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Abstract 

Adaptive decision models have been used with great success in many 
fields. This paper shows the value of the adaptive approach .in under- 
writing individual automobile risks. Dropkin’s model of the accident 
process serves as the basis by which adaptive and non-adaptive decisions 
are compared. The expected value of information about past or future 
driving experience is explained and developed to illustrate why adaptive 
and non-adaptive decisions may differ. Further insight into the adaptive 
model and the underlying accident process is developed by evaluating the 
value of information from stage 1y1 and the “true” value of stage m. The 
paper concludes by studying the adaptive model with discounting for the 
probability that a policy may lapse prematurely. 

The insurance underwriter’s basic task is risk selection-deciding 
which risks should be given insurance and which should not. To differen- 
tiate between risks, the underwriter must project the future accident 
experience of a driver and compare these costs against premium revenue. 
If expected revenues are at least as large as expected costs, the risk is 
acceptable. 

The accuracy of the analysis is extremely important to the insurance 
company. If the underwriting policy is too restrictive, desirable risks will 
be overlooked. However, underwriters who are too liberal cost the com- 
pany money by accepting undesirable business. 

For the purposes of this ‘paper, premiums are considered to be the 
sole source of revenue. On the cost side, expenses and insurer profits are 
ignored. Only the cost of accidents is considered. A simple decision rule 
then follows: accept the applicant if 

Premiums 2 EV (accident costs) 
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These assumptions are made to simplify explanation of the model. Adjust- 
ing the model to include other sources of revenue and cost is simple and 
will not hamper its implementation. 

The purpose of this paper is to propose a model which can assist 
the underwriter in selecting risks. The model in no way supplants the 
need for underwriting expertise, and it requires substantial input from the 
underwriter to operate properly. Although the paper considers accident 
frequency in determining the quality of business, other factors are clearly 
relevant. The effect of lapses, for example, is indicated in the final section 
of the paper. 

It is possible to draw parallels between the underwriting decision 
and the decision of whether or not to grant credit. Like the underwriter, 
the credit manager of a company must distinguish between profitable and 
unprofitable risks. The credit manager must attempt to determine which 
risks will repay their loans and which will not. By establishing an unneces- 
sarily restrictive policy, good risks are again overlooked. Too liberal a 
policy incurs unnecessary bad debts expenses. 

Bierman and Hausmanl have studied the problem of granting credit. 
Their results indicate that the most realistic decisions about extending 
credit are made when the decision-maker determines his optimal action 
from a multi-period analysis of the problem. The multi-period framework 
permits the credit manager to consider both the current and future benefits 
of granting credit. The model requires that the credit manager make an 
initial subjective estimate of the customer’s probability of repayment. The 
decision to grant credit is made for one period, but it depends upon the 
expected value from current and future periods. After one period, the 
decision is revaluated, based now upon a revised probability of collection. 
The revised probability value is determined by modifying the prior estimate 
by the individual’s repayment experience in the first period. If the expected 
monetary value (including costs) is still positive, credit will again be 
extended. The authors use Bayesian analysis to revise the probability of 
collection and dynamic programming to permit consideration of the 
expected returns from current and future periods. 

The model presented by Bierman and Hausman is entirely compatible 

‘Harold Bierman, Jr., and Warren H. Hausman, “The Credit Granting Decision”, 
Management Science, Vol. 16, No. 8 (1970), pp. B-519-B-532. 
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with the underwriting problem. Since the insurance company wishes to 
retain good risks and eliminate bad ones, it is quite natural to consider 
the underwriting decision in a sequential framework. The underwriter will 
determine his optimal action, based upon current information, for one 
period. After observing the accident experience of this period, the under- 
writer must incorporate the information with the original data and deter- 
mine his optimal course of action for the next period. Bayesian analysis 
can be used to revise the underwriter’s prior predictions of accident 
experience. 

This paper presents an adaptive model similar to Bierman and Haus- 
man’s for use in underwriting individual drivers. Analysis will show that 
better underwriting decisions are made when the underwriter uses a 
sequential decision model which considers individual driving records. 

A very strong case can be developed for incorporating information 
about driving records in underwriting decisions. A survey of the insurance 
literature reveals that individual driving records are often utilized in 
ratemaking. Studies by Wittick of Canadian driving experience and by 
Harwayne3 with California drivers indicate that there is significant and 
consistent variation in claims experience amongst drivers with different 
accident and traffic violation histories. Bailey and Simon4 have established 
that the accident experience of an individual driver can be given a credi- 
bility weight for the purposes of determining his appropriate premium. 
Dropkin shows that the distribution of the number of accidents for a 
group of individuals is most accurately described by a negative binomial 
function. In a subsequent paper, Dropkin describes a method whereby 
the parameters of the group’s negative binomial distribution can be up- 
dated by the accident records of individual drivers. The updated distribu- 
tion serves to indicate future accident experience for each individual. 

’ Wittick, Herbert E., “The Canadian Merit Rating Plan for Individual Automobile 
Risks,” PCAS XLV, pp. 214-220. 

‘Harwayne, Frank, “Merit Rating in Private Passenger Automobile Liability Insur- 
ance and the California Driver Record Study,” PCAS XLVI, pp. 189-195. 

4 Bailey, Robert A. and Simon, Leroy J., “An Actuarial Note on the Credibility of 
Experience of a Single Private Passenger Car,” PCAS XLVI, pp 159-164. 

’ Dropkin, Lester B., “Some Considerations on Automobile Rating Systems Utilizing 
Individual Driving Records,” PCAS XLVI, pp. 165-176. 

’ Dropkin, Lester B., “Automobile Merit Rating and Inverse Probabilities,” PCAS 
XLVII, pp. 37-40. 
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1. A ModeE of the Accident Process 

The negative binomial model is used here as a description of the 
automobile accident process. The model assumes that: 

(1) Each driver generates accident events according to a Poisson 
process in time with constant rate h accidents per year. For 
any time interval of length t, the number of accidents generated 
by one driver is a random variable having Poisson probability 
function with parameter xt. 

P(njh, t) = 
(ht)12 e--ht 

IZ! 
,n=O,l,2 )... 

The expected value of n is 

E(nlh, t) = At 

(2) The population is heterogeneous; each driver has a different h 
value. Prior to observing the experience of a specific driver, the 
probability density of his X value is given by 

g(+, b) = 
&A”-1 e-ax 

r(b) 
,A>0 

The expected value of h is 

E(x]u, b) = b/a 

The marginal distribution of the number of accidents in a time interval 
of length t, for one driver, may be determined from assumptions (1) 
and (2). 

P(nja, b, t) = 
s 

pm(nl& Od& b) dx 
0 

P(nla, b, 0 =(n~~y)(-$-)b(-&-Jn ,n=0,1,2 )... (3) 

The expected value of rr in a time period of length t is bt/a and the 
variance is tb (a + t) / u2. 

In Bierman and Hausman’s model the original probabilities of col- 
lection (the prior information) are often made subjectively with little or 
no past information available. People may feel that this fact weakens the 
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results. This criticism can safely be ignored when using the model in 
underwriting, since in this case more information is available. For any 
individual, prior information is the probability density of the applicant’s 
value, characterized by a and b. When the underwriter has little or no 
information about an individual, other than his designated rate class, 
prior information can be developed without subjective input from the 
past accident record of the rate class. The accident experience of the class 
is translated into usable form by fitting a negative binominal distribution 
to the actual data, and calculating the values of a and b. 

2. The Economic Structure 

Let the underwriting profit from one individual for one year be 
represented by 

where P represents the pure premium and nl represents the actual number 
of accidents generated by that individual within the time period. The 
cost of a claim is represented here by its expected value, C. Although 
claim size is really a random variable its expected value is all that is 
needed if two conditions are met. 

a.) The frequency and severity of accidents are independent random 
variables. This is commonly held to be true. 

b.) The decision criterion utilized is based upon expected value, as is 
done in this paper. This is reasonable since we are dealing with 
decisions whose consequences are individually small relative to the 
overall size of the firm. The more general criterion, maximization of 
expected utility, would give approximately the same results in this 
case. 

When considering the profit from one individual policy it is neces- 
sary to consider the lifetime of the policy. The number of years a policy 
will remain in force, before it is terminated by the insured, is unknown. 
Future policy life is of great importance for the decisions to be considered 
here. It seems most reasonable to express all results as a function of the 
future duration of the policy. Let m be the number of future years which 
the individual would renew the policy, if the choice is entirely left to him. 
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Thus, at the beginning, m is the life of the policy if the company does not 
terminate it. At any later time, m represents the future life. 

Another important economic consideration is the time-value of 
money. Let 

be a discount factor for one year, based upon interest rate r representing 
the best alternative use of money. Thus, consider one dollar to be 
received one year hence to have present value p. 

The present value of profit from one individual policy of m future 
years duration can be expressed as: 

(4) 

Here, IZ% represents the number of accidents in year i and all accident 
costs are treated as if paid at the start of the year. 

3. Non-Adaptive Decision Problem 

Consider the following individual, applying for insurance. The under- 
writer, considering past records for the applicant’s rate class and other 
factors, suggests that the prior distribution of h for this person is gamma 
(equation (2)) with a = 13.5 and b = 1.37. The underwriting profit 
function for one year is r1 = 100 - lOOOn, for the purpose of this 
example. The expected profit for one year is: 

E(T,) = %(lOO - 1000n) P (n113.5, 1.37, 1) 
*=0 

= 100 - 1000 E(n113.5, 1.37, 1) 
By equation (3), E(n113.5, 1.37, 1) is b/a or .10148 accidents. Therefore, 

E( ~1) = G1.48 

The expected underwriting profit is negative and this applicant is rejected. 

Similar results are obtained from considering multi-year policies. 
Suppose the company can offer a three-year policy which it could not 
terminate during the three-year period. The expected underwriting profit is 
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E( r3) = E 
t 

& 100 - lOOOn,) j?“-l 

At the time of the decision, nl, n2, and n3 all have the same expected 
value, .10148 accidents. The result is 

E(rd = (--$l.W(l + P + P2> 
This is also negative. If p = 1, it is just a factor of three times the result 
for the one-year policy. 

Non-adaptive decision-making will result in the rejection of this 
applicant, regardless of the duration considered for the policy. 

It will be shown that an adaptive plan, one which anticipates the 
utilization of accident experience for decision-making, will give very 
different results. 

4. Znformation and Its Expected Value 

The one piece of information which the underwriter would really 
like to know is the number of accidents which the applicant will have. 
Although this information is unattainable, the analysis of its value will 
still be useful. Suppose, for simplicity, that the policy will last only one 
year. If future loss experience were known in time to be used in making 
the underwriting decision, the underwriter would accept the applicant 
only if the number of accidents, n, is zero. This is easily seen from the 
profit expression which is negative for all n > 0. The future profit from 
the one-year policy, as a function of ~1, is 100 if the information is that 
n = 0, and zero if the information is n > 0. However, the underwriter 
must evaluate this information prior to its receipt. The expected value 
with the information is found by weighting the two possible outcomes by 
their probabilities. For the applicant having a = 13.5 and b = 1.37, the 
probability of no accident in the next year is 

P(O113.5, 1.37, 1) = .9067 

Therefore, the expected value of the process with the information is 

lOO( .9067) + 0( .0933) = $90.67 

The expected value of perfect information about n, denoted EVPZ,, is 
the above quantity less the expected profit without having the information. 
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Since it was best to reject the applicant, the latter quantity is zero, and 
the result is, 

EVPZ, = $90.67 

This quantity is useful as an upper bound on the value of any information 
to be used in a one-year policy decision. It also serves here to illustrate 
the concept of expected value of information, which was developed by 
Raiffa and Schlaifer.7 

Although the information of the previous type is not available at 
any price, it is possible that the underwriter can obtain some additional 
information about the individual’s prior distribution from outside sources 
and use that information in making his decision. The extra information 
usually involves some cost and it is important to know how much can 
be paid for it. 

The model of the accident process implies that the best information, 
short of knowing actual accident experience, would be the h value of the 
individual applicant. The only parameter of a Poisson probability function 
is A, the expected number of claims per year. Knowing h exactly makes 
possible exact prediction of the probability of x (X = 0, 1, 2, . . .) acci- 
dents. 

The best information which is actually available is information about 
the individual’s actual past experience. If many years of past experience 
are available this information will be almost as valuable as information 
about X. However, it is important to realize that even a small amount of 
this information is quite useful in the decision process. 

Suppose that the underwriter can purchase the actual past T years 
of experience of the applicant and can use this information in his deci- 
sion of whether to approve a one-year policy. The information will tell 
him k, the number of accidents the applicant had in the T year period. 

Without the information, the expected value of the one-year under- 
writing profit was found to be 

E(;lrl) = E(lOO - 1000n) = 100 - 1000-f- 
a 

= -1.48 

’ Raiffa and Schlaifer, Applied Statistical Decision Theory, The MIT Press, 1961. 
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However, with the information, the underwriter will modify his prior 
gamma probability distribution of x to obtain a posterior gamma proba- 
bility distributions having parameters 

a’=a+T 
b’=b+k (5) 

which is a blending of the prior knowledge with the sample information. 
The expected underwriting profit becomes 

E(?r,) = 100 - 1000 

This expression depends upon k. The value of the 
function of k, is 

best decision, as a 

Before k is known, the value of the decision process with the information 
can be found by taking the expectation of the above expression using 
the probability function 

P(kja, b, T) = 
(&)” (-&)* (“‘:‘) 

This expectation can be represented by . 

~~o[lOO-lOOO(~)] P(k[a,b,T) 

where k* is the largest value of k such that 

[loo- looo(g] > 0 
For illustration, let T = 1, a = 13.5, b = 1.37. Then k* = 0, and 

[loo- looo (&)]p(O~dW =5.00 

a See Mayerson, Allen L., “A Bayesian View of Credibility,” PCAS LI, pp. 85-104. 
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As already shown, the expected value without the information is zero. 
Therefore, the expected value of sample information from T years of 
actual past experience is 

EVSZ(u, b, 1) = $5.00 

Summarizing the previous development, 

EVSZ(a,b,T) =k~o[loo-looo (S)] zJ(kla,b,T) 

Information about driving history will appear even more valuable 
if a multi-period policy is considered. The underwriting profit from a 
policy which, if granted, will last m years is 

7rm = *$lOO - loooni) /?“-I 

At the time of the decision all the random variables nl, IZ~, . . . , II, have 
the same expectation; E(nja, b, 1). Therefore, the expected value of 
underwriting profit is 

Now it can be seen that the expected profit from m years is just a mul- 
tiple of the expected profit for one year. Therefore, the expected value of 
sample information to be used in the m year decision is 

EVSZ(a, b, T, m) = EVSZ(a, b, T)Q 

It can be proven that EVSZ(a, b, T) is a non-negative quantity and is an 
increasing function of T, increasing at a decreasing rate and approaching 
an asymptotic value, which would be the expected value of perfect infor- 
mation about the individual’s A value. 

The foregoing development establishes the value of information about 
individual driving experience. Sometimes this experience will be available 

‘As @ approaches one, the value of (l-,3”) / (1-p) approaches m. 
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from policy records, and the question is whether the information is worth 
the cost of data processing required to extract it. Even when the infor- 
mation is not available from past records, it is clear that future experience 
information will be available and the decision-making structure ought 
to anticipate using the information as it becomes available. 

5. The Multi-Period Adaptive Decision 

To obtain information about driving experience for use in future 
periods, the applicant must first be accepted. The underwriter will then 
receive information which can be used to determine the best future under- 
writing decisions. A single-decision model ignores the value of such 
information by basing the underwriting decision solely upon the prior 
distribution for h. 

A multi-stage dynamic programming model does not have this weak- 
ness; it utilizes the information as it becomes available. 

Let V%(u, b) = optimal expected present value of the next m periods 
when the prior distribution of x has parameters a, b at 
the start of the first period. 

/? = l/l + I = a factor discounting future returns to con- 
sider the time value of money. 

The underwriter chooses that action (accept or reject) which results in 
the optimal expected profit at each stage. The expected profit for rejection 
at any stage is zero. If the applicant is accepted, the expected profit is 
the expected first year return plus the discounted returns from future 
periods. The expected profit from one year, as a function of the parameters 
a, b of the prior distribution at the start of the year is 

R(u, b) = E(rl) = P - C E(nlu, b, 1) 

If the experience during the first period is it accidents, and the period is 
one year, then the prior parameters will be transformed into the pos- 

terior parameters u + 1 and b + IZ. The value of the remaining m - 1 
periods will be represented by 

J’m-,(a + 1, b + n) 
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However, n is unknown at the start of the first period and thus the ex- 
pected value of V,+l(u + 1, b + n) must be used. It islo 

Enla, b { Vm-,(a + 1, b + n> > = f$ P(nla, b, 1) Vm-l(a + 1, b + n> 
*=0 

The dynamic programming equation for Vm, in terms of Vmel, is 

1st year 
expected expected returns 
return from future periods 

I I 
VAa, b) = Max (0, m + P-E+, bCVm-l(a + 1, b + ;‘d,?- 

Vo(u, b) is defined as 0 for all a, b. 

V,(u, b) = Max (0, P - CE(nla, b, 1) > and corresponds to a single 
stage decision. 

Example 
A simple example has been chosen to illustrate the procedure. The 

optimal decision for the next three years, m = 3, will be determined, 
assuming a policy period of t = 1 year? and no discounting (p = 1). 
The profit function is 100 - lOOOn and the prior distribution for X is 
g(hl13.5, 1.37). The optimal decision for single stage models, under 
these conditions, is rejection, as was previously shown. 

To calculate V3(u, b) , various values of V2(a + 1, b + nI) are 
needed. Vg(a + 1, b + nl) in turn depend upon the values for one stage 
problems, VI( a + 2, b + tzl + n2) e 

The one stage process has the following form for any a, b. 

VI(u, b) = Max (0, 100 - lOOOE(nja, b, l)} 
= Max (0,100 - lOOO(b/u)} 

The optimal decision will be to accept if a > lob and “receive” 100 - 
lOOO( b/u) ; otherwise reject and receive 0. 

‘OThe notation Eda, b{*) d enotes the same expectation operation previously written 
E( * Ja, b, i). It will be used only when t = 1 and so the t value can be suppressed. 

UThe optimal policy period is one year. If the company issued a multi-year, non- 
cancellable contract, the underwriter would be forced to ignore the experience 
information until the next renewal date. 
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In this situation a + 2 = 15.5, b = 1.37 + k, k = 0, 1, 2, . . . 

V,(15.5, 1.37) = Max (0, 100 - 1000(1.37/15.5)) = 11.61 
V1(15.5, 2.37) = Max (0,100 - 1000(2.37/15.5)} = 0 
V1(15.5, 3.37) = Max (0,100 - 1000(3.37/15.5)} = 0 
V1(15.5, 1.37 + k) = 0, for k = 1,2, 3,. . . 

Returning to Stage 2, 

V2(a, b) = Max (0,100 - lOOO(b/u) 
+ E+, b{Vl(a + 1, b + n)}) 

For u = 14.5, b = 1.37, 

V2(14.5, 1.37) = Max (0, 5.52 + V1(15.5, 1.37) P (0114.5, 1.37, 1) 
+ VI(15.5,2.37) P (1114.5, 1.37, 1) +***} 

All terms involving V1(15.5, 1.37 + k) for k = 1 or higher are zero. 
Therefore 

V,(14.5, 1.37) = Max {0,5.52 + (11.61)(.91268)} = $16.12 

For a = 14.5, b = 2.37 

v,( 14.5, 2.37) = Max (0, 100 - 1000(2.37/14.5) 
+ V,( 15.5,2.37) P(O114.5,2.37, 1) 
+ V1(15.5, 3.37) P (1114.5, 2.37, 1) +***} 

All of the terms for the continued decision are negative or zero. There- 
fore, T/2(14.5, 2.37) = 0. Similarly, 

V2(14.5,1.37 + k) = 0, fork = 2,3, l l l . 

Finally, for stage 3, 

Vs(a, b) = Max (0,100 - lOOO(b/a) 
+ E+, b(v2(a + 1, b + n)>> 

After exclusion of terms which are zero, this is 

V,(13.5, 1.37) = Max (0, 100 - 1000(1.37/13.5) 
+ V2(14.5, 1.37) P (0113.5, 1.37, l)} 

= Max (0, -1.48 + (16.12)(.90674)} 
= $13.14 
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The optimal underwriting decision from a sequential analysis is to 
insure the applicant for the first year. Whether or not further insurance 
will be granted depends upon the individual’s accident experience, but a 
decision rule has been found. The expected profit is $13.14, as opposed 
to an expected return of $0 from a single stage analysis (where the 
optimal action is rejecting the applicant). The increase in expected profit 
occurs because the underwriter receives and utilizes additional information. 
The information about individual driving records allows the underwriter 
to retain good risks and eliminate bad ones. The value of this information 
is $13.14, the expected profit with the information about driving records 
less the expected profit without information about driving records. 

6. The Value of Znformation From Stage m 

At each stage in the sequential process, the underwriter obtains 
information about the insured’s accident rate A from the individual’s 
accident experience. Since knowledge about driving records enables the 
underwriter to make better decisions, the information has value. 

Define CVSZ,(nla, b) as the conditional value of the sample infor- 
mation gathered in stage m, which is the first year of an m year process. 
If the individual is insured during stage m, the underwriter observes the 
accident experience--n accidents in one year-and has an optimal ex- 
pected value at stage m - 1 of V,-,(a + 1, b + n) . If the individual 
is not insured during stage m, the optimal expected value at stage m - 1 
is V+l(u, b). 

CJ’SL(nla, b) = P{Vm-l(a + 1, b + n) - V,-l(a, b)} 

The discounting factor is applied, because the information obtained in 
stage m can first be used in stage m - 1, one year later. 

Define EVSZ,(u, b) as the expected value of information from 
stage m. 

EVSL(a, b) = &la, b{CV%(+, b)} (7) 
= P &~a, b(vm-da + 1, b + d} - PVwa-l(a, b) 
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The expected value of the information gained during the first year of the 
three-year period is calculated as an example. 

EVSZ3(13.5, 1.37) = En11s.5, 1.3~{V2(14.5, 1.37 + n)} 
- Vs(13.5, 1.37) 

= P(0113.5, 1.37, 1)v2(14.5, 1.37) 
- V,( 13.5, 1.37)12 

after zero terms are omitted. This reduces to 

EVSZs(13.5, 1.37) = 14.62 - 3.52 = 11.10 

The definition of EF/Sl,(u, b) has the important property that it is 
non-negative. This agrees with the intuitive notion that information is 
always expected to be beneficial, although on an after-the-fact basis it 
can have negative value. This is shown in the appendix. 

7. The True Expected Vulue of Stage m 

It has been shown that an adaptive policy often leads to the accept- 
ance of an individual whose application would be rejected on the basis 
of a non-adaptive decision. This is the situation when the expected one- 
year profit, R(u, b) , is negative but at the same time, for a horizon of m 
years, V,(u, b) is positive. The difference is due to the value of the 
information to be gained in stage m and utilized thereafter in the m - 1 
remaining decisions. 

It is useful to define Rz (a, b) to be the “true” expected value which 
can be attributed to stage m. If the applicant were not to appear until one 
year later, then period m would be idle and the present value would be 
PV,-,(a, b). Let the true value of stage m be defined by 

Rii(a, b) = Vnc(a, b) - PVnz-~(a, b), 
the change in expected value between utilizing and not utilizing stage m. 
It is shown in the appendix that this is equivalent to 

R;(u, b) = 
t 

R(u, b) + EVSZ,(u, b) if optimal to continue 
0 if optimal to terminate or not grant the policy. 

B V2(13.5, 1.37) was not calculated before. It requires V1(14.5, 1.37 + k) for 
k = 0, 1, 2. These also were not calculated previously. The results are 
V1(14.5, 1.37) = 5.52 and V,(14.5, 1.37 + k) for k = 1,2, 3.. . , are all zero. 
Finally, Vs(13.5, 1.37) = 3.52. 
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Thus, the true expected value of stage m is the sum of the expected 
immediate profit of stage nt plus the expected value of the information 
to be received during stage m. Thus, it will be optimal to continue the 
policy even when R (a, b) is negative, if the value of EVSZ,(a, b) is 
large enough to make the sum positive. 

To illustrate the concept of true expected value, return to the ex- 
ample with a = 13.5, b = 1.37, m = 3, ,f3 = 1. We have found that the 

EVSZ,(13.5, 1.37) = 11.10 
and R(13.5, 1.37) = -1.48 

Therefore 
R$(a, b) = -1.48 + 11.10 = 9.62 

and we conclude that the information value far exceeds the small ex- 
pected loss during the first-year of the adaptive decision. Here the expected 
loss R( 13.5, 1.37) can be viewed as a cost of sampling for information. 

8. The Administration of Adaptive Decision Rules 

The administration of these decision rules begins with the assignment 
of prior parameter values (a, b) to each new applicant based upon his 
rate classification and other, possibly subjective, information of use in the 
underwriting function. The optimum decision rule is calculated to give 
the accept/reject decision and the decision rule for future periods. 

On the anniversary of each policy the prior parameters are updated 
to include the experience of the past year. The decision to continue or 
terminate the policy is made according to the decision rule previously 
calculated. 

A useful classification system can be utilized, based upon the cal- 
culations shown. All existing policies can be classified into the following 
states which characterize their current condition: 

“Trial” or “Tentative” State-the current values of a, b and m are such 
that R(u, b) < 0 while Rz(a, b) > 0. Such a policy is being continued 
only as an experiment which may result in favorable information. 

Secure State of Degree n-the current values of a and b are such that 
R(u, b) > 0. Such a policy has positive expected profit for the current 
year. However, if more than n accidents were to occur during this year, 
this policy would revert to the trial stage, or even be terminated. In other 
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words, n is the largest number such that R(a + 1, b + n) is still positive. 
The number n is very easy to compute. 

The classification of policies into these states emphasizes the various 
different degrees of security of policies. 

Each policy may move, with experience, from one phase to another. 
Good experience will tend to move a policy into higher states of security 
while unfavorable experience will move a policy rapidly downward in 
security level. 

9. The E#ect of Lapses 

The expected profit from an applicant depends upon m, the future 
life of the policy, or the policy horizon. Conditional upon a future life of 
m years, V,(a, b) gives the optimal expected profit. The optimal decisions 
depend strongly upon m; the longer the life of the policy, the more valu- 
able is the adaptive ability. For policies which would always lapse after 
one year, the adaptive feature is useless. The feature becomes very valu- 
able for small and moderate m. The sensitivity to m is decreased beyond 
that, however, because of the discounting. 

Fortunately, the effect of policy lapse (termination by the insured) 
can easily be introduced into the dynamic program equations. Let CQ be 
the probability that the policy will lapse during the ith year given that it 
has entered the ith year. These “lapse rates” may be constant and equal 
for all years or they may depend upon the policy age or other policy 
characteristics. Given the conditional probabilities, the unconditional 
probability that the policy will remain in force at least n years is 

.The unconditional probability that it will lapse first in year 12 is 
n-l 
7r (1 --ad) alA I3 

i-1 

The expected future life is 

1 
a, which is 7 if all ‘y.a = (Y 

n-l 
18 T (1 - CT;) is defined to be equal to one for n = 1. ‘2 
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The dynamic programming equation becomes 

V,(a, b) = Max (0, R(a, b) + (1 - a.11 p&la, b{Vm-l(a + 1, b + n)>] 

for the first year of a period of m years duration, and 

V,.Ja, b) = Max (0, R(a, b) + (1 ----a,{+~) PEnla, ,{V,-i-l(a + 1, b + n)}> 

for the successive years. 

If the lapse probability for each year is the same, this process amounts 
to using a larger discount rate (1 - a) /3 in place of /3. 

The significance of m now is different than previously used. Here 
it represents the planning horizon of the company rather than the policy 
horizon. The results will become insensitive to m as long as m is taken 
to be larger than the expected life of the policy. 

To consider the effects of interest and the probability of lapse, the 
expected returns from each stage must be multiplied by the appropriate 
discount factor. This discounting factor increases over time. Discounted, 
the expected returns are very small from stages far in the future. Thus, 
as m gets large, the discounted value of V,(a, b) will converge to a 
constant amount. 

Example 

Suppose that an applicant having the same description as before is 
being considered. Again p I 1. The new feature is that the probability 
of lapse during the first year is aI = 5, Q.~ = .5 for the second year 
and (~3 = 1 for the third year. 

Recalling the original results for a = 13.5, b = 1.37 without con- 
sideration of lapse; 

VI(13.5, 1.37) = 0 V2(13.5, 1.37) = 3.52 

Vl(14.5, 1.37) 3 5.52 Vz(14.5, 1.37) = 16.12 

Vr(15.5, 1.37) = 11.61 V3(13.5, 1.37) = 13.14 

R(13.5, 1.37) = -1.48 
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With lapse 

(1) Vf(13.5, 1.37) = Max (0, R(13.5, 1.37) 
+ (1 -a~3)p413.5,1.3,{7/0(14.5, 1.37 + n>> 

Similarly, Vf(14.5, 1.37) = 5.52 and Vf(15.5, 1.37) = 11.61 

(2) Vt(13.5, 1.37) = Max (0, R(13.5, 1.37) 
+ (1 - 4@413.5, 1.3$?(14.5, 1.37 + n>> 

= Max (0, R(13.5, 1.37) 
+ [% P(O113.5, 1.37)V?(14.5,1.37) 
+% P(1113.5, 1.37)V:(14.5,2.37) +****I 

= Max (0, -1.48 + %[(.90674) (5.52) 
1 

+ (.083W(O)l) 
= $1.02 

A similar calculation will reveal that V,’ (14.5, 1.37) = 10.82 

(3) Vt(13.5, 1.37) = Max (0, R(13.5, 1.37) 
+ (1 - ‘y1)PK413.5,1.37{v~~14.5, l-37 + n>) 

= Max (0, R(13.5, 1.37) 
+ [%P(Oj 13.5, 1.37) Vf (14.5, 1.37) 
+ SP(1113.5, 1.37)1/:(14.5,2.37) +***I 

= Max (0, -1.48 + (.90674) (10.82) 
+ (.08326) (0)) 

= $3.43 

The results of this calculation illustrate the importance of adaptive 
decision-making even when the lapse rate is high. Although the policy 
has an expected life of less than two years, by making adaptive decisions 
the underwriter expects to realize a profit for a policy horizon of more 
than one year. 

10. Applications 

Applications of the model are not limited to underwriting. With 
appropriate modifications, the model can also be used as a ratemaking 
tool. 

For risk selection decisions, the decision-maker must be able to 
formulate a profit function similar to the one shown in section 2. This 
function can be specified on a net basis by ignoring all sources of revenue 
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and cost except premiums and claims costs. Or, if the appropriate infor- 
mation is available, a profit function including these costs may be derived. 
The model then requires the decision-maker to specify the applicant’s 
rate class and the loss characteristics of that class. At this point additional 
information about the applicant will be recognized and appropriate adjust- 
ments to the parameters of the prior probability distribution should be 
made. The best decision follows directly from equation (6) as illustrated 
in the paper. 

For ratemaking applications the model is used somewhat differently. 
In this case the decision variable is the level of premiums rather than 
whether to accept or reject the applicant. The decision-maker wishes to 
find the premium for which v/, (a, b) is just equal to zero. This rate 
represents the minimum amount the company should charge to insure 
the individual. At any rate lower than the minimum the company would 
expect to lose money on each person it insures. To determine the minimum 
rate an underwriting profit function must again be specified and the para- 
meters of the individual’s loss distribution must be developed. The model 
can be a tool for pricing both existing and proposed contracts. One inter- 
esting possibility would be to price a non-cancellable, multi-year policy 
where the premium rate is held constant between renewal dates, irre- 
spective of the insured’s accident experience. 

Appendix 
The Non-negativity of the 

Expected Value of Information from Stage m 

It is to be proved that EVSZ,(a, b) > 0 for all m. This is equiva- 
lent to 

E+, b{Vm-,(a + 1, b + n)} 2 T/nt--l(a, b) for all m. 

This will be done by induction. Letting m = 2, by definition, 

Vl(a + 1, b + n) = Max (0, R(a + 1, b + n)} for all IZ 

so 
&la, b{Vl(a + 1, b + n>} = -&la, b{Max (0, R(a + 1, b + n)}} 

Reversing the operations of expectation and maximization, the inequality 
is found to be 
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This right hand side is, by definition, Vl(a, b) . 

Hence, 
E,la, ,{V,-l(a + 1, b + II)} 2 V,+l(a, b) has been shown for 

the special case m = 2. Now assume the inequality holds for m - 2 and 
consider whether it is true for m - 1. A similar argument is used. By 
definition, 

&la, b{V,-l(a + 1, b + n)} = ILla, @ax (0, R(a -I- 1, b + n) 
+ E,J la+l, b+n(Vm-2(a + 2, b + n + n’> >}} 

Now, reversing the operations, the inequality is obtained 

&la, b{Vrn-l(a + 1, b -I- n>} > Max (0, E+, b{R(a + 1, b -t- n>} 

+ E+, a{Ed la+l, b+la(Vm--P(a + 2, b + n + n’)}}} 

Now it can be shown that 

E+, b{R(a f 1, b -I- n)} = R(a, b). 

The iterated expectation over n and n’ can be reversed, using the fact 
than PZ and n’ are conditionally independent given A. This reversal gives 

&la, a(& ja+l, b+,(vnt-2@ + 2, b + 12 + n’)}} = 

E,t 1~9 b{E++l, b+d { Vm-2ca + 2, b + n’ + n) ) } 

By assumption, the inner term obeys 

E,I,+~, b+n’{Vrn-2(a + 2, b -I- n’ +n)} 2 Vm-2(a i- 1, b i- n’) 

Hence, the inequality is obtained 

E+, b{Vrn-l(a + 1, b + n)} 2 Max (0, Nap b) 

+&t la, b(vm-2(a + 1, b + n’)}} 

the right hand side is just V,-l(a, b) and so the result is true for m - 1 
and, by induction, true for any m. 

Appendix 
The True Expected Value of Stage m 

The true expected value of stage m has been defined as the optimal 
expected value of aq m stage process less that of the m - 1 stage process 
starting from the same state of information but discounted by one period. 

Rz(a, b) = V’,(a, b) - pV,-l(a, b) 
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Suppose momentarily that the decision is between continuation of the 
policy or delaying the renewal one period. This is represented by the 
dynamic program 

Vm(a, b) = Max {pV,-,(a, b), R(a, b) 
+ P&la, b{ Vm-,(a + 1, b + n>}} 

The first term in the bracket represents the choice of delaying the decision 
one period. It will later be shown that this implies that pV,-,(a, b) = 0 
and hence that this dynamic program is equivalent to the one originally 
discussed. 

Equation (7) can be written as 

pE+, b{V,,+l(a + 1, b + n)} = EvsL(a, b) + PV,-l(a, b) 

Substitution into the above dynamic program gives 

V,(a, b) = Max {pV,-l(a, b), R(a, b) 
+EVSZ,da, b) + PV,-,(a, b) > 

subtraction of /3V,+l(a, b) from all terms gives 

R$(a, b) = Max (0, R(a, b) + EVSZ,(a, b) > 

Thus the true expected value of stage m is R(a, b) + EVSZ,(a, b) if 
if it is optimal to continue the policy and zero otherwise. 

It remains to show that the above dynamic program implies the 
original dynamic program. It can be shown from 

Vm(a, b) = Max {PV,-l(a, b), R(a, b) 
+ PE+, b{v+lCa +I, b + n)}> 

that V,(a, b) = pV,-,(a, b) which implies that 

Vm(a, b) = V,.-l(a, b) = l * l = Vda, b) = 0. 

This will not be shown here in detail but is based upon the inductive 
argument that if delay is optimal with m stages remaining it will also be 
optimal with m - 1 stages remaining. By induction it is optimal with zero 
stages remaining also, and thus has expected value zero. 


