ESTIMATING THE PREMIUM ASSET ON RETROSPECTIVELY RATED POLICIES

MICHAEL T. S. TENG AND MIRIAM E. PERKINS

Abstract

This paper presents a method for estimating the premium asset on retrospectively rated policies, using the functional relationship between the losses and the retrospective premium. This relationship is examined using the historical premium and loss development data and the retro rating parameters sold in the underlying policy. The cumulative ratio of premium development to loss development, when applied to the expected future loss emergence, gives the expected future premium development on the retro rated policies. The sum of all future premium development is the premium asset.

ACKNOWLEDGEMENT

The authors wish to thank Eric Brosius and Roy Morell for reviewing the technical soundness of the method presented in this paper, and Eugene Connell and members of the CAS Editorial Committee for providing editorial assistance.

1. INTRODUCTION

On retrospectively rated policies, premium that the insurer expects to collect based on the expected ultimate loss experience, less the premium that the insurer has already booked, is called the premium asset. Many insurers call this the Earned But Not Reported premium (EBNR). The admitted portion of the premium asset appears on the balance sheet as the "Asset for Accrued Retrospective Premiums."

In recent years, retro rated policies have become popular for several reasons.

- 1. A retro rated policy returns premium to the insured for good loss experience. This feature is attractive for a customer who anticipates favorable loss experience through loss control and loss management. By offering retro rated policies, the insurer may be able to attract these good customers.
- 2. A growing number of commercial insurance buyers are taking advantage of the cash flow feature in a retro rated policy. A retro rated policy allows the insured to pay premium as losses are reported or paid, depending on the contract, rather than paying all premiums up front. This allows the insured to hold on to cash longer.
- 3. Inflation, rate regulations, uncertainty in claims compensability, increasing utilization of the insurance benefits, and growing attorney involvement have made the cost of insurance much harder to predict today than in the past. Since the premium for a retro rated policy varies directly with the insured's actual loss experience, writing retro policies allows an insurer to shift a large portion of the actual risk to the insured. This makes the insurer more willing to write insurance.

As a result of the growth of retro rated policies, estimating the premium asset for them is a growing need for many commercial lines insurers. This asset frequently exceeds 10% of surplus. Despite the growing importance of the premium asset, there have been few articles written on this subject. Berry [1] and Fitzgibbon [2] have presented methods of calculating the "retro reserve," defined as the difference between the *premium deviation to date* and the *ultimate premium deviation*. ¹ The retro reserve is the negative equivalent of the premium asset referred

¹The ultimate premium deviation is the amount by which the ultimate premium for a retro rated policy is expected to differ from the standard premium (manual premium adjusted for experience rating). The premium deviation to date is the amount by which the currently booked premium differs from the standard premium.

to in this paper. Their approach is to analyze the historical relationship between the loss ratio and the premium deviation using statistical techniques, and then apply such a relationship to the projected loss ratio to calculate a projected ultimate premium deviation. This ultimate premium deviation is then reduced by the premium deviation to date to produce the retro reserve. Berry uses a second approach, which is to estimate ultimate premium using the historical premium emergence pattern, and then subtract current premium to get the retro reserve.

While the statistical methods presented in [1] and [2] may be theoretically sound, they lack intuitive appeal, particularly as they relate to how a retro rating formula actually works. On a retro rated policy, premium is calculated as a function of loss. This function is composed of retro rating parameters such as the loss conversion factor, tax multiplier, retro minimum, and retro maximum; they define how much premium an insurer can collect given a certain amount of loss. Therefore, the premium asset on a retro rated policy should be established as a function of reported losses and the reserve for loss development, where this function is defined by the retro rating parameters.

This paper will present, through an example, a method of calculating the premium asset as a function of current losses, expected future loss emergence, and the retro rating parameters. Specifically, the method looks at how premiums develop as losses develop. The relationship can be expressed as the ratio of premium development to loss development, referred to here as the PDLD ratio. There are two methods of calculating the PDLD ratio—from historical premium and loss development data, and from the retro rating parameters. The latter approach will be developed first, and will be followed by the calculation of the PDLD ratios from historical data. Once the relationship between premium and loss is determined, it can be applied to the expected future loss development to get the expected future premium development. The sum of all future premium development is the premium asset.

This method applies only to retro rated policies (or similar loss sensitive rating plans), and not to prospectively rated policies. There may be a premium asset on prospectively rated policies due to changes in exposure, but this topic will not be discussed here. This method is intended to be applied to an aggregate book of business, or large segment of a book of business, rather than at the individual policy level.

2. THE FORMULA APPROACH TO CALCULATING PDLD RATIOS

The first step is to derive the formula for a PDLD ratio. This starts with the first retro adjustment. On a retro rated policy, the premium calculation is based on a retro formula. A commonly used formula is

$$P_n = [BP + (CL_n \times LCF)] \times TM, \tag{2.1}$$

where

 P_n = Premium at the n^{th} retro adjustment,

BP = Basic premium,

 CL_n = Capped loss at the n^{th} adjustment²,

LCF = Loss conversion factor, and

TM = Tax multiplier.

For example, P₁ denotes the premium computed for the first retro adjustment; P₂ denotes the premium computed for the second retro adjustment. Note that BP, LCF, and TM typically stay the same throughout all retro adjustments. For a more thorough discussion of the retro rating formula, see Gillam and Snader [3].

Using formula (2.1) and denoting L_1 as the amount of loss developed for the first retro adjustment, the first PDLD ratio

²Losses that contribute to additional premium: these are total losses subject to a minimum and a maximum amount corresponding to the plan minimum and maximum premiums. Individual claims may also be capped by a per accident limitation, which limits the adverse impact of any single large claim on the premium calculation.

can be stated as follows:

$$P_1/L_1 = [BP + (CL_1 \times LCF)] \times TM/L_1$$
$$= [(BP/L_1) \times TM] + [(CL_1/L_1) \times LCF \times TM]. (2.2)$$

The first term of this formula is $(BP/L_1) \times TM$. This is basic premium divided by the loss emerged for the first retro adjustment times the retro tax multiplier. One can approximate this as

$$BP \times TM/(SP \times ELR \times \%Loss_1),$$
 (2.3)

where

SP = Standard premium,³

ELR = Expected loss ratio

= Expected ultimate loss divided by standard premium, and

 $%Loss_1$ = Expected percentage of loss emerged for the first adjustment.

Formula 2.3 is equivalent to (BP/SP) \times TM/(ELR \times %Loss₁), which is the basic premium factor in a retro rating formula times the tax multiplier, divided by the expected loss ratio emerged for the first retro adjustment. The expected loss ratio for the first retro adjustment would depend on the ultimate expected loss ratio and the percentage of losses emerged at the first adjustment. Typically, losses emerged as of 18 months are used to compute the first retro adjustment.

In Formula 2.2, the term CL_1/L_1 is the ratio of capped losses to uncapped losses. This ratio is referred to as the *loss capping ratio*. Capped losses are losses that contribute to an additional

³Manual premium adjusted for experience rating.

premium. Any change in loss, where total loss exceeds the minimum and is below the maximum, will result in additional premium. Conceptually one can view the difference between the capped loss (CL) and the uncapped loss (L) as the portion of loss outside the boundaries of the retro maximum and minimum. On plans that cap the losses with a per accident loss limit, the capped loss would also exclude the losses exceeding this limit, since they do not contribute to additional premium. The loss capping ratio usually decreases as the data becomes more mature. This is because an increasing portion of the loss development occurs outside of loss limitations. The loss capping ratio can be derived by comparing the capped and the uncapped loss development, if such data are available; often they are not. In this paper, the loss capping ratio is derived using a loss ratio distribution. Because the explanation of this method is somewhat detailed, it is presented after the example of the PDLD ratio calculation, in Section 5.

If the loss data used is already capped (i.e., L_n equals CL_n for all n), then the loss capping ratio will be one. Otherwise, this ratio will have to be estimated. The example assumes that the loss capping ratio is 0.85 for losses developed through the first retro adjustment. This means that 15 percent of the losses developed through the first retro adjustment are eliminated by the net effect of the retro maximums, minimums, and per accident limitations.

To show how Formula 2.2 can be used to estimate the PDLD ratio, the example assumes the following retro rating parameters:

Basic premium factor = 0.20 Expected loss ratio = 0.70 Loss conversion factor = 1.20 Tax multiplier = 1.03 %Loss₁ = 78.4%. These retro rating parameters may be computed as the average of the sold retro parameters. Substituting these values into Formula 2.2, one gets a PDLD ratio for the first retro adjustment of

$$[0.20 \times 1.03/(0.70 \times 78.4\%)] + (0.85 \times 1.20 \times 1.03) = 1.426.$$

The PDLD ratio for the second retro adjustment period refers to the *incremental premiums* developed between the first and the second retro adjustments, divided by the *incremental losses* developed between these two adjustments. Typically, successive retro adjustments occur at one year intervals. One can view the PDLD ratio for the second retro adjustment period as the ratio of the *change in premium* divided by the *change in loss*. Algebraically, this equals

$$(P_2 - P_1)/(L_2 - L_1)$$

$$= (CL_2 - CL_1) \times LCF \times TM/(L_2 - L_1)$$

$$= [(CL_2 - CL_1)/(L_2 - L_1)] \times LCF \times TM. \quad (2.4)$$

This example assumes an incremental loss capping ratio of 0.58 for the second retro adjustment period. Substituting this loss capping ratio and the retro rating parameters into Formula 2.4, one gets a PDLD ratio of $0.58 \times 1.20 \times 1.03 = 0.717$. The PDLD ratios for the third and subsequent retro adjustments are calculated in a similar manner.

The advantage of using the retro formula to estimate the PDLD ratio is that it responds to changes in the retro rating parameters that are sold, whereas the PDLD ratios derived from the historical data may not be indicative of the future PDLD ratios. If the retro rating parameters change significantly over time, one should give more weight to the PDLD ratios derived by formula than those derived from the historical data. A summary of the formula PDLD ratios is shown in Exhibit 4, Part 2.

When possible one should retrospectively test the PDLD ratios derived by formula against actual emergence in the subsequent retro adjustment periods to determine if any bias exists. A possible source of bias is the use of average parameters for the LCF, tax multiplier, maximum, minimum, and per accident limitation. One should study the appropriateness of the selections and adjust them as necessary. Such a study could lead to better parameter selections and more accurate premium estimates.

3. THE EMPIRICAL APPROACH TO CALCULATING PDLD RATIOS

The use of empirical data is another way to calculate the PDLD ratios. Two types of data are needed for the empirical approach: booked premium development and reported loss development.⁴ For the example presented in this paper, premium booked by policy effective quarter by valuation quarter is displayed in Exhibit 6 and reported loss data is shown in Exhibit 7. The calculation of the PDLD ratios is shown in Exhibit 4. The PDLD ratio after the sixth retro adjustment is selected at zero, which assumes that there are no further retro adjustments.⁵

Data should be segregated into homogeneous groups by size of account and by the type of rating plan sold. When appropriate, other criteria should be used in grouping the data. Policies are grouped based on the calendar quarter in which they became effective. These groups will be referred to as policy effective quarters. The first policy effective quarter of 1994 will be

⁴Booked premium on a retro rated policy is the premium computed using the retro rating formula and the most recent loss valuation. Reported loss is the amount of loss that has been reported to the insurer. It does not include future loss development for unreported claims, for such losses are often not entered into the premium calculation.

⁵The NCCI and ISO retrospective rating manuals prescribe a maximum premium adjustment period of 3 to 4 years. The actual maximum adjustment period varies from one retro policy to another. A maximum premium adjustment period of six years is common among major commerical line retro policies. However, due to increasing uncertainty of loss costs and growing usage of cash flow financing of premiums, retro policies will probably be written with longer premium adjustment periods in the future.

denoted as 1994.1, the second quarter will be denoted as 1994.2, and so on.

The first retro premium computation is usually based on losses developed through 18 months. However, it takes time to do the retro calculation and to record adjusted premiums. This paper assumes that due to time lags in processing and recording, premiums are recorded 3 to 9 months following the recording of losses. Therefore, it is assumed that premiums booked through 27 months are the result of the first retro adjustment. Since retro adjustments are usually done in annual intervals, premiums recorded through 39 months would be the result of the second retro adjustment, using losses evaluated at 30 months. Premiums recorded through 51 months would be the result of the third retro adjustment, using losses evaluated at 42 months, and so on. In practice, the actual length of the retro adjustment period and the premium booking lag may vary from one insurer to another.

The PDLD ratio for the first retro adjustment equals premiums booked through 27 months divided by losses reported through 18 months. At the first retro adjustment period, the PDLD ratio indicated by an overall average of the historical data is 1.460 (see Exhibit 4, Part 1). However, there is an upward trend in the responsiveness of premium to loss over the latest several policy quarters and these PDLD ratios are higher than the historical average. Such a trend could be the result of more liberal retro rating parameters (higher maximum, minimum, or per accident limitation), but this is probably not the case here since the PDLD ratio calculated by formula is 1.426 and it reflects the plan parameters currently being sold. A more likely explanation for the trend is an improvement in loss experience, either due to chance or to known changes in the system such as workers compensation reform. A larger portion of the loss is within the boundaries of the retro maximum and the per accident limitation, resulting in more additional premium per dollar of loss. The formula approach will not reflect a change in loss

experience unless the formula is revised. (This revision is discussed in Section 5.) In recognition of these changing conditions, a PDLD ratio of 1.750 was selected for the first adjustment.

The PDLD ratio for the second retro adjustment period is the *incremental premiums* developed between the first and the second retro adjustments divided by the *incremental losses* developed between these two adjustments. It is assumed that losses developed through 30 months are used to calculate the premiums for the second retro adjustment and that the resulting premiums are booked at the 39 month valuation. The selected PDLD ratio from historical data is 0.700, which is close to the formula ratio of 0.717. The PDLD ratios from the two methods also compare closely at the third adjustment.

The historical PDLD ratios may fluctuate significantly after the first retro adjustment period. This is because the premium and loss development on a few policies can be a large component of the total incremental development on policy quarter data. Historical PDLD ratios for an individual policy quarter could even be negative in spite of upward aggregate loss development—this could happen when there is upward development in high loss layers (resulting in no additional premium) and downward development (and return premium) on layers that are still within loss limitations. Where the historical PDLD ratios fluctuate significantly, one should use an average of as many historical data points as possible. In situations like this, the PDLD ratios derived by formula may provide a better indication of the relationship between premium and loss.

In the example, the historical and formula PDLD ratios begin to diverge after the third retro adjustment period. Several factors could be contributing to this. First, since the historical ratios are lower than the formula ratios, worse than expected loss experience during the mid-1980s may have caused a larger portion of the loss to be outside the boundaries of the retro maximum and the per accident limitation than the formula approach would

predict. This is the opposite situation from the one described at the first retro adjustment period above. Second, average retrospective rating parameters may be changing over time. In the case of shifting parameters over time, a single selected PDLD ratio may not be the best estimate of development for all exposure periods. As with loss development analysis, the actuary must decide how best to develop each period to "square the triangle." For the fourth through sixth adjustment periods, the PDLD ratios were selected between those indicated by the two methods.

4. CUMULATIVE PDLD RATIOS

The ultimate goal of this method is to estimate the premium asset, which is the sum of all future premium adjustments based on the expected future loss emergence. As shown before, the relationship between premium and loss can be expressed by the PDLD ratios. However, the PDLD ratios are incremental factors. To estimate how much premium can be expected based on all future loss development, one needs to calculate the cumulative PDLD ratios, or the CPDLD ratios.

A CPDLD ratio is the average of the PDLD ratios in all subsequent retro adjustment periods, weighted by the percentage of losses to emerge in each period. For instance, the CPDLD ratio at the second retro adjustment is the average of the PDLD ratios for the second and subsequent retro adjustment periods, weighted by the percentage of losses emerged in each period. The CPDLD ratio at the third adjustment is the average of the PDLD ratios for the third and subsequent retro adjustment periods, weighted by the percentage of losses emerged in each period. The loss emergence pattern is shown at the bottom of Exhibit 7.

Using the loss emergence pattern derived from the loss development data in Exhibit 7 and the selected PDLD ratios from Exhibit 4, one can calculate the CPDLD ratios. For example, the

first CPDLD ratio equals 1.492, which is computed as follows:

$$\frac{(1.750 \times 78.4\% + 0.700 \times 9.3\% + 0.550 \times 4.4\% + 0.450 \times 2.9\% + 0.400 \times 3.0\% + 0.350 \times 1.6\%)}{(78.4\% + 9.3\% + 4.4\% + 2.9\% + 3.0\% + 1.6\% + 0.4\%)}$$

The second CPDLD ratio is 0.556, which is computed as follows:

$$\begin{array}{c} (0.700 \times 9.3\% + 0.550 \times 4.4\% + 0.450 \\ \times 2.9\% + 0.400 \times 3.0\% + 0.350 \times 1.6\%) \\ \hline (9.3\% + 4.4\% + 2.9\% + 3.0\% + 1.6\% + 0.4\%) \end{array}$$

The calculation of the remaining CPDLD ratios is shown in Exhibit 3.

The CPDLD ratio tells how much premium an insurer can expect to collect for a dollar of loss that has yet to emerge. For instance, the first CPDLD ratio is 1.492, which means that each dollar of loss emerged provides the insurer one dollar and 49 cents of premium. The second CPDLD ratio is 0.556, which means that after the first retro adjustment, each additional dollar of loss provides the insurer 56 cents of premium.

The relationship of premium development to loss development is usually greater than unity at the first retro adjustment. This is because the basic premium is included in the first retro premium computation, and because only a small portion of loss is limited by the retro maximum or per accident limitation at this early maturity. The application of the loss conversion factor and the tax multiplier results in more than a dollar of premium per dollar of loss. As time goes on, however, a decreasing portion of incremental loss development results in additional premium. Incremental premium, equal to the loss capping ratio times LCF and TM, will generally be less than loss and hence the CPDLD ratios should be less than 1.0 at the later adjustments.

Having calculated the CPDLD ratios, the next step is to multiply these ratios by the expected future loss emergence to get the expected future premiums. Adding future premiums to the booked premiums gives ultimate premiums. For example, at 12/31/94, policy effective quarters 1993.1 through 1994.4 have not yet had the first retro adjustment (they are all less than 27 months old). The expected loss amount for these policy effective quarters, as computed in Exhibit 2, is \$280,844,000 (\$196,767,000 from 1993, plus \$84,077,000 from 1994). Since the marginal premium per dollar of loss is \$1.492, this means \$280,844,000 \times 1.492 or \$419,019,000 of future premium is expected. Since there was no prior retro adjustment, the expected ultimate premium for these policy effective quarters is \$419,019,000.

At 12/31/94, policy quarters 1992.1 through 1992.4 have had one retro adjustment (they are older than 27 months but not yet 39 months old). For these policy periods, the expected amount of loss yet to emerge is \$50,747,000 (see Exhibit 2). Exhibit 3 shows that for each dollar of loss emerged after the first retro adjustment, the insurer can expect \$0.556 of premium. This means the insurer can expect to collect \$50,747,000×0.556 or \$28,216,000 in additional premium. Adding this to the \$328,778,000 of premium booked from the first retro adjustment (the premium for 1992.1 through 1992.4 evaluated as of 27 months), gives an expected ultimate premium of \$356,993,000. Exhibit 1 shows the calculation of the ultimate premium for each policy period.

The final step is to subtract premium booked as of 12/31/94 from the estimated ultimate premium to get the premium asset as of 12/31/94. The sum of the premium assets for all policy periods as calculated in Exhibit 1 is \$43 million.

Note that the premiums booked as of 12/31/94 (Column (7) of Exhibit 1) are close to but not equal to the premiums booked from the prior retro adjustments (Column (5) of Exhibit 1). This may be due to differences in the timing of retro adjustments, minor premium adjustments, or interim premium booking that occurs between the regularly scheduled retro adjustments.

5. LOSS CAPPING RATIO

We now return to the subject of the loss capping ratio. The loss capping ratio, CL/L, is the ratio of capped loss development to uncapped loss development. This term is essential to the calculation of the PDLD ratio, which expresses the relationship between premium development and loss development on a retro rated policy. Capped loss development includes the effect of the retro maximum and minimum, and the per accident loss limit. It is often difficult to obtain capped loss development data, especially as it pertains to losses eliminated by the retro maximum and minimum. Hence, it may be necessary to use a Table M⁶ approach to estimate the impact of the retro plan maximum and minimum on loss development. If a per accident limit is purchased, the treatment of the losses eliminated by the limit is similar to that for losses eliminated by retro maximum and minimum.

The loss capping ratio can be solved for using the relationship

$$CLR = LR(1 - \chi - LER),$$

where

 χ = Table M net insurance charge

= Table M charge at max – Table M savings at min,

LER = Percent of losses eliminated due to the per accident limitation,

CLR = capped loss ratio

= capped loss divided by standard premium, and

LR = uncapped loss ratio

= uncapped loss divided by standard premium.

⁶Also called the Table of Insurance Charges. Table M is used to calculate the insurance charge associated with a retro plan's maximum and minimum. Gillam and Snader [3] give a detailed description of this table.

The loss capping ratio is then:

$$CLR/LR = (1 - \chi - LER). \tag{5.1}$$

To calculate the loss capping ratio, one needs the net insurance charge at each retro adjustment period. The insurance charge is typically determined from the values of the retro rating parameters sold under the plan and the presumed loss ratio distribution underlying Table M. However, the percentage of losses actually affected by the retro maximum or minimum will differ from expected due to the random nature of insurance losses and the fact that losses are not at their ultimate valuation. Therefore, the charge and savings computed at each retro adjustment period should be a function of the actual loss ratio as opposed to the expected ultimate loss ratio under the plan.

If it is assumed that the loss ratio probability distribution function has the same shape throughout all development stages, then at each retro adjustment one may enter Table M by defining two entry ratios:

Entry ratio at the max = (loss ratio at max/actual loss ratio), and Entry ratio at the min = (loss ratio at min/actual loss ratio).

Loss ratios at the retro maximum and minimum should be estimated from the sold retro rating parameters. The loss ratio at maximum is the standard premium loss ratio at which the net retro premium reaches the maximum premium; for this example, we assume it is 1.200. Similarly, the loss ratio at minimum is the standard premium loss ratio at which the net retro premium reaches the minimum premium; for this example, we assume it is 0.100.

The actual loss ratio may be computed by dividing the actual loss at each retro adjustment period by the standard premium. Alternatively, it can be estimated as the expected loss ratio (expected ultimate loss divided by standard premium) times the expected percentage of losses emerged at each retro adjustment. For instance, if the expected loss ratio is 0.700 and 78.4% of

losses emerge by the first retro adjustment, one can estimate the actual loss ratio at the first retro adjustment to be $0.700 \times 78.4\%$, or 0.549.

If actual loss experience differs from the expected experience underlying Table M, one should multiply the estimate of the actual loss ratio by a factor representing the relationship between actual and expected losses. For example, if the original expected loss ratio was 0.700 but actual loss experience produces an average loss ratio of 0.800, multiply 0.549 by a factor of 0.800/0.700. Such an adjustment factor is needed to calculate the correct entry ratios for Table M.

The two entry ratios for the first retro adjustment can be computed as:

```
Entry ratio at the max = (1.200/0.549) = 2.19, and Entry ratio at the min = (0.100/0.549) = 0.18.
```

Table M also requires one to estimate the average size of the accounts insured by the retro rated policies. For this example, the average size is assumed to be \$750,000 in standard premium. This may be estimated from the sold policy information. The use of the average policy size is another potential source of bias between the PDLD ratios calculated using the formula method and the PDLD ratios that actually emerge. One way to reduce this bias is by grouping the data according to policy size. The net insurance charge for a \$750,000 account at 2.19 and 0.18 entry ratios is calculated to be 0.109. This is shown in Exhibit 5.

In the event that a per accident loss limit is sold, losses eliminated by such limit divided by total losses should also be considered in the calculation of the loss capping ratio. Furthermore, the Table M insurance charge should be adjusted to reflect the per accident loss limit. One method of making such an adjustment is presented by Robbin [4]. In this example we assume that 4.2% of losses are eliminated by the per accident limitation as of the first retro adjustment. Thus, the loss capping ratio at

the first retro adjustment is one minus 0.109 (the net insurance charge) minus 0.042 (the per-accident loss elimination ratio), or 85%. Loss capping ratios for the second and subsequent retro adjustment periods are calculated in Exhibit 5.

By using Table M to calculate the loss capping ratios, one major assumption is that the loss ratio probability distribution function underlying Table M is appropriate for all retro adjustment periods. This may not be true. The procedure can be refined by using a loss ratio distribution that is more appropriate for each retro adjustment period. Such distributions may be calculated from empirical data at the proper evaluation dates, and be used to replace or modify the Table M distribution, depending on the credibility of the empirical data.

Thus far the loss capping ratios calculated are those developed as of each retro adjustment. Since the PDLD ratios are incremental, one needs to calculate the incremental loss capping ratios, using the loss capping ratios developed through each retro adjustment. This is done by algebraic manipulation. For example, the incremental loss capping ratio for the second retro adjustment period is $[(CL_2 - CL_1)/(L_2 - L_1)]$ which may be stated as

$$\frac{[(\text{CL}_2/\text{L}_2) \times (\text{ELR} \times \% \text{Loss}_2) - (\text{CL}_1/\text{L}_1) \times (\text{ELR} \times \% \text{Loss}_1)]}{[(\text{ELR} \times \% \text{Loss}_2) - (\text{ELR} \times \% \text{Loss}_1)]}.$$
(5.2)

Note L_n is the amount of losses emerged as of the *n*th retro adjustment, and CL_n/L_n is the loss capping ratio developed as of the *n*th retro adjustment. The ELR is the expected loss ratio, and %Loss_n is the expected percentage of losses emerged as of the *n*th retro adjustment. The incremental loss capping ratios are calculated in Exhibit 5.

6. FURTHER ISSUES

The method described in this paper can be used to calculate the premium asset for all types of loss-sensitive rating plans, as long as the rating formula reflects what is being sold to the insured. Further issues to think about are:

- 1. The definition of loss may include allocated loss adjustment expense (ALAE). Frequently, retro rated policies are written with ALAE included in the definition of loss. This allows the insurer to pass on to the insured not only losses, but attorney expenses as well. The loss data used in computing the PDLD ratios should be consistent with that used in the rating plan.
- 2. Changes in the mix of business may change the PDLD ratio. Changes in the mix of business by state, industry group, or even geographical region can alter the average rating parameters sold and the underlying claim frequency and claim severity. This will in turn affect how sensitive the premium is to loss.
- 3. Collectibility of premium should be considered. When the premium asset is secured, there is little question as to its collectibility. If a portion of the premium asset is not secured, then a provision should be made to anticipate bad debt.

REFERENCES

- [1] Berry, Charles H., "A Method of Setting Retro Reserves," *PCAS* LXVII, 1980, pp. 226–238.
- [2] Fitzgibbon, W. J. Jr., "Reserving for Retrospective Returns," *PCAS* LII, 1965, pp. 203–214.
- [3] Gillam, W. R. and R. H. Snader, "Fundamentals of Individual Risk Rating," National Council on Compensation Insurance, 1992.
- [4] Robbin, Dr. I., "Overlap Revisited—The 'Insurance Charge Reflecting Loss Limitation' Procedure," 1990 CAS Discussion Paper Program, Vol. II, pp. 809–855.

EXHIBIT 1

CALCULATION OF FUTURE PREMIUM EMERGENCE AND

PREMIUM ASSET

(dollars in thousands)

Premium	Asset	(Z)-(9)	(8)	0	528	3,181	9,331	10,041	26,777	-6,570	43,288
Premium	Booked as	of 12/94	6	494,927	467,796	460,716	452,520	337,966	330,216	425,590	2,969,730
Estimated Total	Premium	(4)+(5)	(9)	494,927	468,324	463,897	461,850	348,007	356,993	419,019	3,013,018
Premiums Booked	from Prior	Adjustment	(2)	494,927	467,388	460,660	453,525	336,654	328,778	0	
Expected Future	Premium	(2)x(3)	(4)	0	935	3,238	8,325	11,352	28,216	419,019	
	CPDLD	Ratios	(3)	0.000	0.285	0.354	0.390	0.447	0.556	1.492	
Expected Future	Loss	Emergence	(2)	-262	3,282	9,146	21,347	25,397	50,747	280,844	
	Policy	Periods	(1)	1987.1 to 1987.4	1988.1 to 1988.4	1989.1 to 1989.4	1990.1 to 1990.4	1991.1 to 1991.4	1992.1 to 1992.4	1993.1 to 1994.4	

- Notes:
 (2) From Exhibit 2, Column (7a).
 (3) From Exhibit 3, Column (7).
 (5) From Exhibit 4.
 (7) From the latest diagonal of Exhibit 6.

LOSS PROJECTIONS (dollars in thousands)

nnual	<u>Total</u> (7a)			-262				3,282				9,146				21,347			
Expected Loss Emer- gence		ι Ω	75 -212	-130	1,259	-174	1,652	545	1,728	1,041	3,246	3,131	4,960	3,766	7,197	5,424	6,804	3,395	7,390
Annual	<u>Total</u> (6a)			417,470				394,055				358,018				331,550			
Losses Reported at Prior Retro	<u>Adjust.</u> (6)	102,059	65,264 155,950	94,197	87,781	58,054	151,031	97,189	80,475	55,541	130,944	91,058	87,639	54,473	117,202	72,236	57,620	33,064	58,493
Annual	<u>Total</u> (5a)			417,208				397,337				367,164				352,897			
Ultimate Losses	(2)x(3)x(4) (5)	102,064	65,339 155,738	94,067	89,040	57,880	152,683	97,734	82,203	56,582	134,190	94,189	92,599	58,239	124,399	77,660	64,424	36,459	65,883
Percent Earned as of	1 <u>2/94</u> (4)	100%	100% 100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Loss Develop.	Factors (3)	1.000	1.000	1.000	1.001	1.002	1.004	1.010	1.010	1.012	1.020	1.030	1.032	1.039	1.052	1.063	1.067	1.068	1.085
Losses Reported as of	<u>12/94</u> (2)	102,064	65,339 155.738	94,067	88,908	57,763	152,121	608'96	81,384	55,898	131,539	91,423	89,715	56,032	118,268	73,037	60,399	34,136	969.09
Policy Eff.	<u>Quarter</u> (1)	1987.1	1987.2 1987.3	1987.4	1988.1	1988.2	1988.3	1988.4	1989.1	1989.2	1989.3	1989.4	1990.1	1990.2	1990.3	1990.4	1991.1	1991.2	1991.3

EXHIBIT 2

PART 2

Annual <u>Iotal</u> (7a)		50,747	196,767	84,077
Expected Loss Emer- gence (5)-(6)	7,807 9,991 8,592 17,761	14,403 46,799 36,793 65,093	48,082 31,672 19,245 28,372	4,788
Annual <u>Iotal</u> (6a)	208,556	180,075	0	0 1,889,725
Losses Reported at Prior Retro Adjust. (6)	59,380 49,161 33,060 53,069	44,785 0 0 0	0000	0 1,889,725
Annual <u>Total</u> (5a)			196,767	84,077 2,196,148
Ultimate Losses (2)x(3)x(4) (5)				
Percent Earned as of 12/94 (4)				
Loss Develop. <u>Factors</u> (3)	1.100	1.166 1.184 1.215 1.276	1.393 1.661 2.416 4.397	12.856
Losses Reported as of 12/94 (2)	61,068 53,455 37,393 62,118	50,766 39,519 30,286 51,005	34,516 21,189 11,381 14,339	1,862
Policy Eff. <u>Quarter</u> (1)	1991.4 1992.1 1992.2	1992.4 1993.1 1993.2	1993.4 1994.1 1994.2 1994.3	1994.4 TOTAL

These earning ratios reflect the fact that policies written in the latest four quarters are not fully earned.

through 1994.4 would not have had any retro adjustments as of 12/31/94; therefore, the losses recorded are 0. Policy effective quarters 1992.1 through 1992.4 would have had one retro adjustment; therefore, losses These represent losses recorded as of prior retro adjustments (Exhibit 7). Policy effective quarters 1993.1 (2) Figures on the latest diagonal of the loss data in Exhibit 7.
(3) Derived from loss development data in Exhibit 7.
(4) These earning ratios reflect the fact that policies written in t
(5) These represent losses recorded as of prior retro adjustme evaluated at 18 months were entered into this column.

EXHIBIT 3
CPDLD RATIO CALCULATION

CPDLD Ratios (<u>5)/(6)</u> (7)	1.492	0.556	0.447	0.390	0.354	0.285	0.000
Upward Cumulative of Col. (3) (6)	100.0%	21.6%	12.3%	7.9%	4.9%	2.0%	0.4%
Upward Cumulative of Col. (4) (5)	1.492	0.120	0.055	0.031	0.017	900.0	0.000
PDLD Ratio x Loss Emg (2)x(3) (4)	1.371	0.065	0.024	0.013	0.012	0.006	0.000
% Loss Emerged (3)	78.4%	6.3%	4.4%	2.9%	3.0%	1.6%	0.4%
Selected PDLD Ratios (2)	1.750	0.700	0.550	0.450	0.400	0.350	0.000
Retro Adjustment <u>Periods</u> (1)	First	Second	Third	Fourth	Fifth	Sixth	Subsequent

Notes:
(2) From Exhibit 4.
(3) From Exhibit 7.

EXHIBIT 4

PART 1 PDLD RATIO CALCULATION

(dollars in thousands)

Policy	First Re	First Retro Adjustment	stment	Second Retro Adjustment	Retro Adj	ustment	Third R	Third Retro Adjustment	stment
Eff.	Loss	Prem	PDLD	Loss	Prem	PDLD	Loss	Prem	PDLD
Quarter	0-18	0-27	Ratio	19-30	28-39	Ratio	31-42	40-51	Ratio
1983.3	42,461	52,436	1.235	5,515	4,012	0.727	4,533	2,351	0.519
1983.4	20,151	26,222	1.301	2,738	2,722	0.994	1,480	576	0.389
1984.1	23,076	29,189	1.265	2,142	1,927	0.900	2,076	1,086	0.523
1984.2	19,243	23,422	1.217	1,032	1,904	1.844	204	740	1.461
1984.3	54,927	69,310	1.262	8,900	6,371	0.716	3,804	3,432	0.902
1984.4	33,393	43,305	1.297	4,308	3,189	0.740	2,819	1,274	0.452
1985.1	46,100	59,203	1.284	3,384	3,349	0.990	2,312	1,347	0.583
1985.2	27,696	38,717	1.398	2,679	2,120	0.791	2,675	1,687	0.631
1985.3	96,041	133,094	1.386	9,717	7,926	0.816	6,465	3,054	0.472
1985.4	49,481	66,351	1.341	7,193	4,063	0.565	4,268	2,560	0.600
1986.1	63,095	87,173	1.382	5,865	4,249	0.724	4,045	2,298	0.568
1986.2	42,163	57,654	1.367	3,904	2,283	0.585	3,882	1,981	0.510
1986.3	115,105	160,838	1.397	12,006	10,917	0.909	12,037	7,932	0.659
1986.4	58,712	84,641	1.442	6,627	3,536	0.534	3,737	3,579	0.958
1987.1	77,373	103,693	1.340	7,879	8,776	1.114	4,795	2,987	0.623
1987.2	49,770	68,397	1.374	4,867	3,467	0.712	4,029	993	0.246
1987.3	120,053	171,434	1.428	15,117	9,858	0.652	606'8	4,189	0.470
1987.4	73,502	101,483	1.381	7,479	5,701	0.762	5,101	2,290	0.449
1988.1	71,999	98'86	1.372	6,083	4,745	0.780	4,138	1,006	0.243
1988.2	45,861	63,885	1.393	5,253	2,688	0.512	3,392	853	0.252
1988.3	115,461	161,154	1.428	13,462	6,642	0.652	7,128	2,854	0.470
1988.4	79,063	109,253	1.382	7,723	3,974	0.515	5,082	2,604	0.512

PART 1—PAGE 2

1989.1	777, 99,777		1.396	3,744	913	0.244	4,462	2,131	0.478
1989.2 49,486	186 67,553		1.365	2,976	2,923	0.982	2,834	1,906	0.672
1989.3 108,330	330 153,443	ξ .	1.416	12,886	6,525	9020	6,733	5,732	0.851
1989.4 72,082	382 104,838	82	1.454	10,903	8,693	0.797	7,288	4,224	0.580
1990.1 76,452	152 107,468	8	1.406	8,989	7,055	0.785	2,199	319	0.145
1990.2 46,393	393 70,127		1.512	6,513	5,695	0.874	1,566	1,159	0.740
1990.3 102,035	35 158,027		1.549	13,486	6,788	0.503	1,682	901	0.536
1990.4 57,548	548 91,918	. 8	1.597	8,522	2,840	0.333	6,166	1,227	0.199
1991.1 54,037	106,18 750	5	1.516	3,583	2,595	0.724			
1991.2 30,240	240 54,045		1.787	2,824	999	0.236			
1991.3 55,325	325 94,797	. 46	1.713	3,168	2,552	0.805			
1991.4 54,302	302 97,650		1.798	5,078	2,448	0.482			
1992.1 49,161	161 82,057	. 25	699.1						
1992.2 33,0	33,060 59,279	62	1.793						
1992.3 53,069	99,074	•	1.867						
1992.4 44,7	44,785 88,367		1.973						
Selection Based on Historical Averages	torical Ave	erages	(Ol						
	Average All		1.460			0.730			0.556
Weighted Average All	Average A	·	1.455			0.680			0.532
	Selected		1.750			0.700			0.550
Selection Based on Retro Formula	tro Formul	<u>8</u>							
	고	Ų.	1.20			1.20			1.20
	=	Σ	1.03			1.03			1.03
Loss Ca _l	Loss Capping Ratio		85%			28%			45%
Implied F	Implied PDLD Ratio		1.426 *			0.717			0.556
Final Selection		_	1.750			0.700			0.550

* Also assumes a basic premium factor of 0.2, an expected loss ratio of 0.7, and an expected loss emergence of 78.4% at first adjustment.

EXHIBIT 4
PART 2

PDLD RATIO CALCULATION

(dollars in thousands)

Policy	Fourth F	Fourth Retro Adjustment	stment	Fifth Re	Fifth Retro Adjustment	stment	Sixth Re	Sixth Retro Adjustment	stment
E#.	Loss	Prem	PDLD	Loss	Prem	PDLD	Loss	Prem	PDLD
Quarter	43-54	52-63	Ratio	22-66	64-75	Ratio	67-78	76-87	Ratio
1983.3	1,925	763	0.397	2,057	712	0.346	1,170	75	0.064
1983.4	1,078	662	0.615	2	95	0.867	525	186	0.355
1984.1	1,139	883	0.776	827	526	0.636	1,123	-103	-0.092
1984.2	1,137	573	0.504	906	593	0.655	165	15	0.088
1984.3	2,949	1,159	0.393	2,619	635	0.243	2,475	137	0.055
1984.4	1,424	506	0.145	1,378	46	0.033	1,329	88	0.065
1985.1	1,538	267	0.173	2,265	120	0.053	528	615	1.165
1985.2	2,026	773	0.381	1,730	189	0.109	1,072	210	0.196
1985.3	6,525	2,670	0.409	6,604	2,611	0.395	3,566	155	0.043
1985.4	3,049	1,196	0.392	2,194	1,091	0.497	2,533	958	0.378
1986.1	1,700	1,243	0.731	3,519	874	0.248	1,477	621	0.421
1986.2	2,480	63	0.025	1,476	888	0.601	1,969	194	0.099
1986.3	5,380	2,703	0.502	8,623	1,693	0.196	4,364	1,601	0.367
1986.4	3,316	561	0.169	3,032	728	0.240	1,907	8	0.044
1987.1	5,508	1,796	0.326	4,720	1,522	0.322	1,784	69	0.039

EXHIBIT 4 PART 2—PAGE 2

4001	200	60	0.000	098	0 203	1 107	416	0.375
77./061			0/6'7	ŝ	0.530		2	
1987.3	7,089 2,571	0.363	3,589	2,532	0.705	1,191	-350	-0.268
1987.4	4,456 1,199	0.269	3,277	572	0.175	381	526	0.593
1988.1	3,267 1,498	0.458	2,294	82	0.036			
1988.2	2,461 894	0.363	1,086	102	0.094			
1988.3	6,284 3,014	0.363	969'8	108	0.012			
1988.4	4,351 2,528	0.581	026	869	0.720			
1989.1	798 339	0.425						
1989.2	245 147	0.601						
1989.3	2,996 1,043	0.348						
1989.4	785 472	0.601						
Selection Base	Selection Based on Historical Averages	rages						
	Average All	0.400			0.340			0.222
Š	Weighted Average All	0.385			0.266			0.182
	Selected	0.400			0.300			0.200
Selection Base	Selection Based on Retro Formula	СÚ						
	LCF	1.20			1.20			1.20
	MT				1.03			1.03
_	Loss Capping Ratio	40%			40%			40%
_	Implied PDLD Ratio	0.494			0.494			0.494
Final Selection		0.450			0.400			0.350

PART 1

LOSS CAPPING RATIO CALCULATION

(with per accident limitation)

Entry Ratio at Retro Minimum (6)/(4) (8)	0.18	0.16	0.15	0.15	0.14	0.14
Entry Ratio at Retro Maximum (5)/(4)	2.19	1.95 1.86	1.80	1.75	1.72	1.71
Loss Ratio at Retro <u>Minimum</u> (6)	0.100	0.100	0.100	0.100	0.100	0.100
Loss Ratio at Retro <u>Maximum</u> (5)	1.200	1.200	1.200	1.200	1.200	1.200
Emerged Loss Ratio (2)x(3) (4)	0.549	0.614 0.645	0.665	0.686	0.697	0.700
Percent of Total Losses Emerged (3)	78.4%	87.7% 92.1%	95.1%	%0'86	%9.66	100.0%
Ultimate Standard Premium Loss Ratio (2)	0.700	0.700	0.700	0.700	0.700	0.700
Retro Adjustment (1)	First	Second Third	Fourth	Fifth	Sixth	Subsequent

PART 2

LOSS CAPPING RATIO CALCULATION

(with per accident limitation)

	Selected	Incremental	Loss Cap-	ping Ratios	(15)	85.0%	28.0%	45.0%	40.0%	40.0%	40.0%	0.0%
		Incremental	Loss Cap-	ping Ratios	(14)	84.9%	28.0%	45.0%	39.6%	38.7%	41.7%	3.3%
	Cumulative	Loss Cap-	ping Ratios	1.0-(11)-(12)	(13)	84.9%	82.0%	80.2%	79.0%	77.8%	77.2%	%6:92
Loss					(12)	4.2%	2.0%	2.9%	6.5%	7.1%	7.4%	7.5%
% of Losses	Eliminated	by Retro	Max/Min I	(9)-(10)	(11)	10.9%	13.0%	13.9%	14.5%	15.1%	15.4%	15.6%
	Insurance	Saving	at Retro	Minimum	(10)	0.004	0.003	0.003	0.003	0.003	0.002	0.002
	Insurance	Charge	at Retro	Maximum	(6)	0.113	0.133	0.142	0.148	0.154	0.156	0.158
			Retro	Adjustment	(1)	First	Second	Third	Fourth	Fifth	Sixth	Subsequent

By judgment.

Based on loss development pattern. See Exhibit 7. Notes:
(2)
(3)
(5),(6)
(9),(10)

Based on the retro rating values on the policies sold.

From NCCI Table of Insurance Charges, assuming \$750,000 standard premium at the entry ratios listed in Columns (7) and (8), with losses used for loss group estimation adjusted for the per accident limitation.

From a study of the percentage of losses eliminated due to per accident limitation. (12) (14) (15)

= [(13)x(4) - (Prior 13)x(Prior 4)] / [(4) - (Prior 4)].

By judgment.

PART 1

BOOKED PREMIUM

urs in thousands)	EVALUATED AT (MONTHS)
dollars	EVA

	42	56,442	28,886	32,031	25,319	75,727	46,645	62,780	40,780	141,198	70,703	91,780	59,994	173,178	89,027	113,333	71,866	181,375	107.014
	33	56,448 5	28,944 2	31,116 3	25,326 2	75,681 7	46,495 4	62,552 6	40,836 4	141,020 14	70,414 7	91,422 9	59,937 5	171,755 17	88,177 8	112,468 11	71,863 7	181,292 18	107,184 10
	8	53,735 54	26,653 2	29,563 3	24,239 2	73,363 7	44,982 4	60,692 6	39,753 4	138,147 14	68,357 7	88,964 9	57,801 5	167,381 17	85,334 8	1107,900 11	7 675,07	176,167 18	104,615 10
	33	52,428 5	26,109 2	28,960 2	23,714 2	69,804 7	43,794 4	59,814 6	39,247 3	134,241 13	67,131 6	87,438 8	57,156 5	161,702 16	83,954 8	105,992 10	68,083 7	170,034 17	101,940 10
	ଚ୍ଚ	52,388 5	26,135 2	28,967 2	23,608 2	69,648 6	43,851 4	59,164 5	38,855 3	134,019 13	67,117 6	87,630 8	57,171 5	161,506 16	84,662 8	105,325 10	62,799	170,357 17	101,762 10
_	27	52,436	26,222 2	29,189	23,422	69,310	43,305	59,203	38,717	133,094 13	66,351	87,173	57,654	160,838 16	84,641	103,693 10	68,397	171,434 17	101,483 10
(MONTHS	54	50,629	25,367	28,947	23,261	68,094	43,897	56,075	40,131	132,641 1	67,651	83,949	58,482	160,320 1	82,732	100,641	68,077	172,374	99,738
EVALUATED AT (MONTHS)	2	50,174	25,438	28,777	22,258	67,910	43,489	58,742	39,114	138,401 1	68,046	88,382	59,748	168,696 1	85,404	105,732 1	69,209	172,841 1	99,258
EVALL	48	49,911	24,608	28,018	22,441	269'99	43,344	57,881	37,650	138,488 1	67,119	83,746	56,713	167,176	83,931	103,569 1	67,875	174,935 1	98,370
	15	45,075	22,407	25,408	20,366	61,851	41,299	52,336	37,010	. 28,832	63,169	79,958	53,764	157,264	79,268	96,064	62,681	. 012,231	91,969
	5	40,867	19,696	24,101	18,422	56,490	38,056	49,872	33,115	120,931	61,567	76,616	48,402	152,088	75,233	90,700	57,190	154,795	88,365
	თ	33,550	15,697	19,135	14,770	45,913	29,224	40,623	26,189	99,219	51,122	62,065	39,082	128,593	61,795	74,709	46,687	130,510	71,591
	9	23,481	10,684	13,516	10,386	31,438	21,089	28,734	19,304	69,712	36,106	46,053	28,997	98'636	47,808	57,756	37,152	908'26	56,338
	ဗ	18,087	7,545	7,930	6,277	20,221	9,581	15,110	9,345	43,187	18,627	27,390	15,906	75,944	34,837	43,330	21,776	81,929	40,213
POL EFF	QUARTER	1983.3	1983.4	1984.1	1984.2	1984.3	1984.4	1985.1	1985.2	1985.3	1985.4	1986.1	1986.2	1986.3	1986.4	1987.1	1987.2	1987.3	1987.4

EXHIBIT 6 PART 1—PAGE 2

103,824	66,593	167,503	113,259	100,996	70,691	162,505	113,513	114,013	75,729	164,057	94,621	84,44	54,940	97,351													
103,551	66,573	167,796	113,227	100,691	70,476	159,968	113,531	114,523	75,822	164,815	94,759	84,497	54,711	97,348	100,098												
101,516	060'99	163,070	111,601	99,321	68,442	153,635	106,285	112,426	73,669	161,526	92,789	83,321	54,363	95,884	98,816	83,654											
99,426	63,912	159,056	109,928	98,874	67,325	151,898	106,006	108,481	71,796	155,939	89,057	81,741	53,094	95,037	97,453	82,305	59,450										
99,398	63,771	159,364	109,553	99,118	67,514	152,289	105,096	108,595	71,153	154,559	90,293	81,593	53,647	95,483	97,275	81,207	59,531	98,745									
98,806	63,885	161,154	109,253	777,66	67,553	153,443	104,838	107,468	70,127	158,027	91,918	106,18	54,045	94,797	97,650	82,057	59,279	99,074	88,367								
97,349	62,232	157,669	103,318	95,048	65,312	153,310	107,785	108,319	72,759	157,804	102,283	83,748	54,008	97,296	107,345	79,426	62,709	101,661	96,272	57,304							
97,210	62,671	157,645	101,400	95,370	65,452	155,500	108,541	107,738	74,014	161,333	105,995	85,231	58,229	96,431	108,317	82,743	61,432	100,433	95,421	57,259	50,887						
66,93	62,781	155,317	100,143	92,953	63,860	154,254	109,565	109,581	73,996	164,785		82,418	57,790	99,243	110,764	83,160	59,989	102,001	95,711	57,200	50,776	88,838					
90,156	58,682	150,957	96,199	90,443	61,548	150,281	107,600	105,099	72,525	157,555	102,985	80,929	56,505	94,509	103,650	80,923	59,215	102,225	91,176	56,028	49,357	87,886	69,025				
85,547	53,014	144,686	90,176	86,851	58,091	143,674	101,224	101,782	69,544	150,974	96,782	77,912	52,368	90,684	96,004	77,569	55,414	96,319	84,643	53,188	46,519	84,974	64,487	49,737			
70,630	43,526	119,264	70,154	70,440	45,230	116,546	79,875	82,540	57,612	124,828	75,859	65,178	40,717	76,470	71,234	63,007	42,953	79,724	64,921	43,949	39,234	70,411	51,901	41,305	34,494		
54,489	34,740	88,814	54,419	52,001	34,226	87,768	59,317	58,906	44,112	90,937	56,685	44,023	28,297	57,962	55,839	48,424	28,687	62,778	55,591	33,188	30,311	55,794	40,173	33,572	28,772	55,331	
42,723	22,257	72,106	39,617	39,587	22,202	65,381	39,328	41,480	24,980	63,128	39,431	33,478	14,280	45,699	40,472	33,004	15,320	43,587	39,809	23,915	18,976	45,269	28,913	24,902	20,642	42,916	18,975
1988.1	1988.2	1988.3	1988.4	1989.1	1989.2	1989.3	1989.4	1990.1	1990.2	1990.3	1990.4	1991.1	1991.2	1991.3	1991.4	1992.1	1992.2	1992.3	1992.4	1993.1	1993.2	1993.3	1993.4	1994.1	1994.2	1994.3	1994.4

PART 2

BOOKED PREMIUM

(dollars in thousands)

EVALUATED AT (MONTHS)

	87	60,350	30,424	33,509	27,247	81,044	48,106	64,901	43,695	149,509	76,219	96,458	63,064	185,683	93,129	118,843	74,348
	\$	60,221	30,041	33,735	27,086	80,934	47,873	64,502	43,682	149,224	75,060	96,108	63,093	185,286	92,899	118,536	74,175
	8	60,321	30,164	33,612	27,070	80,850	47,971	64,348	43,371	149,109	74,893	95,762	63,109	184,896	93,055	118,864	74,081
	78	60,309	30,172	33,612	27,241	80,813	47,977	64,360	43,517	149,163	75,226	95,762	63,097	184,903	93,071	118,924	74,079
	75	60,275	30,238	33,612	27,232	80,907	48,020	64,286	43,485	149,354	75,261	95,837	62,869	184,082	93,045	118,773	73,933
	72	59,492	30,204	33,223	26,961	80,328	47,527	63,794	43,080	147,980	74,169	94,869	62,630	181,942	92,023	117,887	73,138
ONTHS)	69	59,335	30,048	33,046	26,944	80,017	47,424	63,785	42,975	146,591	73,688	94,611	62,439	181,531	91,988	116,912	72,622
EVALUATED AT (MONTHS)	8	59,301	30,048	32,997	26,622	79,940	47,844	63,818	42,989	146,395	73,882	94,514	61,909	181,594	92,091	116,837	72,576
EVALUAT	ន	59,562	30,182	33,085	26,639	80,272	47,974	64,166	43,296	146,743	74,170	94,963	61,982	182,390	92,317	117,251	73,063
	8	59,306	29,492	32,513	26,365	79,730	47,833	63,911	42,814	145,032	73,342	94,319	61,664	181,404	91,698	116,457	72,941
	22	58,875	29,463	32,489	26,330	79,358	47,798	64,072	42,635	144,236	73,185	93,988	61,941	180,311	91,734	115,768	73,165
	72	58,904	29,490	32,473	26,095	79,140	47,815	64,075	42,446	144,137	72,741	94,000	61,909	179,875	91,817	115,468	73,264
	5	58,799	29,520	32,202	26,066	79,113	47,768	63,899	42,523	144,073	72,974	93,720	61,919	179,686	91,756	115,455	72,856
	84	57,448	29,122	31,896	25,717	77,812	47,080	63,239	41,412	143,140	71,420	92,532	61,202	174,277	90,156	114,273	72,598
	45	56,698	28,923	31,993	25,433	76,163	46,535	62,880	41,156	141,185	909'02	91,767	60,463	173,315	89,240	113,294	71,824
POL EFF	QUARTER	1983.3	1983.4	1984.1	1984.2	1984.3	1984.4	1985.1	1985.2	1985.3	1985.4	1986.1	1986.2	1986.3	1986.4	1987.1	1987.2

EXHIBIT 6 PART 2—PAGE 2

1987.3	181,456	183,852	181,456 183,852 185,481 185,695		185,960	185,921	188,052	188,062	187,991	188,412	190,584	185,960 185,921 188,052 188,062 187,991 188,412 190,584 190,639 190,735	190,735	190,555	190,265
1987.4	106,769	108,691	109,474	109,590	109,674	109,553	110,673	110,406 110,472	110,472	110,766	111,245	111,243	111,236	111,279	111,472
1988.1	103,719	103,937	104,557	104,769	104,822	104,662	106,055	105,656	105,466	105,683	106,137	106,218	106,230	106,292	
1988.2	66,453	66,542	67,426	67,585	67,579	68,302	68,320	68,055	67,964	67,923	68,422	68,448	68,462		
1988.3	167,536	168,059	170,650	172,206	172,539	172,583	173,664	172,956	172,995	172,960	173,772	173,984			
1988.4	113,847	114,158	115,831	115,967	115,909	116,218	118,360	117,566	117,541 117,189	117,189	119,058				
1989.1	101,165	102,126	102,822	102,919	102,750	102,955	103,161	103,367	103,574	103,781					
1989.2	70,687	72,016	72,382	72,362	72,385	72,457	72,529	72,602	72,675						
1989.3	162,799	163,947	165,700	166,040	165,811	165,390	166,743	166,034							
1989.4	113,494	115,806	117,754	117,872	117,990	118,108	118,226								
1.0661	114,032	114,738	114,842	113,920	113,959	113,443									
1990.2	75,670	76,523	76,981	77,086	76,983										
1990.3	164,447	164,886	165,716	166,107											
1990.4	94,655	94,805	986'56												
1991.1	84,616	85,643													
1991.2	54,874														

EXHIBIT 7 PART 1 REPORTED LOSSES

	S
	7
	=
	₩.
	ಡ
	S
	⇉
	=
	O
_	П
7	=
	=
	=
	Ś
	ਰ
	_
	_
	0

POL EFF						EVAL	-UATED A	EVALUATED AT (MONTHS)	(Ş					
NARTER	က	9	6	5	15	18	21	24	27	8	æ	8	88	42
1983.3	5,121	15,662	24,950	36,667	41,044	42,461	44,191	45,528	46,321	47,976	48,898	49,439	50,413	52,508
1983.4	1,336	5,853	10,153	15,218	18,928	20,151	21,293	21,821	22,244	22,889	23,270	23,466	23,802	24,369
1984.1	2,746	6,798	11,408	17,227	20,523	23,076	23,954	24,351	24,730	25,218	25,765	26,065	26,897	27,294
1984.2	1,393	5,284	8,929	14,264	18,651	19,243	20,080	20,759	20,954	20,276	20,143	20,504	20,549	20,782
1984.3	6,618	17,632	31,538	46,077	51,318	54,927	58,153	59,814	61,636	63,827	65,053	65,301	66,273	67,631
1984.4	2,417	9,115	17,939	24,030	30,204	33,393	35,277	36,237	36,887	37,701	38,636	39,640	39,583	40,520
1985.1	3,847	13,981	22,898	34,132	41,523	46,100	46,809	47,718	48,853	49,485	50,490	50,804	50,748	51,796
1985.2	2,164	6,559	12,772	20,433	26,052	27,696	28,720	29,155	29,654	30,375	31,281	31,597	32,095	33,051
1985.3	11,514	34,201	57,070	84,782	92,911	96,041	98,225	101,501	103,660	105,758	106,336	108,721	110,196	112,223
1985.4	4,252	14,692	28,032	38,282	46,101	49,481	52,737	54,006	55,152	56,674	58,126	59,382	59,953	60,942
1986.1	6,670	20,522	32,059	46,939	56,233	63,095	63,724	65,044	65,887	096'89	69,613	70,511	71,368	73,005
1986.2	3,531	10,917	19,770	31,772	40,050	42,163	43,055	43,374	44,117	46,067	46,648	47,551	47,994	49,949
1986.3	14,331	38,985	63,615	99,612	109,338	115,105	118,102		124,300	127,112	129,821	131,477	133,952	139,149
1986.4	4,768	17,534	32,808	45,213	54,351	58,712	61,941	62,548	63,559	65,340	66,158	66,925	67,544	720,69
1987.1	8,142	23,354	38,500	56,764	60,709	77,373	79,521	81,580	83,222	85,252	86,910	87,978	88,660	90,047
1987.2	4,329	13,671	25,907	37,740	49,263	49,770	50,940	52,428	53,018	54,637	966'99	56,994	57,460	999'89
1987.3	13,373	36,138	63,600	101,166	113,655	120,053	124,721	128,107	130,850	135,171	137,613	139,866	141,475	144,080
1987.4	6,190	20,923	41,460	56,846	67,724	73,502	76,331	76,489	78,388	80,981	82,914	84,044	84,277	86,082
1988.1	6,916	20,545	34,772	50,554	63,347	71,999	73,728	74,396	75,834	78,082	79,412	80,223	80,531	82,220
1988.2	4,087	11,179	21,183	34,005	44,314	45,861	46,854	47,968	49,482	51,114	52,248	53,089	53,407	54,507
1988.3	12,952	35,571	63,806	98,684	110,159	115,461	120,036	123,446	124,724	128,922	131,384	133,661	134,948	136,050
1988.4	5,451	22,014	40,250	57,358	71,190	79,063	85,346	85,263	86,493	86,786	88,053	88,746	89,616	91,868

EXHIBIT 7 PART 1—PAGE 2

92.1%	%6.06	90.4%	89.8%	87.7%	85.8%	84.4%	82.3%	78.4%	71.8%	60.2%	41.4%	22.7%	7.8%	% Emerged
1.085	1.100	1.107	1.114	1.140	1.166	1.184	1.215	1.276	1.393	1.661	2.416	4.397	12.856	Cumulative
1.016	1.014	1.006	1.007	1.024	1.022	1.016	1.026	1.050	1.092	1.192	1.454	1.820	2.924	Selected
1.016	1.014	1.006	1.007	1.024	1.022	1.016	1.026	1.050	1.092	1.192	1.454	1.820	2.924	Wťd Avg 16
													1,862	1994.4
												14,339	5,083	1994.3
											11,381	6,287	1,357	1994.2
										21,189	14,755	9,031	6,241	1994.1
									34,516	27,906	20,030	10,585	2,881	1993.4
								51,005	46,561	40,138	25,756	14,393	5,349	1993.3
							30,286	27,847	24,915	20,247	12,834	7,172	2,091	1993.2
						39,519	36,340	34,297	31,880	26,870	18,973	12,318	3,786	1993.1
					50,766	49,581	47,814	44,785	41,006	33,822	23,922	12,562	3,596	1992.4
				62,118	60,047	59,254	55,737	53,069	50,764	45,310	31,122	15,383	4,619	1992.3
			37,393	36,680	36,320	35,543	35,210	33,060	31,064	24,417	16,036	8,282	3,052	1992.2
		53,455	53,333	52,340	51,888	52,060	51,595	49,161	43,512	36,669	27,327	16,850	6,135	1992.1
	61,068	60,963	29,800	29,380	58,270	58,620	58,775		48,147	40,545	28,024	14,259	3,797	1991.4
969'09	59,814	59,916	59,106	58,493	57,666	57,417	55,647	55,325	53,959	47,533	30,591	14,983	5,053	1991.3
33,771	33,779	33,584	33,768	33,064	32,779	32,484	31,317	30,240	28,953	20,833	13,419	6,883	2,129	1991.2
60,025	59,577	59,537	59,265	57,620	26,697	56,093	56,184	54,037	47,837	39,914	29,513	19,024	7,133	1991.1
72,236	71,707	70,789	70,479	66,070	64,537	63,183	62,316	57,548	52,459	42,939	30,880	14,997	5,196	1990.4
117,202	116,920	116,762	116,449	115,521	112,652	109,426	106,144	102,035	94,633	83,863	57,374	32,321	11,677	1990.3
54,473	53,847	53,431	53,893	52,906	52,012	50,954	48,984	46,393	42,925	33,833	22,351	12,606	3,836	1990.2
87,639	86,565	86,250	86,905	85,440	81,249	79,502	78,668	76,452	68,215	56,952	39,469	25,559	9,511	1990.1
90,273	88,955	88,199	87,691	82,985	80,320	78,864	76,852	72,082	64,224	52,236	39,063	19,715	4,842	1989.4
127,949	126,285	125,375	124,649	121,216	119,203	116,584	112,488	108,330	102,949	92,142	61,655	33,593	11,397	1989.3
55,296	54,940	54,467	54,081	52,462	51,567	50,507	50,566	49,486	46,573	36,257	23,914	12,348	3,615	1989.2
79,677	77,522	77,279	76,405	75,215	72,442	72,275	71,946	71,471	62,907	50,512	34,204	21,725	7,869	1989.1

EXHIBIT 7 PART 2 REPORTED LOSSES (dollars in thousands)

P
⊂
ಡ
Š
$\overline{}$
\simeq
-
-
_
.Ξ
S
- 53
ਕ
<u> </u>
Πa
olla
lolla

		87	58,893	26,396	30,496	23,639	76,291	45,746	56,822	38,029	130,355	69,467	865'08	55,170	158,282	77,451	102,064	62,339	155,738	94,067
		28	58,319	26,439	30,414	23,331	76,207	45,296	56,762	38,073	129,815	69,417	80,048	55,033	157,870	77,708	102,215	65,176	155,915	94,124
		8	58,013	26,257	30,332	23,351	76,027	45,046	56,031	37,977	129,448	890'69	79,828	55,290	158,046	77,791	102,416	65,408	156,064	94,251
		78	27,660	26,036	30,384	22,990	75,675	44,652	56,128	37,878	128,918	68,719	79,700	55,874	157,514	77,332	102,059	65,264	155,950	94,197
		75	56,968	25,905	29,857	22,697	74,127	44,278	55,635	37,721	127,387	68,140	80,055	54,858	156,039	76,481	101,009	64,690	156,009	93,987
		72	26,907	25,784	29,959	22,721	73,673	44,107	55,744	37,734	127,252	68,036	80,044	54,659	155,533	76,103	100,919	64,652	155,732	93,977
(81	ONTHS)	69	56,740	25,527	29,942	22,942	73,429	43,870	55,619	37,422	126,865	67,419	79,734	54,533	154,266	76,073	100,547	64,589	155,466	93,787
lousalic	EVALUATED AT (MONTHS)	98	56,489	25,511	29,261	22,825	73,199	43,323	55,600	36,806	125,352	66,186	78,223	53,905	153,151	75,425	100,275	64,157	154,758	93,815
(dollals III tilousalius)	EVALUAT	8	55,464	25,430	28,887	22,260	70,699	42,760	55,246	35,816	121,826	65,140	77,005	53,475	150,424	74,188	98,212	62,840	153,406	92,825
lon)		8	54,908	25,913	28,888	22,130	70,630	42,602	54,796	35,888	121,027	65,053	76,344	52,937	149,820	73,956	97,662	62,746	152,686	92,860
		24	54,844	25,598	28,783	22,129	70,598	42,229	54,047	35,629	120,458	64,759	76,207	52,185	148,673	73,624	96,936	62,269	152,187	92,262
		8	54,433	25,447	28,433	21,919	70,581	41,944	53,334	35,077	118,749	63,992	74,704	52,429	144,528	72,392	95,555	61,187	151,169	90,538
		51	52,987	25,085	28,054	21,408	69,571	41,658	52,925	34,161	115,792	63,048	73,350	51,492	142,446	71,585	92,426	60,308	148,826	89,288
		84	52,952	24,840	28,168	21,056	68,656	41,786	52,557	33,797	114,633	62,769	73,961	50,798	141,276	71,454	91,974	59,750	148,007	89,146
		45	53,010	24,713	27,873	21,110	68,177	41,687	52,028	33,713	113,596	61,543	73,711	50,459	141,803	70,913	91,273	59,490	146,880	88,294
	POL EFF	QUARTER	1983.3	1983.4	1984.1	1984.2	1984.3	1984.4	1985.1	1985.2	1985.3	1985.4	1986.1	1986.2	1986.3	1986.4	1987.1	1987.2	1987.3	1987.4

EXHIBIT 7 PART 2—PAGE 2

	Tail 1.000 100.0%	
88'300	1.001	
89,042 57,763	1.001 1.001 1.002 99.8%	
89,473 57,691 152,121	1.002 1.002 1.004 99.6%	
89,457 57,871 151,590 96,809	1.006 1.006 1.010 99.1%	
89,780 58,285 151,487 97,076 81,384	1.000 1.000 1.010 99.0%	
89,697 58,287 151,733 97,467 81,546 55,898	1.002 1.002 1.012 98.8%	
87,781 58,054 151,031 97,189 81,253 55,652 131,539	1.008 1.008 1.020 98.0%	
86,795 57,606 150,526 97,436 80,897 55,663 131,233 91,423	1.010 1.010 1.030 97.1%	
86,393 57,913 150,268 97,788 81,113 55,751 131,650 91,296 89,715	1.002 1.002 1.032 96.9%	
85,962 57,732 145,198 97,757 81,137 55,780 131,516 91,020 89,689 56,032	1.007 1.039 96.2%	
85,487 56,968 142,334 96,219 80,475 55,541 130,944 91,058 89,844 55,556 118,268	1.012 1.012 1.052 95.1%	
84,078 56,157 140,598 94,645 79,483 55,322 129,944 91,296 90,437 55,535 117,746 73,037	1.011 1.011 1.063 94.0%	
83,605 55,937 139,464 93,316 79,879 55,467 129,598 55,502 117,528 73,101 60,399	1.003 1.003 1.067 93.8%	
83,299 55,421 139,179 92,734 80,263 55,591 129,957 91,080 55,529 117,673 73,643 60,440 34,136	1.001 1.001 1.068 93.6%	
1988.1 1988.2 1988.4 1989.2 1989.2 1989.4 1990.2 1990.3 1990.4 1991.1	Wr'd Avg 16 Selected Cumulative % Emerged	