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A BAYESIAN VIEW OF C R E D I B I L I T Y  

ALLEN L. MAYERSON 

Until recently, the credibility procedures used by casualty actuaries, 
and their theoretical justification, were developed apart from, and in isola- 
tion from, the methods used by statisticians. Arthur Bailey could write, 
in 1950: 

"At present, practically all methods ot~ statistical estimation appearing in text- 
books on statistical melhods or taught in American universities are based on an 
equivalent to the assumption that any and all collateral information or a priori 
knowledge is worthless. There have been rare instances of rebellion against this 
philosophy by practical statisticians who have insisted that they actually had a 
considerable store of knowledge apart from the specific observations being 
analyzed. Philosophers have recently discussed the credibilities to be given to 
various elements of knowledge, thus undernaining the accepted philosophy of 
the statisticians. However, it appears to be only in the actuarial field that there 
has been an organized revolt against discarding all prior knowledge when an 
estimate is to be made trsing newly acquired data." [14l 

In 1950 the actuary stood nearly alone in his use of statistical techniques 
to modify his prior knowledge, instead of treating each new set of data as 
a separate statistical problem, to be used by itself if the volume of data 
was large enough to be statistically significant, or discarded if the contrary 
was the case. Because statistical techniques were not adequate to solve the 
actuary's problems, he developed his own methods. He ingeniously de- 
veloped a credibility Z which was used to weight his prior knowledge B, 
with the current available statistical data A, by the formula ZA +( I -Z)B .  
But to determine Z, since there were no statistical techniques available, he 
has had to depend on empirical methods which, though they worked in 
practice, were hard to explain to non-actuaries and even harder to justify 
mathematically. 

Statistical theory has now caught up with the actuary's problems. Start- 
ing with the 1954 book by Savage [8], and buttressed by the 1959 volume by 
Schlaifer [9] and the 196 l book by Raiffa and Schlaifer [7], there has been, 
anaong probabilists and statisticians, an organized revolt against the classi- 
cal approach and a trend toward the use of prior knowledge for statistical 
inference. Instead of using credibility procedures, however, the Bayesian 
school of statisticians relies on Bayes theorem to merge the distribution 
representing prior knowledge with the statistical indications to produce a 
posterior distribution which rel~ects both. 

At the same time as this revolution in the foundations of statistics, 
which formally reinstates prior opinion in statistical theory, advances have 
been made in probability and stochastic processes which result in math- 
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ematical techniques which lend themselves to the solution of actuarial 
problems and which can more easily be used by actuaries. 

The relationship between Bayes theorem and credibility was first no- 
ticed by Arthur Bailey [14] who showed that the formula Z A + ( 1 - Z ) B  can 
be derived from Bayes theorem, either by assuming that the number of 
claims follow a Bernoulli process, with a Beta prior distribution on the un- 
known parameter p, or by assuming that the number of claims follow a 
Poisson process, with a Gamma prior distribution on the unknown param- 
eter m. (The formula for Z differs, however, depending on whether a Ber- 
noulli or a Poisson process is assumed.) 

It seems appropriate, in view of the growing interest among statisticians 
in the Bayesian point of view, to attempt to continue the work started 15 
years ago by Bailey, and, using modern probability concepts, try to de- 
velop a theory of credibility which will bridge the gap that now separates 
the actuarial from the statistical world. The purpose of this paper is to 
summarize the Bayesian point of view, to show its relevance to credibility 
theory, and to express credibility concepts in terms which are meaningful 
to a mathematical statistician. 

THE "CLASSICAL" VIEW OF CREDIBILITY 

As expounded by Whitney [38] in 1918, Perryman [33] and, more re- 
cently, Longley-Cook [30], the credibility theory now in use in the United 
States for fire and casualty insurance ratemaking rests on the following 
premises: 

1. The formula ZA +( I -Z)B  can be used to modify the actuary's prior 
knowledge B (usually the rate currently being charged for a par- 
ticular classification or, in experience rating, the manual rate) by 
the latest year's statistical data for the classification or risk in 
question, A. 

2. The probability of an accident is the same for all insureds, namely 
q, and the total number of claims for 17 insureds follows a Poisson 
distribution 

e - m  m • 
i ( X )  - -  x.t 

which has mean and variance both equal to m --- nq. 

3. The Poisson distribution may be approximated by a normal dis- 
tribution. The normal distribution is a two parameter distribution, 
but for credibility work it is customary to assume that the mean 
and variance are both equal to m. Then, if P is the probability that 
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the actual number of accidents will be within 100k% of the ex- 
pected number, 

-g~ 

1 e ~ -  dt 
x/2,~ 

On + k in ) -m 
- k , / m .  

"~/ m 

For selected values of P and k, we may determine the value 
of x from tables of normal curve areas. From the relationship 

X -  ° 
m = ~ ,  we can then obtain m, the level of expected claims for which 

the probability is P that the observed number of claims is within 
100k% of the expected number. 

4. There is a certain number of expected claims which deserves a 
credibility of I, and this number is the m determined from the nor- 
mal curve calculations. 

5. If the actual number of claims observed is equal to m,  as calculated 
in 4 above, this set of data may be assigned a credibility of 1. 

6. We can ignore the distribution of claim size, or loss severity, and 
use the number of claims, or loss frequency, to determine our 
credibilities. Or, if we wish to recognize the fact that the variation 
in claim severity is at least as great and usually greater than the 
variation in number of claims, we can do so by using a higher value 
of P or a lower value of k, thus stiffening our requirements for full 
credibility. 

7. Once the full credibility point m has been settled, partial cred- 
ibilities, for a volume of data yielding r claims, not large 
enough to merit full credibility, can be assigned by the formula 

r 
Z = ~ or Z - r + k '  where k is a normalizing constant. 

It has recently been recognized (Dropkin [23], Simon [37], Bailey and 
Simon [17]) that assumption 2 is open to question. For  example, in auto- 
mobile insurance the claim frequency varies for different drivers. If we 
assume that the number of accidents for each driver is Poisson distributed, 
and that the means of these accident distributions are themselves random 
variables distributed according to a gamma distribution, the total number 

p - -  

where 

X - -  
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of accidents  follows the negative binomial  dis tr ibut ion,  and the probabi l i ty  
of exact ly  x accidents  is: 

,(x) = ( x+; - l )  pr (I--p)~ 

which has mean r(1-p_____~) and var iance r(1-p) p p~ 

Fur the rmore ,  the da.ta studied by Harwayne  [26] and Dropk in  [23] 
show a mean  accident  f requency of .163 and variance .193, which casts 
some doubt  upon assumpt ion  3 above.  The mean and variance of the dis- 
t r ibut ion of claim frequency are not equal.  The  da ta  studied by Hewitt  [27] 

also indicates a variance,  in each of the classes studied, which differs some-  
what  f rom the mean.  

TIlE BAYESIAN VIEWPOINT 

The Bayesian view of statistical inference can best be summar ized  by 
a quota t ion  from a recent  pape r  by Edwards ,  L i n d m a n  and Savage [25]: 

"Probability is orderly opinion, and inference from data is nothing other than 
the revision of such opinion in the light of relevant new information." 

This view of probabi l i ty  differs radical ly from that used by most  classi- 
cal statisticians.  Mos t  authors  define probabi l i ty  in terms of symmetry  or  
as the l imit  of a series of relative frequencies.  F o r  example ,  one classical 

definit ion of p robabi l i ty  is: 

"The probability of the occurence of a given event is equal to the ratio between 
the number of cases which are favorable to this event, and the total number of 
possible cases, provided that all these cases are mutually symmetric." (Cramer [2]) 

Ano the r  way of expressing this definit ion is: 

"If an event can occur in N mutually exclusive and equally likely ways, and 
if n of these outcomes have an attribute A, then the probability of A is the 

n ,, (Mood [6] p. 7) fraction --~ 

Some authors  e m b o d y  the limit concept  in their  definit ion thus:  

"The proportion of the time that an event takes place is called its relative fre- 
quency, and the relative frequency with which it takes place in the long run is 
called its probability." (Freund [3] p. 124) 

Even  when probabi l i ty  is t rea ted  in the more modern  terms of sets and 
sample  spaces,  it is usually defined in terms of  symmet ry  i.e. equal ly likely 
e lementary  ou tcomes :  
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"The probability that an event ,4 will occur is the ratio of the number of sample 
points that correspond to the occurrence of .4 to the total number of sample 
points." (Hoel [4] p. 6) 

To a believer in an objectivistie definition of probability, the probability 
of an event may only be estimated by observing a series of trials of the 
event in question. Such questions as whether it will rain tomorrow, or 
whether there will be more automobile accidents next year than this year 
are considered, by holders of the relative frequency view of probability, to 
be completely outside the scope of probability. Such questions, they would 
say, have no meaning in probability terms. 

By contrast, Bayesians believe that probability concepts may be used 
to express either the uncertainty of a future event or the uncertainty of un- 
known existing conditions. For a Bayesian, the probability of an event .,4 
is the largest price he would be willing to pay in exchange for the promise 
of a dollar if A turns out to be true. The probability that it will rain tomor- 
row is 1/5, for you, if you are willing to pay $.33 for the right to receive a 
dollar if, in fact, it does rain tomorrow. 

The consistency among the probabilities an individual would assign to 
various events can be obtained by his being unwilling to accept a combina- 
tion of bets that assures a loss no matter what happens. Bayesians avoid 
the apparent contradiction between scientific objectivity and irrational hu- 
man behavior by postulating an ideal individual who is consistent in this 
sense. Such a man will confront each of his probabilities with his other 
beliefs and will maintain consistency between them. The actuary will want 
to work with a consistent set of probabilities; this is equivalent to requiring 
that the probabilities assigned to the various events obey the usual mathe- 
matical rules of probability. 

Such a reasonable and prudent man will not only maintain consistency 
among his opinions, but will be willing to change them when confronted 
with new evidence. Furthermore, if there are two reasonable men who in- 
itially assign different probabilities (prior probabilities) to a given event, 
their revised probabilities (posterior probabilities) will draw closer to- 
gether when they are confronted with external evidence as to the truth or 
falsity of a given event or proposition. I f the evidence is overwhelming (fias 
credibility one),  their posterior probabilities will tend to merge, given some 
degree of initial open-mindedness, no matter how far apart they were be- 
fore they saw the evidence. 

The mechanism by which prior probabilities can be confronted by 
evidence is Bayes theorem, which states that the conditional probability 
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that the hypothesis H is true, given that data D have been observed, P(HID), 
can be expressed as: 

p(H1D ) -- P(DIH)P(H) 
P(D) 

where P(H) is the prior probability for hypothesis H. The denominator, 
P(D) can be expressed as 

X P(DIHi)P(Hi) 

where{H¢lrepresents a set of exhaustive and mutually exclusive hypo- 
theses of which H is the particular one under examination. If we are only 
interested in whether H is true or false, then the set Hi compromises only 
two members, H and H, and 

P(D) = P(DIH)P(H)+P(DiH)P(H). 
The partition { H~ / is often arbitrary. For example if H is the hypo- 

thesis "the average paid claim cost C for automobile bodily injury lia- 
bility is $796 in 1963," the set may consist of only two other members, 
besides H, namely C<796 and C>796,  or it may consist of a continuum 
of numbers x, with initial probability densities f(x), such that 

, 4  

P(D) ~- ] P(dlx)ffx)dx 

where H is the particular interval 

795.5 < x < 796.5. 
Bayesians emphasize decision making as the purpose of most statistical 

work; the purpose of obtaining a statistical estimate of ~ is to decide on 
a certain course of action (e.g. what premium to charge) rather than 
merely to assert something about ~. By contrast, many statisticians believe 
that their function is limited to an analysis of the data and that decision 
making is a separate function; the decision maker, in their view, must 
combine the statistical results with his own judgment and other relevant 
factors in deciding what action to take. 

The above short explanation of personal probabilities and the use of 
Bayes theorem is not intended to change the view of anyone who now 
holds the frequentist view of probability. A more extended and convinc- 
ing treatment can be found in [25], [21] and [36]. 

C O N J U G A T E  P R I O R  D I S T R I B U T I O N S  

The actuary is rarely interested in testing whether a hypothesis H is 
true or false. In most problems involving credibility he wants to determine, 
after seeing claim data for the latest calendar or policy year, whether the 
current manual rate needs to be modified. Or, his problem may be whether 
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a particular insured should be charged a premium different from the 
manual rate. His initial point estimate H will usually be the current 
premium rate in the class under review. He would like to determine 
whether H must be modified, and to what extent, by the observed data D. 
Rarely, however, can he decide on the distribution of P(H), the prior 
probability he is willing to assign to H, purely by introspection. 

Fortunately, there is a way out of this dilemma, at least partially, 
through the theory of conjugate prior distributions, studied in detail by 
Raiffa and Schlaifer [7]. A prior distribution is said to be conjugate to an 
experiment when the prior distribution is so related to the conditional dis- 
tribution that the posterior distribution is of the same type as the prior. 
For example, if D is viewed as the outcome of a Bernoulli process, and 
P(DIH) is the binomial distribution, then the choice of a Beta distribution 
for P(H) will result in a Beta distribution for P(HID) also, but with dif- 
ferent parameters. If D is viewed as the outcome of a Poisson process, 
and P(H) is chosen as a Gamma distribution, P(HID) will also be a Gamma 
distribution. If D is interpreted as the mean of independent normal ob- 
servations with known variance, and P(H) is assumed to be normal, then 
P(HID) will also be normal, but with smaller variance. 

Arthur Bailey [14] studied both the Beta-Binomial and the Gamma- 
Poisson conjugate distributions and showed that, under either assumption, 

n 
a credibility Z can be obtained, of the form Z -- - -  so that n + k '  

E(HID) = Z Mo + (I-Z) M,,. 

Contrary to usual actuarial usage, where k is taken as an arbitrary nor- 
malizing constant, Bailey's formulas require that k be a specific function 
of the mean rn and variance ,7 ~ of the prior distribution P(H). If P(H) is 
taken as a Beta distribution, and P(D[H) is a binomial distribution, then 

m - rn"- - ~r ~ 
k -  

If P(H) is assumed to be a Gamma distribution, and P(DIH) is a Poisson 

distribution, then k - m It should be noted that Whitney [38] realized 
O.1~ " 

that k is not constant, but accepted an invariant k on grounds of expedi- 
ency and simplicity. 

The existence of conjugate prior distributions makes the actuary's job 
easier. If he thinks that the claim data he observes result from a Bernoulli 
process, he may, with a sufficient degree of approximation, be able to take 
P(H) to be a Beta distribution. If he believes that his claim data come 
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from a Poisson process, he may be able to assume that P(H) is a Gamma  
distribution. In either case, he must choose m and ~,~, the mean and vari- 
ance of P(H), hence the parameters of the prior distribution, so that P(H) 
adequately reflects his belief about H before seeing the observed data D. 
If there is a sufficient amount of data, the posterior distribution will not 
depend heavily on the exact form of the prior distribution. 

The choice of m will, as a rule, be simple, m will be the pure premium, 
claim frequency, average claim cost, or whatever other actuarial function 
H is intended to test, e.g. if H is the hypothesis "the average paid claim 
cost C for automobile bodily injury liability is $796 in  1963" m would be 
taken as 796. - 

The choice of ,r -° is much more difficult, and in its use lies a major 
departure from present actuarial practice. At present, the current claim 
frequency, pure premium, etc. is taken as fixed and assigned a credibility 
l-Z, where Z depends only on the number of claims or the amount of losses 
observed in D. Actually, the current premium rate, or its component claim 
frequency or claim cost, is itself only a parameter chosen to represent a 
distribution which has not only a mean, but also a variance and other 
moments. The classical view takes H to be an unknown constant which 
may be estimated, but holds that it is meaningless to speak of probabilities 
concerning H. The Bayesian, on the other hand, is willing to treat H as 
a random variable, with a distribution which reflects his current uncer- 
tainty regarding H. 

THE C O N C E P T  OF FULL CREDIBILITY 

In order to use credibility theory in ratemaking, an actuary must first 
determine the number of claims required for full credibility (Longley- 
Cook [30] p. 199). He then uses a formula, often based on the ratio of 
the number of actual claims in the observed data to some function of the 
number of claims which would be entitled to full credibility, to assign 
credibilities to data comprising fewer claims than this magic "full credi- 
bility" number. If the observed data for a particular classification results 
in a greater number of claims than the number required for full credibility, 
the data are taken at face value and are used for ratemaking, without ref- 
erence to the previous manual rate or any other auxiliary information. 

The concept of full credibility has always been rather difficult, phil- 
osophically. Some actuaries believe that no data are entitled to 100% 
credibility and that the credibility curve should approach 1 asymptotically, 
without ever reaching it. In Bayesian terms, however, the concept merges 
with that of partial credibilities in a natural and logical way. The Bayesian 
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poses his credibility problem as that of modifying his prior opinion H by 
some observed data D. If the data are few, there is no reason for him to 
change H. P(HID) remains very close to P(H). As the volume of data 
increases, P(HID) becomes more and more dependent on D and, finally, 
P(HID ) comes to depend almost entirely on D. For  a large enough volume 
of data, the posterior distribution is generally almost independent of the 
prior distribution. 

Thus the Bayesian would pose the question of full credibility as: "For  
what prior distributions are these data fully credible, i.e. for what prior 
distributions can we say that, for practical purposes, the posterior distribu- 
tion is independent of the prior distribution because of overwhelming 
data?" As we increase the volume of data, we increase the family of prior 
distributions for which this independence of posterior from prior is sub- 
stantially true. There will, however, always be some prior distributions for 
which this is not true. For  example, if the actuary (or insurance commis- 
sioner) chooses a prior distribution which is rather narrow, with all its 
mass concentrated in an interval close to last year's claim frequency, no 
amount of data will be sufficient to make him give up his prior opinion 
entirely, though he may be willing to modify it somewhat. 

Most reasonable people will, however, alter their original beliefs if 
the data do not appear to support them. In actuarial work in particular, 
one must be exceedingly stubborn to hold to a narrow prior distribution, 
in the face of contrary evidence, because of the possibility, or even prob- 
ability, of trends or secular changes in the underlying situation. Accident 
rates, average claim costs and other such quantities change with time, and 
the actuary is not, as a rule, surprised to find that this year's data differs 
somewhat from last year's. 

CHOOSING PRIOR PROBABILITIES 

The actuary's choice of his prior probability distribution has tradi- 
tionally been that underlying the previous rate for the classification in 
question. In experience rating, he takes the manual rate as the mean of 
the prior distribution, to be modified by the experience of the individual 
risk. He has never, however, faced the question: "How much confidence 
do I have in the current rate?" 

One way to achieve meaningful results would be to estimate not only 
the mean but the variance of the present rate level. Then, after choosing 
a distribution, we cart solve for the number of claims to which our prior 
knowledge is equivalent, which is a function of the mean and variance. 
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F o r  example ,  if we believe our  da ta  are the result of a Bernoul l i  proc-  
ess we may assume that  P(H) is a Beta function 

p(h) = K h" ( l  - h) '''-r" 

with r '  favorable  and n ' - /  unfavorable  outcomes.  

/ + 1  
m - -  - -  

n ' + 2  

and variance 

Then h has mean 

r' + l ( n ' -  r' + l )  _ m ( 1 - m )  

(n" + 2ff (n" + 3) n" + 3 

(See Raiffa  and Schlaifer  [71 p. 2 1 6 ) .  Thus  

n ' - -  r e ( l - m )  3 

represents  the validi ty of the pr ior  knowledge,  and a compar i son  of n' with 
the number  of exposure  units in D will indicate the credibi l i ty  that  D de- 
serves relative to H. 

If we assume, for example ,  that  the mean accident  f requency under-  
lying our  present  rates is .10 with ,r = .005 then 

n" = (.IO) (.90) . 3 = 3597. 
.000025 

If we assume that m = .10 but ,r = .02 we would, of course,  have 
much less confidence in H than in the previous example .  Here  

n' = ( .10)( .90)  - 3  = 222. 
.0004 

If P(H) is a Beta funct ion with pa ramete r s  n" and r', and if our  da ta  has 
a b inomial  condi t ional  dis t r ibut ion with pa ramete r s  n and r, we can ap-  
proach  the credibi l i ty  p rob lem by t reat ing our  pr ior  knowledge H as a 
sample  of size n '  and our  da ta  as a sample  of size n. We will then have 

r ' + l  r 
m ~ -  n ' + 2  and t oo - -  . 

n 

If we then combine  the two sets of " d a t a "  into a single " sample"  of  
p 

size n + n ,  we have:  

r + r ' + l  
m ~ l o - -  n +  n' + 2 

n r n ' + 2  r ' + l  

n + n ' + 2  n n + n ' + 2  n ' + 2  
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which has the form ZM~,+ ( 1 -  Z)M,.  I t  should be noted that these 
expressions for m,/~j and for Z are the same as those derived later by 
means of Bayes Theorem. 

It  should be noted that n', which measures the validity of the prior 
knowledge, varies directly with m and inversely with ,r. This agrees with 
our intuitive notion that it takes fewer units exposed to risk to produce a 
given level of credibility if the claim frequency is high than if it is low. 
(Here this principle results in greater validity for the underlying experi- 
ence in a classification with a high claim frequency than in one with a 
lower frequency.) It also seems logical that the validity of any estimate 
should vary inversely with its standard deviation, since a larger standard 
deviation indicates a smaller degree of confidence that the values are 
clustered around the mean. 

U S I N G  BAYES T H E O R E M  

Once a prior distribution has been chosen, it is necessary to combine 
the prior distribution with the distribution of the data, in order to obtain a 
posterior distribution. This was done in 1950 by Arthur Bailey [14] but, 
since his notation is rather complicated, it will be helpful to restate his 
results in terms of modern statistical concepts, in an endeavor to show 
what assumptions actually underly credibility theory. 

Let H be the random variable whose value we would like to estimate 
and let p(h) be the prior distribution of H, before the data have been ob- 
tained. Let D be a random variable whose value can be observed, the 
data, and f(H[d) the posterior distribution of H, given that D = d. Let 
mn and m ,  be the means of D and H and ,~g and ~71 their respective vari- 
ances. Let p be the correlation coefficient between D and H and ,too the 
covariance, g(DIh) is the conditional density of D given that H = h. To 
apply Bayes theorem p(h) and g(DIh) must be known or assumed, g(D]h) 
will reflect the type of chance variation of the data around the "popula- 
tion parameter" h and p(h), since it is a prior distribution, can be chosen 
to reflect the actuary's prior knowledge and beliefs about the random vari- 
able to be estimated. As we shall see, it is convenient to choose p(h) as 
a conjugate distribution to g(D[h). 

It  should be noted that the notion of a correlation coefficient between 
H and D would not be acceptable in classical statistics, since the former is a 
"parameter"  and the latter a "statistic." In the Bayesian view, however, 
such a correlation is permissible so long as it makes sense to talk about the 
joint distribution f(h,d) of H and D. 
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Bailey suggests that we take as our estimator of H: 

h, = E(, Id) = f h l ( h l d )  dh 
-oo 

oQ 

f h [(h,d)dh 

f, (d) 

f h I(h) g(d[h) dh 
_ _ - o o  

-oo 

It should be noted that the conditional expectation E(H]d) is a function 
of d alone. E(Hld  ) may be called the regression function of H on D (Hogg 
& Craig [5] p. 212).  E(H]d) may not be linear. L e t x  m H + y  d b e  the 
"best fitting" approximation to E(H]d), i.e. choose x and y to minimize 

[ E(HId)  - x ml, - y d]" f , (d )dd  
-o0 

where 

f 
O0 

f , (d)  = g(dlh ) p(h) dh 

is the marginal distribution of d. The minimum is obtained by taking 

x = 1 rno ,~u,~ _ i rnl) a .  
m . cr o - m l---~l " p" 

and 

Thus 

~TIII) __  0"11 

Y - -  cr~ P ~ "  

I ~u]  a .  d E(HId  ) .~ 1 - m....~., p .  ~ m .  + p .  - - .  
m l I  CrD 

pe cQ> 
Let A - - -  p and B = m .  - A m . ,  then 

y 0"11 

m~ d 
E(HId)  ~ ( 1 - p ' ) m l ,  + p ' m , , -  p" ~ + pt-A 

= - -  + ( 1 - p ~ ) m .  



C R E D I B I L I T Y  97 

and this result is exact if E(H]d) is linear. A and B are the coefficients of 
the regression line of D on H. In  particular, if A = n and B = 0, which 
will be seen to be the case if E(DIh ) = nh (which is true if g(dlh) is either 
a binomial or a Poisson distribution) : 

E ( n l d )  = o ~ d + (1 - 09  m .  
rl. 

= Z mo + ( 1 -  Z )  m . .  

It can be seen, then, that the Z used by actuaries as the credibility to be 
given to observed data, when the data are combined with prior knowledge, 
is the square of the correlation coefficient between H and D (called by 
some the "coefficient of determinat ion") .  It should be noted that Z has the 
desired property Z ~ 1 and, because the "best fitting" approximation 
h ' =  x m .  + yd  is defined in an analogous fashion to a least squares re- 
gression line, the error variance E ( h - h ' )  e is minimized by this choice of 
Z. The exact form of Z depends, in any particular case, on the conditional 
distribution g(d[h) and on the prior distribution p(h). 

T H E  B E T A - B I N O M I A L  

If  g ( d ] h )  is a binomial distribution, as appears to be true in many 
branches of insurance, 

n f  
g (d [ h) - h d (1 - h) ''-'l (d "successes" in n trials) 

d ! (n d) ! 

then 

E(D I h) = ~ d . g(d Ih) 
d 

= nh = A h  + B, 

hence A = n  and B = O  and 

E ( D '  Ih) = ~.. de ' g (d lh )  
el 

= ~ [d '~' + dl ~ ( d l h )  
g 

= n ( n -  1) h ~ + nh 

and 
= E(D~I h) -- [E(Dlh)]e O~, DI It 

= n h (1 -- h) 
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If we sum over all values of h we get: 

e(o)  = ~ e(D I h) p (h) = ~ ,, h p (h) = . . , .  

E(D e) = ~ E(D 2 [ h) p(h) 
h 

= ~ ,  n (n - J) h ~- p(h) + ~ ,  . h  p(h) 
h, h, 

= n ( n -  1) E(H ~) + n m ,  

= n (n - 1) ( ~  + m ; )  + n m,, 

and 
~,~ = n ( n - 1 )  a71 + n m . ( 1 - m . )  

Although nothing has been said so far about the form of p(h), the prior 
distribution, it will be helpful to take p(h) as a Beta distribution. If g(d I h) 
is binomial, and p(h) has a Beta distribution, f ( h ] d )  will also have a Beta 
distribution. (See Raiffa & Schlaiffer [7] p. 53.) 

If  

n !  
g(d [ h) - d .t (n - d) .t he (1 - h) ''-a 

and 
p(h) = KtV" (1 -- h)'"-'", 

then 

fo ~hg(d l h) p(h) dh 
E (H  [ d) = , 

f o g ( d  [ h) p(h) dh 

/, K h e+a+' (1 - h) .... ,-e-~, dh 

o 

f K h ~'+e (1 - h)"+"-a-r" dh 

o 

B ( r ' + d + 2 ,  n + n ' - d - - r ' + l )  
= B ( r ' + d + l ,  n + n ' - d - r ' + l )  

r ' + d + l  
n + n ' + 2  
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_ m ( 1  - m )  
r ' + l  and var iance  e ~ - -  n ' + 3  Since p(h)  has mean mn n '  + ~  

E ( H ] d )  is l inear in d, we may write:  

n d / + 1  
E ( H  [ d) = n" " - -  + n' n +  + 2  n n +  + 2  

n d n + 2  
= " - -  + n" • m .  n + n ' + 2  n n +  + 2  

= Z  d_  + ( l _ Z )  m,, ,  
n 

where Z - 
n + n ' + 2 "  
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, and since 

Fo r  a fixed n',  Z approaches  1 as n gets very large. 

as previously stated. 

k = m,,(1 - m, , )  - o-~ 

then:  

T H E  G A M M A - P O I S S O N  

If  g(dlh) has the Poisson dis t r ibut ion 

g(d]h) = (nh)d e-''h 
d.t 

E (O[h) = ~f~ dg(dlh)  = nh 

E (Dell,) = ] ~  d e g(dJh ) = n °- h ~- + nh 
e 

O'DI h = nh 

Summing over  all values of h, 

E (D)  = nE(h )  = n mn  

E (D e) = n e E (h  e) + n E(h)  

: n" (o-,I + m~)  + n m .  

o-~ = n % ~  + n m .  

where 

We may  rewrite Z in terms of the mean and var iance of the pr ior  dis t r ibu-  
t ion: 

Z = ru~  
(n  + n" + 2),r ~, 

HO',H 

(n - 1)~,~ + (n'  + 3 ) ~  

nor ~ 

(n - 1) ,r~ + ran(1 - m . )  

n 

n + k '  
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If  we take p ( h )  to be the G a m m a  distribution 
a r 

p ( h )  = - - .  h ~-' • e ~h 
r ( r )  

r r 
which has mean--a and variance ~-~, for h -> O, letting 

n a a r 
K - - - -  

d.  t F(r )  

we have:  

E ( H ] d )  

h • p ( h )  • g (d]h)  • dh  

p ( h )  • g (d[h)  • d h  

K h d+r . e -(' '"~)h d h  

K h 'z+'' • e - ( n ~ a ) h  d h  

(n + O) 'l+r " h '1 . . . .  e-C .... ,h . (n + a) " dh  

(n  + a) (n  + a) 'I+''-' • h d+r-' • e - '  ..... ~h . (n  + a ) . dh  

x 't~r • e - x  . d x  

01 + a) x a~r-~ • e -~ . d x  

( d  + r) ! 

(n + a) (d  + r - 1). t . .  

d + r  
, which is linear in d. 

n + a  
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r F 
= --a and variance e ~  = ~;, we may rewrite Since p(h)  has mean m .  

E ( H I d )  as: 
d + r  

E ( H l d )  - n + a 

n d a r 

n + a  n n + a  a 

= z d  + ( l - Z )  m . ,  
n 

w h e r e Z -  n a n d a - -  m .  
n + a cr u 

T H R E E  U N S O L V E D  P R O B L E M S  

The credibility tables commonly used in the United States are based 
on the normal approximation to the Poisson distribution. As has been 
shown by Harwayne [26], Dropkin [23], Hewitt [27] and others, the two 
parameter  negative binomial distribution provides a better fit to the data 
than the Poisson. This would seem to indicate the need for new credibility 
tables in many branches of insurance. 

Such new tables could be based on the negative binomial or on the 
Beta-binomial distribution. However, both of these ignore a very important 
factor, the distribution of claim size. Most credibility formulas in use to- 
day measure the credibility of a given number of claims. What is really 
needed, however, is the credibility of the pure premium, which depends 
on claim severity as well as claim frequency. 

Let X , ,  ,Y~, . . . , X , ,  represent the amounts of the n claims that occur 
during a given time period. Let us assume that the amount of each claim 
is independent of the size of any other claim (which might not be true, for 
example, in a class of policies containing an aggregate limit on benefits 
paid) and that the X'~ are identically distributed. Let F(x )  represent the 
distribution function of the amount of a single claim. F(x )  is the proba- 
bility that the amount of a claim is < x, given that a claim has occurred. 
Let N be the number of claims occurring during the time period in ques- 
tion and p(n)  represent the probability that N = n. The distribution of the 
total amount of claims paid by the company, i.e. the probability that this 
amount is < x, is 

p(n)  f ( x )  
~ o  

n *  

where F(x )  is the n-fold convolution of F(x )  with itself. 
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If we assume that N follows a Poisson or a negative binomial distribu- 
tion, and F(x) an appropriate claim distribution (which might vary by 
line of business), the distribution of the total amount of claims or, better 
still, the distribution of the pure premium, should produce more accurate 
credibilities than those now in use. 

In many branches of property insurance, the distribution of claim size 
seems to follow a log-normal distribution (Benckert [19] and Bailey [16]). 
The convolutions of the log-normal, unfortunately, cannot be obtained in 
closed form. Mathematically, the easiest distribution to use is the Gamma 
distribution since, if F(x) has a Gamma distribution with parameters (r,a), 
then F"*(x) has a Gamma  distribution with parameters (nr,a). However, 
the log-normal distribution has greater skewness than the Gamma.  Other 
distributions that may be useful for claim severity are the Pearson Types 
V and VI and the Pareto distribution, which is a special case of the Pear- 
son Type V[. An analysis of these and many other distributions will be 
found in Kupper  [29]. 

Unsolved problem number 1 is a statistical p rob lem- - to  calculate, 
from insurance company records, the claim distribution F(x) for various 
branches of property and casualty insurance. 

Unsolved problem number 2 is to work out the convolutions, thus de- 
termining the joint distribution of claim frequency and claim severity. The 
Esscher approximation (See Cram6r [1] p. 33) is one method of calculat- 
ing the convolutions. Several methods of numerical integration, using elec- 
tronic calculators, are described by Bohman and Esscher [20] who used 
one of these methods, based on the characteristic function of F(x), to com- 
pute some claim distributions for life insurance and fire insurance in 
Sweden. 

Unsolved problem number 3 is to obtain the pure premium distribu- 
tion from the distribution of total claims and use it to compute credibility 
tables. Presumably it would be possible to choose a ,prior distribution for 
the pure premium, obtain some data, and apply Bayes Theorem to com- 
pute the posterior distribution from the prior distribution and the con- 
ditional distribution of the data. Since the analysis would be more com- 
plicated, mathematically, than an analysis involving Poisson, binomial, 
Beta and Gamma  distributions, it may be necessary to use approximate 
methods, ff mathematically more tractable distributions are substituted 
for the unruly empirical distributions that may result, it will then be neces- 
sary to obtain a measure of the error thus introduced. 
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CONCLUSION 

Bayesian statistics, a new approach to the foundat ions of statistics, 
has at last enabled the casualty actuary to derive a sound theoretical foun- 
dat ion for his own work in credibility theory and related fields. This paper  
will have achieved its purpose if it has pointed the way towards the con- 
struction of such a foundat ion  and if it has encouraged others to take up 
the work. 
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