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Abstruct 

Casualty Actuarial Societv literature is inconclusive re- 
garding whether the loss development technique is biased 
or unbiased, or which of the traditional methods of esti- 
mating link ratios is best. This paper frames the develop- 
ment process in a least squares regression model so that 
those questions can be answered for link ratio estimators 
commonly used in practice, and for two new average de- 
velopment factor formulas. As a byproduct, formulas for 
variances of point estimates of ultimate loss and loss re- 
serves are derived that reflect both parameter risk and 
process risk. An approach to measuring confidence inter- 
vals is proposed. A consolidated industry workers’ com- 
pensation triangle is analyzed to demonstrate the concepts 
and techniques. The results of a simulation study suggest 
that in some situations the alternative average loss devel- 
opment factor (LDF) formulas may outpe$orm the tradi- 
tional estimators, and that the performance of the incurred 
loss development technique can approach that of the 
Bornhuetter-Ferguson and Stanard-Biihlmann techniques. 

1. INTRODUCTION 

Three common methods of estimating link ratios are the Simple 
Average Development (SAD) method-the arithmetic average of the 
link ratios; the Weighted Average Development (WAD) method-the 
sum of losses at the end of the development period divided by the 
sum of the losses at the beginning; and the Geometric Average De- 
velopment (GAD) metho&--the nth root of the product of n link ra- 
tios. Casualty actuarial literature is inconclusive regarding which 
method is “best” or indeed whether the methods are biased or unbi- 
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ased. See, for example, Stanard [9] and Robertson’s discussion [7]. 
The purpose of this paper is to present a mathematical framework for 
evaluating the accuracy of these methods; to suggest alternatives; and 
to unearth valuable information about the variance of the estimates of 
developed ultimate loss. 

It is assumed that the actuary has exhausted all adjustments for 
systematic or operational reasons why a development triangle may 
appear as it does, and the only concern left is how to deal with the 
remaining noise. Although the paper uses accident year to refer to the 
rows of the triangle, the theory also applies to policy year and report 
year triangles. 

2. POLNTESTMATES 

When we say that we expect the value of incurred losses as of, 
say, 24 months to equal the incurred value as of 12 months times a 
link ratio, it is possible that what we really mean is this: the value of 
incurred losses as of 24 months is a random variable whose expected 
value is conditional on the 12 month incurred value, and equals that 
12 month value times an unknown constant. Symbolically, 

y = bx + e, 

where x and y are the current and next evaluations, respectively; b is 
the unknown constant development factor, called the age-to-age fac- 
tor or link ratio; and e represents random noise. The first step in de- 
veloping losses is estimating the link ratios. 

Expected Value of the Link Ratio 

Let us first generalize, and suppose that the relationship between x 
and y is fully linear rather than strictly multiplicative. The more gen- 
eral model is 
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Model I y=a+bx+e. 

E (e) = 0; Var (e) is constant across accident years; 
and the e’s are uncorrelated between accident years 
and are independent of x. 

This model is clearly a regression of 24-month losses y on 12- 
month losses x. Although x is a priori a random variable, once an 
evaluation is made it is treated as a constant for the purpose of loss 
development. More precisely, the model says that the expected value 
of the random variable y conditional on the random variable x is 
linear in x: E (v I x) = a + hx. With this understanding of the relation- 
ship between x and y, all classical results of least squares regression 
may be brought to bear on the theory of loss development. See, for 
example, Scheffe [S]. For the remainder of this paper, all expectations 
are conditional on the current evaluation. 

The well known Gauss-Markoff Theorem says that the Best Lin- 
ear Unbiased Estimates (BLUE) of a and b are the least squares 
estimates, denoted G and 6: 

and 

This model will be referred to as the Least Squares Linear (LSL) 
model. 

Section 5 presents an argument that claim count development may 
follow the LSL model, supported by the simulation study of Appen- 
dix B. However, if one believes the y-intercept should truly be zero, 
perhaps the model to use is 



UNBIASED LOSS DEVELOPMENT FACTORS 157 

Model II y=bx+e. 

E (e) = 0; Var(e) is constant across accident 
years; and the e’s are uncorrelated between 
accident years and are independent of x. 

This model would not be appropriate if there were a significant prob- 
ability that y should not equal zero when x does. 

It is well known that the BLUE estimator for b under Model II is 

(2.1) 

This model will be referred to as the Least Squares Multiplicative 
(LSM) model. 

Can the LSL or LSM assumptions be revised to say something 
about the more common development factor averages? Take the as- 
sumption of constant variance across accident years. Triangles of 
incurred or paid dollars under the force of trend may not conform to 
this assumption. On-leveling the loss triangle may try to adjust for 
such heteroskedasticity, but may introduce unwelcome side effects as 
well. A model that speaks directly to the issue of non-constant vari- 
ances is: 

Model III y=bx+xe. 

E (e) = 0; Var(e) is constant across accident years; 
and the e’s are uncorrelated between accident 
years and independent of x. 

This model differs from Model II in that it explicitly postulates a 
dependent relationship between the current evaluation, x, and the er- 
ror term, xe. Divide both sides of this equation by x. This model also 
says that the ratio of consecutive evaluations is constant across acci- 
dent years. In other words, it is the development percent, not the 
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development dollars, and the random deviation in that percent that 
behave consistently from one accident year to the next. 

This model’s BLUE for b is the simple average development 
(SAD) factor, denoted bSAD. This is easy to see. Transform Model III 

as follows: 

Model III’ y/x = b + e 

or u=bv+e. 

where v is identically equal to unity. Formula 2.1 says that 

which is b,,, . 

One may object that the proportionality of the error term to the 
full value of x overemphasizes the true relationship. It may seem 
more plausible that the variance of y, or the square of the error term, 
is proportional to x. The model’ that describes this relationship is: 

Model IV y=bx+ce. 

E (e) = 0; Vat-(e) is constant across accident years; 
and the e’s are uncorrelated between accident years 
and independent of x. 

This model’s BLUE for b is the weighted average development 
(WAD) factor, denoted bwAD This is also easy to see. Transforming 

t This model was inspired by Dr. Thomas Mack at the presentation of his 1993 The- 
ory of Risk prize paper “Measuring the Variability of Chain Ladder Reserve Esti- 
mates.” 
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Model IV by dividing both sides by &turns it into a simple regres- 
sion of u = y/&onto v = &. Formula (2.1) becomes: 

which is bWAD Thus, the weighted average is the best estimator if the 
variance of the development error is proportional to the beginning 
evaluation. 

A fifth model that can also adjust for trend is: 

Model V y = bxe. 

E (e) = 1; Var (e) is constant across accident years; 
and the e’s are uncorrelated between accident 
years and independent of x. 

This model says that random noise shocks the development process 
multiplicatively, and may be appropriate in those situations in which 
the random error in the percentage development is itself expected to 
be skewed. The BLUE for b under Model V is the geometric average 
development (GAD) factor, denoted bGAD. Indeed, transform Model 
V by taking the logarithm of both sides: 

In y = In b + In x + In e 

or 

In y - In x = In b + In e 

which is of the form 

u = b’v + e’ 

where b’ = In b, v = 1, and E (e’) = 0 . Then Formula (2.1) simplifies 
to: 
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gl = =uv -+u = $ny-lnx) = ;,I+ 
CV2 

Therefore, the least squares estimator of the “untransformed” pa- 
rameter b is: 

which is bGAD. 

For the remainder of the paper, the Linear model will refer to LSL. 
The Multiplicative models will refer to Models II to V-LSM, SAD, 
WAD, and GAD-unless otherwise noted. 

Estimate of the Next Evaluation 

The following point estimates of the expected value of incurred 
losses as of the next evaluation given the current evaluation are unbi- 
ased under the assumptions of their respective models:* 

Linear 

;=li+sx 

Multiplicative 

.G=S,. 

Estimated Ultimate Loss: A Single Accident Year 

The Chain Ladder Method states that if b, is a link ratio from 12 

to 24 months, b, is a link ratio from 24 to 36 months, etc., and if U is 

the number of links required to reach ultimate, then B, = b, b, . . . b, 
is the (to-ultimate) loss development factor (LDF). The implicit as- 
sumption is that future development is independent of prior develop- 
ment. This assumption may not hold in practice when, for example, 

2 Theorem 1 in Appendix C proves this for the linear model. The proof for the multi- 
plicative models is similar. 
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management issues orders for a one-time-only strengthening in case 
reserves. 

This all-important Chain Ladder Independence Assumption 
(CLIA) says that the relationship between consecutive evaluations 
does not depend on the relationship between any other pair of con- 
secutive evaluations. In mathematical terms, the random variable cor- 
responding to losses evaluated at one point in time conditional on the 
previous evaluation is independent of any other evaluation condi- 
tional on its previous evaluation. A direct result of this assumption is 
the fact that an unbiased estimate of a loss development factor is 
the product of the unbiased link ratio estimates; symbolically, 

i,=s, 6, . . . 8”. 
The very simplicity of the closed form LDF is one of the beauties 

of the multiplicative chain ladder method. But a closed form, to-ulti- 
mate expression is not necessary, and quite cumbersome for the more 
general LSL approach. Instead, this paper proposes the use of a recur- 
sive formula. A recursive estimate of developing ultimate loss illumi- 
nates the missing portion of the triangle (clarifying the communication 
of the analysis to management and clients), enables the actuary to 
switch models mid-chain, and is straightforward to program, even in 
a spreadsheet. Perhaps the most compelling reason, however, is that a 
recursive estimate is invaluable for calculating variances of predicted 
losses. (See Section 3.) 

The mathematical theory for developing recursive estimates of 
ultimate loss conditional on the current evaluation proceeds as fol- 
lows. Consider a single fixed accident year. Let x0 denote the 

(known) current evaluation and let x,, I x0 denote the random variable 

corresponding to the nrh subsequent (unknown) evaluation conditional 
on the current evaluation. The goal is to find an unbiased estimator 
for x, I xc. 
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By definition, an unbiased estimate of x, I x0 is one which esti- 
mates p,, = E (x, I x0 ). Let fi, denote such an estimate of pll . Theorem 

2 (Appendix C) proves that the 1, defined according to the recursive 

formulas in Table 2.1 are unbiased under the assumptions of their 
respective models. 

TABLE 2. I 

POINT ESTIMATE-cn 

FUTUREVALUEOFASINGLEACCIDENTYEAR 
n ?b4E PERIODS IN THE FUTURE 

Model n=l lZ>l 

Multiplicative 

An unbiased estimate of ultimate loss conditional on the current 
evaluation is therefore 8, . 

Estimated Total Ultimate Loss: Multiple Accident Years 

An estimate of total ultimate loss for more than one accident year 
combined could be obtained by simply adding up the separate acci- 
dent year &,‘s. However, a recursive expression is preferred primar- 

ily for the purpose of calculating variances because development 
estimates of ultimate loss for different accident years are not inde- 
pendent. 

Notation quickly obscures the derivation, but the idea of a recur- 
sive estimate of total ultimate loss for multiple accident years is this. 
Start at the bottom left comer of the triangle and develop the young- 
est accident year to the next age. Then, add that estimate to the 
current evaluation of the second youngest accident year, and develop 
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the sum to the next age. Continue recursively. An unbiased estimate 
of total losses at ultimate will be the final sum. 

The formulas are developed as follows. To keep the indices from 
becoming too convoluted, index the rows of the triangle in reverse 
order so that the youngest accident year is the zero row, the next 
youngest is row 1, and so on. Next, index the columns so that the 12 
month column is the zero column, the 24 month column is column 1, 
etc. A full triangle of N + 1 accident years appears in Figure 1. Let 

n-l 

‘n = C ‘i,n ’ ‘i,i 
i=O 

denote the sum of the accident years’ future evaluations conditional 
on the accident years’ current evaluations, and set 174, = E (S,,). We 
are looking for an unbiased estimate &, of M,. Recursive formulas 
for h, are given in Table 2.2. (See Theorem 9 in Appendix C.) 

FIGURE 1 
NOTATIONFORTI-EKNOWNANDUNKNOWN 

PORTIONSOFALOSSTRIANGLE 
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NY 0 1 2 n-1 n 

. 
t-4 I XN,P xN.? xnp . . Jh 
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TABLE 2.2 

POINT ESTIMATE - b,, 

TOTAL FUTURE VALUE OF MULTIPLE ACCIDENT YEARS 
nTn4E PERIODS IN THE FUTURE 

Model n=l n > 1 

Multiplicative 

Estimated Reserves for Outstanding Loss 

Assuming paid dollars to date are not expected to be adjusted 
significantly,3 an unbiased estimate of outstanding loss for a single 
accident year is k, - paid to date. For multiple accident years, an 

unbiased estimate is h, - total paid to date. 

3. VARIANCE 

The least squares point estimators of development factors, ulti- 
mate losses, or reserves are functions of random variables. As such, 
they are themselves random variables with their own inherent vari- 
ances. Estimates of these variances will be addressed in turn. 

Variance of the Link Ratio Estimators 

For the LSL or LSM models, the formula for the variance of the 
link ratio estimator is a straightforward result of least squares theory. 
For the other models, one must first transform the data so that the 
model takes on the usual regression form (i.e., the error term does not 
involve x).~ Once the regression theory yields up the estimate of 

“Which is not true if salvage, subrogation, or deductible recoveries could be signifi- 
cant. 

4Model III, for example. 
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var (6,, one applies that to the original, “untransformed” data in the 
formulas for estimated future losses (below). 

We will adopt the convention that a “hat” (*) over a quantity 
denotes an unbiased estimate of that quantity. Unbiased estimates of 
the variances of the link ratio estimators are given in Table 3.1. These 
formulas can be found in many statistics texts. See Miller and 
Wichem [6], for example. 

TABLE 3.1 
ESTIMATES OF THE VARIANCES OF THE LINK RATIO ESTIMATORS 

Model 

LSL 

LSM 

The average “x value” X = i xxi is the average of the known 

evaluations of prior accident years as of the age of the link ratio being 
estimated; I is the number of accident years used in the average. The 
unbiased estimate 2 of the variance o2 of the error term e, sometimes 
denoted s2, is the Mean Square Error (MSE) of the link ratio regres- 
sion. The MSE, or its square root s (sometimes referred to as the 
standard error of the y estimate), can be found in regression software 
output. Most regression software will also calculate &r(g), or its 
square root (sometimes referred to as the standard error of the coeffi- 
cient). 

Variance of Estimated Ultimate Loss: A Single Accident Year 

It is time 9 make an important distinction. The point estimate of 
ultimate loss p, from Section 2 above is an estimate of the expected 

value of the (conditional on x0) ultimate loss x”. Actual ultimate loss 
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will vary from its expected value in accordance with its inherent 
variation about its developed mean pLv . As a result, the risk that 

actual ultimate loss will differ from the prediction 0, is comprised of 
two components. 

The first component, Parameter Risk, is the variance in the esti- 
mate of the expected value of xU I x0. The second component, Process 
Risk,’ is the inherent variability of ultimate loss about its conditional 
mean pc. Symbolically, if (conditional on x0) ultimate loss for a given 

accident year is expressed as the sum of its (conditional) mean plus a 
random error term E,, 

then the variance in the prediction of ultimate loss pred” is 

Var @red,) = Var (&,) + Var (EJ 
= Parameter Risk + Process Risk 
= Total Risk. 

Tables 3.2 and 3.3 give recursive formulas for estimates of Pa- 
rameter Risk and Process Risk, respectively.6 

’ This Process Risk is the conditional variance of developing losses about the condi- 
tional mean. As pertains to triangles of incurred loss dollars, it includes the uncon- 
ditional a priori process risk of the loss distribution (mitigated by the knowledge of 
losses emerged to date), the random variation of the claims occurrence and report- 
ing patterns, and the random variation within case reserves. 

6 The Parameter Risk formulas are derived in Theorem 6. The Process Risk formulas 
are derived in Theorem 7A for LSL and LSM, Theorem 7B for WAD, and Theo- 
rem 7C for SAD. See Appendix C. 
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TABLE 3.2 
PARAMETER RISK ESTIMATE - \r, (&J 

A SINGLE ACCIDENT YEAR 

Model n=l n>l 

The average “x value” 

1 N 
En-, = - I c xjn-, 

“I=0 ’ 

is the average of the known evaluations of prior accident years as of 
age n - 1; Z,, is the number of data points in the regression estimate of 

development from age n - 1 to age n. Each of the other quantities in 
Table 3.2 come from the loss triangle, from x0, from Section 2, from 

the reliression output (2, \r,($)), or from the prior recursion step 
(&r(pn-t)). The Multiplicative models refer to LSM, WAD, and 

SAD, but not GAD.7 

’ The regression calculation on the logarithm-transformed data will provide an esti- 
mate of the variance of the transformed parameter b’, but there is no easy transla- 
tion to an estimate of the variance of the original parameter b. The best way to 
work with the GAD model is in its transformed state. See Section 4 and Theorem 8 
of Appendix C. Similarly, Tables 3.3, 3.4, and 3.5 exclude mention of the GAD 
model. 
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TABLE 3.3 
F%O~ESS RISKESTIMATE-&(x~Ix~) 

AS~GLEACCIDENTYEAR 

Model n=l n>l 
~~___. 

LSL,LSM “2 
01 G; + ;; l&r (x,-, I xg) 

WAD 

SAD 

Each of the quantities in Table 3.3 come from the loss triangle, Sec- 
tion 2, the regression output, or the prior recursion step. 

Note that ultimate loss is not ultimate until the final claim is 
closed. Suppose it takes C development periods, C > U, to close out 
the accident year. Then the estimate of ultimate loss is not of xU I x0 
but of xc I x0. Although the point estimate would be the same at age C 

as at age U, the variances will not be the same. Even if b,, is not 

significantly different from unity for n > U, whereby parameter risk 
halts at age U, process risk continues to build up, so recursive esti- 
mates of Var (x, I x0) should be carried out beyond n = U. 

Variance of Estimated Ultimate Loss: Multiple Accident Years 

Actual total ultimate loss S, for multiple (open) accident years 

will vary from the estimate B, as a result of two sources of uncer- 

tainty: Parameter Risk-the variance in the estimate of MU--and 

Process Risk-the inherent variance of S, about its developed mean 
M,. Symbolically, if we express total ultimate loss for multiple acci- 

dent years (conditional on the current evaluation of all accident years) 
as the sum of its mean M, plus a random error term E,, 
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then the variance in the prediction of total ultimate loss pred” is 

Var @red,) = Var(h,) + Var(E,) 

= Parameter Risk + Process Risk 

= Total Risk. 

Tables 3.4 and 3.5 give recursive formulas for estimates of Parameter 
Risk and Process Risk, respectively.* 

TABLE 3.4 
PARAMETER RISK ESTIMATE - I&r (h,J 

Model 

Linear 

Multiplicative 

Model 

.- MULTPLE ACCIDENT YEARS 

TABLE 3.5 
PROCESS RISK-&r (S,) 

MULTIPLE ACCIDENT YEARS 

LSL, LSM 

WAD 

SAD 

‘Theorems 6 and 7 of Appendix C. 
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Variance of Estimated Outstanding Losses: 
Single or Multiple Accident Years 

Assume paid losses are constant at any given evaluation. Then the 
variance of loss reserves equals the variance of ultimate losses. 

4. CONFIDENCE INTERVALS 

Confidence intervals are phrased in terms of probabilities, so this 
discussion can no longer avoid making assumptions about the prob- 
ability distribution of the error terms, e,. The traditional assumption 

is that they are normally distributed or, under GAD, lognormally 
distributed. 

Confidence Intervals Around the Link Ratios 

Let a be the probability measurement of the width of the confi- 
dence interval. Table 4.1 gives two-sided 100 a% confidence inter- 
vals around the true LSL link ratios (a,.b,), where t,(dfi denotes 
Student’s t distribution with dfdegrees of freedom and where I, is the 

number of data points used in the estimate of the nrh link ratio. The 
degrees of freedom under the linear model are I,, -2 because two 

parameters are estimated; df= I,, -1 under the multiplicative models 

because only the single parameter b,, need be estimated. 

TABLE 4.1 
100 a% CONFIDENCE INTERVALS AROUND THE 

LINK RATIO PARAMETERS 

Multiplicative n/a 
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These formulas could be used, for example, to test the hypothesis 
that an is not significantly different from zero or that b, is not signifi- 

cantly different from unity. If the first hypothesis were true, then a 
multiplicative model may be preferred over the more general linear 
model. The second test of hypothesis would give an objective means 
of selecting U. 

Near the tail of the triangle, the degrees of freedom drop prohibi- 
tively. Inferences about the link ratios become less precise. If it can 
be assumed that beyond a certain age the variances of the residuals in 
the development model are identical (i.e., crp = c$’ for all i and j 
greater than some value), then a single estimate of that MSE can be 
obtained by solving for all link ratios simultaneously.9 

Confidence Intervals Around Estimated Ultimate Loss 

This section is motivated by the GAD model because all results 
are exact.” Under the transformed GAD model (and assuming identi- 
cally distributed e,‘s), 

In (x,) = In (b,) + In (xn-i) + In (e), 

or 

x,’ = b,,’ + YLn-, + e’. 

‘With a moderately-sized 5 x 5 triangle the two-tailed 90 percentile t-value is only 
18% greater than the smallest possible 90 percentile t-value, namely the 90 percen- 
tile point on the standard normal curve. This can be especially important for the 
small triangles that consultants or companies underwriting new products are wont 
to see. For an example of this, see the case study in Appendix A. 

“See Theorem 8 in Appendix C. The multiplicative chain ladder method makes the 
probability distribution of the error term of the compound process rather intracta- 
ble. The logarithmic transformation turns the GAD compound multiplicative proc- 
ess into a compound additive process in which case regression theory yields exact 
results. 
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The point estimate of ultimate transformed loss for a single accident 
year is: 

pred ’ = &’ = 
j=l 

An unbiased estimate of the Total Error = Parameter Error + 
Process Error of the (transformed) prediction is: 

Therefore, assuming one only wants to limit the downside risk, a one- 
sided lOOa% confidence interval for ultimate loss is: 

k’ - tc,(dfi’<ar (pred ‘) 

where df equals the number of data points in the multiple regression 
less the number of estimated link ratios, U. Finally, the corresponding 
lOOa% confidence interval around the “untransformed” prediction of 
ultimate loss is: 

With this motivation, an approximate lOOa% one-sided confidence 
interval around a recursive ultimate loss prediction using any of the 
models is: 

where df equals the total number of data points used in all link ratio 
estimates less the total number of estimated parameters. Two-sided 
confidence intervals are similarly defined, using + tq2 (dJ). If df is 
large enough, t,(dfi may be replaced by z,, the standard normal point, 
without significant loss of accuracy. This is often done in practice, 
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particularly in time series analysis, even when dfis not particularly 
large. The t distribution is preferred, however, because the thinner 
tails of the standard normal will understate the radius of the confi- 
dence interval. For another perspective on this subject, see Gard- 
ner [3]. 

Confidence Intervals Around Reserves 

Confidence intervals around reserves are obtained by subtracting 
paid dollars from the endpoints of the confidence intervals around 
ultimate loss, because if: 

a = Prob {lower bound I ultimate loss 5 upper bound}, 

then as well, 

a = Prob {lower bound - paid I outstanding loss I upper bound - paid}. 

5. AN ARGUMENT IN SUPPORT OF A NON-ZERO CONSTANT TERM 

When the current evaluation is zero but the next evaluation is not 
expected to be, the loss development method is abandoned. Three 
alternatives might be Bornhuetter-Ferguson, Stanard-Btihlmann, or a 
variation on frequency-severity. LSL might be a fourth possibility. 

Consider the development of reported claim counts. Let exposure 
be the true ultimate number of claims for a given accident year. 
Assume that the reporting pattern is the same for all claims. That is, if 
p, is the probability that a claim is reported before the end of the nrh 

year, then the p,‘s are independent and identically distributed for all 

claims. Based on these assumptions, it is not difficult to show that if 
x,, is the cumulative number of reported claims as of the nrh evalu- 

ation then 

P,-P,- 1 l-P, 
E (x, I xnel) = exposure ___ 

l-P,-, + GXn-’ (5.1) 
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which is of the form a,, + b,x, i. Clearly the constant term a,, is non- 
zero until all claims are reported. 

Equation 5.1 becomes surprisingly simple when the reporting pat- 
tern is exponential, as might be expected from a Poisson frequency 
process. In that case the LSL coefficients (an,b,,) are identical for 

every age n. This fact can be put to good use for small claim count 
triangles, as demonstrated in Appendix B. 

The constant term a, of Equation 5.1 is proportional to exposure. 

The slope factor b, does not depend on exposure but only on the 

reporting pattern (the p’s). Therefore, an increase in exposure from 
one accident year to the next will result in an upward, parallel shift in 
the development pattern. Claim count triangles, therefore, can be ex- 
pected to display development samples randomly distributed about 
not a single regression line but multiple parallel regression lines. 

Equation 5.1 may also be used as a paradigm for loss dollars, 
where trend may provide an upward force on exposure. 

6. CONCLUSION 

The traditional methods of calculating average development fac- 
tors are the least squares estimators of an appropriately framed 
mathematical model. The conclusion is that link ratio averages are 
unbiased if the development process conforms to the specified model. 
If the independence assumption of the chain ladder method holds as 
well, the loss development method is unbiased. 

A happy byproduct of the least squares perspective is that formu- 
las for the variances of estimated ultimate loss and reserves drop right 
out. The formulas are particularly easy to apply if ultimate loss by 
accident year is estimated through an iterative procedure, rather than 
through a single, closed-form expression. Confidence intervals 
around ultimate loss and reserves can be estimated easily, although 
the suggested approach yields only approximate results (with a spe- 
cial case exception). 
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The simulation study in Appendix B suggests that, in some situ- 
ations, the performance of the more general linear model may exceed 
that of the multiplicative models and may even rival that of the non- 
linear Bomhuetter-Ferguson and Stanard-Btihlmann methods. 

Some questions for further research come to mind. Can the formu- 
las for parameter error be used in conjunction with the collective risk 
model? Is there a simple way to estimate the correlation between paid 
and incurred triangles, and how can that information be used to derive 
optimal, variance-minimizing weights for making final selections 
from the paid and incurred development estimates? Can the theory be 
used to find credibility formulas for averaging link ratios from small 
triangles with link ratios from larger triangles? Finally, can the Chain 
Ladder Independence Assumption be relaxed, to allow, say, for 
higher-than-expected development in one period to be followed by 
less-than-expected development the next? 
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APPENDIX A 

A CASE STUDY OF INDUSTRYWIDE WORKERS’ COMPENSATION 

The methods of this paper are applied to the consolidated industry 
workers’ compensation incurred loss triangle as of December 3 1, 
1991 [ 11. The data and link ratios are displayed in Exhibits A-l and 
A-2. Bulk plus IBNR reserves are removed from the incurred loss 
and ALAE triangles of Schedule P-Part 2. We will use the loss devel- 
opment method based on five-year weighted average (WAD) link 
ratios to estimate total ultimate loss for accident years 1982 through 
1991. Then we will calculate the variance of that estimate, and use it 
to estimate the confidence level of industry reserves for those years. 

Per the text, to estimate variances for the WAD method we must 
first transform the data by taking the square root of all “current evalu- 
ations” x, then dividing all “future evaluations” y by &. We will 
model the data in two parts: 1) for the 12:24 month link ratios, and 2) 
for all other link ratios simultaneously. We shall see that there are 
justifiable statistical reasons for splitting the triangle this way. In 
addition it helps demonstrate the methodology. 

Exhibit A-3 runs the regression for the 12:24 month link ratios. 
The original data evaluated as of 12 and 24 months for the five most 
recent accident years-1986 through 199~are shown, as well as the 
transformed data. Using a popular spreadsheet package, the regres- 
sion was run on the transformed data. The regression output indicates 
a good fit (R* = 95%). Note that the “x coefficient” agrees with the 
average link ratio in Exhibit A-2; the variance of that estimated pa- 
rameter is 0.01487* = 0.00022. The MSE is 13.6272, which drives 
not only the variance of that estimated link ratio parameter but also 
the process error in the development of losses from age 12 to age 24. 

For setting up the multiple regression solution of the remaining 
link ratios-24:36 months through 108: 120 months-refer to Exhibit 
A-4. We fist build the y vector by stacking the “next” evaluations of 
those link ratios on top of each other. Then we create the x matrix by 
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placing the “current” evaluation in the same row as the corresponding 
y value. For each successive age of development, the x values are 
placed in successive columns. The transformed data are shown in 
Exhibit A-5, and the regression output is shown in Exhibit A-6. The 
R* value is extremely high. The MSE is much lower (0.3545) than it 
was for 12:24 development, which suggests that it was indeed pru- 
dent to split up the triangle into two regressions. Again, note that the 
x coefficients correspond to the original five-year weighted averages 
in Exhibit A-2. 

These parameters and variances are almost all that is needed to 
complete the triangle in Exhibit A-8. In fact, these factors will square 
the triangle to 120 months, but not to ultimate. Since Part 2 of Sched- 
ule P does not include a tail factor, we will estimate a tail from Part 1 
as follows. 

For the five oldest accident years, we will compare developed 
120-month losses (actuals for accident year 1982) with ultimate 
losses per industry estimates as reported in Schedule P-Part 1. Under 
the assumption that industry ultimate losses for those relatively ma- 
ture years are reasonably accurate, we will use the weighted average 
of that ratio as the 120:ultimate tail factor. This weighted average is 
subject to random variation, so we will use the techniques of the 
paper to estimate the MSE and variance of that tail factor estimate. 
This is done in Exhibit A-7. 

Exhibit A-8 shows the completed triangle, followed by the vari- 
ance calculationqusing the formulas of Tables 3.4 and 3.5. For exam- 
ple, the Table 2.2 recursive formula calculates the 48-month future 
value MS of accident year 1989 through 1991 losses in total as 

72,731 = (47,611+2 1,624) x 1.0505 1. The Table 3.4 recursive for- 
mula calculates the Parameter Risk of that estimate as: 

103,328 =(47,611 +21,624)*x0.00216* + 1.0505l'x 73,370 +0.002162 ~73,370. 

The Table 3.5 formula calculates the Process Risk of the projection as: 
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323,963 = (47,6 11+ 21,624) x 0.3545 + 1.0505 l* x 27 1,435. 

The estimates of ultimate loss using this procedure are compared with 
the consolidated industry estimates in Exhibit A-9. Total projected ul- 
timate loss and ALAE using the five year weighted averages of the 
link ratios, and the tail factor as estimated above, is (in millions) 
$191,509. The industry carried ultimate is $188,25 1, or about 1.7% 
less than indicated, a seemingly small difference. However, the stand- 
ard deviation of the projection is only $1,840. So the carried ultimate 
is about 1.77 standard deviations less than the projection. Therefore, 
using the Student t distribution with 30 degrees of freedom,’ ’ the esti- 
mated one-sided confidence level for industry reserves is about 4%. 

“Add up the dfs in Exhibits A-3, A-6, and A-7. 
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EXHIBITA- 1 

CONSOLIDATEDINDUSTRYWORKERS'COMPENSATJON 
REPORTEDINCURREDLOSSESANDALLOCATEDEXPENSESBYAGE 

(EXCLUDINGBULK+IBNR) 
($OOO,OOOOMI-~~ED) 

Accident A&F 
YCiU 12 24 36 48 60 72 84 96 108 iam 
1982 6,174 8,061 8,639 8,951 9,207 9.363 9,464 9,559 9,634 9,725 
1983 6,891 9.1 17 9,682 10,136 10,464 IO.651 10.774 10,893 11.025 
I984 8,048 10.761 11,937 12,656 13,023 13.28.5 13,449 13.615 
1985 8,796 12,050 13.287 14,060 14.572 14,835 15.109 
1986 9,450 13,086 14.552 15,334 15,797 16.144 
1987 10,953 15,074 16,699 17,485 17.961 
1988 12,776 17,600 19,519 20,299 
1989 13.600 19,677 21,624 
1990 14,890 2 1,268 
1991 15,497 

Source: Best’s Aggregates & Averages, 1992 Edition. 
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EXHIBIT A-2 
CONSOLIDATED INDUSTRY WORKERS’ COMPENSATION 

LINK RATIOS 

Accident Development Period ( Months) 
___ALL Yeal 12.24 24.36 3648 48:60 

1982 1.30566 107167 1.03614 1.02859 
1.01694 60.72 i.01os6 7284 1.00995 84.96 = 96.108 108:120 

1.00949 
1983 1.32298 1.06201 1.04683 1.03238 1.01788 1.01153 1.01108 1.01214 
1984 1.33712 1.10933 1.06023 1.02896 1.02013 1.01240 1.01234 
1985 1.36995 1.10269 1.05812 1.03641 1.01807 1.01851 
1986 1.38472 1.11204 1.05372 1.03020 1.02194 
1987 1.37619 1.10786 1.04703 I.02722 
1988 1.37757 1.10906 1.039% 
1989 1.44687 1.09892 
1990 1.42837 

Five Year Weighted Average 
1.40597 1.10576 1.05051 1.03080 1.01927 1.01379 1.01127 1.01014 1.00949 
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EXHIBIT A-3 

ESTIMATING THE 12:24 MONTH PARAMETER USINGREGRESSION 

Accident ~ “V 
Year 24 months ___~~~ 
1986 13,086 

1987 15,074 

1988 17,600 

1989 19,677 

1990 2 1,268 

Regression Oupt: 

Constant 

Std Err of y Est 

R Squared 

Number of Observations 

Degrees of Freedom 

X yfJT dim- 

12 months 24 months 12 months 

0 

3.6915 MSE = 13.6272 

95.03% 

5 

4 

x Coefficient 1.40597 

Std Err of Coef. 0.01487 
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EXHIBIT A-4 

ESTIMATINGTHE~~:~~THROUGH ~O~:~~OMONTHPARAMIZI-ERS 
USINGREGRESSION 

STEP~:ARRANGINGTHEDATABEFORETRANSFORMATION 
($000,000 OMITTED) 

Accident 
Year 
1985 
1986 
1987 
I988 
1989 
1984 
1985 
1986 
1987 
1988 
1983 
1984 
1985 
1986 
1987 
1982 
1983 
19&1 
1985 
1986 
1982 
1983 
1984 
1985 
1982 
1983 
1984 
1982 
1983 
1982 

n 
V 24mos 36 mos 48 mos 6Omos 72 mos 84 mos 96 mos 108 mos 

13,287 12,050 
14,552 13,086 
16,699 15,074 
19.519 17,600 
21,624 19,677 
12,656 11,937 
14,060 13,287 
15,334 14,552 
17,485 16,699 
20,299 19,519 
10,464 
13,023 
14,572 
15.797 
17,961 
9,363 

10,651 
13,285 
14,835 
16,144 
9,464 

10,774 
13,449 
15,109 
9,559 

10,893 
13,615 
9,634 

11.025 
9,725 

10,136 
12,656 
14,060 
15,334 
17,485 

9,207 
10,464 
13,023 
14,572 
15,797 

9,363 
IO.65 1 
13,285 
14.835 

9,464 
10,774 
I3.449 

9,559 
10,893 

9.634 
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EXHIBIT A-5 
ESTIMATING THE 24:36 TO 108:120 MONTH PARAMETERS 

USING REGRESSION 
STEP 2: TRANSFORMING THE DATA FOR THE REGRESSION 

Accident 
36 mos 24 mos 

109.77 
114.39 
122.77 
132.66 
140.27 

109.26 
115.27 
120.63 
129.23 
139.71 

year _& 
1985 121.04 
1986 127.21 
1987 136.02 
1988 147.13 
1989 154.15 
1984 115.84 
1985 121.97 
1986 127.11 
1987 135.30 
1988 145.29 
1983 103.94 
1984 115.76 
1985 122.89 
1986 127.57 
1987 135.83 
1982 97.58 
1983 104.12 
1984 116.41 
1985 122.89 
1986 128.44 
1982 97.81 
1983 104.39 
1984 116.69 
1985 124.05 
1982 98.25 
1983 104.95 
1984 117.40 
1982 98.54 
1983 105.64 
1982 99.08 

100.68 
112.50 
118.57 
123.83 
132.23 

95.95 
102.29 
114.12 
120.71 
125.69 

96.76 
103.20 
115.26 
121.80 

97.28 
103.80 
115.97 

97.77 
104.37 

98.15 
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EXHIBIT A-6 
ESTIMATING THE 24:36 TO 108: 120 MONTH PARAMETERS 

USING REGRESSION 
STEP 3: RUNNING THE REGRESSION 

Regression Output: 
constant 
Std Err of y Est 
R Squared 
Number of Observations 
Degrees of Freedom 

0 
0.5954 MSE =0.3545 
99.9% 

30 
22 

2433 -36r48 /mjo @K!z 7234 84:96 108:120 .. _ 96:108 ~~~ 
x Coefficient 1.10576 1.05051 1.03080 1.01927 1.01379 1.01127 1.01014 1.00949 
Std Err of Coef. 0.00214 0.00216 O.M)226 0.00237 0.0027 I 0.00324 0.00416 0.00607 
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EXHIBIT A-7 

ESTIMATING THE TAIL FACTOR USING REGRESSION 

Accident Year 

1982 

1983 

1984 

1985 

1986 

Wtd Avg 

Developed Losses 
to Age 120 (y) Carried Ultimate (x) Tail Factor 

9,725 9,966 I IX2482 

11,130 1 I.355 1.02019 

13,884 14,081 1.01422 

15,581 15,720 I .00889 

16,877 17,141 1.01561 

67,197 68,263 I .01586 

Regression Matrix 

Accident Year yfi G -__ 
1982 101.06 98.615 

1983 107.63 105.500 

1984 119.51 I 17.830 

1985 125.93 124.820 

1986 131.94 129.910 

Regression Output: 

Constant 0 

Std Err of y Est 0.6680 MSE = 0.4462 

R Squared 99.7%, 

Number of Observations 5 

Degrees of Freedom 4 

x Coefficient(s) 1.01586 

Std Err of Coef. 0.00258 
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EXHIBIT A-8 
CONSOLIDATEDINDUSTRYWORKERS'COMPENSATION 

COMPLETEDLOSSDEVELOPMENTTRIANGLE 
($000,0000~1~~~) 

Accident 49 

Year 12 24 36 48 60 72 84 96 108 120 Ultimate 

1982 6,174 8.061 8,639 8.9.5 1 9,207 9,363 

1983 6,891 9,117 9,682 10,136 IO.464 10,651 

1984 8,048 IO.761 Il.937 12,656 13,023 13,285 

198s 8.7% 12.O.W 13,287 14,060 14,572 14.835 

1986 9,450 13,086 14,552 15.334 15,797 lb.144 16,366 lb.551 16,719 lb.877 17,145 

1987 10,953 15,074 lb.699 17,485 17,961 18.307 18.559 18,768 18,959 19.138 19,442 

1988 12,776 17,600 19,519 20,299 20,924 21,328 21,622 21,865 22,087 22.2% 22,650 

1989 13.600 19,677 21,624 22.716 23,415 23,866 24,1% 24,468 24,716 24,951 25,346 

1990 14.890 21.268 23,518 24,706 25.467 25,957 26,315 26,612 26,881 27.136 27.567 

1991 15,497 21.789 24,093 25,310 26,089 26,592 26,959 27,263 27,539 27,800 28,241 

n I 2 3 4 5 6 7 8 9 IO 

M” 21.789 47.61 I 72,731 95,896 116,050 134,017 150.806 166,088 178,794 I9 1,509 

Parameter 
Risk 53,070 73,370 103,328 153,825 232.678 367.838 610.182 l,O91.197 2,266,302 2,574,752 

PWXSS 
Risk 21 1,184 271,435 323,963 377.671 433,552 493,096 557.499 627.671 703,340 810,52 I 

T&al 
Risk 264,254 344,805 427,291 53 1,496 666,23 I 860,934 I .167,68 I I,71 8,868 2,%9,642 3,385,272 

Standard 
Deviation 514 587 654 729 816 928 1,081 I.31 I 1.723 1,840 
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EXHIBIT A-9 
CONSOLIDATED INDUSTRY WORKERS’ COMPENSATION 

ESTIMATED REDUNDANCY/(DE!FICIENCY) IN CARRIED RESERVES 
AND ASS~CIATE~D LEVEL OF CONFIDENCE 

ACCIDENT YEARS 1982- 199 I 
($000,000 OMITTED) 

Accident Year Estimated Ultimate Carried Ultimate 

1982 9,879 9,966 
1983 1 I.307 1 1,355 
1984 14,104 14,081 
1985 15,828 15,720 
1986 17,145 17,141 

1987 19,442 19,304 

1988 22,650 22,217 
1989 25,346 24,645 
1990 27,567 26,710 
1991 28,241 27,l I2 
Total 191,509 I 88,25 I 

Redundancy/ 
(Deficiency) 

87 
48 

(23) 

(109) 
(4) 

(138) 
(433) 
(702) 
(856) 

(1,129) 
(3,258) 

Standard Deviation 1,840 

Degrees of Freedom 30 
Deficiency Ratio to Standard Deviation -1.77 
Approximate Confidence Level 4% 
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APPENDIX B 

COMPARENG THE MODELS USING SIMULATION 

In the 1985 Proceedings, Mr. James Stanard published the results 
of a simulation study of the accuracy of four simple methods of 
estimating ultimate losses using a 5x5 incurred loss triangle. For the 
exposure tested12 it was demonstrated that WAD loss development 
was clearly inferior to three additive methods, Bomhuetter-Ferguson 
(BF), Stanard-Btihlmann (SB)i3, and a little-used method called the 
Additive Model (ADD), because it had greater average bias and a 
larger variance. The three additive methods differ from the multipli- 
cative methods in that they adjust incurred losses to date by an esti- 
mated dollar increase to reach ultimate, whereas the multiplicative 
methods adjust by an estimated percentage increase. ADD’s esti- 
mated increase is a straightforward calculation of differences in col- 
umn means, Y-X. BF and SB estimated increases are more 
complicated functions of the data. 

Stanard’s simulation was replicated here to test additionally the 
accuracy of LSM, LSL, SAD, and GAD. The model does not attempt 
to predict “beyond the triangle,” which is to say that the methods 
project incurred losses to the most mature age available in the trian- 
gle, namely the age of the first accident year. In the discussion below, 
“ultimate loss” refers to case incurred loss as of the most mature 
available age. 

The LSL method was modified to use LSM in those instances 
when the development factors were “obviously wrong,” defined to be 

t2Normally distributed frequency with mean =40 and standard deviation =m 
claims per year, uniform occurrence date during the year, lognormal severity with 
mean = $10,400 and standard deviation = $34,800, exponential report lag with 
mean = I8 months, exponential payment lag with mean = 12 months, and case re- 
serve error proportional to a random factor equal to a lognormal random variable 
with mean = 1 and variance = 2, and to a systematic factor equal to the impact of 
trend between the date the reserve is set and the date the claim is paid. 

t3Mr. Stanard called this the “Adjustment to Total Known Losses” method, a.k.a. the 
“Cape Cod Method.” 
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when either the slope or the constant term was negative. In real-life 
situations, this rudimentary adjustment for outliers can be expected to 
be improved upon with more discerning application of actuarial judg- 
ment. The reason this modification was necessary is due to the fact 
that a model that fits data well does not necessarily predict very well. 
As an extreme example, LSL provides an exact fit to the sample data 
for the penultimate link ratio (two equations, two unknowns), but the 
coefficients so determined reveal nothing about the random processes 
that might cause another accident year to behave differently. It is not 
possible to identify every conceivable factor that could explain the 
otherwise “unexplained” variance of a model. Such unidentified vari- 
ables are reflected through the averaging process of statistical analy- 
sis: as the number of data points minus the number of parameters (the 
definition of degrees of freedom) increases, the model captures more 
of the unexplained factors and becomes a better predictor. 

In Exhibits B-l through B-4, the average bias and standard devia- 
tion of the first accident year are zero because, as stated above, the 
simulation defines “ultimate” to be the current age of that accident 
year. 

Exhibit B-l: Claim Counts Only 

In this case, 5,000 claim count triangles were simulated; the “ac- 
tual ultimate” as of the last column was simulated; accident year 
ultimates were predicted using the separate methods; and averages 
and standard deviations of the prediction errors were calculated. 

LSL is the best performer, as measured by the standard deviation 
of the accident-year-total projection. The additive models-ADD, 
SB, and BF-are not far behind. Of the multiplicative estimators, 
LSM has the smallest bias and the smallest variance for every acci- 
dent year. WAD is almost as accurate. 

Why should these results not be surprising? Consider first the 
average bias. In Figure B-l is graphed the relationship between in- 
curred counts at 12 months, X, with incurred losses at 24 months, y, 
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which we know from Section 5 of the text must be a linear relation- 
ship with a positive constant term. The ADD and WAD estimates are 
also shown. All relationships are shown in their idealized states 
where LSL is collinear with the true relationship and where the point 
( X, 7 ) coincides with its expectation (E (x), E Cy)). Note that the 
ADD model is parallel to the line y = x because it adds the same 
amount for every value of x. The conditional (on x) bias is the signed, 
vertical distance from the estimated relationship to the true relation- 
ship. As is clear from Figure B- 1, WAD and ADD can be expected to 
overstate y for x > E (x) and understate y for x < E (x). The weighted 
average of the conditional bias across all values of x, weighted by the 
probability densityfcx), is simulated by the average bias that appears 
in Exhibit B- 1. 

Ideally, this weighted average of the bias across all values of x 
should be expected to be zero, which it is for the Additive Model. 
ADD estimates E (y) - E (x) using j -X calculated from prior acci- 

FIGURE B- 1 
IDEALIZED DEVELOPMENT ESTIMATORS 

No TREND 

Cumn~ Evaluation(x) 
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dent years. Since the environment in the first scenario-exposure, 
frequency, trend, etc.-does not change by accident year, the average 
of 5,000 simulated samples of this dollar difference across all possi- 
ble values of x should get close to the true average dollar difference 
by the law of large numbers, so the average bias should get close to 
zero. For the multiplicative estimators, the average bias will probably 
not be zero. Take the WAD method for example. Clearly there is a 
positive probability (albeit small) that I? = 0, so the expected value of 

- -. the WAD link ratio Y lx IS infinity. The average of 5,000 simulations 
of this ratio attempts to estimate that infinite expected value, so it 
should not be surprising that WAD usually overstates development- 
and the greater the probability that X= 0. the greater the overstate- 
ment.14 

The average bias of the BF and SB methods should be greater than 
zero as well because the LDFs on which they rely are themselves 
overstated more often than not. The average LSM bias is a more 
complicated function of the probability distribution of x because the 
LSM link ratio involves x terms in the numerator and squared x terms 
in the denominator. The average bias appears to shift as an accident 
year matures. The LSL method as modified herein has residual aver- 
age bias because it incorporates the biased LSM method when it 
detects outliers. It also seems to be the case that the bias of the 
estimated 4:5 year link ratio is driving the cumulative bias for the 
immature years. 

Figure B-l illustrates the difference between a model that is unbi- 
ased for each possible value of x, LSL, and a model which is “unbi- 
ased’ only in the average, ADD. To reiterate, the purely multiplicative 
and purely additive estimators will understate expected development 
when the current evaluation is less than expected and overstate ex- 
pected development when the current evaluation is greater than ex- 
pected. 

‘?his argument can be made more rigorous. The condition that the probability of the 
sample average of x be greater than zero is a sufficient but not necessary condition 
that E (hAD) = 00. For a general, heuristic argument that WAD yields biased esti- 
mates, see Stanard [8]. 
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Next, consider the variance. In simplified terms, the average bias 
statistic allows expected overstatements to cancel out expected under- 
statements. This is not the case for the variance statistic. In Figure B-l 
it is clear that, ideally, the ADD estimate of y will be closer to the true 
conditional expected value of y (the idealized LSL line) than will the 
WAD estimate for virtually all values of x. Thus, the variance of 
ADD should be less than the variance of WAD. The variance of LSL 
should be the smallest of all. However, LSL estimates twice as many 
parameters than do ADD and LSM, so it needs a larger sample size to 
do a comparable job. For the relatively small and thin triangles simu- 
lated here, a pure unmodified LSL estimate flops around like a fish 
out of water-the price it must pay to be unbiased for all values of x. 
In other words, in actual practice, the variance of an LSL method 
unmodified for outliers and applied to a triangle with few degrees of 
freedom will probably be horrendous. What is perhaps remarkable is 
the degree to which the rudimentary adjustment adopted here tames 
the LSL method. 

Finally, let’s look at what would happen if we estimated the LSL 
parameters under the assumption that all link ratio coefficients 
(a,, b,) are equal. We know from the previous section that this is true 

because the reporting pattern is exponential. The results of this model 
are: 

SIMULATIONRENJLTSWHEN 
ALLLINKRATIOPARAMETERSAREASSUMEDEQUAL 

AN 

1 

2 

3 

4 

5 

Total 

Average Std Dev Average % Std Dev % Age-Age Age-Age 
Bias Bias Bias Bias Bias % Bias 

0.000 0.000 o.ooo o.ooo 

0.025 1.275 0.001 0.034 1.035 1.001 

0.006 1.669 0.001 0.044 (0.019) o.om 

(0.034) 1.850 0.000 0.049 (0.040) (0.001) 

pW 1.815 0.001 0.049 0.028 0.001 

(0.010) 5.064 O.OCHl 0.027 
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This model is the beneficiary of more degrees of freedom (eight- 
two parameters estimated from ten data points for each iteration) and 
as a result has the smallest average bias and variance yet. These 
results lead to a somewhat counter-intuitive conclusion: Information 
about development across immature ages sheds light on future devel- 
opment across mature ages. For example, the immature development 
just experienced by the young accident year 4 from age 1 to age 2 is a 
valuable data point in the estimate of the upcoming development of 
the old accident year 2 from age 4 to age 5. This should not be 
viewed simply as a bit of mathematical prestidigitation but as an 
example of the efficiencies that can be achieved if simplifying as- 
sumptions+even as innocuous as exponential reporting-can be jus- 
tified. 

Exhibit B-2: Random Severity, No Trend 

In this case, 5,000 triangles of aggregate, trend-free incurred 
losses were simulated and the same calculations were performed. 

Rarely does the property/casualty actuary experience loss triangles 
devoid of trend, so this model is of limited interest. The introduction 
of uncertainty via the case reserves makes it more likely that negative 
development will appear, in which case LSL reverts to LSM. As a 
result, the additive models overtake LSL in accuracy. 

Exhibit B-3: Random Severity, 8% Severity Trend Per Year 

This is where it gets interesting. This could be considered the 
typical situation in which an actuary compiles a loss triangle that 
includes trend and calculates loss development factors. In this case, 
the environment is changing. The trending process follows the Uni- 
fied Inflation Model (Butsic and Balcarek, [2]) with a = %, which is 
to say that half of the impact of inflation is a function of the occur- 
rence date and half is a function of the transaction date (e.g., evaluat- 
ing the case incurred or paying the claim). 
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At first, one might think that a multiplicative estimator would 
have had a better chance of catching the trend than would an additive 
estimator, but such does not appear to be the case. Consider Figure 
B-2 which graphs expected 12-24 month development for the first 
four accident years. Trend has pushed the true development line up- 
ward at an 8% clip, illustrated by four thin lines. The LSL model tries 
to estimate the average of the development lines, the WAD estimator -- 
tries to pass through the average ( x, y ) midpoint of all accident years 
combined, and the additive estimators try to find the line parallel to 
the line y=x which also passes through the average midpoint. Again, 
ADD will probably be closer than WAD to the average LSL line for 
every value of x for each accident year. The upward trend makes it 
more likely that the estimated LSL intercept will be less than zero, 

FIGURE B-2 
IDEALIZEDDEVELOPMENTESTIMATORS 

WITHTREND 

Current Evaluation (x) 
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which makes it more likely that LSL reverts to LSM, so the modified 
LSL’s variance gets closer yet to the variance of LSM. 

Exhibit B-4: Random Severity, 8% Trend, On-Level Triangle 

In this case, rows of the triangle were trended to the level of the 
most recent accident year assuming that the research department is 
perfect in its estimate of past trend. For most of the models, the total 
bias decreases from that of the not-on-level scenario while the total 
variance increases. LSM and WAD are virtually unchanged, GAD 
and SAD are exactly unchanged (of course), and the nonlinear esti- 
mates move in opposite directions. 

For the most part, working with the on-level triangle does seem to 
improve the accuracy of estimated ultimate loss, but perhaps not to 
the degree one might hope. It would be interesting to see if working 
with separate claim count and on-level severity triangles would suc- 
cessfully decompose the random effects and further improve the pre- 
dictions. 
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EXHIBIT B- 1 
Part 1 

CLAIMCOUNTSONLY 

Average Std Dev Average 
B& Bias % Bias 

Std De\ Age-Age Age-Age 
% Bias Bias Q Bias 

0.000 0.000 0.000 0.000 

0.116 2mO 0.003 0.053 

0.153 2.772 0.004 0.073 

0.101 3.166 0.003 0.083 

0.080 3.780 0.003 0.100 

0.45 1 8.251 0.002 0.043 

0.000 o.ocMl o.ooo o.oM) 

0.059 1.868 0.002 0.049 

0.075 2.847 0.002 0.075 

0.047 3.644 0.002 0.0% 

0.096 3.692 0.003 0.097 

0.277 8.407 0.001 0.044 

0.000 

0.116 

0.143 

0.004 

(0.748) 

(0.485) 

o.ooo 0.000 

2.000 0.003 

3.321 0.004 

5.246 O.ooO 

10.536 (0.020) 

14.009 (0.003) 

0.000 o.oco 

2.000 0.003 

3.336 0.005 

5.308 0.007 

11.101 0.023 

14.520 0.008 

0.000 

0.053 

0.087 

0.138 

0.277 

0.074 

0.000 

0.116 

0.203 

0.28 1 

0.888 

1.488 

o.oco 

0.053 

0.088 

0.139 

0.292 

0.076 

0.116 0.003 

0.037 0.001 

(0.052) (0.00 I) 

(0.02 I) 0.000 

0.059 0.002 

0.016 0.000 

(0.028) 0.000 

0.049 0.001 

0.116 0.003 

0.027 0.001 

(0.139) (0.004) 

(0.752) (0.020) 

0.116 0.003 

0.087 0.002 

0.078 0.002 

0.607 0.016 
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EXHIBIT B- 1 
Part 2 

CLAIM COUNTS ONLY 

Average Std Dev Average Std Dev Age-Age Age-Age 
Bias Bias 7c Bias % Bias Bias 8 Bias 

O.OQO 

0.116 

0.234 

0.424 

1.873 

2.647 

0.000 o.oca 

2.000 0.003 

3.345 0.006 

5.346 0.011 

1 I.585 0.049 

14.943 0.014 

0.000 0.000 

2.OQO 0.003 

3.354 0.007 

5.390 0.015 

12.268 0.078 

15.530 0.02 1 

o.ooo 

0.053 

0.088 

0.140 

0.305 

0.079 

0.116 0.003 

0.118 0.003 

0.190 0.005 

1.449 0.038 

0.000 

0.116 

0.265 

0.57 1 

2.958 

3.910 

0.000 

0.053 

0.088 

0.142 

0.322 

0.082 

0.116 0.003 

0.149 0.004 

0.306 0.008 

2.387 0.062 

0.000 

0.102 

0.147 

0.137 

0.185 

0.57 1 

o.oco 0.000 

1.940 0.003 

3.021 0.004 

3.997 0.004 

4.280 0.006 

9.564 0.003 

o.oco 0.000 

1.952 0.003 

3.064 0.005 

4.151 0.006 

5.164 0.010 

10.626 0.004 

0.000 

0.051 

0.079 

0.105 

0.113 

0.050 

0.102 

0.045 

(0.010) 

0.048 

0.000 

0.114 

0.184 

0.215 

0.338 

0.85 1 

0.000 

0.05 1 

0.081 

0.109 

0.136 

0.056 

0.114 

0.070 

0.03 1 

0.123 

0.003 

0.001 

0.000 

0.002 

0.003 

0.002 

0.001 

0.004 
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EXHIBIT B-2 
Part 1 

RANDOM SEVERITY, No TREND 

Average Std Dev Average Std Dev Age-Age Age-Age 
Bias Bias % Bias % Bias Bias % Bias 

0 0 0.000 0.000 

9,206 193,945 0.026 0.302 

8,749 218,463 0.069 0.420 

30,028 429,112 0.138 0.650 

39,426 535,959 0.228 1.004 

87,410 888.404 0.040 0.356 

0 

9,206 

6,192 

24.33 1 

12,290 

52,019 

0 0 0.000 

9,206 193,945 0.026 

11.815 222,675 0.048 

51,641 5 15,997 0.119 

116.664 894.747 0.310 

0 

193,945 

221,114 

477,371 

825 131 A 
1.127.243 

189.327 1,208,220 0.088 

0 

9,206 

13,873 

61,706 

184,903 
269,687 

0 

193.945 

219,115 

484,892 

854 318 A 
I, 130,473 

o.oou O.OCQ 

0.026 0.302 

0.033 0.415 

0.052 0.742 

0.036 1,401 

0.020 0.453 

O.OlM 0.000 

0.026 0.302 

0.054 0.412 

0.147 0.763 

0.489 1.593 

0.130 0.469 

O.OOU 

0.302 

0.421 

0.807 

1.597 

0.487 

9,206 0.026 

(458) 0.042 

21,279 0.065 

9,398 0.079 

9,206 0.026 

(3,015) 0.007 

18,140 0.018 

( ww (0.015) 

9,206 0.026 

2,608 0.02 1 

39,826 0.068 

65,023 0.171 

9,206 0.026 

4,666 0.027 

47,833 0.088 

123,197 0.298 
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SAD 

ADD 

‘NY 
Average Std Dev Average Std Dev Age-Age Age-Age 

Bias Bias % Bias 8 Bias Bias B Bias 

1 0 0 0.000 o.ooo 

2 9,206 193,945 0.026 0.302 

3 20,621 227,597 0.072 0.440 

4 97,144 598.072 0.233 0.980 

5 405,202 1,241,9&I 1.063 2.5 16 

Total 532.174 1.552.136 0.255 0.640 

0 

158 

(7.445) 

324 

(2,668) 
(9.63 1) 

0 0.000 

185,077 0.010 

196,201 0.023 

272,189 0.066 

271.443 0.140 

O.OCil 

0.329 

0.472 

0.581 

0.680 .__. 
0.255 

SB 

Total 

BF 

Total 

0 

6,126 

3,909 

15,414 

11,071 

36,520 

o.oou O.ooO 

0.026 0.304 

0.052 0.430 

0.097 0.575 

0.172 0.698 

0.017 0.271 633,658 

1 0 0 0.000 0.000 

2 9,040 200,965 0.034 0.373 

3 10,750 221,175 0.073 0.525 

4 29,330 331,648 0. I32 0.691 

5 3m 374,743 w25 05% 
Total 86,244 820,177 0.040 0.342 
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EXHIBIT B-2 
Part 2 

RANDOM SEVERITY, No TREND 

5%.942 (0.004) 

0 

184,062 

I%,494 

291.195 

286,813 

9,206 0.026 

11,415 0.045 

76.523 0.150 

308,058 0.673 

158 0.010 

(7,fJo3) 0.013 

7.769 0.042 

(2,991) 0.069 

6,126 0.026 

(2.217) 0.025 

11,506 0.043 

(4,344) 0.068 

9,040 0.034 

1.710 0.038 

18,580 0.055 

7.794 0.082 
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EXHIBIT B-3 
Part 1 

RANDOM SEVERITY. 8% TREND 

Average Std Dev Average 
Bias Bias % Bias 

0 0 0.000 

12,848 190,771 0.030 

11,815 3 18,7% 0.061 

8,339 5 15,561 0.080 

(23,573) 731,012 0.075 

9,430 1.181.752 0.002 

0 0 

12,848 190,771 

16,307 328,599 

27,133 580,424 

8.411 1,111,762 

64,698 I .504.280 

0 

12,848 

23,423 

62,726 

169,257 

268,255 

0 0 0.000 

12,848 190,77 1 0.030 

26,050 331,370 0.062 

77,169 580,779 0.149 

277.757 1.295.202 0.495 

0 0.000 

190,771 0.030 

333,524 0.057 

608,272 0.122 

I ,272,791 0.310 

0.000 0.000 

0.030 0.300 

0.043 0.475 

0.057 0.728 

0.035 1.360 

0.021 0.472 

I ,659,744 0.098 

393,824 1.619.314 0.148 

Std Dev Age-Age Age-Age 
% Bias Bias 8 Bias 

O.OiM 

0.300 

0.469 

0.629 

0.944 

0.367 

12,848 0.030 

( 1,034) 0.030 

(3,475) 0.018 

(31,912) (0.005) 

12,848 0.030 

3,458 0.013 

10,826 0.013 

(18,722) (0.02 1) 

0.000 

0.300 

0.477 

0.775 

1.620 

0.527 

12,848 0.030 

10,575 0.026 

39,303 0.061 

106,531 0.168 

0.000 

0.300 

0.466 

0.755 

1.717 

0.534 

12,848 0.030 

13,201 0.03 1 

51,119 0.082 

200.588 0.301 
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A/y 

SAD 

4 

5 

ADD 

Total 

Total 

SB 

4 

5 

Total 

0 

10,229 

7,628 

(5,009) 

(62.946) 

(50,098) 

0 

177,339 

272,101 

357,093 

420.1 17 

825,565 

0.000 

0.036 

0.055 

0.057 

0.021 

(0.018) 

0 0 O.OQO 

16,575 2 12,872 0.052 

23,046 3 10,265 0.091 

25,574 422,741 0.1 14 

5 (9,528) 534,249 0.101 

Total 55,667 1.1 13,743 0.020 

BF 
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EXHIBIT B-3 
Part 2 

RANDOMSEVERITY, 8% TREND 

Average Std Dev Average Std Dev Age-Age Age-Age 
Bias Bias % Bias pk Bias Bias Q Bias 

0 0 o.oco O.OOU 

12,848 190,771 0.030 0.300 12,848 

35,174 346,105 0.080 0.497 22,326 

124,456 685,305 0.235 0.Y24 89,282 

647,473 4,098,366 I.107 4.508 523.017 

819.95 1 43291,335 0.299 1.164 

0 0 0.000 0.000 

(2,249 177,229 0.008 0.337 (2.249) 

(15,161) 262,260 0.009 0.46 1 (12.Y121 

(35,576) 335.003 0.005 0.511 (20.414) 

(92,221) 399,076 (0.028) 0.551 (56,645) 

(145,207) 751,285 (0.053) 0.249 

0.000 

0.323 10,229 

0.456 cL601) 
0.530 (12,637) 

0.59iI (57,936) 

0.269 

0.000 

0.42 1 16.575 

0.589 6,47 1 

0.668 2,529 

0.780 (35,103) 

0.357 

0.030 

0.049 

0. 144 

0.706 

0.008 

0.00 I 

(0.004) 

(0.033) 

0.036 

0.018 

o.M)2 

(0.034) 

0.052 

0.037 

0.02 1 

(0.012) 
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EXHIBIT B-4 
Part 1 

RANDOMSEVERITY,S%TREND,ESTIMATESBASEDON 
ON-LEVEL(AT ~%)TRIANGLE 

A/Y 

LSL 

I 

2 

3 

4 

’ 5 

Total 

LSM 

1 

2 

3 

4 

5 

Total 

WAD 

1 

2 

3 

4 

-5 

Total 

GAD 

I 

2 

3 

4 

5 .~ 

Total 

Average Std Dev Average Std Dev Age-Age Age-Age 
Bk Bias 70 Bias % Bias Bias % Bias 

0 

12,848 

19,663 

38,827 

44,325 

115,663 

0 

12,848 

16.069 

26,536 

3 262 L-- 
58,715 

0 

12,848 

23,310 

62.52 1 

166 470 -.L-~ 

265,149 

0 0 0.000 0.000 

12,848 190,771 0.030 0.300 

26,050 331,370 0.062 0.466 

77,169 580,779 0.149 0.755 

277?27- 1,295,202 0.495 1.717 

393,824 1,619,314 0.148 0.534 

0 0.000 0.000 

190.771 0.030 0.300 

321,503 0.080 0.479 

508,047 0.147 0.637 

695,596 0.216 0.928 

1.148.516 0.045 0.357 

0 0.000 O.OQO 

190.77 I 0.030 0.300 

326,583 0.043 0.473 

577,658 0.055 0.725 

1,070,100 0.027 1.316 

1,459,667 0.019 0.460 

0 0.000 0.000 

190.77 1 0.030 0.300 

332,453 0.057 0.476 

607.52 I 0.121 0.774 

I .251,178 0.305 -I.. 

I.6353365 0.097 0.520 

12,848 0.030 

6.815 0.049 

19.164 0.062 

5,498 0.060 

12,848 0.030 

3,220 0.013 

10,467 0.012 

(23,274) (0.027) 

12,848 0.030 

lo,46 1 0.026 

39,211 0.061 

103,950 0.164 

12,848 0.030 

13,201 0.03 1 

51,119 0.082 

200.588 0.301 
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EXHIBIT B-4 
Part 2 

RANDOMSEVERITY,~%TREND,ESTIMATES BASEDON 
ON-LEVEL(AT~%)TRIANGLE 

A/y 
SAD 

Total 

ADD 

I 

2 

3 

4 

5 

BF 

Total 

1 0 0 0.000 o.ow 

2 8,650 175,543 0.032 0.3 16 

3 10,927 275.49 I 0.063 0.471 

4 17.818 368,370 0.106 0.570 

5 12,875 440,455 0.173 0.684 

Total 50.271 870.120 0.021 0.284 

2 

3 

4 

5 

Total 

Average Std Dev Average Std Dev Age-Age Age-Age 
Bias Bias % Bias % Bias Bias 5% Bias 

0 0 

12,848 190,77 I 

35, I74 346,105 

124,456 685,305 

647,473 4,098,366 

819.951 4291,335 

0 0 o.ooQ o.oou 

(205) 182,866 0.014 0.358 

(4.949) 272.965 0.033 0.505 

(3.37 1) 352,774 0.074 0.577 

(7,726) 422,975 0.140 0.664 

(16.251) 833.130 (0.003) 0.277 

0 0 0.000 o.owl 

12.243 199.536 0.041 0.382 

20,320 303.669 0.084 0.567 

38.157 423,818 0.142 0.679 

5 1,227 547,415 0.223 0.842 

121.946 1.110,267 0.046 0.356 

0.000 

0.030 

0.080 

0.235 

1.107 

0.299 

0.000 

0.300 

0.497 

0.924 

4.508 

1.164 

12,848 0.030 

22,326 0.049 

89,282 0.144 

523,017 0.706 

(203 0.014 

(4.744) 0.019 

1,578 0.040 

(4,335) 0.061 

8,650 0.032 

2,277 0.030 

6.891 0.040 

(4.943) 0.061 

12.243 0.041 

8,078 0.041 

17,837 0.054 

13.070 0.071 
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APPENDIXC 

THEOREMS 

Theorem 1: Under the assumptions of Model I, 

YLSL = ULSL + b,,,x is an unbiased estimator of y; i.e., 

E (yLsL) = E (y). Under the assumptions of Model II, yLsM = b,,, x is 

an unbiased estimator of y. 

Proo$ Model I assumes that E (y) = a + bx. Since all expectations 
are conditional on x and since aLSL and b,,, are unbiased, we have 

E bLsL) = E (aLsL + bLsL4 

= E (aLsL) + E (bLsLx) 

= E (aLsL I+ E (bLSLb 

=a+bx 

=E(y). 

The proof for LSM is similar. 

Lemma I: Under LSL, E (x, I x,,) = an + b,E (xWl I x,-J. Under 

LSM, E (x, I xc) = bnE (xn-r I xc). 

Proof I: The proof will be given for LSL. The proof for LSM is 
similar. 

First, 
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Next, the “Multiplication Rule” of conditional density functions 
(Hogg and Craig [4, p. 641) states that 

Therefore, 

I a, 1 (q, X&f(X,-, 1 x()>fcq)) h,-, 

f(x, I x0) 2-I 
f (X”) 

= I Rx, 1 (xn-p +J)f(Xn-~ 1 x()1 h”-, . 
x n-1 

By the CLIA, the random variable x,, I xn-, is independent of x0. 

Therefore f(x,, I (xn-,, x,)) does not depend on xc, so 

f(x, I (xn-,, x0)) =f(x, I x~-,). The rest of the proof hinges on our abil- 

ity to interchange the order of integration. We will make whatever 
assumptions are necessary about the form of the density functions to 
justify that step. Then 

E (x, 1 x0) = jx,f(X, 1 x0)&, 
X” 

= xn 

I(I 

f(x, 1 (x,-p x()>>f(x,-, 1 x()1 h,-, 

1 

hn 

X” 
x n-l 

= 
If 
n-l i 

XJ(X, 1 (-&,’ x()>> h, 

x X” I 

f&J-g h,-, (C.1) 

= 

f (I 

x,f(x, 1 q&f& 

ii 

(x,-, 1 x0> h,-, 
x x 
n-l n 
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= I (a, + b, ~~-,lf(~,&~) dx,-, 

x n-l 

= a, + b,, I x,,, f(xnpl 1 x0) dy,-] 
x n-1 

= a,, + 6, E (xn-, I x0) . 

Proof 2: Recall the well-known identity E (X) = E, [E (XIY)] 

(Hossack, et al, [5, p. 631). Consider the following variation reiterated 
in Equation C. 1 above: 

E t-q, 1 x0) = Exne, , xo [E (zc, 1 &ml, x,>)l - 

For LSL we have: 

E (x,, 1 x0) = Exnmllro [E @,,I (xn-,’ +J)l 

= Exn-, lx0 [E (x,, 1 x,-J by CLIA 

= E, lx [atI + &%-,I n-l 0 

= a,, + b, E (x,,-r I xd . 

Theorem 2: E (c, I x0) = E (x, I x0). 

Proof: By induction on n. The proof will be given for LSL; the 
proof for LSM is similar. 

For n = 1, the theorem is simply a restatement of Theorem 1. 

Assume that E (t,,-, I xc) = E (x,-~ I x0). We have that 
&, = 2, +8,&-t where 2, and 8, are functions of the random vari- 

ables x,l~,-~, and &-, is a function of the random variables 

xn-l 1x4 1 * * * , x, I x0, and x0. The CLIA implies that xJx,-, is inde- 
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pendent of xn-,Ix,-, , . . . , xlkO, and x0, so G,, and 6, are independent 

of finPI. Therefore, 

E(&J+J = E($jxo) + E(8,Lx,,)E(~,-, Ix,) where 8, and fi,+, are independent 

= Exn-,l,o [E (:,&-,v +,))I + Exnm,,, [E d$(n,-,, @I E (ci,&) 

= E.xn_,ko FE &O,~,)l + Exnm,lro [E &(x,-J E Cc;,-$0) 

= Ex”&xo[%l + Ex”&o[bfll iE Ll1yg) 

= a, + b, E ($,-, ho) 

= an + bnE t-q,-, 1x0) by the induction hypothesis 

= E (x,$,,) by Lemma 1. 

Theorem 3: 

Linear 

Fern= 1: 

Multiplicative 

Var$,)=+Var&) 

Fern> 1: 

Proofi We will prove the multiplicative case first. We saw in 
Theorem 6 that 6, and A-, are independent random variables, The 

formula (Hogg and Craig, [4, p. 178, problem 4.921) for the variance 
of the product of two independent random variables x and y is: 
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This proves the assertion because 6, is unbiased. 

For the linear case, 

Var (IQ = Var (a”,) + 2Cov (GJ&-,) + Var(8n$n,) . 

It is well known (Miller and Wichern, [6, p. 2021) that the random 
variables X, and 6, are uncorrelated when 6, is determined by least 

squares. Since all expectations are conditional, we have that 

Var(i,) = Vat-& -X,-,6,) 

= Var &J + $-, Var (S,) 

(C.2) 

Next, 

Cov (&$,,b,-,) = E(&-t)Cov (&$,) where in-, is independent of c, and 8,, 

= Y,-,cov (Qn) 

and 

cov (iQ,) = cov (zn - QJ,, 

= cov (-xn-lsn,6n) 

=- xn-, var (6,). (C.3) 

Putting these together with the formula for Var (s,&-,) from the mul- 
tiplicative derivation above we have: 
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02 
Var&) = p +$,Var($J - 2p,,-,-yn-,Var(8,) 

n 

c? 
- - $! + (p,-l - ~n-,)2Vad,,) 

n 

+ bt VX (in-,) + V= (S,,)Vard(-, >. 

Theorem 4A: Under LSL and LSM. 

Var (x,,lxJ = 0; + b;Var (x ,,-, Ix,,). 

Therefore, an estimate of the process risk can he had by plugging in 
estimates of $, bi and the estimate of process risk from the prior re- 
cursion step. 

Proof: 

var &P”) = E~,,&o war Gq(x,-, 9 -@I + var .x,,m,lr,, [E Nkl x0))] 

= E.r&(~) + wn~,l.ro(% + Q,c,,-* ) under LSL 

= 4 + bi Var(x,-,lx,,) under LSL or LSM. 

Theorem 4B: For the WAD method, an estimate of the process 
variance of the prediction of the next evaluation for a single accident 
year is: 
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fern= 1, 

&r (xnlxo) = x0 G; 

andforn> 1, 

Ifir (x&x0) = ji,-,Gjf + fii &r (xn-, lxo) . 

Proo$ For n = 1, the WAD model states that 

xl = xobl + dxoel , 

where the variance of the random variable el is 4. Therefore, the 
variance of xt given x0 equals the variance of the error term Jx,e,, or 
x0 0:. An,,estimate of this process risk can be had by plugging in the 
estimate 4 of c$ and the actual value of x0. 

For-n> 1, 

V~kk,) = Ex~_,,xo[V~(Xnl(Xn-,, xoNl + Vq-,,xo[E (x,I(x~-~, xoNl 

=E x,-,ko D’~(x,&,-,)l + Vqm,,,,,[E (~,@~-,>l by CLIA 

= Exn~,ko(xn-lon2) + var,n~,ko(b&) under WAD 

= E (x,-,lxo)~ + bi Var (xn-, 1x0). 

Estimates of this quantiq can be had by plugging in estimates of the 
individual parameters: 4 for o:, the point estimate of pnel, 6,,, for 
b,,, and the parameter risk estimate from the previous recursion step 
for Var (x,- ,1x0). 

Theorem 4C: For the SAD method, an estimate of the process 
variance of the prediction of the next evaluation for a single accident 
year is: 



212 

fern= 1, 
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fir (xnlxo) =x; iif. 

andforn> 1, 

F&r (xnlxo) = ;I,“-, 2 + 2; fir (Xn-,IXo> . 

Proof: For n = 1, the SAD model states that: 

x, =xobI +xOel , 

where the variance of the random variable e, is 0:. Therefore, the 
variance of x1 given x0 equals the variance of the error term xoe 1, or 
x#. An,,estimate of this process risk can be had by plugging in the 
estimate 4 of 4 and the actual value of xc. 

Fern> 1, 

VNx,&) = Ex,_,,,yo WW,l(x,,, x,))l + Vqm,,.x-o[E (x,&~-,~ +J)l 

= Ex,,-, IX{, DWx,lu,-Jl + Var,,,m,IJE W-b)1 by CLIA 

= Ex”- , Ix-,, ($14) + VatrJxprl-5-1) under SAD 

= E (xf , 1x0) 4 + b;: Vat-(x,-, ho) 

= ccl;-, + VNxn-, lx(J) 0; + g var en-] I-q)). 

Estimates of this quantity can be had by plugging in estimates of the 
individual parameters: 0: for o:, the point estimate of I.$,-~, 6,,, for 
b,, and the parameter risk estimate from the previous recursion step 
for Var(x,-,1x0). 

LRmma 2: E (S,) = na,+b,(E(S,-,)+x,-,,,,). 
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Proof: 

= c E (x,,,tQ 
i=O 

= c E Xin-Ilx,,i [E (xi,nl(xi,n-lT xi,j))l 
i=o 

n-l 

= 
c E xi “-, lq, [E (%&Xi.n- ,)I by CLIA I * 
i=O 

n-1 

= c Ex,&pn + h Xi,n-1) 
i=O 

= mn +b, (E (Sn-,> +-y-,&. 

Theorem 5: Let XD, = (x0 o, x1 ,, . . ., x~-,,~-,) denote the current , , 
diagonal of the triangle for the it youngest accident years. Then 

E&IXD,) = E(S,) . 

Proojl By induction on IZ. The proof will be given for LSL; the 
proof for LSM is similar. For n = 1, we know that: 
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by Theorem 2 

= E (S,). 

Now. assume 

Under LSL, 

A?/= 4 +fi Ch,-, +x,,-,,~-,) 

where i,, and 8, are functions of the random variables xi ,J xi,*-,, i 2 n, I , 
and hn-, is a function of random variables xi ) xi ;-, and of xi, for . 7 
j < n and i > n. By the CLIA, 2, and gn are independent of A n-l. 

Therefore: 

E (kf” I XD,) = E (r& + s, &, +x,+-J 1 Jq> 

= E &, 1 X0,> + E 6, I XD,,) E Chn-, + x,+, +, 1 X0,> 

= nun + b,JE &,,-, 1 XD ,,-, I+ .q-,.n-, 1 

= nun + b,(E (Sn-,) + xn-, n-1) by the induction hypothesis 

= E (S,) by Lemma 2. 
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Theorem 6: Parameter Risk 

Linear 

Fern= 1: 

0: var(A,)=-+((xo,o-xo)*Var(G,) 
11 

Fern> I: 

We will prove the multiplicative case first. Since 
&fn3$!kn-, +x n-l,n-,), the proof is immediate by virtue of the for- 

mula for the variance of the product of two independent random 
variables, once we note that: 

because xn-, n-, can be treated as a constant with respect to this con- 
ditional variance. 

For the linear case, 

V&ICI,) = Var(n&J + &Chn-, +x~-,~~,)) 

= Var(n&) + 23~ (n~,Jfl(Icr,-, + xnel, n-r)) + 

w&&-, +xn-*, n-,)). 

In the proof of Theorem 3 we saw that (Equation C.2) 
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and that (Equation C.3) 

cov (Q,) = -s,-lvar(&J 

Since &*, is independent of $, and 6, and since all expectations 

are conditional on the current diagonal, 

Cov (n&~n&n-I +x,-l,n-,)) = nE C&-l + x~-~,~-JCOV &$,J . 

Therefore 

Vd,,) 
I 

- 2nE &,,-, +Q,~-,) X,-p&J 

+ (M,-, + xn-, ,,-, , I2 Va(g,) + 6: Var&n-I) + Var&J Va&-l) 

2 

=n n+(M,I +x,-,~-~ -nX,p,)2Var(~J 
z/ n 

+ b; var &-1) + var 6,) Va’&J. 

Theorem 7A: Process Risk for the LSL and LSM models 

Fern= 1: var (S,) = 0;; 

forn>l: Var (S,) = noi + bi Var (S,-,) . 

Proofi For n = 1, S, is just the first future value of the youngest 

accident year conditional on its current value; i.e., S, =x0 ,lxOO . 1 > 
Therefore, Var (S,) = Var (x0 ,lxO “) = o: by definition of cI. I 1 

For n > 1, let X,-, denote the vector of random variables 

(x00 3 .-* 7Xn+,) corresponding to the unknown future evaluations 
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of the n-l youngest accident years as of age n-l. It is understood that 
all expectations are conditional on the current diagonal. First, recall 

n-l 

that S,, = C,Q, I zqi. 
i=o 

Next, note that 

VMS,) = QJWS,IX,J + Vq-, FE (~,JX,J . (C.4) 

For the first term, 

n-l 

Var (SnIXn-l 1 = Var C xi,nlxi,n-, 

I 1 
i=O 

n-l 

= CVar (xi ,Jxi n-,) because accident years are independent 7 1 
i=O 

=n$ 

because 4 is constant across accident years. 

For the second term of Equation C.4, 

E (S,lX,-,) = E (a, + bn (S,,-, + x~-~,~-~)) where a,, = 0 for LSM 

= E (a, + bnxe,,n-l + b,S,-,)- 

Therefore, 

Var *,,-, P (snlX,,-, )I = V~xn-, @,&, 1 

because a,, b,, and x,-],~-, are constants 

= b; Var(S,-,). 
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Putting the two terms together, we have: 

Var (S,) = n$, + bt Var (S,-,) . 

An unbiased estimate of this quantity can be had by plugging in unbi- 
ased estimates of $ and bz, and the Process Risk estimate from the 
prior recursion step. 

Theorem 7B: Process Risk for the WAD model 

For n = 1: var (S,) =x0 “c$ 

forn>l: Var(S,)=(M,_,+x,,_l,_,)o~+b~Var(S,_,). 

Proof: The n = 1 case is just Theorem 4B. For n > 1, the proof 
follows that of Theorem 7A, with one difference; namely, 
Var (,~~,~lx~,~-,) = x~,~JI~. So the first term of Equation C.4 is: 

n-1 

El,-, [Var wn-,)I = Er ,,-, 

I I 
c “i,,r-14 
i=O 

= 4 (Mn-1 +x,,-b-l) 

by definition of M,-,. Since the second term of Equation C.4 simpli- 
fies to the same quantity as in Theorem 7A, this theorem is proved. 

Theorem 7C: Process Risk for the SAD model 

For-n= 1: Var (S,) = xi., 0:; 
n-2 

for-n> 1: Var CS,> = C+-, &-, + &(n-, + Va Cs,-, >I 0,’ + b,2 Vx Csn-l > . 
id) 
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Proof: The n = 1 case is just Theorem 4C. For n > 1, we have 
only to derive the first term of Equation C.4 in the proof of Theorem 
7A. For SAD, Var(~~,~lx~,~,) =$_I o:, so for i < IZ - I, 

= 0: [E* (Xi,“- 1) + Vx (Xi,n-1 )I 

= cJ&L:,-1 + V=(xj,,-,)l. 

Therefore 

by definition of S,, 

because accident years are independent 
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This proves the theorem. 

Theorem 8: Under the transformed GAD model: 

X’” = hl,, + XI,,-, + e’ II 

where we assume that cry = Var(e.‘J are identical for everyj, the esti- 
mate of the variance of the predictron of ultimate (transformed) loss 

where $‘2 denotes the MSE of the simultaneous solution of the link 
ratios of the transformed model. 

Proof: Since we assume equal variances by development age, we 
may solve for all parameters bj simultaneously with the equation: 
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/ 
X’n, 1 - x’n,o 

x n-l.1 - XL ,o 

x’l.l -x’1,o 

in 2 - X’” 1 

X’2,2 - X’2, I 

x’n,n-l - x’n,n-2 
x’n-l,n-l - x’“-l.n-2 

X6,n - x’n,n- 1 

= 

‘1 0 . . . 00 
10 . . . 00 

10 . . . 00 
01 . . . 00 

01 . ..oo 

oo... 10 
00 . . . 10 
00 . . . 0 1 

X 

b’, ’ 
b’* 

+ 
J-L 
b’n 

\ 

4 
4 

4 
et2 

e’2 

D I n-l , 0 n-1 

e’n 

or, in more concise format, Y = Xp + E. It is well known that the least 
squares estimator of p is B = (XX-‘X’Y and that the variance-covari- 
ante matrix of this estimator is (X’X)%‘2. In this case, it is clear by 
inspection that X’X is a diagonal matrix whose fh entry equals 5, the 

number of data points in the estimate of the jfh link ratio, and whose 

off-diagonal elements are zero. Thus, Var (6’J = $ and 

Cov (8’$J = 0 for i +j. Therefore, the Parameter Risk 
J 

is exactly equal to: 

Var 

“1 
CF-. 

j=l !i 

The Process Risk is equal to: 
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iVar (e’,) = C d2 . 
j=l 

These variances are estimated by substituting the estimate a2 for d2. 


