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TRANSFORMED BETA AND GAMMA
DISTRIBUTIONS AND AGGREGATE LOSSES
GARY VENTER
Abstract

Distribution functions are introduced based on power transformations of beta
and gamma distributions, and properties of these distributions are discussed.

The gamma, beta, F, Pareto, Burr, Weibull and loglogistic distributions are:

special cases. The transformed gamma mixed with a gamma yields a transformed
beta.

The transformed gamma is used to model aggregate distributions by match-
ing moments. The transformed beta is used to account for parameter uncertainty
in this model. Calculation procedures are discussed and APL program listings
are included.

The transformed gamma is compared to exact methods of computing the
aggregate distribution function based on the entire frequency and severity dis-
tributions.

INTRODUCTION

For pricing aggregate covers it is useful on occasion to have a way to
estimate the distribution function for aggregate losses from the moments of this
distribution. The usual approximation methods are designed primarily to cal-
culate percentiles of the far right tail for mildly skewed distributions (e.g., see
Pentikainen [9]). The gamma distribution has been suggested for this purpose
(e.g., Hewitt [7]). However, the skewness of the gamma is always twice the
coefficient of variation (sece Hastings & Peacock [6]). Adding a third parameter
to the gamma has been suggested by Seal [10], but the added parameter shifts
the origin, sometimes resulting in the possibility of negative losses, which is
often unsatisfactory. The transformed gamma distribution offers an alternative
third parameter that affects the shape of the distribution but not its location.

The transformed beta and its special cases could be tried in this regard, also.
However, its principal application herein is to deal with one kind of parameter
uncertainty in the transformed gamma. The distributions are introduced below
and then applications are discussed for each.
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TRANSFORMED GAMMA AND TRANSFORMED BETA DISTRIBUTIONS

Transformed Gamma

The gamma function at r is defined as ['(r) = [5 ¢~ 'e”'ds. The percentage
of this integral reached by integrating up to some point x defines a probability
distribution, i.e., the probability of being less than or equal to x. The gamma
distribution usually is given by adding a scalar transformation of the variable;
i.e., the probability of being less than or equal to x is given by the percentage
of the integral that occurs up to Ax for some positive number A. The transformed
gamma distribution adds a power transformation; i.e., the cumulative probability
is given by:

éu)u tr—le—ldt
G(xr,a\) = o)

This distribution will be considered below as a model for aggregate losses
although it may be a reasonable candidate for severity distributions as well. As
it has three parameters it can match three moments of the distribution being
modeled.

The gamma and exponential distributions are special cases given by a = 1
and a = r = 1 respectively. The Weibull distribution is also reached by taking
r = 1. Thus the transformed gamma distribution provides a common general-
ization of the gamma and Weibull distributions and offers the possibility of
improved fits whenever either have been found approximately suitable.

The moments are given by

I'tr + (n/a)))
N T

and the moment distributions

Jox"dG .
E(X™
are given by G(a; (r + (w/a),a,N). The probability density function is

EX" =

an

I'(r)

These formulas require n > — ar but not necessarily an integer.

g(x,r,a,)\) = (M)ur—le—()\_‘)u.
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Finding parameters r, o, and A from data involves the solution of non-linear
equations whether matching moments or maximum likelihood is used. These
equations can be quite readily solved by numerical means, e.g., Newton-
Raphson iteration, as discussed more fully in Appendices A and B.

To match moments it has proven quite practicai to soive for a and r using
the known (e.g., known from sampling or calculated from frequency and se-
verity) coefficients of variation and skewness, which do not depend on A, in a
system of two equations in two unknowns, and then to solve for A using the
mean. Handy equations are:

CVP+ 1 =T+ 2a) T(r) + T(r + l/a)*>, and
(SK x CV?) + 3CV? + 1 = T'(r + 3/0) T(r)? + T(r + Vi),

where CV is the coefficient of variation and SK skewness. See Appendix A for
a discussion of how to solve this system.

Maximum likelihood techniques are discussed in Appendix B.

Once the parameters r,a, and A have been estimated, the expected losses,
higher moments, and percentiles of the aggregate layer from a to b can be read
from the distribution. For example, expected losses for the layer are expected
losses excess of a less expected losses excess of b. Define R(a) to be the ratio
of expected losses excess of a to all expected losses, i.e.,

) = Jolx — a)dG,

R
(a EX)
It is not difficult to show that
fsx de a
R@) = 1 — 2222 — (1 - G(a)).
(@ -~ B0 (|~ 6@

So far this is valid for any positive distribution G. Now using the moment
ratio property of the transformed gamma:

| akI'(r)

R@ =1 = Gla(r + (V) &N = Fe— s

(1 — G(a;r,o,N)).
Thus, if we knew how to compute the probability distribution function G, the
aggregate layer expected losses would follow immediately. G can be calculated
using numerical integration, but there is a series expansion for the incomplete
gamma function that is also fairly quick to use. The incomplete gamma function
is defined as
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IG(x;r) = j e dr + T'(n).
0

Then G(x;r,a,A) = IG((Ax)*;r). From Abramowitz and Stegun [1] formula
6.5.29 (page 262) the expansion

-x r—1 o i

X X
I'(r)y =oicortk

G = £

can be derived. From 30 to 200 terms of this sum generally give acceptable
accuracy. Exhibit 1 lists an APL program for /G.

For cases where the expected number of losses is low, there is a non-
negligible probability that no losses will occur. The transformed gamma can not
account for this because it is an entirely positive distribution. An alternative is
a point mass at zero with the conditional probability on losses greater than zero
being modeled by a transformed gamma. The probability of no losses can be
computed from the frequency distribution. Formulas for computing the moments
of the positive (conditional) distribution from the moments of the entire loss
distribution and the probability of having a loss are given in Appendix C, along
with standard formulas for computing aggregate moments from those for fre-
quency and severity..

Example

Professional liability losses limited to $1 million per occurrence for a small
group of hospitals are believed to have expected losses of $219,316 with
coefficients of variation and skewness of 1.550 and 2.510 respectively and a
probability of .123 of no losses. The aggregate expected losses excess of $1
million will be calculated by the above method.

By the formulas in Appendix C the positive portion of the aggregate distri-
bution has expected losses of 250,000 and coefficients of variation and skewness
of 1.409 and 2.344. Using the method in Appendix A gives parameters r =
2478, oo = 1.470, and A = 1.144 X 1076 for the positive portion. Thus the
entire distribution has the cumulative probability function Pr(L < x) = .123 +
.877 G(x; .2478, 1.470, 1.144 X 10—6). The excess ratio at a = $1,000,000
can be calculated by the methods above to be .0728 for the conditional positive
distribution, so the excess expected losses are $18,200 = .0728 X $250,000
for this piece and .877 X 18,200 = $16,000 for the entire distribution.

Transformed Beta

The beta function B(r,s) may be defined as
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ot ~' dt
B(r,s) = h .

This is a transformation of the more usual definition
1
B(r,s) = f A = wy ! du
0

accomplished by taking t = u + (1 — u)oru =t + (¢t + 1). The beta is related
to the gamma by

F(NI'(s)

Blr.s) = I'er+ s

As in the gamma case a distribution function F may be defined by the partial
integral, i.e.,
(x/B)u [r—l dt

F(xr,s,a,pB) = f

A mm + B(r,s).

This will be called the transformed beta distribution. Its density is

(/BB !
B(r,s)(1 + (x/B)*y ™~

fxir.s,aB) =

For r = 1 the closed form
Fx;ls,a,By=1—- ()™ + D™

results. This is coming to be known as the Burr distribution, and in turn has
two special cases, namely o = | which is the Pareto, and s = 1 which gives
the log transform of the logistic. As the logistic is like a heavy-tailed normal
the loglogistic can be thought of as being like a lognormal with heavier right
and left tails. Its distribution function

. B”
;1,1 =1 -
Fos L1 = 1= s

is of particularly simple form.

The case a = 1, i.e., F(x;r,s,1,3) is a version of the transformed beta that
has been investigated for severity applications. This will be called the general-
ized-F as its special case « = 1, B = s/r gives the F distribution where 2r and
2s are integers. The Pareto is also a special case of the generalized-F given by
r=1
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There is an interesting mixture property of the transformed gamma that
generates a transformed beta, namely that with a population of transformed
gamma random variables with fixed r and o, and with the transformed scale
parameter A” itself gamma-distributed across the population, the compound
process of picking a variable from the population, then taking a realization of
that variable, is a transformed beta process. This is proved in Appendix D.
Several corollary statements follow by taking the special cases of the transformed
gamma (i.e., Weibull, gamma, and exponential) and mixing by a gamma, viz.,

(a) Weibull mixed by gamma yields Burr;
(b) Gamma mixed by gamma yields generalized
(c) Exponential mixed by gamma yields Pareto;
(d) Weibull mixed by exponential yields loglogistic.

F,

Exhibit 2 diagrams this situation.

Robert Hogg proved (a), (b), and (c) separately and Gary Patrik indepen-
dently proved (c). The transformed beta and garr:lma distributions originally
were developed in order to unify these results. Rob¢n Miccolis pointed out that
the generalized-F is a ratio of two gamma variates. This suggested the result,
proved in Appendix E, that if X is transformed beta with parameters r, s, a, B,
then 1/X is also, with parameters s, r, o, B".

If X is transformed beta in r, s, a, B then
E(X") = B" B(r + nla, s — nfa) + B(r,s)

if —ar < n < as and non-existent otherwise. This is an example of a distribution
with unbounded moments for n = as which arises in a natural way as a
combination of distributions with all moments finite. For a = 1 (generalized-
F, Pareto) the moments simplify to
ron r+H)XxX---(r+n—1 Srti—|
X") = = _—.
BEX) = e x6-2 Gon M s

This makes methods of moments parameter estimation quite simple for this
special case. Maximum likelihood parameter estimation for the transformed beta
is similar to that for the transformed gamma as covered in Appendix H. Loss
severity distributions also have been fit by the transformed beta and gamma
distributions by matching sample and formula values of the excess ratio R(a)
in a manner similar to that in Harwayne [5].

As with the transformed gamma, the moment distributions are of the same

form as the original distribution, in fact ‘l
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a

x"dF, ~ EX") = F(a;r + wa, s — nla, a, PB).

) 2

J

[=

Thus, as with the transformed gamma, a calculation of excess losses can be
made if the cumulative distribution can be calculated. This has proven to be
most practically accomplished through numerical integration. Appendix F dis-
cusses one method. The moment distribution formulas for the transformed beta
and gamma show that the Burr and Weibull moment distributions do not main-
tain the original form, i.e., r = 1.

The mixture derivation of the transformed beta provides an interesting way
to deal with so called “parameter risk.” It is fairly plausible that aggregate
losses for a given company (insured or insurer) are distributed transformed
gamma and that the shape parameters r and a are fairly well known and stable
but because of uncertain trend (or other factors) there is substantial uncertainty
about the scale parameter A, which relates to the overall level of expected
results. If A® is gamma distributed in s and -y then the overall aggregate
distribution is transformed beta in r, 5, @, B where B = y"*. It also is not
difficult to show that A® is gamma in s, o means that A is transformed gamma
in s, a, B (see Appendix G). Thus it can be concluded that if aggregate losses
are transformed gamma in r, a, A where A is unknown but is itself transformed
gamma in s, o, 3 (same «) then the aggregate losses are transformed beta in
r,s, o B.

In theory it would be a great coincidence if the uncertainty about A had the
same parameter « as did the aggregate losses themselves. As a practical tech-
nique for quantifying this uncertainty, however, it should not be too burdensome
to use the o already in hand for aggregate losses. There will still be two
parameters, s and B, available to match to the uncertainty the analyst feels is
inherent.

There are several ways in which s and 8 could be determined. Different
values could be tried and the 25th, 50th, and 75th percentile A calculated for
each, with the corresponding percentile of aggregate expected losses
I'(r + /&) + AI'(r) following. These can be compared with the uncertainty
that seems inherent in the overall level of losses. The latter uncertainty can be
estimated by trying to combine the uncertainties in the trend, development, and
other factors used to estimate the overall level. The regression statistics used in
developing these factors may be helpful if regression was used.

Another approach to measuring the distribution of X\ is using industry loss
ratios. Expected losses for an aggregate loss distribution with cdf G(x;r,a,N)
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are I'(r + (1/a)) + AI'(r). Thus, for fixed r,«, the reciprocal of the aggregate
losses, and thus the reciprocal of the loss ratio, is proportional to A. Therefore
if N is unknown but is a realization of a random variable A which is transformed
gamma in s, o, B, where a is fixed, the shape parameter s can be estimated by
looking at the historical distribution of loss ratio reciprocals. This would measure
some of the variation that would occur even if A were known, however. An
alternative is to look at some broader base of comparable experience, such as
the line for the industry or state or class in question where the process variance
is minimal and hence the principal source of variation is the parameter uncer-
tainty. Depending on the similarity between the company in question and the
broader base as to projection methods for trend and loss development, the
stability of the historical data base, and so forth, this approach may give a
reasonable estimate of the parameter uncertainty.

Estimating B then could proceed by matching the formula E(1/A) for the
transformed gamma distribution to the expected value of 1/A calculated for the
year and company in question. For A with cdf G(\;s,a,B) the E(1/A) is
B I'(s — 1/a) = I'(s) from the transformed gamma moment formula.

Borrowing loosely from our earlier example, suppose a malpractice risk has
aggregate losses distributed according to the transformed gamma with r = .2478,
a = 1.470 and E(1/A) = 1 =+ (1.144 X 107°), where A is transformed gamma
in s, 1.470, B. Suppose the previous four years of industry malpractice expe-
rience produced loss ratios of .505, .750, 1.001, and 1.357, which have recip-
rocals 1.980, 1.333, .999, and .737. The reciprocals average 1.262 and have
an unbiased sample standard deviation estimate of .5370 for an estimated CV
of .4255. The formula

1+ CV? =T + 2/a) T'(s) + T'(s + 1/&)* then becomes

1.181 = I'(s + 1.36) ['(s) + I'(s + .68)%,
which can be solved numerically to find s = 2.597. Then

1+ 1.144 x 107¢ = E(1/A) = B (s — l/a) = T'(s)
= B I'(2.597 — .68) + I'(2.579)

can be solved directly to yield § = 1,288,500. From the transformed beta in
r=.2478, s = 2.597, a = 1.470, $ = 1,288,500 expected losses of

BIGr+ V) T'(s ~ l/w)
I(r) T'(s)

can be calculated, confirming the calculation of B.

= 250,000
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The expected losses excess of $1 million in the aggregate increase substan-
tially when this additional uncertainty is included. For this transformed beta an
excess ratio of .1348 can be computed at $1,000,000 which yields excess
expected losses of $33,700 compared to .0728 and $18,200 for the transformed
gamma.

The great disparity between these figures comes from the wide divergence
in loss ratios in the period studied. If the uncertainty in A really is so great that
next year's loss ratio for the whole industry can come out anywhere in the range
.50 to 1.35, then there is a much greater chance that total losses for a small
segment of the industry will exceed the target $1 million.

For other more stable lines a similar analysis would show a much smaller
difference. In those cases there is a danger that the potential variation in level
would be understated by looking at industry loss ratios. Swings in calendar year

ratios may be dampened by reserve changes. Also, a particular sector of the

industry would probably have wider variation than the total industry in the
degree to which the proper level could be projected. This would be important
if the company under study were concentrated in one area. The selection of the
parameter s probably should be made with a good deal of judgement because
of these considerations.

SUMMARY AND EXTENSIONS

The above gives a method of approximating the distribution function of
aggregate losses from the moments of that distribution, based on the transformed
beta and gamma distributions. Since a distributional assumption is involved,
the method is likely to be less precise than the exact methods of Adelson [11],
Panjer [12] and Heckman and Meyers [13]. Those methods do, however, require
more input information, namely the underlying frequency and severity distri-
bution functions, and they also require substantially more computation. As
computing becomes faster and less expensive and as good parameterized fre-
quency and severity distributions become available those methods become in-
creasingly viable, and the assumption of a distributional form for aggregate
losses becomes more avoidable. Methods based on moments only are nonethe-
less of definite value at present.

The transformed beta distribution is a good candidate for casualty loss
severity distributions, because it generalizes the Pareto and Burr which have
been used with moderate success. The problems of trend and development by
layer of loss have yet to be settled entirely in casualty lines, however, especially
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with regard to having factors that are independent of distributional assumptions.
Thus, there currently is a fair amount of uncertainty as to casualty severity
distributions.

The transformed gamma may be useful in loss severity, for example, in
workers: compensation. Also, the inverse transformed gamma, i.e., the distri-
bution of ¥ when X = 1 + Y is transformed gamma, is a heavy-tailed distribution
which may have application to casualty loss severity. This distribution function
is:

(672950 t—r—le—l+l
G'(y) = J —_—— dt
) 0 ING)

and EX") = N"T'(r — n/o) =+ T'(r) for n < ra.

A problem that sometimes arises with maximum likelihood estimation with
these distributions is that no maximum exists. Usually this happens because the
maximum likelihood, given a, increases as o decreases. After some point the
increase becomes negligible however. One alternative in this case is to pick a
“low enough” value of o and maximize the likelihood fixing that value. This
usually gives much better fits than the Weibull, gamma, Burr, etc., in these
cases.

Another alternative is that there may be other functions that are limiting
values of these distributions. For instance, in the Burr case, F(x) = | — ((x/
B)* + )7, small & often leads to large B but with (x/B)* near zero for the
range of interest, so 1 + (x/B)* is close to ¢*"®* and F(x) is approximately 1
— ¢7*“®" which is a Weibull. Conversely, small B and large a make (x/8)
very close to (x/B)* + 1, relatively speaking, so F(x) is approximately 1 — (x/
B)~*, which is a non-shifted Pareto. Similar relationships may occur for the
general cases.

A limitation of the above methods is that the transformed gamma does not
seem able to take on any combination of moments. For example, it appears that
the coefficient of skewness must be greater than the coefficient of variation (CV)
if CV > 1.25. In the gamma case the coefficient of skewness is always twice
the CV. Thus, the transformed gamma allows a fair amount of departure from
gamma-ness but not complete latitude. Appendix J discusses this problem and
suggests alternate approaches.

Much of the interest in the gamma stems from a 1940 theorem of Lundberg
[14] which shows that under certain conditions the negative binomial frequency
leads to an approximately gamma aggregate distribution. Since aggregate dis-
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tributions seem to be positively skewed for the most part, but do not always
have the skewness double the CV, gamma-like distributions allowing some
deviation from the gamma are thus appealing candidates for this purpose.

Exhibit 3 gives the results of a test of the transformed gamma against an
exact calculation of an aggregate distribution using the characteristic function
method. The severity distribution is piecewise linear. Approximating the severity
by a discrete distribution also permits a comparison to the recursive method of
Adelson. and Panjer. Intervals of $500 were chosen for this discrete approxi-
mation. Details are provided in Exhibit 3. The results show that the two exact
methods are extremely similar, indicating that not much is lost by the discrete
approximation to severity. The transformed gamma also is reasonably close over
a wide range of loss sizes, confirming, at least in this one case, the usefulness
of this simplifying approximation.
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EXHIBIT 2

TRANSFORMED GAMMA MIXED BY GAMMA
WITH SPECIAL CASES

L f&w e dt L J'ox e dr
L) Jo L'(r) Jo
(Transformed Gamma) —— (Gamma)
}r =1 II‘ =1
| — e . 1 —e™™
(Weibull) ——— (Exponential)

If 0 is distributed Gamma in s, y:

1 (x/B)a tr—l dt l (x/3) tr—l d[
B(r,s) fo ¢+ 1™ B(r,s) ,[) (t+ D
(Transformed Beta) £§ (Generalized-F)
r=1 r=1

=B+ D" —— 1— @B+ 1)

=1

(Burr) (Pareto)

where g = y'*
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EXHIBIT 3
PART 1

AGGREGATE LOSS DISTRIBUTIONS
COMPARATIVE SUMMARY

Characteristic Recursive Transformed
Aggregate Function Method Method Gamma
Loss Cumulative Excess Cumulative Excess Cumulative Excess

($000) Probability =~ Ratio  Probability = Ratio  Probability  Ratio

25 .0508 9016 .0516 9016 .0621 .9031

50 1291 .8107 1298 .8107 1260 8125

75 .2009 1273 .2015 7272 .1895 .7283
100 .2676 .6507 .2683 .6507 .2520 .6503
125 .3289 .5806 .3295 .5806 3129 .5786
150 .3843 .5163 .3848 5163 3717 5129
175 4341 .4573 .4346 4573 .4280 .4529
200 4788 .4030 .4793 .4029 4817 .3984
225 .5189 .3529 5193 3529 5324 .3491
250 .5548 .3066 .5552 .3066 .5801 .3047
275 .6034 .2642 .6040 .2642 .6245 .2650
300 .6556 2273 .6561 2273 .6658 .2295
325 .7008 1951 .7013 1951 . .7039 1981
350 7405 1672 ..7408 .1672 7388 1702
375 7749 .1431 7152 .1431 1707 .1457
400 .8047 1221 .8049 1221 .7995 .1243
425 .8303 .1039 .8305 .1039 .8255 .1055
450 .8524 .0880 .8526 .0880 .8488 .0893
475 8714 .0742 .8716 .0742 .8696 0752
500 .8878 0622 .8879 .0622 .8881 .0631
525 .9045 .0518 .9047 .0518 .9043 .0528
550 .9201 .0430 .9203 .0430 9186 .0439
575 9332 .0357 .9333 .0357 9310 .0364
600 .9442 .0296 .9443 .0296 9418 .030t
625 9534 .0245 .9535 .0245 9511 .0247
650 9611 .0202 9611 .0202 .9592 .0203
675 .9675 .0167 .9675 .0167 .9660 .0165
700 9728 0137 9729 0137 9718 0134
725 .9773 0112 9773 .0112 .9768 .0109
750 .9810 .0091 .9810 .0091 .9809 .0088
775 .9844 .0074 .9844 .0074 .9844 .0070
800 .9873 .0060 9873 .0060 9873 .0056
825 .9897 .0048 .9897 .0048 .9897 .0045

850 9916 .0039 9916 .0039 9917 .0035




170 BETA AND GAMMA

EXHIBIT 3
PART 2

AGGREGATE LOSS DISTRIBUTIONS
COMPARATIVE ASSUMPTIONS

Frequency: Poisson A = 13.7376
Piecewise Linear CDF

Limit Cumulative Limit Cumulative
(000) Probability (000) Probability
1 .38935 25 .85690
5 .77870 35 .87927
6 .78438 50 .90280
7 78981 75 192739
8 .79498 100 .94256
9 .79993 125 95277
10 .80466 150 .96009
12.5 .81564 175 .96556
15 .82553 200 96979
17.5 .83449 225 97316
20 .84264 250 .97590
Discrete PDF

Amount Probability

500 .38326640625
1000 03041796875
1500 to 4000 .04866875 each 500
4500 1054731628
5000 .019691497
5500 to 249,000 Piecewise linear probability

at each N = 500k from N — 250 to N + 250
249,500 .0000685
250,000 10241137

Moments

Coefficient of

Mean Coefficient of Variation Skewness
Severity 18,198 2.6600 3.6746
Aggregate 250,000 7667 1.0744

Transformed Gamma Parameters

r: .5613125
a: 1.8300318
A1+ 417896.414
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" APPENDIX A

SOLVING TWO EQUATIONS

Many systems of two equations in two unknowns, including the transformed
gamma moment system in the text, can be solved by Newton-Raphson iteration,
with the partial derivatives taken numerically. The numerical partial derivative
of flx,y) with respect to y, for example, is (fix,y(1 + A)) — fix,y)) + yA,
where A is a small number; e.g., 1077, Because of limits to computer accuracy,
A should not be too small, e.g., A = 10™%° would be too small for most
computer installations. This method is quite useful when the partials are not
available in closed form or are excessively intricate.

Given fix,y) and g(x,y), initial estimates xo and yp and derivatives f, f;, g,
g, the iteration proceeds by setting

Ximn = Xi — (fgy — g + (figy — &)
Yier = yi — (gfc — foo) + (figy — &Y

where the functions and derivatives are evaluated at (x;,y;). See Conte and de
Boor (3] page 86 for details.

Exhibit Al gives an APL system for this procedure. The user interactively
defines the equations to be solved. Any user-defined functions may be called in
this process. A sample run of the system is shown in Exhibit A2.
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VDELUXERR{{]V

[11
{2]
£3]
[&]
[5]
{61
{71
[8]
[9]
{101
{111
[12]
(13]
[14]
[15]
[161
[171
(18]
{193
[20]
211

(1]
2]
(3]
[4]
(5]
{6]
[71

vV DELUXENR;AA;A8B;LOOPTOL; DELTOL;MODEFLAG ;PFQA; PFQE;PGQA;PGQB
AWRITTEN BY STAN STIEFEL

'SPECIFY ONE FUNCTIOHAL RELATION. . .°'

'USE THE VARIABLE NAMES A AND B FOR THE UNKNOWNS.'
'FQ' MAKEFX I

'SPECIFY THE OTHER RELATION'

'GQ' MAKEFX [

'ENTER INITIAL VALUE FOR A'

A<l

'ENTER INITIAL VALUE FOR B

B«{}

MODEFLAG+14,DELTOL-DELTOL<«LOOPTOL«0.00001

*JOULD YOU LIKE TO USE DEFAULT CONDITIONS (0)*

'OR SEE A MENU OF OPTIONS (1). . .0 OR 1°

2[i/ *HMERU"
LP:PARTIALS DELTOL

A«A-LA+(DET(2 2 p(A FQ B),PFQB,(A GQ B),PGQB))+DET(2 2 pPFQA,PFQB,PGQA,PGQB)

2MODEFLAG/'PARTIALS DELTOL!

B+«B-AB+(DET(2 2 pPFQA,(A FQ B),PGQA,(A GQ B)))+DET(2 2 pPFQA,PFQB,PGQA,PGQB)

*(V/LOOPTOL<I(AA aB)¢(A,B)+0=A,B)/LP

TA: ,A B: ';B
OvA<DEX 2 2 p'FQGQ*
v

VHAKEFX[OJv

v NAME MAKEFX RELAT;X;TITLE
+(0='="¢RELAT)/DID

RELAT[RELAT1'=*]«t-?
DID:TITLE«'RSLT',NAME,'+A ',NAME,' B'
RELAT+'RSLT',NAME, '« ,RELAT
RELAT+RELAT, (0.5xX+ |X«(pTITLE)-pRELAT)p"' *
TITLE«TITLE, ((pRELAT)-(pTITLE))p" '
(wa<0FX TITLE,[0.5] RELAT

v

Ll

VINNVO ANV vi3d



PAGE 2
YMENULOIV
¥ MENU
£1] 'FOR PURPOSES OF TAKING HUHMERICAL DERIVATIVES, FUNCTIONS WILL BE EVALUATED AT A,
[2] *AA AND AB ARE SPECIFIED AS FRACTIONS OF A AKD B. . .1E™5 IS TIE DEFAULT.
£3] DELTOL+0
[4] *ITERATION WILL BE CONSIDERED COMPLETE WIEN BOTH A AND B HAVE CHANGED BY LESS THAN SOME FRACTION OF THEMSELVES'
[5] *DEFAULT IS 1E™S5. PLEASE SPECIFY THE FRACTION.'
[6] LoOPTOL+0
[7] *SEQUENCE OF CALCULATION CAN BE EITHER OF TWO OPTIONS'
8] t(0) GET PARTIALS, GET NEW A, GET HEW B.'
[9l *(1) GET PARTIALS, GET NEW A, GET PARTIALS, GET NEW B.'
[10] *DEFAULT 1S 0, PLEASE SPECIFY 0 OR 1.!'
[11] MODEFLAG+0O
v
VPARTIALSIOlv
v PARTIALS XXXX;2Z
[1] PFQA«((A FQ B)-((A-2) FQ B))#Z«1ET10f J2Z+XXXXxA
[2] PGQA+((A GQ B)-{((A-2) GQ B))+2Z
[3) PFQB«({(A FQ B)-(A FQ(B-2)))#2«1ET10[ | Z¢XXXXxB
(4] PGQB«((A GQ B)-(A GQ(B-2)))+Z
v
vyDET{OlV
9 Y+DET X
[1] Y+ (X[131)xx[2;23)-x{1;2)xx[2;1]
v

EXHIBIT Al

PLEASE SPECIFY THE FRACTIOHN.'

VIHINVO ANV Vviad

gLl
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EXHIBIT A2

vevidlv
¥V Y«A CV R
[1] Y(1T1+R)x($T1+R+23A)+( 171 +R+#A)*2
[2] Y«(Y-1)%0.5
v

vskvl0lv

V Y«A SKVW R
1] Y((1T1+R)*2)x( ! T1+R+3#A) (1 1+R+3A)*3
[2] Y«Y+2-3x( 38 1+R)x( ! 1+R+23A) (1T 1+R+3A) %2
[3] Y«Y:(A CV R)*3

v

DELUXENR

SPECIFY ONE FUNCTIONAL RELATION. . .

USE THE VARIABLE NAMES A AND B FOR THE UNKHOWNS.
(A CV B)=1.409

SPECIFY THE OTHER RELATION

(A SKW B)=2.344

ENTER INITIAL VALUE FOR A

.

1.2
ENTER INITIAL VALUE FOR B

.3

WOULD YOU LIKE TO USE DEFAULT COHDITIONS (O0)
OR SEE A MENU OF OPTIOHS (1). . .0OR 1

:
0

Ar 1447 B: 0.,2478
A CV B

1.40¢9
A SKVW B

2.344

vSKEW2[0O)v
vV Y+«A SKEW2 R
1] Nel T1+R+%A
[2] Me{~1N)+R+¢A
[3] O«!1(-N+1)+R+tA
[4] S«(-1N)+R+3:A
[51 T+!(-N+1)+R+3%A
(6] U+(x/S+M)x(T+0)
[71] Y+((3171+R)*2)xU+ (171 +R+5A)*2
[8] YeY+42-3x( 1 1+R)x( 1 1+R+28A)4( 1 1+R+2A) %2
[9] Y«Y+(A CV R)*3
v




BETA AND GAMMA 175

APPENDIX B

MAXIMUM LIKELIHOOD FOR THE TRANSFORMED GAMMA

Maximum likelihood in the case where there are no problems of truncation
or censorship of the sample reduces to one non-linear equation to solve for a,
then linear equations for r and A. The a equation is somewhat intricate but is
solved easily numerically. Given a sample y;, i = 1 to n, the likelihood function
is
n

L(r,o,N) = [ o 3> e™ ™ = T'(r) and

i=1

InL(r,a,A) =nlna +narinh —ninT()
+ (ar— ) ZIny = A\* >y
i—1

Setting the partial derivatives of this to zero, and denoting the derivative of
In I'(r) by U(r) yields the likelihood equations:

@ Y(r) —Inr=alny

by r=y"+a( Iny-y

@© A=0%+n"™ _

Substituting for r in (a) via (b) gives a single equation for a which when
solved allows r and \ to be calculated from (b) and (¢). This is a generalization
of the method found in Hachemeister [4] for the gamma distribution. Note that
to solve (a),

Y

—Iny”
% in

y)

n

—

1 -
- = = In y;,
ﬂi=1 ny nlzl nyi

1 n
andy“lny=; zly?lnyf,

must be calculated from the sample at each iteration.

As suggested on page 152 of Aquino [2], differentiating Abramowitz and
Stegun’s [1] formula 6.1.34 (page 256) gives the series approximation

26
U@) = T@2) X ke 270,
k=1

where ¢; to ¢z6 are as shown in Exhibit B1. This expansion gives more than 13
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place accuracy on [1,2] and the recursive relation Y(1 + z) = {i(z) + 1/z can
be used outside of this interval.

To solve equation (a) with (b) substituted for r we have an equation flor) =
0 where fis calculable by computer or calculator. This can be solved iteratively
by numerical Newton-Raphson:

Start with a guess . Then let

' _ f(Oli)
Oir) = @ fo; (1 + A)) — )
Qi
. A
1.€. Oiv1 = I =
( Ao (1 + A)) i )
f(Oli)

where A is small, e.g. 107",

A reasonable starting value oo usually is given by calculating the sample
ratio of the coefficient of variation over half the coefficient of skewness, as this
is greater, less than, or equal to 1 when « is.

As an alternative, the secant method

_ Lo (i — a—1)

fla) = flai-1)
can be used to solve for a. This involves only one computation of f each
iteration, so it may be faster than Newton-Raphson iteration.

Qi+1 = QO
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EXHIBIT Bl

SERIES EXPANSION FOR )(2)

26
V(@) =T@) X ke
k=1

Ck

—1.00000
—0.57721
0.65587
0.04200
—0.16653
0.04219
0.00962
—0.00721
0.00116
0.00021
-0.00012
0.00002
0.00000
—0.00000
0.00000
—0.00000
—0.00000
0.00000
—0.00000
—0.00000
0.00000
—0.00000
0.00000
0.00000
—0.00000
—0.00000

00000
56649
80715
26350
86113
77345
19715
89432
51675
52416
80502
01348
12504
11330
02056
00061
00050
00011
00001
00000
00000
00000
00000
00000
00000
00000

000000
015329
202538
340952
822915
555443
278770
466630
918591
741149
823882
547807
934821
272320
338417
160950
020075
812746
043427
077823
036968
005100
000206
000054
000014
000001

177
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APPENDIX C

AGGREGATE MOMENTS

A. In terms of frequency and severity moments, assume individual claim sizes
are independent, identically distributed, and independent of the number of
claims.

Let N denote number of claims, X claim size, L aggregate losses, . the
mean, ¢ the standard deviation, -y the coefficient of skewness, ¢ the coef-
ficient of variation, and

N, = EV = p)
M

Then

L = Hxpv

" oi = pavok + (pxow)’
VL0 = MnYxOx + 3pxO¥08 + RIYAOw
O% = pxpa(cx + No)
Yo = (Yxcx + 3ciN2 + N3) = Vipa(cx + No)°
ci = (ck + N2) = pw

B. Moments of conditional (positive) distribution in terms of moments of entire
distribution and probability of losses being non-zero
1 — pwhena=0
F(a)=Pr(LSa)={O whena <0
(1 — p) + pG(a) when a > 0

Then
Rr = plc
K = Wr +p

cf;=pc%+p—l

_Pyrct+(p— D@pci + p —2)
- 3
cG

Yo




€1l
£2]
£3]
(X3
[s])
(6]
[7)
[8]
[§:3]
f10]
[11)
[12]

EXHIBIT Ci

YCONDITMOL]Y

v X+P CONDITHO Q;TERMI;TERHZ;COEFVAR;GAHMA

AWRITTEN BY VICTOR PUGLISI
THIS PROGRAM CALCULATES CONDITIONAL HOMENTS IN THE FORM OF THE COEFFICIENT OF VARIATION (CV) AlD THE SKEWHNESS
(GAHMA) BASED UPON RISKMODEL OUTPUT FOR THE PART OF THE DISTRIBUTION GREATER TUHAN O.
IT TAKES AS LEFT-HAND ARGUMENT THE PROBABILITY OF CLAINMS BEING LARGER THAN 0, CURRENTLY FOUND AT THE TOP OF THE
RISKMODEL OUTPUT FOR EACH LAYER DENOTED BY 'PROEABILITY OF LOSS' AND FOR RIGHT-HAND ARGUIIENT REQUIRES A TWO
ELEMENT VECTOR CONSISTING OF THE COEFFICIENT OF VARIATION AND THE COEFFICIENT OF SKEVNESS FOR EACH MAJOR GROUP,.
THESE ARE FOUND IN COLUMNS & AND 9 RESPECTIVELY OF THE RISKMODEL OUTPUT.

COEFVAR«((PxQ[1]*2)+P-11%0.5

TERMI«(P*2)xQ{2])xQ[1]*3

TERM2+(P-1)x(3xPxQ[11%2)+P-2

GAMMA+( TERM1+TERN2) $ COEFVAR*3

X+COEFVAR, GANNA

v

VINWKVO ANV VLidd

6L1
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APPENDIX D
TRANSFORMED BETA IS TRANSFORMED
GAMMA MIXED BY A GAMMA

The transformed gamma density function
axur x(xr—-l e—)\ﬂ xa

I'(r)

glx;r,a,l) =

can also be parameterized as a 0x* " 'e”** + I'(r), taking @ = A*. Given a
family of such random variables with a and r fixed and 0 itself gamma distrib-
uted with parameters s and v, i.e., having density v° 6°' ¢7*° + I'(s), then
the compound process is transformed beta.

To demonstrate this the density for the compound distribution will be cal-
culated. This is the probability-weighted average of the densities of the family,
that at x equals: :

Jw a erxar—l e—t’l).m 'Y.res-l e—‘ye d9

o I'(r) I'(s)
s _ar—1 ©<
= (l‘y X r+s—1 —0(xaty)
T TG Jo e

which, after the change of variable & = 0(x® + +y), becomes

a_ys x(xr—l o ( ¢ >r+s—l e_¢ dd)

I Jo \x™ + X+ oy
s ar—1 =
= (l'y X . r+s—1 —¢
T e + v J, o7t an

s _ar—1.-

ay’ x

TTOTEHEE

'+ 5

s _or—I

' O S
Brs)x™ + )
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Now defining 3 by y = 3* gives for the compound density

aBu: ar—1 _ B—u(r+s) gBm.\' xur—l
B(r,s)(x™ + B B(rs) (B + 1)

= (/B)B) ™" + B(r,s)(/B)* + D

which is the transformed beta density.

APPENDIX E
RECIPROCAL OF TRANSFORMED BETA VARIATE IS TRANSFORMED BETA

LetY = )l( where X has cdf F(x;r,s,a,().

NowY=agaz=Xz={/la)soPr(Y=a)=1—-Pr(X < (l/a)

(ap)« tr—l
== B(r,S) f [(1 + t)’”] dt.

Let u = (1/1); t = (1/u); dt = —dulu’.

u'™" du
A+ (Vw™* ot

(ap)a
T = =1+
hen Pr(Y < a) = 1 Brs) f

l ES 1+s—2
T . [(u ¥ 1)’“] du

1 (ap)a ux—l
" B(rs) L [(u ¥ 1)’“] du.

Therefore Y has cdf fly;s,r,a,1/B).

181
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APPENDIX F

NUMERICAL INTEGRATION BY GAUSSIAN QUADRATURE

Gaussian quadrature is a method of numerical integration that estimates the
integral by taking a weighted sum of the value of the function being integrated
at several points. In general

b _ n
[ 1oy ~ 252 3 wion,

where 2y; = (b — a)x; + b + a and W, and x; are somewhat complex to
calculate. Exhibits F1 and F2 give W; and x; for a few values of n. See
Abramowitz [1] pages 916-919 for others. Hildebrand-[8] discusses the math-
ematical background.

This approach works best for functions that can be closely approximated by
polynomials of degree n.

The integration of the transformed beta distribution function is more accurate
if two transformations are made. First the mapping u = #/(t + 1) transforms
the integral to

xa/xa+ Ba
For,s,a,B) = f [ (1 = w™ ") du + B@r,s)
0

xC(

which can be taken as the definition of the function /B. However, the approxi-
mation of this integral by the above quadrature formula is not close for small
values of r and s, e.g., below 1. A recurrence relation was derived to express
IB(x;r,s) as a function of IB (x;r + 1, s + 1), putting the integral to be solved
in a more satisfactory area. This relationship is rsIB(x;r,s) = xX'(1 — x)° (s ~ (r
+ 5)x) + (r + s+ 1)(r + 5) IB(x;r + 1, s + 1), and was derived by George
Phillips from Abramowitz’s [1] formulas 26.5.2 and 26.5.16 on page 944. In
practice this formula is applied thrice to-get to the » + 3, s + 3 level. Exhibit
F3 gives a series of APL programs which performs the calculation of F(x;
r,s,o,B).




BETA AND GAMMA 183

EXHIBIT F1

ABSCISSAS AND WEIGHTS FOR n POINT
GAUSSIAN QUADRATURE

n=6
Xi W,'
*+0.23861 91860 83197 0.46791 39345 72691
*0.66120 93864 66265 0.36076 15730 48139
*+0.93246 95142 03152 0.17132 44923 79170
n=10
+0.14887 43389 81631 0.29552 42247 14753
*+0.43339 53941 29247 0.26926 67193 09996
+0.67940 95682 99024 0.21908 63625 15982
*+0.86506 33666 88985 0.14945 13491 50581
*0.97390 65285 17172 0.06667 13443 (8688
n=24
+0.06405 68928 62606 0.12793 81953 46752
*0.19111 88674 73616 0.12583 74563 46828
*+0.31504 26796 90163 0.12167 04729 27803
*+0.43379 35076 26045 0.11550 56680 53726
+0.54542 14713 88840 0.10744 42701 15966
+0.64809 36519 36976 0.09761 86521 04114
+0.74012 41915 78554 0.08619 01615 31953
*+0.82000 19859 73903 0.07334 64814 11080
+0.88641 55270 04401 0.05929 85849 15437
+0.93827 45520 02733 0.04427 74388 17420
*0.97472 85550 71309 0.02853 13886 28934

+0.99518 72199 97021 0.01234 12297 99987
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EXHIBIT F2
n =96
X; wi xi Wi

1 —.999689503883231  .000796792065552 49 .016276744849603  .032550614492363

2 —.998364375863182  .001853960788947 50 .048812985136050 .032516118713869

3 —.995981842987209  .002910731817935 51  .081297495464426  .032447163714064

4 —.992543900323763  .003964554338445 52 .113695850110666  .032343822568576

5 —.988054126329624  .005014202742928 53 .145973714654897  .032206204794030

6  —.982517263563015  .006058545504236 54 .178096882367619  .032034456231993

7 —.975939174585136  .007096470791154 55 .210031310460567 .031828758894411

8  —.968326828463264  .008126876925698 56 .241743156163840  .031589330770727

9  —.959688291448743  .009148671230783 57  .273198812591049  .031316425596861
10 —.950032717784438  .010160770535008 58  .304364944354496  .031010332586314
11 —.939370339752755  .011162102099838 59  .335208522892625 .030671376123669
12 —.927712456722309  .012151604671088 60  .365696861472314  .030299915420828
13 —.915071423120898  .013128229566962 61  .395797649828909  .029896344136328
14 —.901460635315852  .014090941772315 62 .425478988407301  .029461089958168
15 —.886894517402420  .015038721026995 63 .454709422167743  .028994614150555
16  —.871388505909297  .015970562902562 64 .483457973920596  .028497411065085
17 —.854959033434601  .016885479864245 65  .511694177154668  .027970007616848
18 —.837623511228187  .017782502316045 66  .539388108324357  .027412962726029
19 —.819400310737932  .018660679627411 67  .566510418561397  .026826866725592
20 —.800308744139141  .019519081140145 68  .593032364777572  .026212340735672
21 —.780369043867433  .020356797154333 69  .618925840125469  .025570036005349
22 —.759602341176647  .021172939892191 70  .644163403784967  .024900633222484
23 —.738030643744400 .021966644438744 71  .668718310043916  .024204841792365
24 —.715676812348968  .022737069658329 72 .692564536642172  .023483399085926
25 —.692564536642172  .023483399085926 73 .715676812348968  .022737069658329
26 —.668718310043916  .024204841792365 74 .738030643744400 .021966644438744
27  —.644163403784967  .024900633222484 75 .759602341176647  .021172939892191
28  —.618925840125469  .025570036005349 76 .780369043867433  .020356797154333
29 —.593032364777572  .026212340735672 77  .800308744139141  .019519081140145
30 —.566510418561397 .026826866725592 78  .819400310737932  .018660679627411
31 —.539388108324357  .027412962726029 79  .837623511228187  .017782502316045
32 —.511694177154668  .027970007616848 80  .854959033434601 .016885479864245
33 —.483457973920596  .028497411065085 81  .871388505909297 .015970562902562
34 —.454709422167743  .028994614150555 82  .886894517402420  .015038721026995
35 —.425478988407301  .029461089958168 83  .901460635315852  .014090941772315
36 ~.395797649828909  .029896344136328 84  .915071423120898  .013128229566962
37  —.365696861472314  .030299915420828 85  .927712456722309 .012151604671088
38 —.335208522892625  .030671376123669 86 .939370339752755  .011162102099838
39 —.304364944354496  .031010332586314 87  .950032717784438  .010160770535008
40  —.273198812591049  .031316425596861 88  .959688291448743  .009148671230783
41  —.241743156163840  .031589330770727 89  .968326828463264  .008126876925698
42 —.210031310460567 .031828758894411 90  .975939174585136  .007096470791154
43 —.178096882367619  .032034456231993 91  .982517263563015  .006058545504236
44 —.145973714654897  .032206204794030 92 .988054126329624  .005014202742928
45  —.113695850110666 .032343822568576 93 .992543900323763  .003964554338445
46 —.081297495464426  .032447163714064 94 .995981842987209  .002910731817935
47  —.048812985136050 .032516118713869 95  .998364375863182  .001853960788947
48  —.016276744849603 96  .999689503883231  .000796792065552

.032550614492363
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EXHIBIT F3

VTBXRIL]V
¥ Y«X TBXR AGD;B;A;G;D

[1] ATRALSFORHMED BETA XS RATIO AT X TIMES HEAN

[2]  aA«aGD(1]

[3) G+AGD[2]

(4] D+AGD[3]

(5] B+(G CBETA D)+(G++A) CBETA D-tA

f6] Y+X TBETAXR A,B,G,D
v

VTBETAXRIUIV
¥ Y+X TDETAXR ABGD;A;B;G:D;li;L
[1] WTRANSFORMED BETA XS RATIO PARANS A B G D
(2] A+ABGD(1] -
£3] B+ABGD[2])
[a] G+ABGD[3]
(51 D+ABGD([4]
(6] LeL#1+L+(X4B)*a
[7] Y+(E+«(G+$A) CBETA D-#+A)-L IB(G++A).D-tA
£3] Y+Y-Xx(#B)x(G CEETA D)-L 1B C,D
[9] Y+Y4H
v

VCLETA[LI]Y

v YeV CCETA U
(1) ACONPLETE BETA OF V AND U
2] Y+ (VIVHW) x Vi Vel

v

visllv

7 ReX ID AB;Y1:;Y2;Y3;Y4;Y5;A;D
1 a URITTEN BY GEORGE PUILLIPS

1 A+«AB(1])x1 {cc 0

] B+ABL[2]

3 Y1+T14x\{X,1-X)*AB

] Y2+ ((B-1)+13)-Xx(A+B-2)+2x13

3 Y3+(Xx1-X)* 0 1 2

] Ya+lox\(A+5=1)+16

] ¥5¢x\(1.(A+1) . A+2) %] (B+1).B+2
] Re(eAxB) x (Y x+/Y2x¥3Ix¥4[1 3 5)8¥5)+(V4(714¥5033)x(X INCBETA(A+3),B+3)
v

YIKCBETALOYY
9 RST+A INCBETA VU

1] AYRITTER GREGG EVANS

2] RST+1 GSQD *(X*Vi[{1]-1)x(1-X)*vu[2])-1/DX"*
v

vGsQDILIY

V RST+X GSQD Y;A;B;C:D;E;E

AURITTEN 8Y GRECG EVALS

E+(E+2.(22p 1 0)\(O 11)4(11 0)90,01.5] De(10%10)x~RerCz 14 YI\Qe(ANYZ1 /1) /Y
Ce'(x42)%*,E,0tE[R)+(pD+. (T1+20;13},2+(B,(pR)+B+(+/~L)+10)pD+(0=E)}/1p. E)p'(0.5xXxp+1)"
RST++/(2++/GSGDVAR[2;])xGSQDVAR{2;]1x2L.0¢4+GSQDVAR[] ;]

v

— -
0N
[rwraren
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APPENDIX G

RELATIONSHIP BETWEEN GAMMA AND TRANSFORMED GAMMA

To show: A® is gamma in s, vy if and only if A is transformed gamma in
Y23

5,0, where B = v
Note that Pr(A < A\) = Pr(A® = \9)
= G(\%s,1,y)

YA
[ e
o

(BN)e
= f £t e~ dt = G(\;s,a,B).

0
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APPENDIX H
MAXIMUM LIKELIHOOD ESTIMATORS FOR
TRANSFORMED BETA PARAMETERS

Given a sample x;, . . ., x,, fitting the parameters r, s, o, and 3 of the
transformed beta by maximum likelihood involves finding the maximum of the
log-likelihood function

InLr,s,0, B)=nlnl(r+s)+nha+(ar—1) 2 Inx
i=1

”n

—(oarinB+nlnl@E) +nlnl) + (r+5) X In(l + x/B)*
i=1

As with the transformed gamma let the derivative of In ['(x) be denoted Ui(x).
Dividing the partials of In L by » and setting to zero gives the following 4
equations:

(n: Y(r + 5) = () + In(T + B/x)%)

(s): (r + ) = W(s)-+ In(T + x/B))

(@): Ve + rInGxi/B) = (r + s)(InC/BNBR/x)™ + 1)~
B):r=(r+ T+ B

where the bar denotes the average over the sample of the barred function.

The (o) and (B) equations are linear in r and s, so they can be solved to
yield r and s as functions of o and 3. These can be substituted into the (r) and
(s)- equations to give two non-linear equations in two unknowns (a,f3) which
can be solved by the methods of Appendix A.

An APL system for solving these equations is shown in Exhibit H1 and a
run with sample data in Exhibit H2.
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EXHIBIT H1

APL PROGRAMS FOR
TRANSFORHMED BETA MLLE

VNRFN[O]V

[13
[2]
[3]
[4]
£5]
[6]
[71
[8]
9]
[101]
[11]
[12]
{131
[14]
[15]
[16]
{171
[18]
{191
[201

e X W Xamm W W W W s W W W |
(e iR N - AV, I S VLI Ny
— O Ll L L e eI L

vV ABl+V NRFN AB;YA3;YB;J;:Z
AWRITTEN BY GARY VENTER
ANEWTON RAPHSON ITERATION FOR TRBET PARANS, SAMPLE IN V
AB1+AB
Z«1E77
TOP:AB+AB1
Y+V FN AB
YA«<V FN(AB[1]x1+Z),AB(2]
YB+V FN AB[1],AB[2]x1+Z
YA«(YA-Y):+ZxAB[1]
YB«(YB-Y)2ZxAB[2]
J«(Yal1IxyB[2])-vAa[2]xYB[1]
AB1+AB[1]-((Y[11xYB[2])-Y[2]xYB[1]):J
AB1<«AB1,AB[2]-((Y[2)xYA[1])-Y[1]1xYA[2])+J
'2 OLD TOLERANCES 2 NEW®
AB,Y,AB1
*R.S:'";R,S
+(2E77<+/|T1+ABL+AB)/TOQP
[«Y«V FN ABl
'R,S,ALPHA, BETA"'
R,S,AB1
v

vFN[O]v

V Y«V FN AB;D;F;G;H;N;PS;PR;PRS;DL;LL

AR AND S ARE GLOBALS

AV A VECTOR OF OBSERVATIONS., AB IS ALPHA,BETA
aY IS A 2 VECTOR TRYING TO GET TO 0,0 FOR TBET HLE
N«ipV

G+V+AB[2]

H+@G

D«1+G*-AB[1]

F«Nx+/H:D

HeABL 1 IxNx+/H

Delx+/%D

R«-#H~-AB[1]xF$D

S«Rx-1-%D

G+Nx+/®1+G*AB[1]

PS«SI §

Y«H+PS-PR+«SI R

Y+Y,G+PS~-PRS+SI R+S

v
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EXHIBIT H1 PAGE 2

vs1{Olv

[1]
£2]
(3]
[4]
[5]
(6]
[71
[8]
[9]
[10]
[11]
[12]
(13]
[14]
[15]
(16]

V PSIX+SI X3;Z;PSIZ;Y;M;N

APSI FUNCTION IE DERIVATIVE LOG GAMMA FUNCTION
AWRITTEN HARRY SOUL

Z+X-1X

+(L1,L2)(1+Z=0]
L1:PSIZe-(1-1-Z)x+/(126)xCEExZ* 1+126
Y+«1000|LX

N<«0

M«LX%1000

PSIX+«PSIZ++/3Z+ 1+ 1Y

+(M=0)/0

LT :NeN+1

PSIX«PSIX++/%+Z+(1000xN-1)+Y+ 1)+Y+-1+11000
+(N<M)/LT

+0
L2:PSIZ«-(2Z)x+/(126)xCEEx(Z+1)* 1+126
PSIX+PSIZ++/%+1X-1

v
60 CEE
61 1
62 0.5772156649015329
63 —0.6558780715202538
64 —0.0420026350340952
65 0.1665386113822915
66 —0.0421977345555443
67 —0.009621971527877
68 0.007218943246663
69 —0.0011651675918591
70 —0.0002152416741149
71 0.0001280502823882
72 —2.01348547807E—5
73 —1.2504934821E—6
74 1.133027232E-6
75 —2.056338417E—17
76 6.116095E—9
77 5.0020075E-9
78 —1.1812746E—9
79 1.043427E—10
80 7.7823E—12
81 —3.6968E—12
82 5.1E-13
83 —2.06E-14
84 —-5.4E—-15
85 1.4E—15

86 1IE—16
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EXHIBIT H2

SAMPLE RUN OF TRANSFORMED BETA MLE WITH GOOD STARTING ESTIMATES

v

2.201825487277711

1.345898293955564

1.128878212884788

0.9999999999999999
0.9073138148639067
0.8342416436253031
0.7733867467937893
0.7208063846790024
0.674145835167939
0.6318803337678372
0.5929590571538267
0.5566194066522674
0.5222817966889851
0.4894856366454348
0.4578475082673738
0.4270314517386136
0.3967253263281841
0.3666188506509329
0.3363789340936847
0.305615997826835

0.273829231162068

0.2403024809791267
0.2038702484700424
0.1622584092416313
0.1093001477080087

V NRFN

20LD
1.521 1.553

1.521 1.553

1.747798995989603
1.276532762732432
1.091598560297855
0.9743434501286376
0.8875849650558165
0.81807496609125
0.7595770676095318
0.7086564061646645
0.6632147483965766
0.6218702024548765
0.5836572881149439
0.5478669593658831
0.5139542825661741
0.4814812781759202
0.4500788567894164
0.4194190942972299
0.3891923978309076
0.3590853152547595
0.328754338338611
0.2977884554141212
0.2656457900782352
0.2315282633825993
0.1940859297219838
0.1505182593963702
0.09205965646857106

TOLERANCES

1.456996026050206E—6 1.088012693967189E—

R, §: 1.441569975759713 6.476705211863293

20LD

1.520915599542439 1.553092179774157

TOLERANCES

R, S: 1.441699580189243 6.477401387297938
4,440892098500626E— 16 2.775557561562891E~16

R, S, ALPHA, BETA

2.314481939436064E - 11 2.418509836843441E—12

1.555619456471727
1.219472497925706

.1.058149169964544

0.9505056924135983
0.8689049641059015
0.8025841905289312
0.7462348863847357
0.6968455463959924
0.6525377785832587
0.6120545858977834
0.5745061504078917
0.5392313546553542
0.5057164179087162
0.4735436331613866
0.4423565324296311
0.4118338199870745
0.3816670853866948
0.3515381012078956
0.3210906656344104
0.2898885265394574
0.2573413380345932
0.2225521361535894
0.1839380254588229
0.1379699089521555
0.07106750819518526

. 2 NEW
1.520915599542439 1.553092179774157

2 NEW
1.520915600822739 1.553092175281865

1.441699614500499 6.477400647693872 1.520915600822739 1.553092175281865

1.434261861491408
1.171009053335359
1.027797375655266
0.9282311847924588
0.8511568358547295
0.7877064064383325
0.733322520898723.
0.6853493958275812
0.6420981190348407
0.6024213087964627
0.5654964138531555
0.53070528199689
0.4975621441012036
0.4656674240036885
0.434675669228307
0.404270839030415
0.374144309660231 1
0.3439713566152265
0.3133805334572376
0.2819059140149433
0.248899725301121
0.2133445971882582
0.1733584487947235
0.1243638396796979
0.04089307909136584
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APPENDIX J

TRAITJSFORMED GAMMA
RELATION BETWEEN COEFi’;‘lCIENTS OF VARIATION AND SKEWNESS

Empirical investigations suggést that not all pairs of positive real numbers
can be realized as the coefﬁcients'{ of variation (CV) and skewness (SKW) of a
transformed gamma distribution. For example, as mentioned in the text, for
CVs of 1.25 and greater the SKW é]ways seems to exceed the CV.

While not proven analytically, observation suggests the following:

(1) For fixed r the ratio SKW/CV is a decreasing function of alpha.

(2) If the ratio SKW/CV is held éonstant (by increasing alpha), then the CV
and SKW increase as r decreases.

(3) These increases are asymptot'iic to some finite value as r goes to zero.

Thus for a fixed SKW/CV ratio, thé CV and SKW can not exceed a maximum.
The following table gives these approximate maximum values for selected ratios.
I

SKW/CV Maximum CV Maximum SKW

1.4 11.1 15.5
1.3 3.9 5.1
1.2 2.0 2.4
1.1 1.51 1.66
1.0 1.25 1.25
.9 1.09 .98
.83 1.00 .83
.8 .97 .78
v .88 .62
.6 .81 .49
5 .76 .38
4 71 .28
3 .67 .20
2 .64 13
0.00 .58 0.00

This relationship thus restricts the values which the CV, SKW pairs can take
on. As the maxima seem to be increasing functions of the ratio SKW/CV, each
maximum is an upper bound over all lower values of that ratio. For example,
if the SKW is less than or equal to .83CV, then the CV does not exceed 1.0.
Conversely, if the CV is above 1.0 the SKW is .83 or greater.
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It is interesting to note that the skewness can be negative. This seems
ssible for any value of r. For small r, SKW reaches zero at about an nlnha

i 2 VY Ialacs LIV a4t QUL al

possi
of 1/r. In the Weibull case (r = 1) zero skewness occurs for a just above 3.6.

The use of empirical studies in mathematical investigations is of course
subject to pitfalls. The findings in this appendix should thus be regarded as
hypotheses until more rigorous demonstrations can be provided.

Further investigation has also revealed that matching transformed gamma
moments is not possible if the CV is very small and the SKW is large. In this
case, it has been possible to match transformed beta moments. The case o0 =
1 often suffices, and this yields closed form solutions for the parameters as

foltows:

Define M; = EX)E(XY for any random variable X. Then the transformed
beta parameters r and s are:

Ms — M3

r = T T MM, -2,
_r+1—2Mzr
r+ 1 — My

Unfortunately, those equations sometimes yield negative parameters. In that
case the transformed beta with r = 20 (o # 1) has seemed to give satisfactory
fits.

Using the transformed beta to match moments in this way would seem to
give up the parameter uncertainty. This is not necessary, however, as the
moments of the combined process-parameter system can be found by combining
the process and parameter moments. In fact,

Mj(combined) = M (process) M (parameter).

Thus the combined moments can be used to calculate the transformed beta or
gamma parameters. This, in fact, allows for greater freedom in selecting the
parameter distribution moments, in that the skewness need not be strictly de-
termined by the CV.
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