:

Finally, perform an inverse FFT on f̃Z , and let fZ =
IFFT(f̃Z). Note that fZ is a probability vector with a span
of $1,000, which approximates the aggregate loss distri-
bution for the combined risk portfolios.

3. Method II. Perform FFT on each of the severity vec-
tors, fX1 and fX2 . Let f̃X1 = FFT(fX1 ) and f̃X2 = FFT(fX2)
represent the resulting vectors (each of length 4,096).
Apply the bivariate frequency probability generating
function:

f̃Z(j) = "[1& (f̃X1(j)&1)]
2+[1&2(f̃X2(j)&1)]

0:8&1#&5,
j = 0,1, : : : ,4095: (13.1)

Finally, perform an inverse FFT on f̃Z , and let fZ =
IFFT(f̃Z). Note that fZ is a probability vector with a span
of $1,000, which approximates the aggregate loss distri-
bution for the combined risk portfolios.
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4. Independence Case: For comparison purposes, we can
also calculate the aggregate loss distribution under the
assumption of independence between the frequencies. In
this case, we repeat Method II except that Equation 13.1
is replaced by the following formula:

f̃Z(j) = [1& (f̃X1(j)&1)]
&10 $ [1&2(f̃X2(j)&1)]

&4,

j = 0,1, : : : ,4095:

Table 4 lists some values of the calculated aggregate loss dis-
tributions.

We can draw two conclusions regarding this specific example:

1. Methods I and II result in two very close aggregate loss
distributions.

2. In both methods, correlation has a significant impact on
the tail probabilities (quantiles).

14. CONCLUSIONS

This paper has presented a set of tools for modeling and com-
bining correlated risks. A number of correlation structures have
been generated using copula, common mixture, component, and
distortion models. A good understanding of the claim generat-
ing process should be helpful in choosing a model, as well as
in selecting correlation parameters. These correlation models are
often specified by (i) the joint cumulative distribution function
(i.e., a copula) or (ii) the joint characteristic function. The cop-
ula construction leads to efficient simulation techniques which
can be implemented readily on a spreadsheet. The characteristic
function specification leads to simple methods of aggregation by
using fast Fourier transforms.

In the high-dimension world of multivariate variables, one
may encounter very diverse correlation structures. Regardless of
the complexity of the situation, Monte Carlo simulation can al-
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TABLE 4

COMPARISON OF VARIOUS METHODS

Loss Amount Method I Method II Independence
in Dollars Single NB Bivariate NB Case

x Pr"Z , x# Pr"Z , x# Pr"Z , x#
0 0.00046 0.00032 0.00003

250,000 0.11014 0.11129 0.06888
500,000 0.34756 0.35292 0.30621
750,000 0.59539 0.59897 0.59178

1,000,000 0.77954 0.77937 0.80217
1,250,000 0.89125 0.88894 0.91753
1,500,000 0.95038 0.94777 0.96941
1,750,000 0.97872 0.97672 0.98964
2,000,000 0.99132 0.99006 0.99674
2,250,000 0.99661 0.99590 0.99903
2,500,000 0.99872 0.99836 0.99972
2,750,000 0.99953 0.99936 0.99993
3,000,000 0.99983 0.99976 0.99998
3,250,000 0.99994 0.99991 0.99999
3,500,000 0.99998 0.99997 1.00000
3,750,000 0.99999 0.99999 1.00000
4,000,000 1.00000 1.00000 1.00000

Aggregate Method I Method II Independence
Moments Single NB Bivariate NB Case

E[Z] 715,355 715,349 715,361
CV[Z] 0.584 0.593 0.503

E[(Z&E[Z])3] 6:9481 1012 7:7311 1012 3:83711012

ways be employed in an analysis of the correlation risk. For in-
stance, in some situations, the frequency and severity variables
are correlated. With the assistance of Monte Carlo simulation,
the common mixture model in Section 9 can be adapted to de-
scribe the association between the frequency and severity random
variables, if both depend on the same external parameter. This
external parameter may be chosen to represent the Richter scale
of an earthquake, the velocity of wind speed, or several sce-
narios of legal climate, etc., depending on the underlying claim
environment.
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Dependency has always been a fascinating research subject,
as well as part of reality. A good understanding of the impact of
correlation on the aggregate loss distribution is essential for the
dynamic financial analysis of an insurance company. It is hoped
that the set of tools developed in this paper will be useful to
actuaries in quantifying the aggregate risks of a financial entity.
It is also hoped that this research will stimulate more scientific
investigations on this subject in the future.
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APPENDIX A

AN INVENTORY OF UNIVARIATE DISTRIBUTIONS

A.1. Counting Distributions

! The Poisson distribution, Poisson(¸), ¸ > 0, is defined by a
probability function:

pn = Pr"N = n#= e&¸
¸n

n!
, n= 0,1,2, : : : :

It has a probability generating function

PN(t) = E[t
N] = e¸(t&1),

and E[N] = Var[N] = ¸.

! The negative binomial distribution, NB(®,¯), ®,¯ > 0, has a
probability function:

pn = Pr"N = n#=
¡ (®+n)
¡ (®)n!

"
1

1+¯

#®" ¯

1+¯

#n
,

n= 0,1,2, : : : :

It has a probability generating function

PN(t) = [1&¯(t&1)]&®,
with E[N] = ®¯ and Var[N] = ®¯(1+¯).

When ®= 1, the negative binomial distribution NB(1,¯) is
called the geometric distribution.

! The Poisson inverse Gaussian distribution, P-IG(¯,¹), has a
probability generating function

PN(t) = E[t
N] = exp

:
&¹
¯
[
0
1+2¯(1& t)& 1]

C
:
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It can be verified that E[N] = ¹ and Var[N] = ¹(1+¯). The
probabilities can be calculated via a simple recursion (Willmot,
[26]):

pn =
2¯

1+2¯

"
1& 3

2n

#
pn&1 +

¹2

n(n& 1)(1+2¯)pn&2,

n= 2,3, : : : ,

with starting values

p0 = e
&¹=¯[

%
1+2¯&1], p1 =

¹%
1+2¯

p0:

A.2. Continuous Distributions

! The exponential distribution, exponential(¸), is defined by
S(x) = 1&F(x) = e&¸x, x > 0,

with E[X] = 1=¸ and Var[X] = 1=¸2.

! The gamma distribution, gamma(®,¯), ®,¯ > 0, has a proba-
bility density function

f(x) =
x®&1e&x=¯

¯®¡ (®)
, x > 0:

It has a moment generating function

MX(t) = E[e
tX] = (1&¯t)&®,

and E[X] = ®¯, and Var[X] = ®¯2.

! The Pareto distribution, Pareto(®,¯), ®,¯ > 0, has a survivor
function

S(x) = 1&F(x) =
"

¯

x+¯

#®
= (1+ x=¯)&®:

The mean E[X] = ¯=®&1 exists only if ® > 1.
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! The Weibull distribution, Weibull(¯,¿), ¯,¿ > 0, has a survivor
function

S(x) = 1&F(x) = e&(x=¯)¿ ,
with E[X] = ¯¡ (1+ ¿&1) and E[X2] = ¯2[¡ (1+2¿&1)].

! The inverse Gaussian distribution, IG(¯,¹), has a probability
density function

f(x) = ¹(2¼¯x3)&1=2 exp
4
&(x&¹)

2

2¯x

D
, x > 0:

It has a moment generating function

M(t) = e¹=¯[1&
%
1&2¯t],

and E[X] = ¹, and Var[X] = ¹¯.

! The exponential inverse Gaussian distribution, E-IG(¯,¹), has
a survivor function:

S(x) = 1&F(x) = e¹=¯"1&(1+2¯x)1=2#, x > 0,

with moments (Hesselager/Wang/Willmot, [10]):

E[X] =
¯+¹
¹2

, Var[X] =
5¯2 +4¯¹+¹2

¹4
:

! The lognormal distribution, LN(¹,¾2), has a probability den-
sity function

f(x) =
1%
2¼¾x

exp

H
&1
2

7
log(x)&¹

¾

82I
, x > 0,

with

E[X] = exp[¹+¾2=2] and

Var[X] = exp[2¹+¾2][exp(¾2)&1]:
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A.3. Parameter Uncertainty and Mixture Models

In modeling insurance losses, actuaries are called upon to pick
a frequency distribution and a severity distribution based on past
claim data and their own judgement. Actuaries are fully aware
of the presence of parameter uncertainty in the assumed models.
As a way of incorporating parameter uncertainty, mixture models
are often employed.

! The most popular frequency distributions are the negative
binomial family of distributions. In modeling claim fre-
quency, the negative binomial NB(®,¯) can be interpreted as
a mixed Poisson model, where the Poisson parameter ¸ has a
gamma(®,¯) distribution. This can be seen from the probabil-
ity generating function

PN(t) = E[t
N] = E¸[E(t

N - ¸)] = E¸[e¸(t&1)]
=M¸(t&1) = "1&¯(t& 1)#&®:

! A popular claim severity distribution is the Pareto distribu-
tion which has a thick right tail representing large claims. The
Pareto(®,¯) distribution can be interpreted as a mixed expo-
nential distribution, where the exponential parameter ¸ has a
gamma(®,1=¯) distribution. This can be seen from the survivor
function

S(x) = E¸[e
&¸x] =M¸(&x) = (1+ x=¯)&® =

"
¯

¯+ x

#®
:

! A more flexible family of claim severity distributions are
the Burr distributions (including Pareto as a special case).
The Burr(®,¯,¿) distributions can be expressed as a Weibull-
gamma mixture. This can be seen from the survivor function

S(x) = E¸[e
&¸x¿ ] =M¸(&x¿ ) = (1+ x¿=¯)&® =

"
¯

¯+ x¿

#®
:

The Burr(®,¯,¿) family includes the Pareto(®,¯) as a special
member when ¿ = 1.
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For ¿ > 1, the Burr(®,¯,¿) distribution has a lighter tail than
its Pareto(®,¯) counterpart.
For ¿ < 1, the Burr(®,¯,¿) distribution has a thicker tail than
its Pareto(®,¯) counterpart.

A.4. Lognormal Distributions

A.4.1. Univariate lognormal distributions

The normal distribution, N(¹,¾2), has a probability density
function

fX(x) =
1%
2¼¾

exp

H
&1
2

7
x&¹
¾

82I
, &)< x <):

It has a moment generating function

MX(t) = E[e
tX] = exp[¹t+ 1

2¾
2t2]:

If X .N(¹,¾2), then Y = eX has a lognormal distribution with a
probability density function

fY(y) =
1%
2¼¾y

exp

H
&1
2

7
log(y)&¹

¾

82I
, y > 0:

The moments of Y are

E[Yn] = E[exp(nX)] =MX(n)

= exp

J
n¹+

n2¾2

2

K
, n= 1,2 : : : :

Specifically,

E[Y] = exp

J
¹+

¾2

2

K
,

Var[Y] = exp[2¹+¾2][exp(¾2)&1],

E[Y&E[Y]]3 = exp
J
3¹+

3¾2

2

KL
exp(3¾2)& 3exp(¾2) +2

M
:
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A.4.2. Bivariate lognormal distributions

Let X1 and X2 have a bivariate normal distribution with joint
probability density function

f(x1,x2) =
1

2¼¾1¾2
0
1& ½2

1 exp
:
& 1
2(1& ½)2

7"
x1&¹1
¾1

#2
+
"
x2&¹2
¾2

#2
& 2½

"
x1&¹1
¾1

#"
x2&¹2
¾2

#8C
:

Then X1 and X2 have marginal distributions N(¹1,¾
2
1) and

N(¹2,¾
2
2), respectively. (X1,X2) has a covariance matrixH

¾21 ½¾1¾2

½¾1¾2 ¾22

I
,

where ½ is the correlation coefficient between X1 and X2. Note
that ½= 1 if and only if Pr"X1 = aX2 +b#= 1 with a > 0.
Now consider the variables Y1 = exp(X1) and Y2 = exp(X2).

Note that log(Y1Y2) has a N(¹1 +¹2,¾
2
1 +¾

2
2 +2½¾1¾2) distribu-

tion. We have

Cov[Y1,Y2] = E[Y1Y2]&E[Y1]E[Y2]
= exp"(¹1 +¹2)+ 1

2[¾
2
1 +¾

2
2 +2½¾1¾2]#

& exp[¹1 +¾21 +¹2 +¾22]
= exp[¹1 +¹2 +

1
2(¾

2
1 +¾

2
2)]"exp(½¾1¾2)& 1#:

Therefore, the correlation coefficient of Y1 and Y2 is

½Y1,Y2 =
exp(½¾1¾2)& 10

exp(¾21)&1
0
exp(¾22)&1

,

where ½= ½X1,X2 .
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A.4.3. Multivariate lognormal distributions

Consider a vector (X1, : : : ,Xn)
3 of positive random variables.

Assume that (logX1, : : : , logXn)
3 has an n-dimensional normal

distribution with mean vector and variance-covariance matrix

¹=

$%%&
¹1
...

¹n

'(() and § =

$%%&
¾11 $ $ $ ¾1n
...

...
...

¾n1 $ $ $ ¾nn

'(() ,
respectively.

The distribution of (X1, : : : ,Xn)
3 is said to be an n-dimensional

lognormal distribution with parameters (¹,§) and denoted by
¤n(¹,§). The probability density function of X= (X1, : : : ,Xn)

3
having ¤n(¹,§) is (see Crow and Shimizu, [4, Chapter 1]):

f(x1, : : : ,xn) =123
1@

(2¼)n-§-Nn
i=1 xi

exp"& 1
2 (logx&¹)3§&1(logx&¹)#, x 2 (0,))n

0, otherwise:

From the moment generating function for the multivariate normal
distribution we have

E[X
s1
1 $ $ $X

sn
n ] = exp(s3¹+ 1

2s
3§s),

where s= (s1, : : : ,sn)
3. Specifically, we have for any i= 1,2, : : : ,n,

E[Xri ] = exp(r¹i+
1
2r
2¾2ii)

and for any i,j = 1,2, : : : ,n,

Cov[Xi,Xj] = exp"¹i+¹j + 1
2(¾

2
ii+¾

2
jj)#"exp(¾ij)& 1#:

A simulation of this multivariate lognormal distribution can be
easily achieved by first generating a sample from a multivariate
normal distribution and then taking the logarithms.
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APPENDIX B

MORE ON COPULAS AND SIMULATION METHODS

This appendix presents greater detail on the construction of
copulas and the associated simulation techniques. For simplicity,
we confine the discussion to the bivariate case. The discussion
here can be readily extended to higher dimensions (k > 2).

B.1. Bivariate Copulas

A bivariate copula refers to a joint cumulative distribu-
tion function C(u,v) = Pr"U , u;V , v# with uniform marginals
U,V .Uniform[0,1]. It links the marginal distributions to their
multivariate joint distribution. Let SX,Y(x,y) be a joint survivor
function with marginals SX and SY. Then there is a copula C
such that

SX,Y(x,y) =C(SX(x),SY(y)), for all x,y 2 (&),)):
Conversely, given any marginals SX , SY, and a copula C,
SX,Y(x,y) =C(SX(x),SY(y)) defines a joint survivor function with
marginals SX and SY. Furthermore, if SX and SY are continuous,
then C is unique.

Note that SX(X) and SY(Y) are uniformly distributed random
variables. The association between X and Y can be described
by the association between uniform variables U = SX(X) and
V = SY(Y). In theory, if one can first generate a sample pair (ui,vi)
from the bivariate uniform distribution of (U,V), one can simu-
late a sample pair of (X,Y) by the inverse transforms: xi = S

&1
X (ui)

and yi = S
&1
Y (vi). Unfortunately, there is no simple way of gener-

ating a set of bivariate uniform numbers that works for all cop-
ulas. In reality, each type of copula needs a different simulation
technique.
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Note that

FX,Y(x,y) =C(FX(x),FY(y)) and

SX,Y(x,y) =C(SX(x),SY(y))

may imply different bivariate distributions. Here we assume that
a copula is applied to the survivor functions unless otherwise
mentioned.

B.2. Distortion of the Joint Survivor Function

Let g : [0,1]( [0,1] be an increasing function with g(0) =
0 and g(1) = 1. If SX,Y(x,y) is a joint survivor function with
marginals SX and SY, then g[SX,Y(x,y)] defines another joint sur-
vivor function with marginals g 5 SX and g 5 SY. If we assume
that, after applying a distortion g, g[SX,Y(x,y)] has non-correlated
marginals:

g[SX,Y(x,y)] = g[SX(x)]g[SY(y)],

then we have

SX,Y(x,y) = g
&1(g[SX(x)] $ g[SY(y)]), (B.1)

which corresponds to the copula

C(u,v) = g&1[g(u)g(v)]: (B.2)

If we let h(t) =& logg(t), then Equation B.1 gives the follow-
ing relation: SX,Y(x,y) = h

&1(h[SX(x)] +h[SY(y)]), which gives
the Archimedean family of copulas (see Genest and Mackay,
[7]).

For a bivariate copula C, Kendall’s tau is

¿ = 4
* 1

0

* 1

0
C(u,v)dC(u,v)&1:

If a copula C = g&1(g(u)g(v)) is defined by a distortion g, then

¿ = 1+4
* 1

0

g(t) logg(t)
g3(t)

dt:
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EXAMPLE B.1 The distortion function g(t) = exp"1& t&®#, ® >
0, corresponds to the Clayton family of copulas with

C®(u,v) = "u&®+ v&®&1#&1=®,
C)(u,v) = lim

®()C®(u,v) = min[u,v],

C0(u,v) = lim
®(0+

C®(u,v) = uv:

(B.3)

Thus, C) and C0 are the copulas for the Frechet upper bounds
and the independent case, respectively.

EXAMPLE B.2 The distortion function g(t) = exp"&(& log t)®#,
®+ 1, corresponds to the Hougaard family of copulas with

C®(u,v) = exp"&[(& logu)®+(& logv)®]1=®#,
C)(u,v) = lim

®()C®(u,v) = min[u,v],

C1(u,v) = uv:

(B.4)

Thus, C) and C1 are the copulas for the Frechet upper bounds
and the independent case, respectively.

EXAMPLE B.3 The distortion function g(t) = ®t&1=®&1, ® >
0, corresponds to the Frank family of copulas with

C®(u,v) = [log®]
&1 log

:
1+

(®u&1)(®v&1)
®& 1

C
, 0<®<),

C)(u,v) = lim
®()C®(u,v) = max[u+ v&1,0],

(B.5)
C0(u,v) = lim

®(0+
C®(u,v) = min[u,v],

C1(u,v) = lim
®(1

C®(u,v) = uv:

Thus, C), C0, and C1 are the copulas for the Frechet lower and
upper bounds and the independent case, respectively.
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B.3. Common Frailty Models

Vaupel, Manton, and Stallard [24] introduced the concept of
frailty in their discussion of a heterogeneous population. Each
individual in the population is associated with a frailty, r. The
frailty varies across individuals and thus is modeled as a ran-
dom variable R with cumulative distribution function FR(r). The
conditional survival function of lifetime T, given r, is

Pr"T > t - R = r#= B(t)r,
in which B(t) is the base line survivor function (for a standard
individual with r = 1). The unconditional survivor function for a
heterogeneous population is

Pr"T > t#=
* )

0
B(t)r dFR(r) =MR(logB(t)),

where MR is the moment generating function of R.

Oakes [20] uses a bivariate frailty model to describe associa-
tions between two random variables as follows. Assume that X
and Y both can be modeled by frailty models

SX(x) =
* )

0
B1(x)

r dFR(r) =MR(logB1(x)) and

SY(y) =
* )

0
B2(y)

r dFR(r) =MR(logB2(y)),

respectively, in which B1 and B2 are the base line survivor func-
tions. Assume that X and Y are conditionally independent, given
frailty R = r. However, X and Y are associated as they depend on
the common frailty variable R. The bivariate frailty model yields
the following joint survivor function

SX,Y(x,y) = Pr"X > x,Y > y#=
* )

0
[B1(x) $B2(y)]r dFR(r)

=MR(log[B1(x) $B2(y)]):

For g(u) = exp[M&1
R (u)], we have

g[SX,Y(x,y)] = B1(x) $B2(y) = g[SX(x)] $g[SY(y)]:
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In other words, a bivariate frailty model yields a joint distribution
that can also be obtained by using the distortion function g.

EXAMPLE B.4 Assume that the frailty R has a gamma distribu-
tion with MR(z) = (1=1& z)1=®, ® > 0. Then M&1

R (u) = 1&u&®,
and g(u) = exp[1&u&®]. Therefore, the common gamma frailty
model yields the Clayton family of copulas given by Equation
B.3:

SX,Y(x,y) =
:

1
SX(x)®

+
1

SY(y)®
&1

C&1=®
, 0< ®<):

This family is particularly useful for constructing bivariate Burr
(including Pareto) distributions (see Johnson and Kotz, [13,
p. 289]).

EXAMPLE B.5 If the frailty R has a stable distribution with
MR(z) = exp"&(&z)1=®#, ®+ 1, the corresponding joint survivor
function is given by Equation B.4:

SX,Y(x,y) = exp"&[(& logSX(x))®+(& logSY(y))®]1=®#:
This family of copulas is particularly useful for constructing bi-
variate Weibull (including exponential) distributions.

EXAMPLE B.6 If the frailty R has a logarithmic (discrete) distri-
bution on positive integers with MR(z) = [log®]

&1 log[1+ ez(®&
1)], then we get the Frank family of copulas given by Equation
B.5.

Marshall and Olkin [19] proposed a simulation algorithm for
copulas with a frailty construction. This algorithm is applicable
to copulas with arbitrary dimensions (k + 2):

STEP 1 Generate a value r from the random variable R having
moment generating function MR.

STEP 2 Generate independent uniform (0,1) numbers U1, : : : ,Uk.
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STEP 3 For j = 1, : : : ,k, set U*j =MR(r
&1 logUj), and calculate

Xj = S
&1
j (U

*
j ).

B.4. The Morgenstern Copula

The Morgenstern copula is defined by

C(u,v) = uv[1+®(1&u)(1& v)], &1, ®, 1:
This copula cannot be generated by distortion or frailty models.

The following simulation algorithm for the Morgenstern cop-
ula can be found in Johnson [17, p. 185]:

STEP 1 Generate independent uniform variables V1,V2, and set
U1 = V1.

STEP 2 Calculate A= ®(2U1&1)&1 and B = [1&®(2U1&1)]2
+4®V2(2U1&1).

STEP 3 Set U2 = 2V2=(
%
B&A).

For the Morgenstern copula, Kendall’s tau is

¿(®) = 2
9®, &1, ®, 1,

which is limited to the range (&2
9 ,
2
9 ). Thus, the Morgenstern

copula can be used only in situations with weak dependence.

An extension of the Morgenstern copula to arbitrary dimen-
sions has been given by Johnson and Kotz [14, 15].

B.5. Summary and Comments

Table B.1 lists the most commonly used bivariate copulas.
Except for the reverse monotone copula, they can readily be
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TABLE B.1

A SUMMARY OF POPULAR COPULAS

Associated Kendall’s
Names Function Form C(u,v) Tau

Independence uv 0

Common
monotone

min[u,v] 1

Reverse
monotone

max[u+ v& 1,0] &1

Cook–
Johnson,
Clayton

[u&1=®+ v&1=® &1]&® (®> 0)

[u&®+ v&®&1]&1=® (® > 0)

1
1+2®
®

®+2

Frank log®

A
1+

(®u& 1)(®v & 1)
®& 1

B
(0<®<)) *

Farlie,
Gumbel, uv[1+®(1& u)(1& v)] (&1, ®, 1) 2

9®
Morgenstern

Gumbel–
Hougaard

exp"&[(& lnu)®+(& lnv)®]1=®# (®+ 1) 1&®&1

normal H(©&1(u),©&1(v))** (&1, ½, 1) 2
¼
arcsin(½)

* For the Frank copula,

¿(®) = 1+
4

& log(®)

7
1

& log(®)

* & log(®)

0

t

et &1 dt& 1
8
:

**H is the joint cumulative distribution function for a bivariate standard normal distribution with a
correlation coefficient ½.
Note that the Cook–Johnson copula with parameter ® is the same as the Clayton copula with parameter
1=®.

extended to multivariate cases (k > 2). In higher dimensions,
the Cook–Johnson copula requires that all taus are the same,
while the normal copula allows complete freedom in selecting
Kendall’s tau.

Some comments on higher dimension extensions of the listed
copulas are in order.
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1. The independence copula and the common monotone
copula both have a unique extension to higher dimen-
sions, while the reverse monotone has multiple possible
extensions.

2. Recall that the Cook–Johnson copula, the Clayton cop-
ula, the Frank copula, and the Gumbel–Hougaard copula
can be generated by the distortion method. They can be
readily generated to higher dimensions by the relation

g[SX1,X2,:::,Xk (t1, t2, : : : , tk)]

= g[SX1(t1)] $ g[SX2(t2)] $ $ $g[SXk (tk)]:
However, the correlation structure is restricted in a sense
that Kendall’s tau (or rank correlation coefficient) is the
same for any pair of variables.

3. The Morgenstern copula can be generated to higher di-
mensions, but the parameter values are further restricted.

4. The normal copula stands out among others for its ex-
tremely flexible correlation structure at higher dimen-
sions. It allows complete freedom in selecting Kendall’s
taus or rank order coefficients, as we have seen in Sec-
tion 8.

Frees and Valdez [6] have written a good survey paper on the
use of copulas, including the associated simulation techniques.
In general, the use of copulas permits simple implementation by
Monte Carlo simulation, thus aggregating correlated risks.

B.6. The Use of Mixed Copulas

Assume that joint cumulative distribution functions FX1,:::,Xk
and GX1,:::,Xk have the same marginals FX1 , : : : ,FXk . Then the mixed
joint cumulative distribution function

(1&q)FX1,:::,Xk (t1, : : : , tk)+qGX1,:::,Xk (t1, : : : , tk), 0< q < 1,
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also has a marginal cumulative distribution function FX1 , : : : ,FXk .
For this mixed joint distribution, we have

¿[Xi,Xj] = (1&q)¿F[Xi,Xj] +q¿G[Xi,Xj],
where ¿F and ¿G represent Kendall’s taus implied by the joint
cumulative distribution functions F and G, respectively. In par-
ticular, if we let FX1,:::,Xk (t1, : : : , tk) =

Nk
j=1 tj represent the inde-

pendent copula and GX1,:::,Xk (t1, : : : , tk) = min[t1, : : : , tk] represent
the comonotonic copula, then ¿[Xi,Xj] = q.

The mixture of joint cumulative distribution functions can be
used to adjust, up or down, Kendall’s tau. For example, if we feel
that a common mixture joint cumulative distribution function F
would give too strong a correlation, then we can mix it with an
independent joint cumulative distribution function G. If we feel
that a common mixture joint cumulative distribution function F
would give too weak a correlation, then we can mix it with a
comonotonic joint cumulative distribution function G3.
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APPENDIX C

PANJER’S RECURSIVE METHOD

As an alternative to the FFT method, we introduce Panjer’s
recursive method for evaluation of aggregate loss distributions.

Suppose that the severity distribution fX(x) is defined on
0,1,2, : : : , representing multiples of some convenient monetary
unit.

Suppose that the frequency distribution is a member of the
(a,b) class satisfying

Pr"N = k#=
"
a+

b

k

#
Pr"N = k&1#, k = 1,2,3, : : : :

C.1

Note that the Poisson and negative binomial distributions are
included in this family.

For the Poisson distribution, we have a= 0 and b = ¸.

For the negative binomial (®,¯) distribution, we have

a=
¯

1+¯
and b =

(®&1)¯
1+¯

:

Panjer [21] has shown that the aggregate loss distribution fS(x)
can be evaluated recursively

fS(x) =

,- x!
y=1

"
a+

by

x

#
fX(y)fS(x& y)

./ (1& afX(0))&1:
(C.2)

The starting value of the recursive algorithm is fS(0) = PN(fX(0)).

In the case of the Poisson distribution, it reduces to

fS(x) =
¸

x

x!
y=1

yfX(y)fS(x& y), x= 1,2, : : : , (C.3)
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with starting value

fS(0) = e
&¸(1&fX (0)): (C.4)

The recursive method is fairly easy to program.

For example, suppose that the claim frequency N has a Pois-
son distribution with mean ¸= 3 and the claim severity X has a
probability distribution

Pr"X = 1#= 0:5, Pr"X = 2#= 0:3, Pr"X = 3#= 0:2,
(C.5)

then the probability distribution of the aggregate loss S can be
calculated recursively

fS(0) = e
&¸ = 0:04979,

fS(1) =
¸

1
[fX(1)fS(0)] = 0:07468,

fS(2) =
¸

2
[fX(1)fS(1)+fX(2)fS(0)] = 0:07842,

fS(3) =
¸

3
[fX(1)fS(2)+fX(2)fS(1)+fX(3)fS(0)] = 0:07157:
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APPENDIX D

SOME FREQUENTLY ASKED QUESTIONS

Q1. In this paper a lot of discussion has been given to cor-
related frequency models. What about models of correlation be-
tween claim severities?

A1. We have a general correlation model—normal copula—
which can be used to model correlated claim severities. In fact,
@Risk (which is an Excel add-in application) can be readily used
to carry out such simulations. But one should keep in mind that
the correlation parameters used in @Risk are rank correlation
coefficients.

Correlation in claim severities often comes from the uncer-
tainty in the future claim inflation and loss development. A sim-
ple method of quantifying this correlation is to use a common
multiplier:

X1 = B $Y1, : : : ,Xj = B $Yj , : : :XN = B $YN ,
where

! the Yjs are independent,
! the number of claims N may be fixed or random but indepen-
dent from the severity Yjs and the multiplier B, and

! the common multiplier B may be assigned a probability dis-
tribution (discrete or continuous).

The sum of the k losses is

Z = X1 +X2 + $ $ $+XN = B $ (Y1 +Y2 + $ $ $+YN):
Thus, one can first evaluate the independent sum of the Yjs, and
then combine it with the multiplier B. In this model, we have
Cov[Xi,Xj] = Var(B) $E[Yi] $E[Yj].
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Q2. In some situations, the claim frequency and severity are
correlated. How would one construct such a model?

A2. In some catastrophe modeling it might be plausible to
consider the dependency between claim frequency and claim
severity. For instance, the Richter scale value of an earthquake
may affect the claim frequency and severity simultaneously, and
for hurricane losses, the wind speed would affect both the claim
frequency and severity in the same direction. For a modeling
of such catastrophe losses, a good understanding of the underly-
ing loss generating mechanism is essential, which requires sound
knowledge in meteorology, construction engineering, population
density, insurance coverage, etc. Some have observed that de-
mand surge after a major catastrophe may also generate correla-
tion between claim frequency and severity. Nevertheless, math-
ematics can serve as a tool to quantify our understanding of the
underlying loss generating mechanism.

For reinsurance excess-of-loss modeling, the frequency and
severity of a given layer may be positively correlated in a high
inflation environment. This is due to the leverage effect of in-
flation. This correlation can be quantified by using a random
trending factor for ground-up losses and then quantifying the
frequency/severity for losses for a reinsurance layer.


