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THE MATHEMATICS OF EXCESS OF LOSS COVERAGES AND 
RETROSPECTIVE RATING-A GRAPHICAL APPROACH 

YOONG-SIN LEE 

Abstract 

The mathematics of excess of loss coverages and retrospective 
rating involves heavy algebra, mainly because the indemnity pay- 
ment under such contracts assumes dtflerent functional forms in 
different parts of the loss size distribution. This paper presents a 
graphical approach to the theory, in which the indemnity payment 
under various conditions is represented by the regions in a graph 
described by the cumulative distribution function of the size of 
loss. Many intricate formulas and relations occurring in the two 
subjects, some expressible algebraically only in very complicated 
forms, can be understood simply and clearly through pictures. 
Treated visually in this paper are many mathematical relations 
and results included in the examination syllabus. 

1. INTRODUCTION 

The theory of excess of loss coverages and retrospective rating in- 
volves rather complicated mathematics. The underlying ideas in most 
cases are relatively simple, but the heavy algebra is often a great mental 
burden to the actuary and the student. This paper applies a graphical 
technique to excess of loss coverages and retrospective rating. Most of 
the algebraic results on these topics can be interpreted in graphic terms. 
The advantages of this approach are that the results so derived are easier 
to understand and the formulas can be easily remembered and written 
down. 

Graphical methods are widely used in mathematics and statistics to 
visually present ideas which would otherwise be abstruse. Many math- 
ematical ideas have geometric as well as symbolic interpretation. For 
example, the integral of a positive-valued function can be regarded as 
the area under the curve representing the function as well as the anti- 
derivative of the function. The use of diagrams and graphs to present 



50 EXCESS OF LOSS RATING 

numerical information in statistics is better known. Graphs in statistics 
are used to explain ideas such as density functions and cumulative 
distribution functions. In actuarial science, graphical methods have not 
been extensively utilized. A graphical device is presented herein for the 
explanation of the underlying mathematical ideas. It will not only provide 
powerful insight into the abstract relations, but also make the mathe- 
matical procedure much easier to follow compared with algebraic ma- 
nipulations. For those who always prefer algebra, it will serve at least 
as a very useful supplement to the predominantly algebraic treatment 
that has been given to the subject in the literature. 

To start with, consider a large number of losses, of sizes x1, x2, 
. . ) xk, occurring nl, n2, . . . , nk times, respectively, with n = 
n,+ . . . +nk. In Figure 1 we represent these losses by means of a 
cumulative frequency curve, in which the ordinate represents the loss 
size, and the abscissa represents the cumulative number of losses, ci = 
nl+ . . . +ni, ilk. This representation is different from the usual form 
in statistical textbooks, where the abscissa and ordinate are reversed, but 
agrees with the representation in Snader [lo]. (See also Philbrick [7].) 

FIGURE 1 
A CUMULATIVE FREQUENCY CURVE 

lJ C”M”LATI”E CLAIM COUNT n 
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The curve is a step function (with argument along the vertical axis) 
which has a jump of ni at the point x;. Consider the shaded vertical strip 
in the graph. It has an area equal to nixi. Summing all such vertical 
strips we have 

Total amount of loss = nIxI+ . . . +nkxk. (1.1) 

We may therefore interpret the area of the vertical strip corresponding 
to xi as the amount of loss of size xi, and the total enclosed area below 
the cumulative frequency curve as the total amount of loss. In fact, we 
have a new way of viewing the cumulative frequency function curve. 
This curve can be constructed by arranging the losses in ascending order 
of magnitude, and laying them from left to right with each loss occupying 
a unit horizontal length. 

Now let X be a random variable representing the amount of loss 
incurred by a risk. Define the cumulative distribution function (cdf) 
F (x) as 

F(x) = Pr(X I x). (1.2) 

Figure 2 shows the graph of a continuous cdf. Consider the vertical strip 

FIGURE 2 
CDF CURVE AND EXPECTATION 

0 F(x) 1 
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in the graph, with area xdF (x). If we sum up all these strips, we will 
obtain the expected value of X, 

E(X) = 
I 

coxdF(x), (1.3) 
which is repksented by the enclosed area below the cdf curve (the 
shaded area in the graph). We may interpret the expected loss as com- 
posed of losses of different sizes, and the strip xdF (x) as the contribution 
from losses of size between x and x+u!x. Throughout this paper, an 
expression such as E {X} represents the expected value of a random 
variable X. 

Limited Payments 

As an immediate application, consider a coverage which pays for 
losses up to a limit L only. Figure 3(a) shows that a loss of size not 
more than L, such as Sl, is paid in full, while a loss of size SZ which is 
greater than L, is paid only an amount L. By summing up vertical strips 
as before, except that strips with length greater than L are limited to 
length L, we obtain the expected payment per loss under such a coverage 
as the shaded area in Figure 3(a). 

FIGURE 3 
EXPECTED Loss WITH (a) LIMIT AND (b) DEDUCTIBLE 

Sl s2 1 0 1 
CUMULATIVE CLAIM FREQUENCY 
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Deductibles 

Likewise, a coverage which pays for losses subject to a flat deductible 
D and up to limit L has expected payment per loss represented by the 
shaded area in Figure 3(b). 

Size and Layer 

As another application we first derive an integration identity. Con- 
sider Figure 4(a). The vertical strip has area xdF (x) and the horizontal 
strip has area G (x) cix, where 

G(x) = 1 -F(x). (1.4) 

Summing up the vertical strips and the horizontal strips separately we 
have 

I 

cc 
xdF (x) = 

0 I 
O” G (x) dx = E {X}, (1.5) 

0 

because each of the integrals is equal to the enclosed area below the cdf 
curve, which, as we have seen, also represents the expected loss E {X}. 
The equality can also be algebraically derived via integration by parts. 

FIGURE 4 
SIZE AND LAYER VIEWS OF LOSSES 

1 b 

I 1 0 F(x) 
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The two modes of summation correspond, in fact, to two views of 
the losses. The vertical strips group losses by size, whereas the horizontal 
strips group the loss amounts by layer. We may therefore call them the 
size method and the layer method. It is often more convenient to evaluate 
the expected loss in a layer by layer fashion, i.e. summing horizontal 
strips, than by the size method, i.e. summing vertical strips. For ex- 
ample, consider the layer of loss between a and b in Figure 4(b). The 
expected loss in this layer is represented by the shaded area. The layer 
method of summation gives simply 

I 

b 

G (x) dx. (1.6) 
a 

To express this integral by the size method is more difficult. A 
moment’s reflection, with the help of Figure 4(b), yields the following 
expression for the integral: 

I 

b 

xdF (x) + bG (6) - aG (a). (1.7) (I 

Again, the equality of the two expressions can be established via inte- 
gration by parts. 

The more complicated expression derived from the size method is 
the form commonly found in the literature. Although the integral asso- 
ciated with the layer method is simple in form, G(x) is a function that 
is generally more difficult to integrate. This disadvantage disappears, 
however, when the distribution is given numerically, as, for example, 
when actual experience is used. The retrospective rating Table M and 
Table L have been constructed by the layer method; see Simon 181 and 
Skumick [9]. We shall give the graphical interpretation later. 

2. EXPECTED VALUE PREMIUM 

Generally, given a loss X, a coverage would pay an amount depending 
on the value of X. We may represent this function by R (X). The expected 
payment per loss is 

E{gW)) = ljrn g (xl dF (x). (2.1) 
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The number of losses incurred by a risk in a policy period is a random 
variable, N, so that the total loss payment is 

y = ii g (X>, 
i= I 

(2.2) 

which is the sum of a random number of random variables. It is custom- 
arily assumed that the loss severity X is distributed independently of the 
loss frequency N. With this assumption it can be shown that the expected 
payment in a policy period is 

E 0’1 = E W1.E {g GO>> (2.31 

which says that the expected value pure premium of a risk is the product 
of average frequency of loss and the average severity. (See Miccolis 
L51.1 
Increased Limits Coverage 

A liability insurance coverage is generally written to cover a loss in 
full up to a specified maximum dollar amount for any one loss. Let k be 
such a policy limit. We can express the payment function g (X; k) of a 
loss X as 

g (X; k) = 
i 
;’ O<Xlk 

k<X (2.4) 

The expected payment per loss under this coverage can be expressed as 

E {g (X; k)} = ik xdF (x) + kG (k). (2.5) 
0 

The formula is demonstrated graphically in Figure 5, where the integral 
on the right is represented by the shaded area to the left of the broken 
vertical line, while the term kG (k) is represented simply by the rectangle 
to the right of the line. 

Rates are generally published for some standard limit called the basic 
limit; let this be b. Increased limits rates are expressed as a factor, I (k), 
called the increased limits factor, to be applied to the basic limits pure 
premium rate. Thus 

I(k) = [E {g Gf; 4)-E {N)l / [E {g W; bI1-E {N)l 
= E {g (Xi k)) / E {g (Xi b)), (2.6) 
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FIGURE 5 
LOSSES WITH INDEMNITY LIMITED TO k 

0 F(x) 1 

which depends on the distribution of size of loss only; see Miccolis [5]. 
The situation is demonstrated in Figure 6, where the increased limits 
factor is the ratio of the shaded area up to k versus the shaded area up 
to b. The picture also displays another property of the increased limits 
factor. ‘Miccolis [5] shows that the derivative of I (k) can be expressed 
as 

Z’(k) = G (k) / E {g (X; 6)). (2.7) 

The picture shows that when k is increased by dk, the area representing 
the expected payment is increased by G (k) dk. Hence the result shown 
in Figure 6. 

Miccolis also discusses a consistency test for increased limits factors. 
A picture will provide much better insight into this question. In Figure 
7, the enclosed region below the cdf curve is divided into horizontal 
panels which, for convenience of exposition, have equal width. The 
horizontal lines serve to subdivide a loss, such as L, into layers. With 
layers of equal width, the picture makes it quite plain that the expected 
payment in any layer is less than that in a preceding layer. If the layers 
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FIGURE 6 
INCREASED LIMITS FACTOR 

G(kMk A 

0 CUMULATIVE CLAIM FREQUENCY 1 

FIGURE 7 
CONSISTENCY OF INCREASED LIMIT FACTOR 

k5-------------------- 

0 CUMULATIVE CLAIM FREQUENCY 1 
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are of different widths, this property holds between the layers for the 
expected payment per unit coverage. Hence, the increased limits factor 
must increase at a decreasing rate as the limit increases. This is the 
consistency test. Actually, Figure 7 also shows that this is a common 
sense argument; a loss must have penetrated a lower layer before it 
reaches an upper layer. 

Excess of Loss Coverage 

An excess of loss contract generally covers losses in excess of a 
retention R, subject to a maximum limit L. The payment under such a 
contract may be expressed as a function of the loss X: 

0, O<XsR 
h (X; R, L) = X - R, R<XsS (2.8) 

L, s < x, 
where 

S=R+L. (2.9) 

The situation may be described by means of the graph in Figure 8. For 
a loss such as represented by the line LI or Lz, the payment is represented 
by that portion of the line which falls inside the shaded region BGEC. 
The expected payment per ground-up claim under such contract has been 
derived in the literature by the size method, and can be expressed in 
many different forms; the following are given in Miccolis. 

E {h (X; R, L)} = j” (x - R) dF (x) + LG (S) (2.10) 
R 

I 

S 

= xdF (x) - R [F (S) - F (R)] + LG (S) (2.11) 
R 

S 

= 

I 
xdF (x) + SG (S) - RG (R). (2.12) 

R 

Figure 8 gives a simple graphical explanation of these integration results. 
They can be expressed in terms of the areas of the various regions shown 
in the graph, respectively as follows. 
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FIGURE 8 
LOSSES WITH RETENTION AND LIMIT 

--------------_--_-__-___-__- 

------- 

I I 
I I 

- - 

:E 

:G 

A CUMULATWE CLAIM FREQUENCY D F 

E {h (X; R, L)} = BHC + HGEC (2.13) 

= ADCB - ADHB + HGEC (2.14) 

= ADCB + DFEC - AFGB. (2.15) 

Each of these is equal to the shaded area in the graph. 

It is, of course, much easier to express the expected payment of such 
an excess of loss contract by the layer method: 

E {h (X; R, L)} = l G (x) dx. (2.16) 

The result is plain from Figure 8; it can also be derived from the integral 
expressions given above via integration by parts. 

Relationships in the mathematics of excess of loss coverages could 
take on very complicated algebraic form, sometimes concealing the 
simplicity of the underlying idea. For example, Patrik [6] gives an 
expression for the expected loss excess of R subject to an upper limit of 
L in terms of E {X} - R and other quantities. The average excess loss 
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per ground-up claim is given by 

E {X} - R + Pr {X%R}*(R-E {XIXsR}) 
- Pr {xzR+L}~[E{xIx~R+L} - (R+L)]. (2.17) 

This can be demonstrated by the graph in Figure 9 where A, B, C, and 
D represent areas of the respective regions. The above relation says 
simply that 

B = (A + B + C) - (A + D) + D - C, 

because 

B = expected excess loss 

A + B + C = E {X}, i.e. expected loss 

A+D=R 

D = Pr {X I R}*(R - E {XIXIR}) 

C = Pr{X 2 R+L} [E{XIXLR+L) - (R+L)] 

as is clear from the picture. 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

FIGURE 9 
EXCESS OF Loss COVERAGE 

0 F(xl 1 
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3. TREND 

The effects of economic and social inflationary trends are to increase 
the size of losses. These effects act differently on the first dollar and the 
excess of loss coverages. Suppose the effect of inflation is, after a period 
of time, to change a loss of size x to a loss of size x’, such that 

x’ = a (x). (3.1) 

Assume that cx (x) is a monotonic function, and let F,(x’) be the cdf of 
x’, i.e., the cdf after inflation. Then 

FI(x’) = F (x), 
and 

FI(~ (4) = F (4. 

(3.2) 

(3.3) 
The effect of inflation is demonstrated in Figure 10, where the lower 
curve represents the cdf before inflation, and the upper curve represents 
the cdf after inflation. The graph shows that a loss AB of size x becomes 
a loss AC of size x’. When, starting from the cdf curve F (x), each size 
of loss, as represented by the vertical distance from the horizontal axis 
to the curve F (x), is extended according to the function x’ = OL (x), we 
obtain the cdf curve after inflation. A simple case of inflation is one in 
which the loss is increased by a uniform multiplicative factor a, so that 

x’ = ax. (3.4) 

In this case, the cdf curve after inflation, F,(Y), is obtained by extending 
each loss before inflation by a constant factor a. 

It is well known that an excess of loss coverage is more seriously 
affected by inflation (assuming, for example, a uniform rate for all loss 
sizes); see, for example, Ferguson [2]. Figure 11 gives a dramatic 
demonstration of the leveraged effect of inflation on the excess of loss 
coverage. Let the rate of inflation be uniform for all sizes of loss, and 
the cdf curve after inflation be constructed from the curve before inflation 
as described above. The additional amount of loss resulting from inflation 
is shown in Figure 11 as the more heavily shaded region. If the retention 
R remains fixed, the expected excess loss payment is increased propor- 
tionally much more than indicated by the general rate of inflation. 
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FIGURE 10 
EFFECT OF INFLATION 

0 A CUMULATlVE CI.AIM FREQUEN1‘Y 1 

FIGURE 11 
EFFECT OF INFLATION ON EXCESS LOSSES 

0 CUM”LAT,VE CLAIM FREQUENCY 1 
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Since the total increase due to inflation is divided between the basic 
limits loss and the excess loss, the basic limits loss is expected to incur 
an inflationary increase at a lower rate than the total limits rate. This 
topic has been treated in Finger [3]. Figure 12 gives a graphical dem- 
onstration of this effect and also shows the following algebraic result 
(see, for example, Miccolis [5]): 

E {g (X’; b)} = u E {g (X; b/u)}. (3.5) 

The picture says that the new expected basic limits loss, represented by 
the total shaded area, is equal to the old expected loss up to the limit b/a, 
represented by the more lightly shaded area, extended by a factor a. Any 
vertical line through the shaded region in Figure 12 would have its inter- 
cept in the more heavily shaded region equal to a times its intercept in the 
more lightly shaded region. 

FIGURE 12 
EFFECT OF INFLATION ON BASIC LIMIT LOSSES 

0 CUMULATIVE CLAIM FREQUENCY -1 

The study of the effect of inflation on excess of loss coverages can 
lead to rather complicated algebraic expressions. For example, Ferguson 
[2] relates the pure premium of an excess of loss coverage with indexing 
to the pure premium of one without indexing, the difference being 
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expressed as a discount on the coverage without indexing. In an excess 
of loss coverage with indexing, the retention increases with inflation. A 
moment’s reflection shows that the discount can be determined by com- 
paring the expected loss under one contract with that under another. Let 
x be the average excess loss trended and indexed, R be the retention, 
a- 1 be the proportional increase due to inflationary trend, A’ be excess 
cost (per claim) on claims that exceed the retention as a result of inflation, 
and k be the multiplying factor which is equal to G (R). Then Figure 13 
shows that 

E{Lo} = kg + k(a - 1)R + CA’, (3.6) 

E {L,} = k I?, (3.7) 

where E {LO} is the expected excess loss per ground-up claim without 
indexing and c = G(R) - G(aR) and E {I,,} the expected excess loss per 
ground-up claim with indexing. Thus. 

E @I) E {@ 
a = ’ - E {LO} E {N} 

cl-- kX 
kX + k (a-l)R + CA’ 

(3.8) 

= 1 - 1 
1 + R (a- 1)/x + CA’/&? (3.9) 

or, 

D=l-- 
1 

1 + R (u-1)/x 

as proposed by Ferguson, neglecting the relatively small term involving 
A’. 

4. RETROSPECTIVE RATING 

The Excess Pure Premium Ratio 

We first consider the mathematics of the excess pure premium ratio, 
commonly denoted by C$ (r). This is defined to be a risk’s average amount 
of loss in excess of r times its expected loss, divided by the expected 
loss. It is also known as the Table M charge, while the Table M savings, 
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FIGURE 13 
INDEXING EXCESS OF Loss COVERAGE 

0 CUMULATIVE CLAIM FREQUENCY 1 
q(r), at the entry r (meaning r times the expected loss) is defined as the 
expected amount by which the risk’s actual loss falls short of r times 
the expected loss, divided by the expected loss. More precisely, let 

A = actual loss of the risk; 
E = E(A), the expected loss; 
Y = A/E, actual loss in units of expected loss; and 
F(Y) = the cumulative distribution function of Y. 

Then 

w-> = I= 0, - rweY) (4.1) 

and 

de-) = 6 (r - YVW. (4.2) 

These functions are illustrated in Figure 14, where the cdf F(y) is 
graphed against the entry ratio y. The functions $(r) and +(r) are rep- 
resented by the areas indicated in the graph. A number of mathematical 
properties are now clearly demonstrated. 
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FIGURE 14 
FUNCTIONS IN RETROSPECTIVE RATING 

0 1 
Cumulative claim frequency 

(1) By definition, the bounded area below the FCy) curve is equal to 1. 
Hence $(O) = 1. 

(2) 4(r) is a decreasing function of r, and 4(r) + 0 as r + m. 
(3) 4(r) is an increasing function of r; its value is unbounded as r --+ 

(4) Consider the small strip at 11 = r in the graph. This shows that an 
increment dr from r will yield a decrease G(r)dr in 4(r). Hence 

4’(r) = (dldr) 4(r) = -G(r). (4.3) 

A second differentiation yields 
V(r) = f(r), (4.4) 

where f(r) is the density function of the entry ratio, a result well 
known in the literature (Valerius [ 1 I]). Similarly, we may deduce 
from Figure 14 that 

+‘(r) = (dldr) G(r) = F(r) (4.5) 

and 

\cI”(r) = f(r). (4.6) 
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(5) Consider the area of the rectangle on the interval from 0 to r in 
Figure 14. This gives the relation 

r = 11 - 4(r)] + W-L (4.7) 

or 

$(r) = 4(r) + r - 1; (4.8) 

this is a fundamental relation connecting i+(r) and 4(r). 
A result more general than (5) can also be obtained quite easily from 

Figure 15. Let 

i 

r,E if A 5 r,E 
L= A if r,E < A 5 r& (4.9) 

r2E if rzE < A. 

Then the cdf of L/E can be represented by the solid line in Figure 15. 
The shaded area represents the quantity E{L}IE and we have 

E{L)IE - 4+-l) + 4(r2) = 1, (4.10) 

or 

E{L}/E = 1 + $(r,) - +(rz). 

See Skurnick [9]. 

t 

FIGURE 15 
r EXPECTATION OF L IN RETROSPECTIVE RATING 
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Retrospective Rating 

In the Workers’ Compensation Retrospective Rating Plan, the ret- 
rospective premium R is given by 

R = b + CA, (4.12) 

subject to a maximum premium G and a minimum premium H, where 
b is the basic premium and C is the loss conversion factor (LCF), and 
where b is alternatively represented by 

b = BP, (4.13) 

with P as the standard premium (before any applicable expense gradation) 
and B as the basic premium ratio. Let Lc; be actual loss that will produce 
the maximum premium: 

G = b + CLG (4.14) 

and let 

rG = LGIE. 

Similarly, define LH to be 

I-I = b + CL”, 

rH = LHIE. 

Further, let 

i 

LH ifA 5 LH 
L= A if&CA <LG. 

LG ifLG <A. 

Then the retrospective premium can be represented by 

R = b + CL. 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

For ease of exposition, we ignore the tax factor. If we identify rH 
and rC with rl and r-2, respectively, then Figure 16 shows the quantity 
E{L}/E as the area of the shaded region OFDCBA. It then follows that 

E(L) = E - +(rc)E + $(rH)E (4.20) 
=E-I, (4.21) 
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where 

1 = E[+(rc) - @H>l (4.22) 

is called the net insurance charge of Table M. If the plan is to be 
balanced, the expected retrospective premium must be equal to the sum 
of the total expenses, e, and the expected loss, E: 

E(R) = e + E. (4.23) 

On the other hand, it also follows from the above that 

E(R) = b + C(E - I). (4.24) 

Equating these two quantities we obtain the basic premium in terms of 
the expense, expected loss, and the net insurance charge: 

b+C{E-l)=e+E (4.25) 

or 

b=e-(C- l)E+CI. (4.26) 

A formula relating the charge difference to the minimum premium, 
expected loss and expense provision has been used to facilitate the 
determination of retrospective rating values from specified maximum and 
minimum premiums. This formula can be derived with the help of Figure 
16. 

Consider the equation 

R=b+CL (4.27) 

Taking the expectation and representing the expectation E{L}/E by the 
shaded area of Figure 16 we have 

e + E = b + CE[OFDCBA]. (4.28) 

On the other hand, we have for the minimum premium H: 

H = b + CErH (4.29) 
= b + CE [OFEA]. (4.30) 

Taking the difference on both sides of the two equations above we have 

(e + E) - H = CE [BEDC] (4.31) 
= CE [4(rH) - 46-G)]. (4.32) 
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FIGURE I6 
RETROSPECTIVE RATING PREMIUM 

0 Cumularive claim frequency 

This formula, together with the formula 

F 

G - H = CE(r(; - rH), (4.33) 

which is much easier to derive, can be used to determine the rating 
values given the maximum and minimum premiums. One may interpret 
the difference in charge, $(rH) - +(r(;), as indicated by the dotted area 
in Figure 16, to be the difference between the expected retrospective 
premium and the minimum premium, apart from a conversion factor CE. 

Construction of Table M 

A Table M has been constructed by Simon [8]; see also Skumick 
[9]. The algebra involved in the construction procedure appears to be 
rather complicated. Actually, the idea is very simple when this is ex- 
pressed in a graph. Figure 17 shows a cumulative frequency curve 
constructed from observed data on risks within a premium group. Let 
the loss ratios be arranged in ascending order: RI, R2,. . ., Rk, with Ri 
occurring Ni times. Also let the total number of claims be T = 
Ri, + . . . +N,. The cumulative frequency up to R,, i.e. T, = N1 + . . . +N; is 
plotted against Ri for each i so as to form a step function whose abscissa 
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which describes the fact that the sum of the strips above R; is obtained 
by adding the strip on (Ri, R,+ 1) to the sum of the strips above Ri+ 1. 
The value of + at the entry ratio corresponding to R, is then Sz, i/Sz, 0, 
with s2.0 equal to the total area of all the strips. The entry ratio corre- 
sponding to Ri is obtained by normalization: 

(4.36) 

We may think of Ri as loss expressed in an arbitrary unit and the 
denominator as the expected loss in this unit. The procedure is described 
in algebraic form by Skurnick. It is easy to see that this is a layer 
approach. 

Table L 

A retrospective rating plan may provide for a per accident limit on 
losses. The table of charges which incorporates this per accident limi- 
tation is called Table L, which has been described by Skumick [9]. Let 
A be the actual unlimited loss, as before, A* be the actual limited loss, 
and F*(.) be the cdf of Y* = A*IE. Then the Table L charge is defined 
as (Skumick) 

@*(r) = 1% (y - r)&‘*(y) + k, (4.37) 
r 

where k is the loss elimination ratio 

k = [E - A*]IE 

Further, the Table L savings are defined as 

(4.38) 

(4.39) 

In Figure 18 the curves for F(J) and F*(J) are plotted against the entry 
ratio r = A/E. F(J) is necessarily situated above F*(v), and by the 
definition of r, the enclosed area below the FO,) curve is equal to 1, 
while the enclosed area below the F*(J~) curve is I - k. The area of the 
shaded belt is equal to the loss elimination ratio k. Many of the properties 
of the Table L charges, as presented by Skumick [9], can be easily 
obtained from the graph. For example, consider the limited loss 
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r& if A* I r,E 
L* = A* if r,E < A* 5 r2E 

r& if r& < A*. 

FIGURE 18 
TABLE L FUNCTIONS 
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(4.40) 

Then E{L*}IE is represented by the dotted area in Figure 18. We deduce 
that 

E{L*}IE - \cI*(r]) + [$*(rz) - k] = 1 - k 

and hence 

(4.41) 

E{L*}IE = 1 + $*(r,) - c$*(rz), (4.42) 

as in Skumick. As another example, identify rl and r2, respectively, 
with rH and rG as defined before. Also let 

R” = b* + CL* (4.43) 

be the retrospective premium with per accident limitation. Then, com- 
bining the equation 

E{R*} = e + E = b* + CErH + CE[c$*(rH) - $*(rc)], (4.44) 
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which follows from the fact that the expected retrospective premium is 
b* plus the dotted area (converted), with the equation 

H = b* + CErH, (4.45) 

we have the Table L version of a familiar formula 

e + E - H = CE [+*(rH) - c)*(rc)], (4.46) 

the last factor on the right being represented by the dotted area between 
rl = rH and r2 = rG in Figure 18. As a final example of the use of 
Figure 18, one may consider the construction of Table L. This can be 
done in a manner similar to the construction of Table M, except that the 
cumulative frequency function of the limited loss is used, and the final 
result has to be adjusted for the loss elimination factor k. 

Asymptotic Behavior 

As the premium size becomes large, the limiting form of the charge 
takes on a simple function. The graphs in Figure 19 help us to understand 
the asymptotic behavior. Consider the case with no per loss limitation. 

FIGURE 19 
LIMITING CASE IN RETROSPECTIVE RATING 
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Figure 19(a) shows a cdf curve for losses which are nearly equal; here 
the $(r) region almost forms a rectangle. When all losses are equal, the 
cdf F(x) is a step function with a single jump at x = 1, as shown in 
Figure 19(b). The Table M charge, 4(r), at the entry point r is repre- 
sented by the area of the rectangle between r and 1. Hence 

+(r) = {A - r (4.47) 

The limiting case with per loss limitation is shown in Figure 19(c). Here 
the cdf F*(x) is shown as the horizontal line x = 1 - k, where it has 
its single jump. The Table L charge, 4*(r), is the area of the rectangle 
between r and 1 - k, plus the loss elimination ratio k. Thus 

4*(r) = {: -.r r<l-k 
l-ksr. 

Other Applications 

There are other interesting mathematical relationships in the mathe- 
matics of retrospective rating, and many such intricate relationships are 
presented in Carlson [ 11. It is a great burden to follow the algebra of the 
many complicated relationships presented there. Most of these, however, 
become much clearer if we make use of the graphical approach adopted 
here. Rather than go through the numerous equations and formulas in 
Carlson, we present a particular example to illustrate the power of our 
graphical method. Let us pick, almost at random, equation (15a) in 
Carlson, which can be explained as follows. Let the minimum premium 
be greater than the basic premium, and the maximum premium be equal 
to the standard premium: 

H > B, G = P. (4.49) 

Then, in Carlson’s notation, 

P - Rv = C(P’s - H’s) (4.50) 

= C(P’ - H’) - C(H’p - P’p). 4.51) 

These equations follow immediately from Figure 20 with the following 
interpretation of Carlson’s notations: 
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P =b+CP’ (4.52) 

Rv = expected retrospective premium (4.53) 

= b + C[OECBAH’] (4.54) 

FIGURE 20 
RELATIONSHIPS IN RETROSPECTIVE RATING 
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P’s = OBP’ 

H’s = OAH’ 

H’p = ADF 

P’p = BCF. 

(4.55) 

(4.56) 

(4.57) 

(4.58) 
5. CONCLUSION 

This paper presents a graphical approach to the mathematics of excess 
of loss coverages and related topics. The graphs serve to simplify and 
clarify much of the complicated algebra which has hitherto been the sole 
vehicle to express the mathematical ideas involved. We hope this will 
become a useful addition to the actuarial tool box of the student and the 
practicing casualty actuary alike. This technique has been used in ex- 
plaining the principles of coinsurance and its many properties (Lee [4]). 
Philbrick [7] uses the same idea to describe size of loss distributions. 



EXCESS OF LOSS RATING 77 

REFERENCES 

[I] Thomas 0. Carlson, “An Actuarial Analysis of Retrospective Rat- 
ing,” PCAS XXVIII, 1941, p. 283. 

[2] Ronald E. Ferguson, “Nonproportional Reinsurance and the Index 
Clause,” PCAS LXI, 1974, p. 141. 

[3] Robert J. Finger, “A Note on Basic Limits Trend Factors,” PCAS 
LXIII, 1976, p. 34. 

[4] Yoong-Sin Lee, “A Graphical Treatment of the Coinsurance 
Clause,” Journal of Risk and Insurunce LII, 1985, p. 644. 

[5] Robert S. Miccolis, “On the Theory of Increased Limits and Excess 
of Loss Pricing,” PCAS LXIV, 1977, p. 27. 

[6] Gary S. Patrik, “Review of Ferguson: Actuarial Note on Loss 
Rating,” PCAS LXV, 1978. 

[7] Stephen W. Philbrick, “A Practical Guide to the Single Parameter 
Pareto Distribution,” PCAS LXXII, 1985, p. 44. 

[8] LeRoy J. Simon, “1965 Table M,” PCAS LII, 1965, p. 1. 

[9] David Skurnick, “The California Table L,” PCAS LXI, 1974, p. 117. 

[IO] Richard H. Snader, “Fundamentals of Individual Risk Rating and 
Related Topics ,” Study Note for Parts 9b and 10, Casualty Actuarial 
Society. 

[ 1 I] Nels M. Valerius, “Risk Distributions Underlying Insurance Charges 
in the Retrospective Rating Plan,” PCAS XXIX, 1942, p. 96. 




