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Abstract 

The Black-Scholes option pricing formula from fi- 
nance theory is consistent with the assumption that the 
market price of the underlying asset at any future date 
is lognormally distributed with time-dependent param- 
eters and can be shown to be a special case of both 
a more general option model and a familiar actuarial 
function used in excess of loss applications. This in- 
sight leads to an understanding of the similarity be- 
tween options and certain insurance concepts. Because 
insurance and finance have developed separately, dif- 
ferent paradigms are used by the practitioners in each 
field. When these paradigms are shared, a new per- 
spective on risk management, product development, 
and pricing, especially of insurance and reinsurance, 
emerges. 

1. RELATIONSHIP OF THE BLACK-SCHOLES FORMULA AND THE 

ACTUARIAL EXCESS OF LOSS FUNCTION 

In 1973, Fischer Black and Myron Scholes published their 
now classic paper entitled "The Pricing of Options and Corporate 
Liabilities," [ 1 ] in which they derived the option pricing formula 
that bears their name. Gerber and Shiu [2] described that paper 
as "perhaps the most important development in the theory of fi- 
nancial economics in the past two decades." The advent of the 
modern derivatives market is generally traced back to the intro- 
duction of exchange-traded equity options in the U.S. (1973) and 
the development of the Black-Scholes model [3]. 
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Black and Scholes showed that under certain conditions the 
current pure premium, l c t (S ) ,  for a "call option" to buy a partic- 
ular asset for price S, at, and only at, time t (where t is the time 
to expiry) is 

c , ( S )  = Po" N ( d l  ) - S e - r t  " N ( d 2 ) ,  where 

ln(P0/S ) + (r + 0.5cr2)t 
d~ = ~rvq ' (1 .1 )  

d2 = l n ( P o / S )  + (r  - 0.5a2)t 

av'7 

and where P0 is the current market price, r is the risk-free force 
of interest, a is a measure of annualized price volatility, and N 
is the cumulative distribution function of the standard normal 
distribution. 

This is a daunting formula, and in this form it provides little 
insight into the underlying options pricing problem. One of  the 
key points of this paper is that Formula 1.1, the Black-Scholes 
formula, is actually a special case of a familiar actuarial function 
written in an unfamiliar form. This will lead us to some important 
insights about both options and insurance. 

Consider that the pure premium of a call option exercisable 
only on the .expiry date (a "European" option) depends on the 
market 's current opinion about the probability distribution of the 
market price of the underlying asset on the expiry date. If the 
option exercise price is S, the option will only be exercised in 
the event the market price at expiry exceeds S. Its value in these 
circumstances will be the amount by which the market price 
exceeds S. In other circumstances, the optionholder will let the 

IFinancial economists use the term "price" or "premium." However, to make clear to 
actuarial readers that there is no embedded charge for risk or expenses in the Black-  
Scholes valuation, we shall use the actuarial term "pure premium." 
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option expire unexercised and, if he wants to own the asset, buy 
the asset at the market price. The option to buy the asset at a 
higher than market price will be worthless. The value of the op- 
tion at expiry is the probability-weighted average of all possible 
expiry scenarios. 

Suppose the probability distribution of market prices at expiry 
is represented by the random variate x. Then the expected value 
of the option at expiry is 

fs ~(X - S) Future Value [ct(S)] = • f ( x ) d x .  (1.2) 

The expression on the right hand side of Formula 1.2 is the fu ture  
value of the option pure premium, since x is defined for the 
expiry date, which is in the future. Its present value, discounted 
at the risk-free interest rate, 2 is 

fs °~(x S) (1.3) c t ( S  ) = e - r t  _ f ( x )  dx.  

Now compare Formulas 1.1 and 1.3. Formula 1.1, the Black- 
Scholes formula, depends on the assumption that market prices 
are lognormally distributed. Formula 1.3 is more general and has 
no embedded distributional assumption. However, if the variate 
x in Formula 1.3 is assumed to be lognormal and the correct 

2This is justified on the basis that using any other rate would open the door to risk-free 
arbitrage profits. It is possible to create a riskless portfolio by hedging a long position 
in the underlying asset by selling short an appropriate number  of  call options on the 
underlying asset. Because it is riskless, this hedged portfolio must  earn the risk-free rate 
of  return. However, for this to be true (and it must  be true to avoid risk-free arbitrage 
profit opportunities), it turns out that the interest rate for discounting the expected value 
of  the call option at expiry must  also be the risk-free rate. The finance literature refers 
to this phenomenon as "risk-neutral valuation" and it applies to valuation o f  all financial 
derivatives of  assets where suitable conditions for hedging exist. For further discussion 
of risk-neutral valuation and risk-free discounting, see Hull [7]. 

In actuarial applications involving insurance claims (where hedging is not possible), it 
is sometimes implicitly recognized that the risk-free rate is not alapropriate by discounting 
at the risk-free rate, and then adding a risk charge to the discounted result. This is 
equivalent to discounting at a rate less than the risk-free rate. We have deliberately 
chosen to characterize c~(S) as a "pure premium" to leave the door open to an additional 
risk charge where appropriate. 
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distribution parameters are chosen, 3 Formula 1.1 can be derived 
from Formula 1.3. In other words, the Black-Scholes formula is 
a special case of Formula 1.3. The proof of this is in Appendix A. 

Formula 1.2, which differs from Formula 1.3 only by a present 
value factor, also defines a familiar actuarial function seen fre- 
quently in excess of loss insurance applications. For example, if 
x is a random variate representing the aggregate value of losses 
occurring during an annual period, then Formula 1.2 defines the 
expected value of losses in excess of an aggregate loss amount of 
S. This function is an important tool in pricing aggregate excess 
or stop-loss reinsurance covers. 

A second example relates to the more common type of excess 
of loss coverage, where the excess attachment point S is defined 
in terms of individual losses, rather than in the aggregate over a 
period. In this context, if x is a random variate representing the 
loss severity distribution with mean M, then Formula 1.2 defines 
the expected portion of M attributable to losses in excess of S. If 
the result of Formula 1.2 equals C, then C/M is the excess pure 
premium factor. If N is the expected number of losses, then NC 
is the expected value of excess losses. 

Let us summarize what we have established. Formula 1.2 
defines an important element of excess of loss pricing. It dif- 
fers only by a present value factor from Formula 1.3, which de- 
fines a general formula for European call option pricing. Form- 
ula 1.1, the Black-Scholes formula, is a special case of Formula 
1.3. 

The implication of this is that excess of loss insurance and 
call options are essentially the same concepts. The one deals 
with insurance claims and the other deals with asset prices, but 
the pricing mathematics is basically the same. 

3Formulas 1.1 and 1.3 produce the same result i fx  is a Iognormal variate with parameters 
( lnP 0 +rt-O.5a2t, ax/7), where this characterization follows Hogg and Klugman [4], 
who define a lognormal distribution by reference to the /~ and tr o f  the related normal 
distribution. See Appendix A for the proof o f  this. 
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This insight is potentially tremendously powerful. If excess of  
loss insurance and call options are essentially the same concept 
in different contexts, then it must be possible to translate ideas 
from one context into the other context. In the remainder of  this 
paper, we will explore some of the potential applications of  the 
options market paradigm to insurance problems. 

2. IMPLICATIONS OF THE EQUIVALENCE OF OPTION AND 
ACTUARIAL EXCESS OF LOSS MODELS 

The mathematical equivalence of finance theory's Black-  
Scholes formula and an important actuarial function used in ex- 
cess of  loss insurance applications has a number of  important 
implications for the convergence of insurance and finance. In 
this paper we will explore a few of them. 

Option market paradigms can be used to think about insurance 
problems; and this may well lead to new insurance or, perhaps 
more likely, reinsurance products. 

• The more general actuarial excess of loss paradigm, which 
encompasses and frequently uses distributions other than the 
lognormal, can be used to think about the pricing of  options on 
assets for which market prices are not lognormally distributed. 

• Taking the two previous points together, it is possible to move 
beyond existing options and actuarial paradigms to spawn a 
new one that encompasses both. This, in turn, may lead to 
new product opportunities for insurers, investors, or both. 

3. THE OPTION MARKET PARADIGM 

The financial markets have been tremendously creative in de- 
vising products and techniques for managing financial risk. Most 
of this activity has occurred in what is loosely called the "deriva- 
tives market." Options are at the core of  this market, and it is on 
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FIGURE 1 

EXPIRY V A L U E  PROFILE: CALL OPTION, ct(S ) 
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this part of the derivatives market that we will focus our attention. 
Many derivative products are built around option features. 

Basic Options 

A "European" call option, ct(S), represents the fight but not 
the obligation to buy the underlying asset at, and only at, time 
t at a price of S. Formula 1.3 describes the price of such a call 
option. Figure 1 shows its expiry value profile. 

An "American" call option incorporates the right to exercise at 
any time up to and including time t. The Black-Scholes formula 
applies to the pricing of European calls. In this discussion our 
references will be to European-style options unless otherwise 
specified. 

A "European" put option, pt(S), represents the fight but not 
the obligation to sell the underlying asset at, and only at, time t 
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FIGURE 2 

EXPIRY VALUE PROFILE: PUT OPTION, Pt(S) 
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at a price of  S. Figure 2 shows the expiry value profile of a put 
option. 

The general formula for the price of a put, pt(S) is 

£s 
Pt(S) = e -r' (S - x) .  f ( x ) d x .  (3.1) 

Spreads 

The combination of  two call options, one bought and one sold; 
e.g., 

ct(S,T) = c t ( S ) -  ct(T), with T > S (3.2) 

is known as a call option spread. 
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In insurance parlance, ct(S, T) refers to an excess layer, c t ( S  , T) 
is the pure premium for the layer of T - S excess of S. 

Put option spreads can be defined in a similar way to call 
option spreads. 4 

Implications for Insurance Applications 

Once we recognize that a call spread is the same thing as 
an excess layer, a new world opens up. In theory, every option 
and related derivative product must have an insurance analogue! 
Since the derivative markets have been enormously creative in 
developing new product ideas, it should be possible to mine that 
trove of  ideas for potentially innovative insurance and reinsur- 
ance product concepts. 

As an example of  how this can be done, we will analyze the 
derivatives concept of  a cylinder. Then we will reconstruct it as 
a reinsurance product. 

In its extreme form, a zero cost cylinder is created by the si- 
multaneous purchase of  a call and sale of  a put (or vice versa) of  
equal value, usually at different out-of-the-money exercise prices 
but having the same expiration date. 5 If the cylinder involves a 
long call (i.e., the purchase of  a call) and a short put (i.e., the 
sale of a put), its value increases when the value of  the underly- 
ing asset increases and decreases when the asset value decreases. 
This is a "bullish" position. If the cylinder involves a short call 
and a long put, its value increases when the value of the underly- 
ing asset decreases and declines when the underlying asset value 
increases. This is a "bearish" position. 

4For a detailed discussion of  the mathematics of  call, put, and cylinder spreads, see 
Appendix B. There are also a number  of  good reference books on financial derivatives, 
including Redhead [5] and Hull [7], that provide more comprehensive treatment of  the 
subject. There is also a British paper, Kemp [8], which examines the subject from a more 
actuarial perspective, although it is not particularly oriented toward non-life issues. 
5This is the extreme form. Note that a cylinder need not be "zero cost." For further 
discussion of  cylinders and other option combinations, see [5]. 



APPLICATION OF THE OPTION MARKET PARADIGM 7 0 9  

FIGURE 3A 

EXPIRY VALUE PROFILE: BULL CYLINDER OPTION cylt(S, T) 
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Bull and bear cylinders are defined as follows: 

cy l t (S ,T)  = c t ( T ) -  pt(S),  T > Po > S (bull) 

- c y l t ( S , T )  = pt(S)  - ct(T), T > Po > S (bear) 

and their expiry value profiles are shown in Figures 3A and 3B. 

For an owner of the underlying asset, establishing a bear 
cylinder position partially hedges his asset position and reduces 
its volatility. Since in the case of a zero cost cylinder the values 
of the short call and long put are exactly offsetting, no money 
changes hands at inception of this position. At expiration, if the 
value of the underlying asset is X t, the value of the cylinder 
position is 

- ( X  t --T), X t > T; 

O, T>Xt>S;  
s - x , ,  s >_ x,. 
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FIGURE 3B 

EXPIRY V A L U E  PROFILE: BEAR CYLINDER OPTION c y l t ( S , T  ) 
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TABLE 1 

Expiry Value Expiry Value 
Asset Price of Cylinder Asset + Cylinder 

X t >_ T - (X ,  - T) T 
T > X, > S o x, 

S > X, S - X ,  S 

The holder of  this position gains S - X  t for small values of  X t 

and loses X t - T  for large values of  X r For middle values of  X t 

he gains or loses nothing. His hedged position at expiry of  the 
cylinder is summarized  in Table 1. 

In words, this implies that the hedged position yields the re- 
turns of  the under lying asset (i.e., X t - Po),  but subject to a max- 
imum loss of  P0 - S and a max imum gain of  T - P0. 
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If, rather than owning the underlying asset, an investor has a 
short position in it (i.e., it is a liability), he can partially hedge 
that position with a bull cylinder. 

Suppose the underlying asset is the right to recover insurance 
claims. To an insured, this is an asset (a "long" position). To an 
insurer, it is a liability (a "short" position). Therefore, an insurer 
could use a bull cylinder to partially hedge his exposure. 

If there were an established derivatives market trading options 
on insurance claims, as there is for a number of other financial 
assets, an insurer would be able to hedge its exposure by buying 
any of a variety of  products; e.g., call options, call spreads, bull 
cylinders, or bull cylinder spreads. At present, there is only a lim- 
ited derivatives market for options on insurance claims (namely, 
the excess of  loss reinsurance market) and, broadly speaking, it 
offers only one product: the call spread. 6 One of the key themes 
of this paper is that conceptually there is no reason why the rein- 
surance market could not offer similar products to those found 
in the broader derivatives market. 

Now let us consider how the cylinder concept, which has the 
advantage of lower initial cost to the buyer compared to a simple 
call option, might be translated into a reinsurance product. To 
illustrate one way this might work, first imagine a high level 
excess of loss layer with a retention of T i and a limit of  T 2 - T 1. 
The market premium, ignoring all expenses, for conventional 
coverage is ct(T 1 , 7"2). 

To create the cylinder type structure, we need to introduce a 
feature equivalent to the sale of a put. Consider a second, un- 
reinsured, layer of S 1 - S  2 excess of S 2 within the company 's  
reinsurance retention, which will form the basis of the required 
put spread. Let pt(S1,S2) denote the value of  this put spread. 

6At the time this paper was written, the Chicago Board o f  Trade 's  efforts to create a 
market for options on U.S. catastrophe losses had not yet produced significant capacity. 
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A reinsurance cylinder spread can be created by the purchase 
by a ceding company of  the high level excess of  loss layer at a 
cost of  ct (T l , T  2) and the equivalent of the sale of a put spread 
on the lower layer at a price of pt(Si,S2). (Th is  is not neces- 
sarily a zero cost cylinder.) The premium outlay of the ced- 
ing company at the beginning of the contract would then be 
ct(T 1 ,T2) - Pt(S1 ,$2).  Since the reinsurer may require a minimum 
initial premium of M > 0, it may be necessary to allow the ratio 
of  puts to calls to be different from one. If this ratio is represented 
by Q, the initial premium is given by 

M = ct(T 1 ,T2) - Qpt(S1 ,$2). 

Under this structure, the premium of ct(Ti,T2) buys exactly the 
same excess protection against large claims as the conventional 
reinsurance provides. The premium credit of Qpt(S1,S2)  embed- 
ded in the initial premium represents the sale of a put spread 
on the lower layer by the ceding company to the reinsurer, the 
final value of  which will be settled as an additional premium of  
min(Q(Sl -Xt ) ,Q(SI  - $ 2 ) )  when claim experience is known. 

Let us now put some numbers to it. Let 

c,(T~,T2) = $ 2 , 5 0 0 , 0 0 0 ,  

p t (S i ,S2)  = $3,889,000, 

Q = 45%, 

S l = $15,000,000, and 

S 1 - S z = $5,000,000. 

Then the initial premium is calculated as follows: 

M = ct(T l , T  2) - Q .  p , (S  1 ,$2) 

= $2,500,000 - (.45)($3,889,000) 

= $750,000. 
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TABLE 2 

713 

Initial Additional Total 
Claims X t Premium Premium Premium 

Xt < S 2 $750 $2,250 $3,000 

S 2 < X t < S 1 $750 (45%)($15,000 - X:) Slides $750 to $3,000 

S 1 < X, $750 0 $750 

Note: Premium figures in thousands. 

At expiry of  the contract (or at such time as agreed), an addition- 
al premium, A, equal to the expiry value of  the "put spread" is 
due: 

A = min[Q(S l - Xt ) ,  Q ( S  l - $2)] 

= lesser of :  ( .45)($15,000,000-  x t) and (.45)($5,000,000). 

The total premium under a "cylinder" reinsurance structure de- 
pends on the final cost of  claims, X t, as shown in Table 2. 

This compares to the fixed premium of  $2,500,000 under  the 
conventional contract and is shown graphically on Figure 4. In 
the cylinder structure, the ceding company pays a higher pre- 
mium for its coverage of  T 2 - T i excess of  T 1 when the claim ex- 
perience in the retained sublayer of  S 1 - S 2 excess of  S 2 is good 
(up to $3,000,000 versus $2,500,000). It pays a lower premium 
when claim experience in that layer is bad ($750,000 versus 
$2,500,000). In other words, the company pays more when its 
net claims experience is relatively good and it can afford higher 
reinsurance premiums, and less when its net is poor and it can 
least afford the burden of  even normal reinsurance premiums. 
This is illustrated graphically in Figure 5 in terms of  the effect 
on underwriting profit. This premium structure is more effective 
in reducing the volatility of  a ceding company'  s net underwriting 
result than the conventional structure. Because of  this stability, 
it might appeal to reinsurance buyers who use excess of  loss 
coverage to reduce underwriting volatility. 
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FIGURE 4 

ILLUSTRATION OF "CYLINDER" REINSURANCE PREMIUM 
STRUCTURE 
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FIGURE 5 

ILLUSTRATION OF "CYLINDER" REINSURANCE EFFECT ON 
UNDERWRITING PROFIT 
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The flip side of  this is that the reinsurer's volatility is in- 
creased. Why would a reinsurer be willing to offer such a struc- 
ture, which reduces premiums when claims are higher? The an- 
swer is that, in the context of a reinsurer's diversified portfolio, 
the incremental volatility will be small, while the extra bene- 
fit to the reinsurer's customer may well strengthen the overall 
reinsurance relationship. The reinsurance market has sometimes 
been criticized for selling "off the shelf" products that it wants 
to sell, rather than what ceding companies actually want to buy. 
In classes of  reinsurance where reinsurers can sell as much off- 
the-shelf product as they want, there exists little or no pressure 
for them to introduce innovative structures like the foregoing 
example. However, to the extent some reinsurers want to pur- 
sue a more customer-focused strategy or simply feel competitive 
pressure, product innovation will increasingly begin to emerge. 
Indeed, the author is aware of at least one major reinsurer that 
has developed a product that has features similar to this example. 

The cylinder is only one example. There are undoubtedly 
many other practical insurance and reinsurance products wait- 
ing to be discovered by exploring the derivatives product para- 
digm. 

4.  P R I C I N G  OPTIONS W H E N  F U T U R E  PRICES ARE NOT 

L O G N O R M A L  

The Black-Scholes model relies on the assumption that mar- 
ket price changes over any finite time interval (expressed by the 
ratio Pn/P~_I) are lognormally distributed. Since the product of  
lognormal variates is also lognormal, this assumption leads to the 
convenient conclusion that future market prices are also so dis- 
tributed with predictable time-dependent parameters. The beauty 
of this is that the same framework can be used to determine the 
pure premium price for a one month, six month, or one year 
option, or one for any other time period. 
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Other stochastic price movement  models have been described 
by others [2]. Like Black-Scholes, they support the pricing of  
options of  any maturity. However, for assets subject to sudden or 
extreme price movements,  or which are highly illiquid, a realistic 
stochastic price movement  model may not exist. (Indeed, some 
analysts (e.g., Peters [6]) argue that all such models are flawed 
since they rely on too many assumptions that market experience 
has shown to be unrealistic.) This does not mean that options 
cannot be priced for such assets, but we need a different model. 7 

To price a call option exercisable at time t, we need an esti- 
mate of  the probability distribution of the underlying asset price 
at time t as viewed from the vantage point of today. If it is pos- 
sible to estimate this price distribution, it is possible to price 
an option. Pricing options of different maturities consistently is 
more difficult without a price movement  model, because it re- 
quires separate estimates of the price distribution for each exer- 
cise date; but it can be done. 

Formula 1.3, without the requirement that x be lognormal, can 
be used to price any option in this way. Of course, if the asset 
price at time t is not lognormal, the call option pure premium 
derived using Formula 1.3 is not equivalent to Black-Scholes. 
As with the estimation of loss distributions, determination of the 
price distribution of an asset may be made difficult by sparseness 
of data. 

5. COMBINING THE OPTION AND ACTUARIAL PARADIGMS 

Section 1 established that option pricing is analogous to ex- 
cess of  loss insurance pricing. Section 3 showed how new in- 
surance innovations can be developed using the option market 
product paradigm. Section 4 discussed how to price options out- 

7Even for the pricing of options on equities, for which Black-Scholes is widely used, 
traders recognize its imperfections. Fischer Black even wrote a paper entitled "How to 
Use the Holes in Black-Scholes," reprinted in [3]! 
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side the Black-Scholes framework. This section will illustrate 
how the synthesis of  these ideas can lead to new product concepts 
outside the current scope of  anything widely offered in either the 
financial or insurance market today. 

Options on Reinsurance Premiums  

Consider the following. A reinsurance contract can be thought 
of as an asset, namely the right to recover the monetary value of 
qualifying insurance claims from a reinsurer. 

The price of  a reinsurance contract is normally negotiated in 
the two or three months prior to the inception or anniversary of  
the contract. Sometimes there is significant uncertainty about the 
final price until the completion of  the negotiations between the 
ceding company and reinsurers. Under certain circumstances, it 
might be valuable to a ceding company to fix the cost of  its 
reinsurance coverage at an earlier date, or at least establish an 
upper bound. Using the option pricing paradigm, it is possible 
to establish a way to price such a cap. 

Since the reinsurance premium, prem t, for coverage incepting 
at time t > 0 (where time 0 would be today) is not known with 
certainty today, it is a random variable. The pure premium of  a 
call option on prem t can therefore be calculated using Formula 
1.3! Let us use an example to illustrate this. 

Suppose the rate on line (i.e., the premium divided by the 
limit) of a catastrophe reinsurance contract currently in force is 
20%. It is six months into the year and there has been a total 
loss to the layer. There was also a total loss three years ago. 

In light of this experience, the premium for renewal will prob- 
ably be increased, reflecting an upward reassessment by rein- 
surers of  the exposure to loss. The ceding company will also 
probably be willing to pay a somewhat increased rate to begin to 
"pay back" reinsurers. However, the new rate will not be estab- 
lished until closer to the renewal date. In the meantime, for the 
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next several months the premium the cedant faces for renewal is 
unknown and uncertain. 

Suppose the market rate on line for renewal, viewed from 
the point six months prior to renewal, has a mean of 30% and 
is lognormally distributed with parameters (-1.20,.125). This 
implies that a rate increase of some size is nearly certain. It also 
implies about a 10% chance of a price of 35% or greater and 
about a 1% chance of a renewal price over 40%. 

Formula 1.3 can be used to determine the pure premium of a 
call option to buy the reinsurance at renewal at a 30% rate on line 
(or any other price). If r = 5% and t = .5 (= 6 months), Formula 
1.3 implies an option pure premium of (.975)(1.5%)= 1.46% 
rate on line, or 4.9% of the strike price of 30% rate on line. 

If the ceding company were to buy this call option, it would 
be certain that the total cost of renewal would be no more than 
31.46% rate on line (30% + 1.46%), and it might be less, since if 
the reinsurance market quotes less than 30%, the cedant would 
let the option expire unexercised. 

Is this reinsurance premium call option a financial derivative 
or a reinsurance premium? The answer is, it could be either. In 
the way it was described above, it has the form of a derivatives 
market instrument. But the concept can also easily be incorpo- 
rated into a reinsurance contract. Let us assume the renewal date 
is January 1. The option to buy the 12 months coverage incept- 
ing next January 1 can be embedded in a reinsurance contract 
with a premium payment warranty. If a certain required premium 
payment is not received before inception, the contract does not 
come into force. 

In periods of significant reinsurance pricing uncertainty, pur- 
chasing a premium option will reduce that uncertainty and fa- 
cilitate a ceding company's reinsurance planning and budgeting 
process. The specialist reinsurance market for this type of cov- 
erage historically has been largely found in London. 
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Rate Guarantees 

The option paradigm can also be used to think properly about 
multi-year rate guarantees in the primary insurance market. In- 
sureds sometimes seek to negotiate a fixed rate for several years 
or a limit on future rate increases. In these cases the insured is 
seeking, in effect, to secure a call option, or series of options, on 
future rate levels. 

Suppose the insured wants a three-year rate guarantee for cov- 
erage that would normally be subject to an annual rate review. 
The current rate (which is guaranteed) is denoted by R o. The 
market rates for coverage renewing one year and two years from 
now, respectively, are random variables R l and R 2. If the dis- 
tributions of R 1 and R 2 can be estimated, it is possible to price 
the call options the insured is seeking. Then the insured can be 
charged for the options. Alternatively, the insurer may decide 
not to charge for the options, and merely use the options pricing 
exercise to determine the effective rate decrease the three-year 
guarantee represents. 

If the options cannot be priced because the distributions of R 1 
and R 2 cannot be estimated with sufficient confidence, perhaps 
it would be unwise for the insurer to agree to the rate guarantee! 

At the time this paper was being prepared, multi-year con- 
tracts were beginning to appear in the reinsurance market as 
well. Obviously the same thought process applies to both in- 
surance and reinsurance. 

6. CONCLUSION 

This paper has sought to demonstrate the value of the options 
market paradigm in thinking about and developing new insur- 
ance solutions. As the relationship between Formulas 1.1 and 
1.3 makes clear, the underlying mathematics of insurance and 
the broader financial markets is the same. Apart from potential 
regulatory constraints, there is no logical reason why we should 
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not see a convergence of  insurance and other financial services in 
the coming years. This is especially likely at the wholesale level 
(e.g., reinsurance), where the relative importance of distribution 
systems and customer interface recedes and the importance of  
pure risk characteristics increases. 
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APPENDIX A 

DERIVATION OF THE BLACK-SCHOLES OPTION PRICING 

FORMULA FROM A LOGNORMAL ASSET PRICE ASSUMPTION 

Let 

eo= 

l =  

F =  

the current market  price of  the security under lying 
the option, 
t ime (in years) to option expiry, 
the risk-free interest rate used for cont inuous 
compound ing  (i.e., the force of  interest), 

x -- a random variable for the future market  price of  the 
security under lying the option, at t ime t (expiry). 

Assume  x is lognormal ly  distributed with parameters l nP  0 + r t  - 
0.5~2t and ave ,  and mean E ( x ) =  Pt = exp(lnP0 + r t ) .  This im- 
plies Pt = P0' eft. 

X t = the actual future market  price of the security 
under lying the option, at expiry. 

c t (S)  = the current pure p remium (i.e., ignoring transaction 
costs and risk) for an option to buy the underlying 
security at a price of  S at t ime t. This is known as a 
"call option with a strike price of  S." Because of  its 
feature of  exercise at only one date, it is known as a 
European option. 

The  call option c t (S)  will have no intrinsic value at expiry if 
the market  price, X t, of  the security is below the strike price, S. In 
that case, it is cheaper to buy the security directly at price X t than 
to exercise to option to buy at expiry price S. No rational investor 
would pay a non-zero p remium for such an option; hence its nil 
value. 

c t (S)  will have intrinsic value of  X t - S at expiry if the market  
price X~ exceeds the strike price S. An investor would be indif- 
ferent to buying the security directly at price X t and buying the 
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call option c t (S)  at a price of  X t - S  for immediate exercise at 
price S. 

The pure premium of ct (S)  is the probability weighted mean 
of all possible intrinsic values at expiry, discounted to reflect 
present value. 8 

If the correct interest rate for discounting is the risk-free rate, 
the pure premium is expressed as: 

= e -r t .  ~S°°(x -- S ) .  f ( x ) d x  (A. 1) ¢t(S) 

(is ) = e -rt" x" f ( x ) d x  - S ( x ) d x  (A.2) 

( / :  s 
= e - f t .  x .  f ( x ) d x  - x .  f ( x ) d x  

In general, the first moment  distribution 

~ A X" f ( x )  d x  

E(x) 

of a lognormal variate x with parameters (#, a) is also lognormal 
with parameters (# + 0 -2, o'). 

In the present case, x is lognormal (lnP 0 + r t - O . 5 0 . E t , 0 . x / t )  

and its first moment  distribution has parameters (ln P 0 + rt  + 

0.50.2t,0.x/t). Accordingly, the second term within the main 

SThe justification for use of  the risk-free rate is described in footnote 2 in the body of 
the paper. 
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brackets o f  Formula A.3 can be restated as follows: 

foSx" f (x)dx = E(x)'N ( lnS-(InP° + rt + O'5cr2t) ) c r y / ~  

= pt.N (lnS-(lnPo + rt + O.5~2t)) 
avq 

where N is the cumulative distribution function of  the standard 
normal distribution. 

Evaluation of  the other terms of  Formula A.3 is straightfor- 
ward, and this formula can now be rewritten as: 

-Se-r t ' (1-N(  lns-(lnP°+rt-O'5a2t))~rv~ ) 

=P°(1-N(lnS-lnP°-(r+O'5cr2)t))~--v~ 

-Se-rt'(1-N(lnS-lnP°-(r-O'5cr2)t))~v/7 

=Po(1-N(ln(S/P°)--(r+O'5cr2)t))\ cry/~ 

7,~ J / ;  
(A.4) 

and, since 1 - N ( z )  = N ( - z ) ,  

ct(S) = P° " N ( ln(P°/S) + (r + O'5cr2)t ) C r y ' 7  

_ Se-rt . N ( ln(eo/S) + (r - O.5cr2) t) 
7~$7- . (A.5) 
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Let 

and 

d i  = l n ( P o / S )  + (r  + 0.5cr2)t 

~vq ' 

d2 = l n ( P o / S )  + (r  - 0.5a2)t 

Then Formula A.5 can be restated as 

c t ( S )  = Po " N (d l  ) - S e - r t  " N(d2)" 

This is the Black-Scholes option pricing formula. 

(A.6) 
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A P P E N D I X  B 

VALUATION OF CALL, PUT, AND CYLINDER SPREADS 

Cal l  Spreads  

The value of  a cal l  spread  c t (T  j ,T2) with T 2 > T l and t ime t to 
expiry is given by 

ct(Tl ,T2) = c t (T  ~ ) - ct(T2 ) 

= e - r t  

= e - r t  

(x - T I ) .  f ( x ) d x  - .  (x  - T2). f ( x ) d x  

[ f ~ ; Z ( x - T , ) ' f ( x ) d x + f T T ( X - T l ) ' f ( x ) d x  

- £7(x-  T2)- f(x)dx I 

Note the similarity to the formulas used to work with excess 
layers in insurance applications. 

I f  the actual price of  the underlying asset at expiry of  the 
option is X t, the value of  the long call spread position at expiry 
is given by 

T2- T1, X, _> T2; 

X,-TI, T2>X,>5 ;  

O, ~ >_x,. 
This is shown graphically in Figure B-1. 

= e -rt (x  - T 1 )- f ( x )  d x  + (T  2 - T 1). f ( x )  d x  . 

(B.1) 
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FIGURE B- 1 

EXPIRY VALUE PROFILE: CALL OPTION SPREAD ct(T1,T2) 

Expiry 
Value 

T,.-T~ 

I I 

T, T 2 
Underlying Asset Price at Expiry, X t 

P u t  Spreads  

The value of  a p u t  s p r e a d  P t ( S 1 , S 2 )  w i t h  S 1 > S 2 and time t to 
expiry is given by 

Pt(SI,  $ 2 )  = Pt(S1 ) - Pt(S2) 

[/o s /o" = e -rt (S 1 - x ) .  f ( x ) d x  - (S 2 - x ) .  f ( x ) d x  

[/o" Z?~s, = e - r t  (S 1 - x )"  f ( x )  d x  + - x ) .  f ( x )  d x  

- fo s~(S2 • - x )  f ( x ) d x ]  

e /o" ] = - x ) .  f ( x ) d x  + (S 1 - $2). f ( x ) d x  . 

(B.2) 
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FIGURE B-2 

EXPIRY V A L U E  PROFILE: PUT OPTION SPREAD Pt(Si,S2) 

Expiry 
Value 

S,-S= 

I I 

$2 ST 
Underlying Asset Price at Expiry, X, 

The value o f  the long put spread posit ion at expiry is given by 

O, x ,> s1; 

S 1 - x t ,  S 1 > x  t 2>32; 

S 1 - 82, S 2 ~_~ X t. 

This is shown graphically in Figure B-2. 

Put -Cal l  Parity 

There is an important  relationship between the value o f  calls 
and puts known as "put-call parity." Consider  two portfolios. The  
first consists of  an asset with a value of  P0 and a related put option 
worth pt(Tl ). The second consists of  a T-bill valued at T 1 • e -rt and 
a call option on the asset in the first portfolio, valued at ct(T 1). 



APPLICATION OF THE OPTION MARKET PARADIGM 729 

These two portfolios have identical expiry value profiles (namely, 
max(T1,Pt)), so unless there are obstacles to arbitrage trading, 
they must have equal market values for any T 1 _> 0: 

Po + pt(TI) = T1 e-rt + ct(T1). (B.3) 

We can use put-call parity to derive the analogous relationship 
between put and call spreads: 

Since 

T1 e -n  = Po + Pt(TI) - G(TI) 

and 

T2 e-rt = eo + pt(T2) -- ct(T2), 

then 

( T  2 - T l ) e  - r t  = p t (T2)  - c t (T2)  - p t ( T l )  + ct(T1)  

= c t ( ~ , T : )  + p t (Tz ,T~) .  (B.3a) 

A brief analysis of  Formula B.3a shows that it is consistent with 
using the risk-free rate for discounting European option pure 
premiums. If we restate Formula B.3a in terms of integrals and 
treat the interest rate to be used for discounting the right side of  
the equation as an unknown, i, we obtain: 

(T 2 - T l )e -r' 

= e - i t ( f T T 2 ( x - - T 1 ) ' f ( x ) d x  

/ (  /o r' + (T 2 - T 1 ). f ( x ) d x  + (T 2 - x)" f ( x ) d x  
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TABLE 3 

Expiry Long Call Short Put Cash Short Put+ 
Price Value Value Value Cash Valim 

X, >_ T 2 T2 - T t 0 T2 - T , T2 - T , 
T2 > X, > T , X, - T, -(T2 - X ,) T2 - T , Xt - T, 

T, > X, o -(r2 - T ,) T2- T , o 

= e - i t ( f o T 2 ( x - T l ) f ( x ) d x .  

J? ) + ( T  2 - T 1)-  f ( x )  d x  + ( T  2 - x ) "  f ( x )  d x  

= e - i t ( f o T 2 ( T 2 - T l ) ' f ( x ) d x + / : 7 ( T 2 - T l ) f ( x ) d x  ) ,  

= e-i '  (T 2 - T 11- f ( x )  d x  
, 0  

= e - i t ( T 2  _ T 1 ), 

which implies i = r. 

Formula B.3a also implies a definition for a call spread in 
terms of  a put spread and T-bills: 9 

Ct(TI,T2) = ( T 2 -  TI)e  -rz - p t (Tz ,T l ) .  (B.3b) 

This means that it is possible to achieve a synthetic call spread 
position using put spreads and vice versa. In particular, Formula 
B.3b says that selling a put spread, p t (Tz ,T i ) ,  and holding the 
present value of  T 2 - T t in T-bills is equivalent to buying a call 
spread, q ( T  l ,T2).  To see this, Table 3 compares the expiry values 
of  these two positions. 

9Note that formulas B.3a and B.3b imply a put-call parity relationship for spreads that, 
unlike the ordinary put-call parity formula, has no reference to P0 
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TABLE 4 

Expiry Long Put Short Call Cash Short Call+ 
Price Value Value Value Cash Value 

x,>r~ o -(r~-r,) T~-r, 0 
r2 > x, > r, r2 - x , -<x , - r  0 r 2 - r  , T2 - X, 

TI > X ` Tt - T ~ 0 T 2 -  T I r2 - r , 

Alternatively, since 

Pt(T2,T1) = (T  2 - Tl )e -r` _ c,(TI,T2) , 

buying a put spread pt(T2, T l)  is equivalent to selling a call spread 
ct(T1,T2) and holding the present value of  T 2 - T  l in T-bills, as 
shown in Table 4. 

Cyl inder  Spreads  

The bull cy l inder  spread, cy l t (SI ,Sz;TI ,T2) ,  created from the 
call and put spreads defined above, where T 2 > T l > Sl > $2, has 
the following value: 

cyl(S1 ,S2;TI ,T2) = ct (T 1 ,T2) - p t (Sl  ,$2) 

= e -rt (x -- T 1). f ( x )  dx  + (T  2 - T 1). f ( x )  d x  

_ t'jS, (SI _ x ) .  f ( x )  dx  
J S  2 

- - f 0 S 2 ( s 1 - S 2 ) . f ( x ) d x  ] . (B.4) 

The value of  cylt(S1,Sa;T1,T2) depends on the choices o f  S l, S 2, 
T 1 and T 2. These parameters can be chosen to create a cylinder 
structure that produces the desired cylinder value at time t to 
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FIGURE B-3 

EXPIRY VALUE PROFILE: BULL CYLINDER OPTION SPREAD 
cylt ($1 ,$2, TI ,T2) 

Expiry 
Value 

Tz-T 1 

-(S,-S2) 
/ 

/ 

I I I I 

$2 $1 TI T2 
Underlying Asset Price at Expiry, X, 

expiry. Additional flexibility can be introduced in the cylinder 
structure by relaxing the requirement that the same number of 
call and put spreads are used. If Q is defined as the ratio of 
the number of puts to the number of calls, then the value of 
cylt(S1,S2;T 1 ,T 2) is given by 

cyl(S l , $2; T], T2) 

= e-rt [ /T (2 (x -  T1)" f ( x ) d x  + [°°(T2 - Tl)" z 

- Q .  - x ) .  f ( x )  d x  

/:2 
+ (S 1 - $2). f ( x ) d x  . 
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At expiry the value of the bull cylinder spread position is given 
by 

~ - ~ ,  xt  ___ ~ ;  

x t - ~ ,  vz > x ,  ___ T~; 

O, I"1 > x ,  > s~ ; 

- Q .  (S 1 - x t ) ,  S 1 ~ St ~" S 2 ;  

- Q .  (S 1 - S 2 )  , $2 ~> X t. 

This is illustrated for Q = 1 in Figure B-3. 


