
111 

PARAMETER UNCERTAINTY IN THE 
COLLECTIVE RISK MODEL 
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Abstract 

This paper proposes a new version of the collective risk model that allows 
for uncertainty in selecting the expected number of claims and the claim severity 
distribution. We provide two different methods of estimating the parameters of 
this model. It is demonstrated by computer simulation that one must combine 
the experience of several insureds in order to accurately quantify parameter 
uncertainty. Tests on a very large sample of individual insured data show a 
significant improvement in the accuracy of the collective risk model when 
parameter uncertainty is taken into account. The tests do not show perfect 
agreement between the model and the empirical data, but the agreement is close 
enough to be useful in many applications. 
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1. INTRODUCTION 

This paper discusses the role of collective risk theory in making insurance 
pricing decisions. Collective risk theory provides a way of calculating the 
probability that a loss arising out of an insurance contract will exceed a given 
amount. The calculation is done in terms of the underlying claim severity and 
claim count distributions. Related to this is the excess pure premium, which is 
the cost of insuring all losses above a given amount. Also of interest is the 
excess pure premium ratio, which is the excess pure premium divided by the 
expected loss. 

Of principal concern is the relationship between the variance of the loss 
ratio and the size of the insured. A common assumption was stated by Simon 
[lo, p. 441 as follows: “As the risk size increases, we expect the variance (of 
the loss ratio) to approach zero.” Large insureds are typically written on a 
retrospective rating plan or an aggregate excess contract. The effect of this 
assumption would be that for all loss amounts greater than the expected loss, 
the excess pure premium ratio would approach zero as the size of the insured 
becomes large. 

The practical underwriter would feel very uncomfortable with an agreement 
to provide coverage for all losses above the expected loss for a zero or nominal 
premium for even a very large insured. His complaint would be that the expected 
loss cannot be estimated with the necessary precision. 

Of interest is the distribution of actual losses about an unbiased estimate of 
the expected losses. Estimates of the expected losses vary because of many 
things such as future economic conditions, changes in loss development patterns, 
changes in the insured’s operations, and changes in loss control procedures. 
Many of these changes are independent of the size of the insured. Thus, one 
should not expect the variance of the loss ratio to approach zero as the size of 
the insured becomes large. 

The traditional models used in collective risk theory, such as the generalized 
Poisson distribution, do not allow for uncertainty in estimating the expected 
loss. This may be acceptable for the small insured, since the variance of the 
losses due to the random nature of the loss process is large compared to the 
variance due to the misestimation of the expected loss. As the insured increases 
in size, however, the variance due to the misestimation of the expected loss 
will dominate. 

Below we will propose a version of the collective risk model that allows 
for uncertainty in estimating the expected loss. Most excess pure premium ratios 
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used in the United States are calculated from the well known “Table M” [7]. 
This table is based on empirically derived excess pure premium ratios. Because 
of the predominant use of this table we must first address the following question: 
why use a model? 

2. THE ACTUARY’S DILEMMA 

It has been a long standing debate among actuaries as to whether one should 
use empirical data or theoretical models to derive aggregate loss distributions.. 
After completing the mammoth task of tabulating aggregate loss distributions, 
Simon [lo, p. 141 wrote: “To avoid the difficulties and pitfalls of empiricism 
we should borrow from the theory of risk, from Monte Carlo techniques, and 
from operations research. Let’s begin pushing some frontiers today, so that 
we’ll be ready to solve tomorrow’s problems.” 

Officially, it appears that those who favor the empirical approach have 
prevailed and Mr. Simon’s advice has gone unheeded. Skumick [ 1 l] constructed 
a table for the state of California based on empirical observations. In 1980, a 
National Council subcommittee constructed another table based on empirical 
observations. Mr. Simon’s table was in effect for seventeen years. 

While the use of empirical distributions does not require one to make the 
assumptions that are necessary with the theoretical approach, there are some 
fundamental problems with the empirical approach. It is generally agreed that 
the variance of the loss ratio distribution decreases as the size of the insured 
increases. It is also agreed that the variance of the loss ratio distribution increases 
as the average claim severity increases. But it is necessary to combine the 
experience of insureds of different sizes and average claim severities in order 
to get a’sufficiently large sample. For example, the tables constructed by the 
National Council on Compensation Insurance in 1980 combined all insureds on 
a countrywide basis into expected loss ranges that include $25,000 to $50,000, 
$5O,OOq ,to $100,000 and $100,000 to $200,000. 

Thus, the actuary is faced with the dilemma of choosing between two 
undesirable alternatives. If the empirical approach is chosen, a sample from a 
heterogeneous population is required. If the theoretical model is used, a number 
of simplifying assumptions must be made. 

By proposing a mathematical model, we do not advocate abandoning the 
use of empirical data. Once a model has been constructed, one should form 
hypotheses which can be tested on live data. If statistical tests demonstrate that 
the model is consistent with the data. the dilemma will be resolved. 
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It will become apparent that this is easier said than done, but this is the goal 
toward which we all must strive. If this goal is reached, there are many 
advantages to the theoretical approach. Since the size of the insured and the 
claim severity distribution are input variables, it is possible to adjust the param- 
eters of the model to account for situations when there is little or no data 
available. For example, it would be a simple matter to find the aggregate loss 
distribution that results when all claims are subject to an accident limitation. 

3. THE COLLECTIVE RISK MODEL 

In this section, we propose a version of the collective risk model that allows 
for uncertainty in estimating the expected loss. Heckman and Meyers [2] discuss 
this model in great detail, and so a full mathematical description will not be 
given here. Much of what follows is taken from their paper and is included here 
for the sake of completeness. 

We start by considering the Poisson distribution. In their classic book on 
risk theory, Beard, Pentikainen, and Pesonen [ 1, p. 181 give the assumptions 
underlying this distribution as follows: 

1. Claims occurring in two disjoint time intervals are independent. 
2. The expected number of claims in a time interval (tl, tz) depends only 

on the length of the time interval and not the initial value of tl. 
3. No more than one claim can occur at a given time. 

There are many cases when one feels that a Poisson distribution is appro- 
priate, but one does not know the expected number of claims. Two options are 
available under these circumstances. The first option is to estimate the expected 
number of claims from historical experience. Parameter uncertainty can arise 
from sampling variability and changes in claim frequency over time. A second 
option is to use the average number of claims for a group of insureds that are 
similar to the insured under consideration. Parameter uncertainty arises when 
some members of the group have different expected numbers of claims. 

We now turn to specifying the claim count distributions that we shall use 
when parameter uncertainty is present. We shall adopt the following notation. 

Let N be a random variable denoting the claim count, 
h be the expected number of claims, and 
x be a random variable with E[x] = 1 and Var[x] = c. 

The claim count distribution can be modeled by the following algorithm. 
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Algorithm 3.1 

1. Select X at random from the assumed distribution. 
2. Select the number of claims, N, at random from a Poisson distribution 

with parameter X * A. 

We have the following relationships. 

WI = &LW’IX)I = E,[x * Xl = A 

VdN = WMN~x)l + Var,[E(NIx)l 
= E,[x * A] + Var,[x - A] 
= A + c * A2 

(3.1) 

(3.2) 

If X has a Gamma distribution, the claim count distribution described by 
Algorithm 3..1 is the negative binomial distribution (Beard et al., [l, p. 1 lo]). 
We shall use the negative binomial distribution to model the claim count 
distribution when parameter uncertainty is present. 

We shall call the parameter c the contagion parameter for the claim count 
distribution. If c = 0, Algorithm 3.1 yields the Poisson distribution. 

We now adopt the following notation. 

Let Z be a random variable denoting claim severity, 
S(z) be the cumulative distribution function for the claim severity, z, and 
X be a random variable denoting the aggregate loss for an insured. 

Aggregate losses can then be generated by the following algorithm. 

Algorithm 3.2 

1. Select the number of claims, N, at random from the assumed claim count 
distribution. 

2. Do the following N times 
2.1 Select the claim amount, Z, at random from the assumed claim 
severity distribution. 

3. The aggregate loss amount, X, is the sum of all claim amounts, Z, 
selected in step 2.1. 

We now give expressions for the mean and variance of the aggregate loss 
distribution generated by Algorithm 3.2. 

E[X] = E[Nj - E[ZJ = A . E[Zj (3.3) 
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Var[xj = EN[Var(XIN>l + VarAwXIN)I 
= A . Var[Zj + (A + c . X2) . E’[z] 
= A . E[Z’] + c * A2 * E2[2] (3.4) 

Implicit in the use of Algorithm 3.2 is the assumption that the claim severity 
distribution, S(z), is known. In practice, this distribution must be estimated 
from historical observations, or it must be simply assumed. Under such condi- 
tions, errors in selecting the parameters of the claim severity are inevitable. To 
model parameter uncertainty in the claim severity distribution, we make the 
simplifying assumption that the shape of the distribution is known, but there is 
uncertainty in the scale of the distribution. Venter [ 121 makes the same as- 
sumption in his treatment of parameter uncertainty. 

More precisely, we specify parameter uncertainty of the claim severity 
distribution in the following manner. 

Let p be a random variable satisfying the conditions E[lIP] = 1 and 
Var[l/p] = b. We then model aggregate losses by the following algorithm. 

Algorithm 3.3 

1. Select the number of claims, N, at random from the assumed claim count 
distribution. 

2. Select the scaling parameter, p, at random from the assumed distribution. 
3. Do the following N times. 

3.1 Select the claim amount, Z, at random from the assumed claim 
severity distribution. 

4. The aggregate loss amount, X, is the sum of all claim amounts, Z, 
divided by the scaling parameter, p. 

We now give formulas for the mean and variance for the aggregate loss 
distribution generated by Algorithm 3.3. 

aX1 = 43rwm1 
= EdA + RTVPI 
= A * E[Z] . E[l@] 
= A - E[Z] (3.5) 

V~FI = J%War(XIP)l + m3[~(XIP)l 
= Ep[(A . E(Z2) + c * A2 * E2(Z))/p2] + Vara[A . E(Z)@] 
= (A . E[Z’] + c . A2 * E’[Zj) * E[l@‘] 

+ A2 - E2[2] . Var[l@] 
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= (A . E[Z’] + c - A2 - ,!?‘[a) * (1 + 6) + A2 * E2[2] - b 
= A . E[Z*] . (1 + b) + A2 * E2[2] * (b + c + b.c) (3.6) 

In this paper, we shall assume that p has a Gamma distribution. We shall 
call b the mixing parameter. The mixing parameter is a measure of parameter 
uncertainty for the claim severity distribution. 

Let R denote the ratio X/E[X]. From Equations 3.5 and 3.6, we get the 
following result: 

Var[R] = (1 + 6) . E[Z’]/(A - E’[Zj) + b + c + b - c (3.7) 

Under the above assumptions on parameter uncertainty, it is possible to 
calculate the cumulative probabilities and excess pure premium ratios in an 
efficient manner (Heckman and Meyers [2]). We have chosen mathematically 
convenient distributions to model parameter uncertainty. We do not want to 
imply that these distributions are in any way the “correct” ones. Since parameter 
uncertainty is not directly observable, it is difficult to discover what the correct 
distribution should be. As we shall show, it is possible to infer the values of b 
and c through the use of Equations 3.6 and 3.7. But until statistical methodology 
has advanced to the point where the proper distributions can be determined, it 
should be acceptable to use ones which are mathematically convenient. 

Interpreting the Model 

As mentioned in the introduction, we are concerned with the relationship 
between the variance of the loss ratio and the size of the insured. Parameter 
uncertainty can perhaps best be understood in terms of how it affects this 
relationship. 

In what follows, it will be helpful to recognize that Var[R] is equal to the 
squared coefficient of variation of the loss ratio. 

It can be seen from Equation 3.7 that this model implies a linear relationship 
between Var[R] and l/A. 

Figure 1 illustrates the effect of parameter uncertainty on Var[R]. If b = 
c = 0, the aggregate loss distribution is the generalized Poisson distribution. In 
this case Var[R] approaches zero as l/A approaches zero (or as the insured 
becomes larger). If we introduce parameter uncertainty in the claim count 
distribution, Var[R] lies on a line parallel to that implied by the generalized 
Poisson distribution, with the variance approaching c as l/A approaches zero. 
If we add parameter uncertainty in the claim severity distribution, the slope of 
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the line increases by a factor of 1 + b. The Var[K] approaches b + c + b - c 
as l/A approaches zero. 

FIGURE 1. 

Var[R] 

b+c+b-c 

lh 

4. ESTIMATING THE PARAMETERS OF THE MODEL 

In the previous section, we proposed a version of the collective risk model 
that accounts for parameter uncertainty. This model depends upon the expected 
number of claims, A, the claim severity distribution, S(z), the contagion param- 
eter, c, and the mixing parameter, b. 

The expected number of claims can be estimated from historical claim 
frequencies and estimates of current exposure. 
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A complete discussion of estimating claim severity distributions is beyond 
the scope of this paper. In our work, we typically obtain claim severity distri- 
butions from bureau circulars, or we estimate them from company data using 
methods similar to those described by Patrik [8]. These claim severity distri- 
butions are often derived from experience other than that of.the insured under 
consideration. For this reason, we adjust the scale of the distribution to match 
the average claim size that we project for the insured. 

Before discussing our methods for estimating b and c, we should mention 
the work of Patrik and John [9]. They deal with parameter uncertainty by 
picking a finite set of claim severity distributions and claim count distributions 
for the collective risk model. They then combine the various outputs of the 
model by taking a weighted average. The weights are probabilities which they 
assign subjectively. 

The use of subjective probabilities has always been controversial. Many 
consider the word “guess” to be more appropriate. It is unfortunate that in many 
situations an answer is demanded, but no data is available. Under these circum- 
stances, the use of subjective probabilities may be acceptable. 

Regardless of how one feels toward the use of subjective probabilities, one 
should always consider the possibility of estimating b and c from observations 
of aggregate loss data. The remainder of this section will develop ways of doing 
this. 

We will describe two approaches for estimating b and c. The choice of 
estimators will depend on the kind of data available. The general idea underlying 
both of these approaches will be to evaluate an expression which “resembles” 
Var[Nl, Var[X] or Var[R]. Using Equations 3.2, 3.6 or 3.7, we can then set the 
expression equal to its expected value, which depends upon b and c. The 
estimates are then obtained by solving for b and c. The details are given in the 
appendices. 

We first consider the case of a single insured for which we have r years of 
experience. We assume that all systematic adjustments of the data, such as trend 
and loss development, have been made. 

The following estimators for b and c are derived in Appendix A. 

Forj = l,..., r, let Nj be the claim count for yearj. Let ej be a number such 
that ej = K . E[Nj] for each year i. K is a constant of proportionality. The 
number ej represents either exposure or premium. 
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Let AI = (l/r) I: Nj * (eilej) and 
j=l 

V = i((ellej) * Nj - Al)‘. 
j=l 

Then an estimator for c is given by 

V - (r - 1)/r i (f?Jej) . fii 
e= 

j=l 

(r-l)*fi: ’ 
(4.1) 

Let x I ,. . . ,Xr be r independent aggregate loss amounts associated with 
N1 ,.. .,N,, respectively, and let Aj = Xj/Nj be average claim costs. Furthermore 
let 

@ * i XjlN be an estimate of E[Zl, 
j=l 

&’ be an estimate of Var[Zj, and 

W = ,$, Nj * (Aj - b)‘. 

Then an estimator for b is given by 

6= 
W-(r- 1)-G’ (4.2) 

(r - 1) . 5’ + 2 * (N - (l/N) i N$ 
j=l 

We used Monte Carlo simulation to test the accuracy. of these estimators. 
Specifically, we selected a claim severity distribution (given in Exhibit I) along 
with c = 0.1 and b = 0.1 We then simulated aggregate losses and claim counts 
using Algorithm 3.3, and tested how well the estimates 6 and 2 compared with 
the selected b and c. We obtained 6’ by multiplying the coefficient of variation 
of our claim severity distribution by the estimate of E[Zj obtained from the 
simulation. The results of these tests are given in Table 1. 
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TABLE 1 

SIMULATED ESTIMATES ‘OF b AND c 

Average 
c^ 

.1004 

.1002 

.1005 

.1013 

.0957 

.0973 

.1014 

.0986 

.0973 

.lOOl 

.0992 

.0988 

Std Dev 
e 

.0720 

.0326 

.0153 

.0086 

.0672 

.0305 

.0155 

.0077 

.0670 

.0308 

.0218 

.0084 

Average 
6 

.0364 
. . 0759 
.1017 
.0999 
.0787 
.0956 
.0961 
.1006 
.0873 
.0956 
.0995 
.0993 

121 

Std Dev 
6 

.1746 

.1203 

.0798 

.0441 

.1080 

.0624 

.0273 

.0145 

.0847 

.0390 

.0252 

.0098 

The averages and standard deviations of the estimates for r = 5, 25, 100, 
and 400 were based on 2000, 400, 100, and 25 trials, respectively. While the 
estimates of the errors are subject to simulation error, the above table suggests 
that one may need several hundred observations to accurately estimate b and c. 
Clearly, this is impossible for a single insured. We have repeated this experiment 
for different values of b and c and have gotten similar results. 

Table 1 does not tell how much accuracy is necessary. To answer this, one 
must first ask how the collective risk model will be used. An almost certain use 
is the calculation of excess pure premium ratios. How much error one may 
tolerate for b and c will then depend on how much error one may tolerate for 
excess pure premium ratios. 

Table 2 gives excess pure premium ratios for various sizes of insureds and 
various b's and c’s. The method of calculating the excess pure premium, ratios 
is that of Heckman and Meyers [2]. 
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TABLE 2 

EXCESS PURE PREMIUM RATIOS 
Expected Loss = l,OOO,OQO 

b = c = 0.0 b = c = .Ol b = c = .05 

0.500 0.500 0.504 
0.083 0.100 0.149 
0.005 0.009 0.032 
0.000 0.001 0.006 
0.000 0.000 0.001 

Expected Loss = 5,000,OOO 

b = c = 0.0 b = c = .Ol b = c = .05 

0.500 0.500 0.502 
0.038 0.068 0.130 
0.000 0.001 0.020 
0.000 0.000 .0.003 
0.000 0.000 0.000 

b=c= .lO 

0.513 
0.191 
0.064 
0.022 
0.007 

b=c= .lO 

0.509 
0.176 
0.053 
0.016 
0.005 

Table 2 shows that significant differences in excess pure premium ratios 
result from different values of b and c. Taking this result along with the results 
indicated by Table 1, we are forced to the rather unpleasant conclusion that 
parameter uncertainty cannot be adequately quantified on the basis of the ex- 
perience of a single insured. 

If we are to estimate b and c from empirical data, it would appear that our 
only alternative is to combine the experience of several insureds, and assume 
that the same b and c are appropriate for all of them. It is this question that we 
now address. 

5. ESTIMATING THE PARAMETERS OF THE MODEL-ONTINUED 

If we were to combine the experience of several insureds to estimate b and 
c, we might consider using the above estimators and treating the combined 
observations as annual observations of a single insured, We feel, however, that 
this would be inappropriate for the following reasons. 
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First, a key assumption in the estimation procedure for c is that the expected 
number of claims is directly proportional to the measurement of exposure. While 
this assumption may be appropriate for a single insured, different insureds may 
have different exposure bases or different inherent claim frequencies. 

Second, a key assumption in the estimation procedure for b is that the same 
claim severity distribution is appropriate for all observations of a single insured. 
Different insureds can expect to have different claim severity distributions. 

Below we will give estimators for b and c. The data requirements for these 
estimators are as follows. 

For each insured and each year we require three items: 

1. exposure, 
2. incurred losses, and 
3. incurred claim count. 

Some remarks concerning the data requirements are in order. 

First, it will be assumed that the exposure is directly proportional to the 
expected claim count for each insured. The constant of proportionality may vary 
with the insured. Many exposure bases, such as payroll, are inflation sensitive. 
Thus, trends in the exposure base that do not reflect expected claim count should 

I 
be removed. 

\ 
Second, it will be assumed that the expected claim severity is the same for 

all observations of a\ single insured. The expected claim size need not be the 
same for all insureds. Incurred losses must be adjusted for trends in claim 
severity. The trend factors must be derived from external sources so as not to 
introduce bias in the estimates. 

Third, every effort should be made to get the maximum number of obser- 
vations. A minimum of two observations per insured will be required. We 
should strive for the maximum number of observations per insured and the 
maximum number of insureds. 

The following estimators for b and c are derived in Appendix A: 

T = number of insureds 
ri = number of observations for insured i 

,, Nii = number of claims for observation j of insured i 
eG = exposure for observation j of insured i 
Xij = incurred loss for observation j of insured i 
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Zi = a random variable denoting claim severity for insured i. 

For each i, let 

fiir = (llri) 2 NV * (eirlec) and 
j=l 

Then, an estimator for c is given by 
T ri . 

V - IX (Ti - 1)lri C (eirleij) * A;, 
i=l j=l 

c^= (5.1) 

For each i, let 

Ni. = i Nij, 
j=1 

tL = 2 Xij/Ni. be an estimate for E[Zi], 
j=l 

6: be an estimate for Var[Zi], and 

W = i 2 Nij . (Au - bi)‘. 
i=l j=l 

Then, an estimator for b is given by 

W- E (Ti- l)‘&’ 
6= i= I 

T ,; . (5.2) 

iz ((r-i - I) . a: + Ii: * (Ni. - (l/Ni.) $ NC)) 
j=l 

Note that Equations 5.1 and 5.2 reduce to Equations 4.1 and 4.2, respec- 
tively, when T = 1. 

Many companies and rating bureaus do not have the data required for the 
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above estimators. However, all is not lost. We shall now show that it is possible 
to get rough estimates of b and c with quite a bit less data. 

One of the predictions of this version of the collective risk model is the 
linear relationship of the squared coefficient of variation of the loss ratio with 
l/h (or equivalently, l/expected losses). See Equation 3.7 and Figure 1. The 
following estimators of b and c will exploit this relationship. 

The data requirements for these estimators will be loss ratios and premiums 
for each insured, and a single claim severity distribution that represents all the 
insureds. Divide the insureds into T groups of size ri. For reasons stated above, 
we would prefer that the groups consist of multiple observations of the same 
insured. We shall say something about this in the next section. For observation 
j of group i, let 

eij = exposure (premium), 
XV = incurred loss, and 
Rij = Xijley. 

For each group i, let 

ki = (llri) 5 Rij, 
j=l 

Ei = (llri) 5 lieu, and 
j=l 

Wf = ,$, (R, - @i)*. 

An estimate of the squared coefficient of variation for the ith group is given by 
the expression 

Wi 

(Tim l)*tI:’ 

An estimate of l/expected losses for the ith group is given by the expression 

Ei 
G’ 

Using linear regression, we can find an approximate relationship of the following 
form: 

W ,. Ei . 
(ri - 1) . by = A * ; + B. (5.3) 
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Estimators for b and c are then given by 

6 = a . E[z]/E[Z*] - 1 and (5.4) 
c^ =(B - 6)/(1 + 6). (5.5) 

These estimators for b and c are derived in Appendix B. As mentioned 
above, we must select a single claim severity distribution that represents all 
insureds. In practice, it is questionable that this can be done. If estimates are 
obtained in this manner, then the variance of the aggregate loss distribution will 
be overstated for the low severity insured and understated for the high severity 
insured. Meyers [4] discusses several problems associated with this. It should 
be noted that the linear relationship between the squared coefficient of variation 
and l/expected losses derived from Equation 5.3 will be preserved in the model 
if any reasonable claim severity distribution is selected. However, one should 
not put undue faith in the particular estimates of b and c. 

6. TESTING THE MODEL 

Thus far we have proposed a version of the collective risk model which 
allows for parameter uncertainty, and we have given ways to estimate the 
parameters for this model. We now turn to the crucial question, how well does 

’ it fit empirical data? 

In 1980, a National Council committee assembled a large sample of indi- 
vidual insured data for the purpose of constructing a new table of excess pure 
premium ratios, otherwise known as Table M. This sample contained the stan- 
dard premium and the incurred losses for all insureds during the policy year 
beginning July 1, 1973 for all states in which the National Council had juris- 
diction. 

The data was grouped by premium size, and the empirical loss ratio distri- 
butions were used to calculate the excess pure premium ratios for the smaller 
premium sizes. For those insureds with premium of $200,000 or more, it was 
felt that the empirical excess pure premiums were not credible, and so a 
combination of modeling and empirical data was used., 

After the table was completed, we requested and received from the National 
Council a tape containing this experience. This data forms the basis of our 
analysis. 
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Estimating the Parameters of the Model 

Since we had only premium and loss data, we used Equations 5.4 and 5.5 
with the eG’s representing standard premiums. Since we had only one observation 
for each insured, we chose our groups on the basis of premium size. Thus there 
are two main sources of parameter uncertainty. The first source is heterogeneity 
of insureds, and the second is differences in premium adequacy. This is consis- 
tent with the construction of the new Table M. 

It should be noted that if we choose our groups on the basis of multiple 
observations on a single insured with the eu’s representing exposure, the sources 
of parameter uncertainty are quite different. Heterogeneity of insureds is not 
involved. Changes in the insured’s operations, changes in economic conditions, 
changes in loss development patterns and other changes over time are the main 
sources of parameter uncertainty. Thus, estimates of b and c under these con- 
ditions could be quite different. 

At the time this study was done, the National Council did not have a claim 
severity distribution available. The closest thing we had to a comparable claim 
severity distribution was estimated from our own company data for accident 
year 1975 developed to 42 months. We chose 42 months because it matched 
the average maturity of the NCCI data. We then changed the scale of the 
distribution to match the average claim size which was reported by the National 
Council for the policy year 1973-74. The resulting claim severity distribution 
is given in Exhibit I. 

In choosing the groups, we put those observations with the lowest r-1 pre- 
miums in the first group, those observations with the next lowest t-2 premiums 
in the second group, and so on. The problem remained of choosing the ri’s, 
i= 1,. . . , n for the n groups. We observed that when the ri’s were equal for 
all i the variance of the residuals of the regression decreased as the premium 
increased. In statistical terminology, this is known as heteroscedasticity. We 
dealt with this problem in two ways. One way was to have ri decrease as the 
premium increases. The other way was to use a weighted regression. 

The weighted regression can be described as follows. If the model Y = AX 
+ B + E is to be fitted, but if it appears that the standard deviation of E is 
proportional to X, then let Y’ = Y/X and let X’ = l/X. In the new model Y’ = 
A’ + B’X’ + E’, E’ will have approximately constant variance. A’ will be an 
estimate of A and B’ will be an estimate of B. 

Exhibit II gives the various sets of ri’s that we considered. Table 3 gives 
the resulting estimates of b and c. 
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TABLE 3 

ESTIMATES OF b AND c 

Set Of ri'S A Std Err a b Std Err k R* 6 F --- 

1 6283 1 5746 .275 .020 .820 .340 - .048 
2 85383 1609 .443 .038 .870 .181 .222 
2(1-l 1) 55378 3786 1.054 1.269 .071 .181 .740 
2( 12-22) 5283 1 2728 .469 .046 .921 .127 .304 
3 58997 2967 .305 .013 .976 ,258 .037 
3( l-8) 55418 2226 .495 .176 .570 .182 .265 
3(9-15) 64572 8328 .291 .025 .964 .377 -.062 
4 55539 4430 .445 .164 .401 .184 .220 
5* 59311 13939 .350 .103 .721 .265 .068 

* Used unweighted regression 

There are several points that should be made about these estimates. First, 
negative estimates of b and c are possible; 6 will be negative whenever 

/i * E[z]/E[Z*] < 1; 

E will be negative whenever 

(b + 1) . E[Z*]/E[z] < A. 

This can happen if the assumed mean and variance of the claim severity 
distribution are not appropriate for the given observations. Negative estimates 
of b and c can also occur because of random variation of the regression 
coefficients. Examination of the standard errors of A suggests that random 
variation could explain the two negative estimates of c. 

If a negative estimate of b is obtained, we suggest setting 6 equal to zero 
and setting e = d. If a negative estimate of c is obtained, we suggest setting e 
= 0 and 6 = 8. If h is negative, we suggest setting 6 and e equal to zero. 

Second, the estimates of A and B vary by the set of ri’s chosen. Examination 
of the standard errors of the coefficient a indicates that this variation could be 
random. However, the variation in the estimates of B cannot be explained by 
random variation. It would appear that the estimate of B is decreasing as the 
size of the insured increases. This can be seen by comparing the pairs of 
estimates #2(1-11) with #2( 12-22), #3(1-8) with #3(9-15), and #4 with 
#5. In all three comparisons, the estimate of B corresponding to higher premium 
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observations is lower than the estimate of B corresponding to lower premium 
observations. 

This means that the sum, b + c + b * c, is decreasing as the premium 
increases. As mentioned above, the division of parameter uncertainty between 
b and c is suspect for the estimators used. It seems that parameter uncertainty 
decreases as the size of the insured increases. 

This seems to be a reasonable conclusion. Because of experience rating, 
one would expect the standard premium to be more accurate for large insureds 
than for small insureds. 

Comparison of Expected with Actual Results 

Using the estimates of b and c obtained above, it is possible to calculate the 
cumulative probabilities and the excess pure premium ratios implied by the 
model. We now compare the results predicted by the model with the actual 
results in the National Council data base. This comparison will take two forms. 
We will first perform chi-square goodness of fit tests. A description of the chi- 
square goodness of fit test can be found in Hoe1 [3, p. 2261. We will then com- 
pare excess pure premium ratios predicted by the model with those of the new 
Table M. 

We chose three sets of parameters for our testing. In the first test, we set b 
= 0 and c = 0 because it represents the case with no parameter uncertainty. 
For the second test, we chose the estimates 6 = .258 and E = .037 from 
regression #3 since it produced the highest R* over all the points. For the third 
test, we chose the estimates 6 = .184 and L? = .220 when the premium was 
less than $125,000 (regression #4), and 6 = .263 and c? = .068 when the 
premium was greater than $125,000 (regression #5). This enabled us to test if 
B decreases as the premium increases. 

Since the variance of the loss ratio distribution changes with the size of the 
insured, we decided to estimate the distribution implied by the model and 
perform the chi-square test on each of several groups of insureds. Each group 
was to have a fairly narrow range of premium sizes. The results are given in 
Exhibit III. 

No set of parameter values performed well when the premium was less than 
$15,000. While the second and third sets of parameters performed better than 
the first, all sets severely underestimated the number of zero loss ratios. It 
appears that higher values of c are needed for small premium sizes. 

It is difficult to note a pattern in the results of the chi-square tests on 
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individual groups. The chi-square test is simply not powerful enough to distin- 
ugish between the various sets of parameter values on individual groups. How- 
ever, the chi-square test permits combining the results of independent tests. 
(Actually, the tests are not independent since the parameters b and c were 
estimated from all the observations. Since the number of observations used in 
estimating the parameters was far greater than .the number of observations in 
each chi-square test, however, the tests are very nearly independent.) When the 
results are combined, a clear pattern emerges. 

The results predicted by the second and third sets of parameters are better 
than the results predicted by the parameters b = 0 and c = 0. Allowing for 
parameter uncertainty significantly improves the performance of the collective 
risk model. The results predicted by the third set of parameters are better than 
the results predicted by the second set for the smaller premium sizes. This is 
consistent with our hypothesis that B decreases as the size of the insured 
increases. 

Comparisons with the new Table M are given in Exhibit IV. Again we see 
that allowing for parameter uncertainty significantly improves the performance 
of the collective risk model. While the model does not fit the new Table M 
perfectly, it does come reasonably close. 

Interpretation of the Results 

The combined chi-square statistic calculated in Exhibit III indicates that we 
should reject the hypothesis that aggregate losses have the distribution predicted 
by the model. This shows that we have indeed made a ‘number of simplifying 
assumptions. 

This brings us back to the “Actuary’s Dilemma.” As noted above, the 
construction of an empirical Table M is suspect because of the necessity of 
using heterogeneous groups of insureds. It is extremely difficult to tell which 
is the more accurate. One must look to the applications in order to determine 
which to use. 

Through the end of 1982, Table M was used to determine insurance charges 
in retrospective rating plans. The same insurance charges were used regardless 
of what claim severity distributions were appropriate for the insured and what 
accident limit was selected. Meyers [4] demonstrated that the claim severity 
distribution and the accident limit have a significant effect on the insurance 
charge. By examining Meyers’ tables, one can see that these differences are 
much larger than the differences between the collective risk model with param- 
eter uncertainty and the new Table M. 
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A revision of the retrospective rating plan is currently being considered by 
the National Council. This revision contains an adjustment for the “overlap” 
between the insurance charge and the excess loss premium factor. This adjust- 
ment was derived using the collective risk model with parameter uncertainty. 

While the “Actuary’s Dilemma” is not resolved, we see that the collective 
risk model with parameter uncertainty can make a significant contribution to 
the solution of today’s problems. 

7. LARGE INSUREDS 

As demonstrated above, it is necessary to combine the experience of several 
insureds to get stable estimates of b and c. The methods given for estimating b 
and c assume that these parameters are the same for all insureds. It seems 
unlikely that b and c are the same for all insureds. For example, a stable 
company that has been working in the same line of business for many years 
should have a lower b and c than a company that has recently made material 
changes to its operations. A detailed examination of a company’s operations 
may reveal additional sources of parameter uncertainty. 

For small insureds, it may not be cost effective to conduct such an exami- 
nation. Thus, it should be acceptable to assume that b and c are the same for 
all small insureds. 

For large insureds, close examinations are routine. It seems quite possible 
that an underwriter could more accurately quantify parameter uncertainty on the 
basis of judgmental factors. However, skeptical actuaries respond that while 
underwriters are very sensitive to both the natural desire to sell insurance and 
aversion to risk, their quantitative estimates depend very much on what the 
competition offers. We regard it as an open question as to which method 
performs the best. 

What is an actuary to do under these circumstances? First, we should provide 
estimates of b and c based on the combined experience of several large insureds. 
As Morel1 [6] remarked in his review of the first version of this paper, “We 
owe them at least that much.” Furthermore, the data should contain several 
years of experience for each insured and the appropriate estimators for b and c 
should be used. Parameter uncertainty arising from heterogeneity between mem- 
bers of a group of insureds is not applicable for large account pricing. 

If a close examination reveals additional sources of parameter uncertainty, 
sensitivity testing should be done to determine the effect of this uncertainty. 
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Quite often, the results of such testing can aid in designing a contract that is 
agreeable to all parties. 

The remarks in this section are quite speculative. But they point out the 
need for extreme caution in using the collective risk model with large accounts. 

8. CONCLUSION 

This paper proposes a new version of the collective risk model that allows 
for uncertainty in selecting the expected number of claims and the claim severity 
distribution. We provide two different methods of estimating the parameters of 
this model. It is demonstrated by computer simulation that one must combine 
the experience of several insureds in order to accurately quantify parameter 
uncertainty. Tests on a very large sample of individual insured data show a 
significant improvement in the accuracy of the collective risk model when 
parameter uncertainty is taken into account. The tests do not show perfect 
agreement between the model and the empirical data, but the agreement is close 
enough to be useful in many applications. 
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APPENDIX A - DERIVATION OF EQUATIONS 4.1, 4.2, 5.1 AND 5.2 
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The equations derived in this appendix require the following data. 

T = number of insureds 
ri = number of observations for insured i, (ri > 1) 

Nij = number of claims for observation j of insured i 
eg = exposure for observation j of insured i 
Xij = incurred loss for observation j of insured i 
a: = an estimate of Var[Zi], where Zi is a random variable denoting claim 

severity for insured i. 

Estiniating c 

Let Xii be the expected number of claims for insured i and observation j. 
Assume hij = Ki * eu. Then 

It 

Aij = Ail ’ c?fjlf?il. 

follows from Equations 3.2 and A. 1 that 

Var[Nij] = Xii . eij/eii + c * (hii * eo/eii)‘. 

Let 

(A.1) 

(A.21 

V= i .g (Nii ’ eilleij - &I)*. 
i=l j=l 

Adding and subtracting Xii inside the parentheses gives us 

v= g (5 (NV * eilleij - AU)* - ri * (ii, - Ail)’ . 
i=l j=l > 

Thus, 

WI = 5 (ri - l)lri 2 (eiileij)* * Var[Ng]. 
i=l j=l 

Using Equation A.2 we get 

WI = 5 (ri - l)lri ,$, (Deb) * Ai, + c * 5 (ri - 1) * Afi. 
i=l i=l 
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Solving for c we get 

E[Vj - 2 (ri - 1)/n 2 (eil/eG) . Ai, 
i=l j=l 

c= 

i (ri - 1) . AZ, 

Equation 5.1 is obtained by substituting V for E[Vl and fii, for Ai, (i = 
1 , . . . , r). Equation 4.1 is simply Equation 5. I with T = 1. 

Estimating b 

Let pi = E[Zi], 

Uf = Var[Zi], 

Ni, = $ Nij, Md 
j=l 

Aij = XijlNij. 

Let p denote the severity scaling factor. 

Then E[AglNu, p] = (l/p) . pi and 

Var[Aij)Nu, p] = (l/p2) * u?~NQ. 

Thus E[AglNij3 = pi and 

Var[AulN~] = (1 + b) * U?lNij + b * pf. 

Let 

I;i = 2 XijINi,, and 
j=l 

w = f: 5 NV * (Aq - (ii)*. 
i=l j=l 

Adding and subtracting pi inside the parentheses gives US 

w = ,$, (,$, Nti * (A, - pi)* - Ni. * (/Iii - pi)*). 

64.3) 
I 
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Thus, 

EWNij’sl = i ISI (No * Var[AulNij] - (l/Ni,) * NC * Var[AolNij]). i=l j=, 

Using Equation A.3 we get 

E[WINQ’S] = (1 + b) ii, (ri - 1) . U: + b ii, (Ni. - (l/Ni,) ,$, N$) . CL?. 

Solving for b we get 

E[WINij’s] - ii, (ri - 1) * U: 

b= 

ii ((ri - 1) * Uf + /J-T * (Ni. - (l/Ni.) ]$, N$)) 

Equation 5.2 is obtained by substituting W for E[KINij’s], ii for pi and 
6: for a:. Equation 4.2 is simply Equation 5.2 with T = 1. 

APPENDIX B-DERIVATION OF EQUATIONS 5.4 AND 5.5 

The equations derived in this appendix require that individual ObSeNatiOnS 

be divided into T groups of size ri. They also require the first moment, E[Zl, 
and the second moment, E[Z*], of an assumed claim severity distribution. 

For observation j of group i, let 

eij = exposure (premium), 
Xii = incurred loss, and 
Ru =, Xijle~. 

For each group i, let 

pi = E[RQ], and 

bi = (llri) 2 Rc. 
j=l 

It follows from Equation 3.6 that 

Var,R,,l = Pi * (1 Q 5) ’ E[Z*l 
V eii . E[Zj - + p’ . (b + c + b - c). (B.1) 
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For each group i, let 

Ei = (llri) 2 (lleij), 
j=l 

Wi = 2 (Rg - bi)*. 
j=l 

PARAMETER UNCERTAINTY 

and 

Adding and subtracting pi inside the parentheses gives us 

Wi = ,$, (R, - ki)* - ri * (ki - pi)‘. 

It then follows that 

E[Wi] = (ri - l)lri i Var[Rij]. 
j=l 

Combining Equations B. 1 and B.2 we get 

EWil 
(ri - 1) * /.lJ = 

(1 + b) * W*l . & + b + c + b . c 
EKI Pi 

If one finds an approximate relationship of the form 

Wi 

03.2) 

(B.3) 

Equation 5.4 follows by equating a with the coefficient of Eilki in Equation 
B.3. Equation 5.5 follows by equating k with the constant term in Equation 
B.3 and using Equation 5.4. 
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EXHIBIT I 

THE CLAIM SEVERITY DISTRIBUTION 

Loss Amount Cumulative Probability 

0.00 
19.79 

39.57 
79.15 

118.72 
158.29 
197.86 
277.01 
395.73 
593.59 
791.45 

1187.18 
1582.91 
1978.63 
2770.09 
3957.27 
5935.90 
7914.54 
9893.17 

11871.80 
15829.07 

19786.34 
27700.87 
39572.68 
59359.02 
79145.31 
98931.69 

118718.00 
158290.69 
197863.37 
277708.75 
395726.56 
593590.00 
791453.44 

Summary Statistics: 
Severity Mean 

0.00000 
0.21384 
0.51025 
0.74056 
0.79959 
0.82665 
0.84450 
0.86657 

0.88626 
0.90606 
0.91797 
0.93388 
0.94464 
0.95223 
0.96242 
0.97156 
0.97998 
0.98476 
0.98785 
0.99001 
0.99281 
0.99452 
0.99649 
0.99790 
0.99890 
0.99934 
0.99956 
0.99970 
0.99983 
0.99990 
0.99996 
0.99998 
0.99999 
1.00000 

= 632.56 
Severity Standard Deviation = 5704.69 
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EXHIBIT IIa 

GROUPINGS USED FOR THE REGRESSIONS 

Set of Q’S 

139 

i 

I 
2 
3 
4 
5 
6 
7 
8 
9 

IO 
II 
12 
13 
14 
I5 
I6 
17 
I8 
I9 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

#I 

48600 
3422 I 
26730 
21008 
31690 
22575 
29624 
18702 
I2955 
9478 
7304 
5477 
4592 
8573 
5684 
7318 
446 I 
2933 
3638 
2265 
1516 
1057 
724 
610 
453 
827 
541 
351 
231 
351 
188 
222 
129 
65 
41 
29 
33 

9 
23 
12 
8 
7 

IO 

#2 

45000 
39000 
34000 
29000 
25000 
21000 
I7500 
15000 
13000 
11000 
10000 
9000 
8000 
7OQO 
6000 
5000 
4500 
4000 
3500 
3000 
2500 
1472 

#3 

87922 
60000 
50000 
40000 
30000 
20000 
I2800 
6400 
3200 
1600 
800 
400 
200 
100 
50 

#4 

13632 
II500 
9500 
8000 
7000 
6000 
5000 
4500 
4000 
3500 
3000 
2500 
2000 

#5 

350 
325 
300 
275 
250 
225 
200 
175 
I50 

Grouping Range of Premium Sizes 

#I 
#2 
#3 
#4 
#5 

Premium S IO00 
Premium 2 1000 
Premium P 1000 

5000 5 Premium 5 125000 
Premium > 125000 
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EXHIBIT IIb 

GROUPINGS USED FOR THE REGRESSIONS 
The following table should provide one with an indication of how the pre- 

mium sizes were spread among the various ri’s. 

Premium 
Lower Boundary 

1000 
1100 
1250 
1500 
1750 
2000 
2500 
3000 
4000 
5000 
7500 

10000 
15000 
25000 
35000 
50000 
75000 

100000 
150000 
200000 
300000 
400000 
500000 
750000 

1000000 

Insured Count 

20444 
26275 
34277 
26756 
21024 
31724 
22588 
29273 
18709 
26329 
13759 
14261 
11779 
4994 
3843 
2946 
1414 
1368 
582 
539 
221 
130 
122 
55 
60 

Average 
Loss Ratio 

.706 

.689 

.698 

.724 

.710 

.711 

.730 

.745 

.728 

.800 

.743 

.764 

.757 
,733 
.760 
.722 
.696 
.655 
.684 
.645 
.614 
.654 
.538 
.503 
.432 

Total 313472 

Squared 
c. v. of 

Loss Ratio 

105.78 
45.16 
73.15 
45.29 
45.67 
37.34 
23.94 
20.28 
15.64 
13.99 
9.03 
5.38 
4.57 
2.69 
2.53 
1;49 
1.48 
1.02 
.96 
.76 
.68 
.49 
.47 
.43 
.39 
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EXHIBIT III 

CHI-SQUARE TESTS 

Range 

200001-205000 35 1.54 4 .82 
175001-178000 41 4.02 5 .55 
150001-153000 50 2.21 5 .82 
125001-127500 58 17.61 7 .Ol 
lOooOl-102500 129 34.76 IO .oo 
90001-91500 64 14.27 7 .05 
80001-81000 70 13.69 8 .09 
70001-70700 48 4.18 5 .52 
6500 I-65550 75 12.61 7 .08 
60001-60600 73 8.76 8 .36 
55001-55550 94 36.77 8 .OO 
5000 I-50500 103 25.82 8 .OO 

Subtotal 

4500 I-45450 99 
4000 l-40400 99 
35001-35350 II9 
3000 I-30300 I46 
25001-25250 195 
20001-20200 222 
15001-15075 148 

Subtotal 

Sample 
Size 

b = 0 and 
c=o 

X2 DF P* --- 

176.24 80 .OO 

34.28 8 .OO 
6.81 8 .44 

76.36 IO .OO 
55.40 IO .OO 

118.57 IO .OO 
60.48 10 .oO 
46.82 IO .oO 

391.91 66 .oo 202. I5 65 .OO 82.98 66 .07 

568.15 I46 .OO 

b = ,258 and 
c = .037 

X2 DF P* --- 

5.20 3 .33 
9.57 4 .05 
5.68 5 .34 
7.57 6 .27 

15.76 IO .I1 
4.22 7 .75 

Il.54 IO .I7 
2.82 5 .73 

13.34 8 .lO 
10.94 8 .20 
15.22 8 .05 
22.45 8 .OO 

124.32 82 .OO 

13.12 8 .I1 
6.68 8 .57 

38.25 IO .oO 
31.45 IO .OO 
56.35 10 .OO 
31.94 10 .oo 
24.36 9 .Ol 

326.47 147 .OU 
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b = .184and 
c = ,220 for 

Prem 5 125000 
b = ,263 and 
c = ,058 for 

Prem > 125000 

X2 DF P* --- 

5.44 4 .I6 
7.18 4 .I3 
8.16 6 .23 
2.82 7 .90 

16.57 IO .08 
2.38 8 .97 

17.05 8 .03 
5.44 5 .36 

18.17 8 .02 
14.17 8 .08 
9.03 8 .34 

19.63 8 .Ol 

126.04 84 .OO 

7.82 8 .45 
7.24 8 .51 

15.01 .I0 .I1 
7.22 10 .71 

12.03 IO .28 
18.70 IO .04 
14.96 IO .13 

209.02 I50 .OO 

* P = probability that x2 is greater than the observed x2 if the hypothesis is true 
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EXHIBIT IV 

EMPIRICAL AND MODEL EXCESS PURE PREMIUM RATIOS 

Entry Ratio 

0.25 
0.50 
0.75 
1.00 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 

Empirical-NCCI 1980 Table M 

Expected Loss 

25000 50000 75000 100000 150000 200000 - - - - - - 

.789 .771 ,764 .760 .756 .753 

.631 .592 .574 .562 .545 .537 

.516 .458 .43 1 .414 .388 ,373 

.430 .360 .330 .310 ,280 .260 

.365 .290 ,258 .238 .208 .184 

.316 .239 ,208 ,187 .I59 ,133 

.277 .200 .I71 .I54 .I28 .098 

.246 .171 .144 .128 .104 .074 

.220 .148 .123 .llO .087 .057 

.198 ,129 .106 .094 ,073 .044 

.180 .114 .091 .080 .061 .033 

.163 .lOl .080 .069 .051 .026 

Model--6 = .184 and c = .220 for premium 5 125000 
b = .263 and c = .058 for premium > 125000 

Expected Loss 

Entry Ratio 

0.25 
0.50 
0.75 
1.00 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 

25000 50000 75000 - - - 
.785 .771 .765 
.633 .597 .581 
.522 .470 .445 
,438 .376 .346 
.373 .305 .272 
.322 .251 ,218 
.28 1 .209 .176 
.247 .176 .144 
.219 .150 .119 
.195 .I29 .I00 
,175 .I11 .084 
.I58 .097 .071 

100000 150000 200000 

.762 .753 .752 
,572 .542 ,536 
.430 .288 .377 
.328 .281 .267 
,252 .207 ,193 
.197 .156 .142 
.156 .120 .106 
.125 .093 .081 
.lOl .074 .063 
.083 .059 ,049 
.069 ,048 ,039 
.057 .040 .032 



Entry Ratio 

0.25 
0.50 
0.75 
1.00 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 
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EXHIBIT IV (CONT.) 

EMPIRICAL AND MODEL EXCESS PURE PREMIUM RATIOS 

Empirical-NCCI 1980 Table M 

Model-b = 0 and c = 0 

Expected Loss 

25000 50000 75000 100000 150000 200000 

.764 .753 .751 .750 .750 .750 

.588 .546 .528 .518 .509 .505 

.465 .398 .364 .342 .317 .301 

.377 .296 .254 .227 .192 .170 
,313 .226 .182 .154 .119 .097 
.263 .176 .133 .107 .076 .057 
.224 .140 .101 .077 .050 .036 
.193 .113 .078 .057 .035 .023 
.168 .093 .061 .043 .025 .015 
.148 .078 .049 .034 .018 .Oll 
.130 .066 .040 .027 .013 .008 
.116 .056 .033 .021 .OlO .005 


