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Abstract

In this paper, a flexible framework for stochastic
claims reserving is considered which includes several
models proposed to date as special cases. The method-
ology is embedded within the generalized additive class
of models (Hastie and Tibshirani [7]). The methodology
is particularly useful since it allows smoothing of chain
ladder development factors and estimation of tail factors
automatically and easily as part of the model-fitting pro-
cess, traditionally performed as an additional stage in
the claims reserving process. The framework also pro-
vides estimates of reserve variability, which could prove
useful in formulating and calibrating dynamic financial
analysis (DFA) models.

1. INTRODUCTION

The setting and monitoring of claims reserves is a vital task
required of the general insurance actuary. To aid in the setting
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of reserves, the actuary can make use of a variety of techniques,
the most familiar of which is the chain ladder model or varia-
tion thereof (e.g., inflation-adjusted chain ladder, n-year average
volume-weighted chain ladder, etc.). The principal aim of a re-
serving exercise is to provide an estimate of the amount of money
a company should set aside now to meet claims arising in the fu-
ture on the policies already written. The actuary cannot predict
with certainty and knows that there is a distribution of possible
outcomes, but uses the techniques at his or her disposal to ar-
rive at the best estimate of the reserve (even if the best estimate
is not that which is carried in the accounts). Knowledge of the
precision of that estimate is also desirable. Traditional reserving
techniques can help provide a best estimate (a measure of lo-
cation in the distribution of possible outcomes), but cannot help
with measures of precision. Of course, the actuary knows that the
reserve estimate associated with a well-behaved class of business
will be more precise than that of a poorly-behaved class, and that
the reserve estimate associated with a short-tailed class is likely
to be more precise than that of a long-tailed class, but measuring
that precision is difficult.

Stochastic claims reserving models aim to provide measures
of location (best estimates) and measures of precision (measures
of variability) by treating the reserving process as a data anal-
ysis exercise and building a reserving model within a statisti-
cal framework. Once within a statistical framework, diagnostic
checks of the fitted models are possible, such as goodness-of-fit
tests and analysis of residuals (which highlight systematic and
isolated departures from the fitted model). Various stochastic re-
serving models have been proposed over the last two decades,
and work progresses as new techniques in the field of statistical
modeling become available.

Considerable attention has been given to the relationship be-
tween various stochastic models and the chain ladder technique.
Stochastic models have been constructed with the aim of pro-
ducing exactly the same reserve estimates as the traditional de-
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terministic chain ladder model. This might seem like a futile
exercise, but has the advantages that measures of precision are
readily available, and the assumptions underlying the chain lad-
der model are clarified. More importantly, it provides a bridge
between traditional methods and stochastic methods, which is
useful for the practitioner who is familiar with traditional meth-
ods and needs a starting point for exploring stochastic methods.

Other stochastic reserving models which have been proposed
attempt to overcome shortcomings of the chain ladder model by
incorporating smoothing, or a parametric form which reduces
the number of underlying parameters used to fit the model. The
aim of this paper is to present a flexible framework for stochastic
claims reserving which allows the practitioner to choose whether
to use the basic chain ladder model, or to apply some smoothing,
or in the limit to use a parametric curve for the runoff. Several
of the models proposed to date fit within this framework, and
further extensions are possible which have not yet been tried.

For technical reasons, we consider the modeling of paid losses
only. Furthermore, information regarding claim numbers is not
taken into account; we consider the modeling of claim amounts
only. In this respect we take the basic chain ladder model with
paid losses as our starting point. Typically data provided for a
simple reserving exercise is in the form of a triangle of paid
losses (see Section 6) in which the rows i denote accident years
and the columns j delay or development years. Although we
consider annual development here only, the methods can be ex-
tended easily to semiannual, quarterly or monthly development.
The triangle is augmented each period by the addition of a new
diagonal. The aim in reserving is to predict likely claim amounts
in the missing southeast corner of the claims rectangle, the total
reserve (ignoring the tail for the moment) being the sum of these
amounts. For monitoring purposes, we might also be interested
in the reserve for each accident year.

A review of some existing stochastic reserving models ap-
pears in Section 2. This is not exhaustive but provides the neces-



job no. 1987 casualty actuarial society CAS journal 1987D01 [4] 08-27-02 2:33 pm

4 A FLEXIBLE FRAMEWORK FOR STOCHASTIC CLAIMS RESERVING

sary background from which the flexible framework in Section
3 can be derived. In Section 4, variability of reserve estimates
is considered, and formal goodness-of-fit is considered briefly
in Section 5. A worked example is then provided, considering
the systematic structure of the model in Section 6 and the error
structure in Section 7, before concluding in Section 8.

2. A BRIEF REVIEW OF EXISTING STOCHASTIC CLAIMS
RESERVING MODELS

Let Cij denote the (incremental) claims amount arising from
accident year i paid in development year j. Early work in this
field focused on the logarithm of the incremental claims amounts
Yij = ln(Cij) and the lognormal class of models Yij =mij + "ij
with

"ij ! IN(0,¾2) and Yij ! IN(mij ,¾2), (2.1)

where the expression “! IN(¹,¾2)” is interpreted as “distributed
as independent normal with mean ¹ and variance ¾2.”

The use of the logarithmic transform immediately imposes a
limitation on this class of models in that claim amounts must
be positive. The normal responses Yij are assumed to decom-
pose (additively) into a deterministic nonrandom component with
mean mij = ´ij and homoscedastic normally distributed random
error components about a zero mean. Two model structures are
of specific interest:

CASE 1
´ij = c+®i+¯j; (2.2)

CASE 2
´ij = c+®i+¯i ln(j)+ °ij (j > 0): (2.3)

A third case, which is a mixture of Cases 1 and 2, uses Equa-
tion 2.2 for j " q and Equation 2.3 for j > q for some integer q
specified by the modeler.
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Equations 2.1 and 2.2 define the model introduced by Kremer
[8] and used by Renshaw [13], Verrall [21], Zehnwirth [27] and
Christofides [2], amongst others. Accident year and development
year are treated as factors, with a parameter ® for each accident
year i and a parameter ¯ for each development year j. This repre-
sentation is analogous to the chain ladder model, which implies
the same development pattern for all accident years, where that
pattern is defined by the parameters ¯j . Use of this model pro-
duces predicted values close, but not identical, to those from the
simple chain ladder technique.

Equations 2.1 and 2.3 broadly define the model used by Zehn-
wirth [28]. A special case is created by setting ¯i = ¯ for all i
and °i = ° for all i, where the decay pattern is the same for all
accident years and represented by only two parameters. Unlike
Case 1, this imposes a strict parametric form on the shape of the
runoff. Although this sacrifices goodness-of-fit, it has the advan-
tage that payments can be predicted by extrapolation beyond the
range of j observed. This representation is known as the Hoerl
curve.

Parameters in the predictor structure ´ij are estimated by max-
imum likelihood, which in the case of normally distributed data
is equivalent to minimizing the residual sum of squares. Obtain-
ing this “least squares” solution is straightforward, and is a major
reason for the importance of log-linear models in the history of
stochastic claims reserving. Although it was possible to use other
error distributions (using generalized linear models) at the time
these models were propounded, their use was not common and
suitable statistical software was in its infancy. De Jong and Zehn-
wirth [4] adopted the Kalman filter to pass information between
accident years and provide smoothed estimates of the parameters
¯i and °i in Equation 2.3. This idea was adopted by Verrall [21]
who used the Kalman filter to smooth over the parameters ®i and
¯j in Equation 2.2.

The unknown variance ¾2 is estimated by the residual sum of
squares divided by the degrees of freedom (the number of obser-



job no. 1987 casualty actuarial society CAS journal 1987D01 [6] 08-27-02 2:33 pm

6 A FLEXIBLE FRAMEWORK FOR STOCHASTIC CLAIMS RESERVING

vations minus the number of parameters estimated). Zehnwirth
[29] also considers allowing a different variance estimator for
each development period.

Given the parameter estimates, predicted values on a log scale
can be obtained by introducing those estimates back into the
appropriate equation. Exponentiating then provides an estimate
of the median on the untransformed scale, and an estimate of the
mean is given by incorporating a variance component to give
predicted values on the untransformed scale. Specific details can
be found in Verrall [22].

Significant advances were made in stochastic claims reserv-
ing with the publication of a paper by Wright [26], which was
interesting in two main respects:

# The systematic and random components of the underlying
model for the data are based on a risk theoretic model of the
claims generating process;

# The error distribution implied by the model is no longer (log)
normal.

Wright considered the incremental paid claims Cij to be the
sum of Nij (independent) claims of amount Xij. Standard results
from risk theory give:

E[Cij] = E[Nij]E[Xij], (2.4)

and

Var[Cij] = E[Nij]Var[Xij]+ $E[Xij]%2Var[Nij]: (2.5)

The formulation is completed by specifying a model for each of
E[Nij] and E[Xij], a relationship between the mean and variance
of the claim numbers Nij , and a relationship between the mean
and variance of the claim severities Xij .

Wright considered the claim numbers Nij to be Poisson ran-
dom variables where

E[Nij] = eiaj∙ij
Aie&bij , (2.6)
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and
Var[Nij] = E[Nij] (2.7)

where ∙, A and b are unknown constants to be estimated, ei is a
measure of exposure, and a is a known adjustment term needed
on technical grounds. The values a are specified in Appendix 1 of
Wright [26] for each value of j. (Note: Wright also recommended
a technical adjustment to development time j, which has been
ignored here for simplicity.)

Claim amounts Xij were considered to be Gamma type ran-
dom variables where

E[Xij] = e
±tkj¸, (2.8)

and
Var[Xij] = À$E[Xij]%2, (2.9)

where k and ¸ are unknown constants. The optional term e±t is
included to allow for possible claims inflation, where t= i+ j
represents calendar time and ± is the estimated constant force
of claims inflation. Wright chose not to assume that the claim
amounts are actually Gamma distributed, only that the variance
exists and is proportional to the mean squared with constant of
proportionality À. This is a subtle technicality which makes no
practical difference when claim amounts are all positive.

Equations 2.6 and 2.8 are designed to model the mean claim
numbers and mean individual claim severities as functions of
delay j.

This formulation is interesting because it uses the same model
specification in the claims reserving context as in pricing; that
is, claim numbers are modeled as Poisson random variables and
claim severities are modeled as Gamma random variables.

Combining Equations 2.4 to 2.9 gives

E[Cij] =mij = eiaj∙ij
Aie&bije±tkj¸, (2.10)



job no. 1987 casualty actuarial society CAS journal 1987D01 [8] 08-27-02 2:33 pm

8 A FLEXIBLE FRAMEWORK FOR STOCHASTIC CLAIMS RESERVING

and
Var[Cij] = (1+À)kj

¸e±tE[Cij]: (2.11)

Wright showed that with a suitable reparameterization, Equa-
tions 2.10 and 2.11 represent a generalized linear model (GLM).
Standard statistical methods can be used to estimate the param-
eters involved.

This model formulation can be viewed as a way of allowing
the incremental paid claims Cij to be modeled directly, without
the necessity of modeling claim numbers and claim severities
separately and then combining. The only information needed to
fit the model is the standard triangle of incremental paid claims.

Wright went on to use the Kalman filter to pass informa-
tion between accident years to produce smoothed parameter es-
timates, thus avoiding problems associated with the excessive
parameterization.

The formulation of the problem as a GLM and the fitting
method adopted by Wright are not easy to follow, so the simpler
derivation by Renshaw [14] is presented here. Writing:

uij = ln(eiaj),

c= ln(k),

®i = ln(∙i) with ∙1 = 1,

¯i = ¸+Ai, and

°i =&bi,
gives

E[Cij] = e
(uij+c+®i+¯i ln(j)+°ij+±t):

We can then write

´ij = uij + c+®i+¯i ln(j)+ °ij+ ±t, (2.12)

giving
E[Cij] =mij, (2.13)



job no. 1987 casualty actuarial society CAS journal 1987D01 [9] 08-27-02 2:33 pm

A FLEXIBLE FRAMEWORK FOR STOCHASTIC CLAIMS RESERVING 9

where
ln(mij) = ´ij: (2.14)

Ignoring the known offset (uij) and the optional term for
claims inflation (±t), Equation 2.12 represents the familiar Hoerl
curve which appeared in Equation 2.3.

Using Equations 2.7 and 2.9 in 2.5 gives:

Var[Cij] = E[Nij] À$E[Xij]%2 + $E[Xij]%2E[Nij];
then using Equation 2.4 gives

Var[Cij] = (1+À)E[Xij]E[Cij]:

Writing
Áij = (1+À)E[Xij]

gives
Var[Cij] = ÁijE[Cij] = Áijmij: (2.15)

Equations 2.13, 2.14 and 2.15 define a GLM (see Section 3)
in which the response Cij is modeled with a logarithmic link
function, the variance is proportional to the mean, and the linear
predictor is given by Equation 2.12. The Áij are unknown scale
parameters to be estimated by the model.

With GLMs, the unknown scale parameter is usually constant
for all observations (i.e., Áij = Á for all i,j) and is estimated by
the deviance (or alternatively the Pearson Â2 statistic) divided
by the degrees of freedom. However, in this formulation, it is
possible to estimate the scale parameters as part of an extend-
ed fitting procedure, known as joint modeling (see Renshaw
[14]).

It should be noted that in Renshaw’s formulation, the as-
sumption that claim numbers are Poisson distributed was relaxed
slightly, the only requirement being that the variance of the num-
ber of claims exists and is proportional to the mean.
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Therefore
Var[Nij] = 'E[Nij]: (2.16)

This is in the spirit of the relaxed assumptions made byWright
[26] about the distribution of claim severities. Claim numbers
are said to be distributed as “overdispersed” Poisson random
variables. Using Equation 2.16 instead of 2.7 gives:

Áij = ('+À)E[Xij]

without changing the specification as a GLM.

Comparing Equation 2.12 with 2.3, it can be seen that Wright
is effectively using the same linear predictor as Zehnwirth [28],
with the inclusion of an optional term to model possible claims
inflation. The uij terms are known and represent small technical
adjustments. They are declared as offsets when fitting the model
using standard statistical software packages. The important dif-
ferences between the model used by Zehnwirth and the model
proposed by Wright are that:

# Zehnwirth uses the logarithm of the incremental claims as the
response, and links the predictor (2.3) to the expected value
of the response through the identity link function, therefore
requiring the introduction of a variance component when fo-
cusing on the mean on the untransformed scale. Wright treats
the incremental claims themselves as the responses, and links
(essentially) the same predictor to the expected value of the re-
sponse through the logarithmic link function, thereby avoiding
the necessity of the inclusion of a variance component when
focusing on the predicted mean.

# In the model proposed by Zehnwirth, the variance is constant
for all observations (or constant for each development period),
whereas in the model proposed by Wright, the variance is pro-
portional to the mean. A critique of these assumptions can be
found in Appendix 4 of Wright [26].

# The log transformation used by Zehnwirth excludes the mass
point at zero (although it is possible to make minor adjustments
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to zero payments in the data), which Wright’s model includes
naturally. In fact Wright’s model can also be used for data sets
that include some negative payments.

It should be noted that in the software package ICRFS, Zehn-
wirth [29] includes a range of predictor structures, not just the
one alluded to above, which could provide an improved fit to
the data. However, all are based on log-incremental claims in his
“Probabilistic Trend Family.”

Equations 2.12 to 2.15 define the model proposed by Wright,
and suggest possible alternatives. For example, Renshaw and
Verrall [16, 17] replace the linear predictor used by Wright
(Equation 2.12) by the linear predictor suggested by Kremer [8],
and use a constant scale parameter by setting Áij = Á for all i,j.
Therefore,

E[Cij] =mij and Var[Cij] = Ámij, (2.17)

where
ln(mij) = ´ij = c+®i+¯j: (2.18)

Equations 2.17 and 2.18 define a GLM in which incremental
claims are modeled as overdispersed Poisson random variables.
This model is particularly interesting since the predicted values
given by the model are exactly the same as those given by the
simple chain ladder model, thus providing a stochastic version
of the chain ladder model.

Renshaw and Verrall were not the first to notice the link be-
tween the chain ladder model and the Poisson distribution, but
were the first to implement the model using standard methodol-
ogy in statistical modeling and to provide a link with the anal-
ysis of contingency tables. Wright [26] also describes a similar
model, including a term to model claims inflation, but did not
consider the model in detail. Mack [9] also points out that the
chain ladder estimates can be obtained by maximizing a Poisson
likelihood by appealing to the so-called “method of marginal
totals.”
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Mack [9] suggested using the same linear predictor as Kremer
[8] (and therefore the same as Renshaw and Verrall [17]) but pro-
posed using a Gamma distribution for claim amounts. However,
Mack developed his own fitting procedure for obtaining max-
imum likelihood parameter estimates. As Renshaw and Verrall
[17] note, the same model can be fitted using the GLM described
by Equations 2.17 and 2.18, but replacing Var[Cij] = Ámij by
Var[Cij] = Ám

2
ij. Standard statistical software packages can then

be used to obtain maximum likelihood parameter estimates.

In Verrall [24], the stochastic chain ladder model of Renshaw
and Verrall [16] was extended to incorporate smoothing of pa-
rameter estimates over accident years (the ®is in Equation 2.18),
while leaving the model describing the runoff pattern (the ¯js)
alone. Nonparametric smoothers were used and fitted using gen-
eralized additive models (GAMs). GAMs differ from GLMs in
the way in which the relationship between the response variable
and the covariates is modeled. In GLMs the relationship is para-
metric; in GAMs the response is assumed to vary smoothly with
the covariates through the introduction of a smoothing proce-
dure. In this paper, the idea is extended to allow smoothing over
development years, which is of considerable practical benefit and
provides a flexible framework for stochastic claims reserving.

3. A FLEXIBLE FRAMEWORK FOR STOCHASTIC CLAIMS
RESERVING

A GLM is defined by focusing on a set of independent re-
sponse variables $Yu : u= 1,2, : : : ,n%. The objective is to model
the expected value of the response as a function of one or more
covariates. We assume that the Yu are distributed according to
a member of the one-parameter exponential family of distribu-
tions, which includes the normal, Poisson and Gamma distribu-
tions, amongst others. Denoting the expected value of Yu by mu,
the first two moments take the general form

E[Yu] =mu and Var[Yu] =
ÁV(mu)
wu

,
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TABLE 3.1

SCALE PARAMETERS AND VARIANCE FUNCTIONS FOR SOME
STANDARD DISTRIBUTIONS

Scale Variance
Parameter function

Distribution Á V(mu)

Normal ¾2 1
Poisson 1 mu
Gamma > 0 m2u

Inverse Gaussian > 0 m3u

where Á denotes a scale parameter, wu are prior weights (often set
to 1 for all observations), and V() is the so-called variance func-
tion (a function of the mean). The choice of distribution dictates
the values of Á and V(). The values of the scale parameter and
variance function for various standard distributions are shown in
Table 3.1. The definition of a GLM is completed by specifying
the deterministic structure, which is achieved through a linear
predictor ´u where

´u =
p!
v=1

xuv¯v (3.1)

with known covariates xv associated with each observation u, and
unknown parameters ¯v. The expected value of the response is
linked to the linear predictor through a link function g() such
that

g(mu) = ´u:

It is helpful to think of GAMs as extensions of GLMs. A
GAM is defined by replacing Equation 3.1 by

´u =
p!
v=1

sv(xu),

where s(x) represents a nonparametric smoother on x. It is pos-
sible to choose from several different types of smoothers, such
as locally weighted regression smoothers (loess), cubic smooth-
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ing splines and kernel smoothers. Other features of GAMs, such
as the choice of error distribution, link function, goodness-of-fit
measures and residual definitions are common to GLMs with the
main difference between GAMs and GLMs being the specifica-
tion of the predictor ´.

A complete exposition of the statistical background of gen-
eralized linear models and generalized additive models can be
found in McCullagh and Nelder [12] and Hastie and Tibshirani
[7] respectively.

It should be noted in passing that we are not restricted to using
a smoother for all covariates; the predictor may comprise a mix-
ture of parametric and nonparametric components. The predictor
then becomes

´u

p&r!
v=1

xuv¯v+
p!

v=p&r+1
sv(xu):

In claims reserving, the cubic smoothing spline has been
found to be particularly useful. When data are normally dis-
tributed, the (univariate) cubic smoothing spline s(x) is found by
minimizing the penalized residual sum of squares

n!
u=1

(yu& s(xu))2 + µ
"
(s''(t))2dt: (3.2)

The second part of Equation 3.2 defines a smoothness penalty
based on curvature of the spline function s(x). The level of
smoothing is controlled by the single parameter µ(> 0). When µ
tends to zero, there is no smoothness penalty and the model pro-
vides a perfect fit: the fitted values are the data points themselves.
When µ is large (tends to infinity), the fit is perfectly smooth and
the fitted values fall along a straight line, effectively forcing the
relationship to be linear in x. The parameter µ is set between these
extremes to produce the desired level of smoothness, and controls
the trade-off between goodness-of-fit and smoothness. Although
the cubic smoothing spline has received considerable attention
recently in statistical modeling, it is usually attributed with
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appearing first in the actuarial literature in a paper on graduating
mortality rates by Whittaker [25]. In fact Whittaker graduation
is used widely for graduating mortality rates in the US.

Within the context of non-normal error distributions from the
exponential family, a weighted version of Equation 3.2 is fitted
by inserting an extra iterative algorithm within the optimization
procedure. Details of this can be found in Hastie and Tibshirani
[7], and Green and Silverman [6].

To construct a flexible framework for stochastic claims re-
serving, within which several of the models described in Section
2 can be regarded as special cases, we focus on the incremental
paid claims Cij and define

E[Cij] =mij , (3.3)

Var[Cij] = Ám
½
ij
, (3.4)

and

ln(mij) = ´ij = uij + ±t+ c+ sµi(i)+ sµj (j) + sµj (ln(j)):

(3.5)

Equations 3.3, 3.4 and 3.5 specify a generalized additive
model with power variance function and constant scale parame-
ter. The power ½ dictates the choice of error distribution, with
normal, Poisson, Gamma and Inverse Gaussian specified by
½= 0, 1, 2, and 3, respectively. The predictor is linked to the ex-
pected value of the response through the logarithmic link func-
tion. The offsets uij and inflation term ±t are optional (where
t= i+ j), and may be suggested by a particular context. The
function s(i) represents a smooth of accident year i, obtained us-
ing a smoothing spline with smoothing parameter µi. Similarly,
the functions s(j) and s(ln(j)) represent smoothing splines spec-
ifying the shape of the runoff pattern, with smoothing parameter
µj chosen (for simplicity) to be the same for both functions. In
practice, it may not be necessary to include smooths in both j
and ln(j). It should be noted that both accident year i and de-
velopment year j are considered as continuous covariates. It can
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TABLE 3.2

GENERALIZED ADDITIVE MODEL REPRESENTATION OF SOME
PUBLISHED STOCHASTIC RESERVING MODELS

Row Column
Variance smoothing smoothing
power parameter parameter
½ µi µj

Wright (1990)( 1 0 )
Mack (1991) 2 0 0
Renshaw and Verrall (1994, 1998) 1 0 0
Renshaw (1994) 1,2 0 0
Verrall (1996) 1 > 0 0

(We consider here only the special case in which the same runoff pattern is used for all accident
years, the Kalman filter is not used, and the scale parameter is constant.

be seen that use of Equation 3.5 implicitly assumes the same
runoff pattern for all accident years, although the model can be
extended using carefully chosen interaction terms. It is trivial
to extend Equation 3.5 further, for example, to allow for a step
change in a particular calendar year introduced by a change in
legislation.

The extremes of the smoothing parameters are interesting and
provide the link between Equation 3.5 and Equations 2.12 and
2.18 (ignoring the optional terms uij and ±t). When µi is zero,
there is no smoothing and the model is forced to pass through
each value of i, which treats accident year i as though it is a factor
(as in 2.12 and 2.18). The same is true of µj ; when µj is zero, the
model is forced to pass through each value of j, and development
time is treated as though it is a factor (as in 2.18). When µj tends
to infinity, the part of the model relating to development time is
linear in j and ln(j), giving the Hoerl curve (as in 2.12 and 2.3).
It is also necessary to choose the power function ½ to complete
the model specification.

Table 3.2 shows how several previous stochastic reserving
models can be seen as special cases of the model specified by
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Equations 3.3, 3.4 and 3.5. The optional terms uij and ±t are
ignored without loss of generality.

The early log-linear models do not fit so neatly into the same
framework because those models used log-incremental claims as
the response, and required incorporation of a variance component
in the mean of the predicted values. However, the framework
could easily be extended to allow for this.

Notice that we consider only models in which the scale pa-
rameter in Equation 3.4 is assumed constant. This is for ease
of exposition, although the model can be generalized further by
relaxing this assumption and estimating the unknown scale pa-
rameters by joint modeling.

Having chosen the model specification, the model can be fit-
ted using maximum quasi likelihood to obtain parameter es-
timates (and their approximate standard errors). At this point
we make use of standard statistical software packages which
have the facility to fit generalized additive models. Currently the
choice is limited, although greater choice is likely in the future
as the popularity of generalized additive models increases. The
authors used S-PLUS [19] for the example (see also Chambers
and Hastie [1]).

Having fitted the model, we obtained reserve estimates by
summing the appropriate predicted values in the southeast region
of the claims rectangle. All that remains is the estimation of
variability in the reserve estimates, considered in the next section.

4. PRECISION OF RESERVE ESTIMATES

One of the principal advantages of stochastic reserving mod-
els is the availability of estimates of precision. Commonly used
in prediction problems (as we have here) is the standard error
of prediction, also known as the prediction error, or root mean
square error of prediction. For claim payments in development
year j for accident year i (yet to be observed), the mean square
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error of prediction is given by

E[(Cij & Ĉij)2]*Var[Cij]+Var[Ĉij]: (4.1)

Note that the mean square error of prediction can be considered
as the sum of two components: variability in the data (process
variance) and variability due to estimation (estimation variance).
The precise form of the two components of variance is dictated
by the specification of the model fitted. For a detailed justifica-
tion of Equation 4.1, see Renshaw [15].

For the general model defined above, the process variance is
given by Equation 3.4. For the estimation variance, we note that

Ĉij = m̂ij = e
ˆ́
ij :

Then, using a Taylor series expansion,

Var[Ĉij]*
#####@mij@´ij

#####
2

Var[ ˆ́ij],

giving
E[(Cij & Ĉij)2]* Ám̂½ij + m̂2ijVar[ˆ́ij]: (4.2)

The final component of Equation 4.2, the variance of the (linear)
predictor, is usually available directly from statistical software
packages, enabling the mean square error to be calculated with-
out difficulty. The standard error of prediction is the square root
of the mean square error of prediction.

The standard error of prediction for origin year reserve es-
timates and the total reserve estimates can also be calculated.
Denoting the missing southeast region of the claims rectangle
by ¢, then the reserve estimate in origin year i is given by sum-
ming the predicted values in row i of ¢; that is,

Ĉi+ =
!
j+¢i

Ĉij :
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The mean square error of prediction of the origin year reserve is
given by

E[(Ci+& Ĉi+)2] =
!
j+¢i

Ám̂½ij +
!
j+¢i

m̂2ijVar[ˆ́ij]

+2
!

j1,j2+¢i
j2>j1

m̂ij1m̂ij2Cov: (4.3)

The total reserve estimate is given by

Ĉ++ =
!
i,j+¢

Ĉij ,

and the mean square error of prediction of the total reserve is
given by

E[(C++& Ĉ++)2] =
!
i,j+¢

Ám̂½ij +
!
i,j+¢

m̂2ijVar[ˆ́ij]

+2
!
i1j1+¢
i2j2+¢
i1j1 ,=i2j2

m̂i1j1m̂i2j2Cov[
ˆ́i1j1 ,

ˆ́i2j2]:

(4.4)

Although Equations 4.3 and 4.4 look fairly complex, they
are relatively easy to calculate by summing the appropriate ele-
ments. The only components not readily available from statistical
software packages are the covariance terms. Provided the design
matrix and variance-covariance matrix of the parameter estimates
can be extracted from the statistical software package used, a full
matrix of the covariance terms can be calculated without diffi-
culty for any specification of the predictor ´. Indeed, the vari-
ances of the (linear) predictors are simply the diagonal of such
a matrix.

It is also possible to obtain estimates of payments to be made
in future settlement years by summing over diagonals in ¢, and
also to obtain the associated standard error of prediction. Further
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details of this and a detailed derivation of Equations 4.3 and 4.4
can be found in Renshaw [15].

5. ASSESSING THE GOODNESS-OF-FIT

For a given error distribution (chosen by the power ½), spe-
cific models are chosen by the smoothing parameters µi and µj,
and different models are fitted by varying the smoothing pa-
rameters until a satisfactory fit is achieved. Assessing whether
a model is satisfactory in practice is part art and part science.
Usually, informal checks will suffice in practice, although model
comparison can proceed formally in the usual way by compar-
ing the difference in deviances of the fitted models (for fixed
½) to the appropriate percentage point on the Â2 or F distribu-
tions. However, because the smoothers are nonparametric, it is
not obvious how many degrees of freedom should be used in the
model comparison. According to the theory of cubic smoothing
splines, it is possible to assess the equivalent degrees of free-
dom used in fitting the spline. This has an inverse relationship to
the smoothing parameter: as the smoothing parameter increases,
the equivalent degrees of freedom decrease. After fitting a cu-
bic smoothing spline, statistical software packages provide the
equivalent degrees of freedom as part of the model output. One
problem is that the smoothing parameter is a continuous mea-
sure, which can result in noninteger degrees of freedom. For this
reason, software packages tend to allow the amount of smooth-
ness to be defined alternatively by the equivalent degrees of free-
dom, which is provided by the user. The smoothness parameter
to be used is then calculated from the given degrees of free-
dom.

The choice of error distribution is not easy to justify but may
be suggested on theoretical grounds. Formally, given identical
specifications of the predictor, the optimum value of ½ (which
specifies the choice of error distribution) is that which produces
the highest likelihood.
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Residual plots are also used to assess the adequacy of any fit-
ted model. Two types of residual used commonly are the Pearson
and deviance residuals. The scaled Pearson residuals are defined
by

rij =
Cij & m̂ij$
Ám̂½ij

,

and the scaled deviance residuals are defined by

! rij = sign(Cij & m̂ij)
%
dij
Á
,

where dij is the contribution to the deviance made by observation
Cij .

For a reasonable model, a histogram of scaled residuals is
expected to be approximately normal (i.e., bell shaped) with 95%
of the residuals between the values plus two and minus two.
Residuals can also be plotted against the predictor, against origin
year and against development year. The plots are expected to be
pattern free, where an obvious pattern in the residuals would
indicate a systematic departure from the fitted model. Isolated
departures from the model would be indicated by residuals whose
values are far from zero. Other residual plots are also possible.
It is usual to assess residual plots visually, any serious model
deficiencies being immediately obvious.

A further visual check which is useful when comparing mod-
els is to plot that part of the predictor that explains the runoff
pattern against development time. From Equation 3.5, this trans-
lates into plotting c+ sµj (j) + sµj (ln(j)) against j for various val-
ues of µj . The constant c is needed to ensure the plots start at
equivalent levels. A plot such as this might result in the choice of
a model which is not optimal in the statistical sense, but which
may have convenient properties (for example, the way it behaves
when extrapolating into the tail).
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TABLE 6.1

Incremental Paid Losses Formed by Aggregating
Across Different Classes

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

i = 1 45630 23350 2924 1798 2007 1204 1298 563 777 621
i = 2 53025 26466 2829 1748 732 1424 399 537 340
i = 3 67318 42333 &1854 3178 3045 3281 2909 2613
i = 4 93489 37473 7431 6648 4207 5762 1890
i = 5 80517 33061 6863 4328 4003 2350
i = 6 68690 33931 5645 6178 3479
i = 7 63091 32198 8938 6879
i = 8 64430 32491 8414
i = 9 68548 35366
i = 10 76013

6. EXAMPLE: PART 1—A COMPARISON OF PREDICTOR
STRUCTURES

Incremental paid losses from an aggregation of classes of
business are shown in Table 6.1 and are used to illustrate the
methodology. The incremental claims fall fairly rapidly, but are
not completely runoff by the end of the tenth development year,
implying the necessity for a tail factor greater than 1 when us-
ing the traditional chain ladder model. Notice the negative in-
cremental claim at position (3,3), which is not a problem when
implementing the models.

Initially, to illustrate the methodology, we fit three models,
using an overdispersed Poisson model (½= 1 in Equation 3.4)
with a logarithmic link function. For all three models

E[Cij] =mij, Var[Cij] = Ámij , and ln(mij) = ´ij:

The models differ only in the choice of the predictor. The pre-
dictor structures are:

# Model 1: The stochastic model of Renshaw and Verrall [17],
which gives the same reserve estimates as the chain ladder
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model:
´ij = c+®i+¯j:

This model can be specified as a generalized additive model
with µi = 0 and µj = 0 (no smoothing), giving

´ij = c+ s0(i)+ s0(j)+ s0(ln(j)):

# Model 2: The Hoerl curve, ignoring inflation:
´ij = uj + c+®i+¯ ln(j)+ °j:

This is in the spirit of the model proposed by Wright [26].
Here we adopt the technical adjustments to development time
recommended by Wright, and the associated offset (ignoring
exposure information). However, we are using the same runoff
pattern for each accident year (since ¯ and ° do not depend
on i), we ignore the Kalman filter, and we are using a constant
scale parameter.

Again, this model can be specified as a generalized additive
model with µi = 0 and µj =), giving

´ij = uj + c+ s0(i)+ s)(j)+ s)(ln(j)):

# Model 3: A generalized additive model with a parameter for
each accident year, but with the pattern over development year
represented by a smooth in log development time. We have
chosen not to include additionally a smooth in development
time, which in this case is unnecessary. Therefore µi = 0 and
µj is chosen to provide a suitable level of smoothing, giving

´ij = uj + c+ s0(i)+ sµj (ln(j)),

or equivalently

´ij = uj + c+®i+ sµj (ln(j)):
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FIGURE 6.1

Column Effects vs. Delay Year

This can be seen as a smooth model in between the chain
ladder and Hoerl curve models. For this example, the smooth-
ing parameter was dictated by setting the equivalent degrees
of freedom (dof) used in the fit (in this case dof = 5).

First, consider the part of each predictor that describes the
shape of the decay of the incremental claims (the sum of the
components not dependent on i). We shall call this the “column
effects.” Figure 6.1 shows the column effects for all three mod-
els, and there we can see the jagged shape of the decay in the
incremental claims assumed by the chain ladder model and the
smooth shape of the model using the Hoerl curve. The Hoerl
curve passes through the chain ladder model, fitting closely in
the early stages of development (where we have the most data)
but fails to fall rapidly enough in the later stages of development.
This is the result of the strict parametric form imposed by the
Hoerl curve. (A practitioner would probably reject the model at
this point, but we will continue to highlight the characteristics
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FIGURE 6.2

Column Effects (Extrapolated) vs. Delay Year

of the Hoerl curve and to enable a comparison with the gen-
eralized additive model methodology.) Model 3 is in between
the extremes of Models 1 and 2, and exhibits a satisfactory mix
of smoothness and adherence to the data. If the smoothing pa-
rameter of Model 3 is reduced, it will tend towards Model 1.
Conversely, if the smoothing parameter of Model 3 is increased,
it will tend towards Model 2.

In Figure 6.2, Models 2 and 3 have been extrapolated a further
six years. With this example, an inherent danger of extrapolating
using rigid parametric curves like the Hoerl curve is highlighted
since the curve bends upwards beyond the range of data ob-
served. One advantage of Model 3 is that it continues in a more
desirable direction when extrapolating.

Although natural in stochastic claims reserving, it is unusual
to focus on the shape of the decay of incremental claims using
traditional actuarial methods, in which it is common to focus on
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the relative increase in cumulative claims through development
factors, the traditional “parameters” in a standard chain ladder
exercise. After fitting a stochastic claims reserving model, it is
straightforward to obtain equivalent development factors by ap-
plying the standard chain ladder model to the fitted values of
the stochastic model. If the model is fully parametric, it may be
possible to obtain a relationship between the model parameters
and the chain ladder development factors (e.g., Verrall [23]).

Equivalent development factors are shown in Table 6.2 for
Models 1 to 3, together with the actual development factors ob-
tained by applying the standard chain ladder model to the data
in Table 6.1. It can be seen that the development factors implied
by the stochastic chain ladder model (Model 1) are identical to
those obtained using standard chain ladder methodology (there-
fore reserve estimates obtained using the two models will also be
identical). A comparison of the development factors implied by
the Hoerl curve (Model 2) and the chain ladder models reveals
where these two models differ. In particular, the Hoerl curve
does not fully capture the fall in the development factors in the
later stages of development. The development factors implied by
Model 3 can be seen as a smoothed version of the chain ladder
development factors.

Also shown in Table 6.2 are the equivalent development fac-
tors obtained when extrapolating beyond development year 10.
It can be seen clearly that the development factors implied by the
Hoerl curve increase in value, whereas the development factors
implied by Model 3 continue to decrease.

The reserve estimates implied by Models 1, 2 and 3 are shown
in Table 6.3, together with their prediction errors (as a percentage
of the reserves). For ease of comparison with the chain ladder
model, we have not extrapolated into the tail. The reserve esti-
mates given by the Hoerl curve are higher for the older years
than those given by the chain ladder model, reflecting the higher
development factors at the later stages of development. The
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TABLE 6.2

Equivalent Development Factors: Overdispersed
Poisson Model

Standard Model 1
Delay Chain Stochastic Model 2 Model 3
Year Ladder Chain Ladder Hoerl Curve GAM (dof = 5)

2 1.4906 1.4906 1.4496 1.4891
3 1.0516 1.0516 1.0796 1.0537
4 1.0419 1.0419 1.0372 1.0395
5 1.0268 1.0268 1.0238 1.0292
6 1.0254 1.0254 1.0180 1.0224
7 1.0149 1.0149 1.0150 1.0163
8 1.0130 1.0130 1.0135 1.0120
9 1.0067 1.0067 1.0127 1.0091
10 1.0078 1.0078 1.0124 1.0071
11 1.0125 1.0057
12 1.0129 1.0047
13 1.0135 1.0039
14 1.0144 1.0033
15 1.0156 1.0029
16 1.0171 1.0025

reserve estimates given by Model 3 are close to those provided
by the chain ladder model for all years individually and in total,
with any differences arising due to the amount of smoothing.

The reduced number of parameters in the Hoerl curve com-
pared to the stochastic chain ladder model should drive down
the prediction error, but this is offset by the increased variabil-
ity imposed by the poor fit, resulting in prediction errors for the
Hoerl curve which are close to those provided by the stochastic
chain ladder model. The equivalent degrees of freedom used up
in fitting Model 3 is lower than the degrees of freedom used
up in fitting the stochastic chain ladder model, which will drive
down the prediction errors. Furthermore, the fit is good relative
to the chain ladder model, which has the desirable effect of lower
prediction errors for Model 3 compared to the stochastic chain
ladder model.
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TABLE 6.3

Reserve Estimates and Prediction Errors:
Overdispersed Poisson Model

Reserve Estimates Prediction Error
Model 1 Model 1
Stochastic Model 2 Model 3 Stochastic Model 2 Model 3

Accident Chain Hoerl GAM Chain Hoerl GAM
Year Ladder Curve (dof = 5) Ladder Curve (dof = 5)

1 0 0 0 — — —
2 683 1,085 622 159% 95% 110%
3 1,792 3,101 1,998 100% 61% 62%
4 4,363 6,129 4,470 63% 46% 43%
5 5,657 7,173 5,940 50% 43% 38%
6 8,209 8,689 8,106 40% 39% 33%
7 10,914 11,031 11,106 34% 34% 29%
8 15,199 14,765 15,112 28% 30% 25%
9 21,135 24,002 21,293 24% 23% 22%
10 60,335 59,625 60,377 17% 17% 16%
Total 128,286 135,600 129,024 15% 15% 12%

Models 1 and 2 can be fitted in any statistical software pack-
age that fits generalized linear models. Model 3 can only be
fitted in statistical software packages that fit generalized additive
models.

The comparison of Model 3 with Models 1 and 2 begins to
show how our modeling framework can be considered generic,
since the chain ladder model and Hoerl curve model can be fitted
as special cases, using extremes of the smoothing parameters.
A model that has the desirable characteristic of being able to
smooth development factors can be fitted by choosing smoothing
parameters between these extremes.

7. EXAMPLE: PART 2—A COMPARISON OF ERROR STRUCTURES

Continuing the example, the same three model predictors are
used, but with a Gamma error structure (½= 2) giving:

E[Cij] =mij, Var[Cij] = Ám
2
ij , and ln(mij) = ´ij,
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TABLE 7.1

Equivalent Development Factors: Gamma Model

Model 4
Delay Standard Stochastic Chain Model 5 Model 6
Year Chain Ladder Ladder Hoerl Curve GAM (dof = 5)

2 1.4906 1.4969 1.4515 1.4771
3 1.0516 1.0470 1.0799 1.0512
4 1.0419 1.0381 1.0372 1.0357
5 1.0268 1.0259 1.0237 1.0280
6 1.0254 1.0251 1.0178 1.0221
7 1.0149 1.0154 1.0148 1.0165
8 1.0130 1.0131 1.0131 1.0125
9 1.0067 1.0084 1.0123 1.0098
10 1.0078 1.0086 1.0119 1.0079
11 1.0119 1.0066
12 1.0122 1.0055
13 1.0127 1.0048
14 1.0135 1.0041
15 1.0145 1.0036
16 1.0157 1.0032

and the following three models:

# Model 4:
´ij = c+®i+¯j ;

# Model 5:
´ij = uj + c+®i+¯ ln(j)+ °j;

# Model 6:
´ij = uj + c+®i+ sµj (ln(j)):

Equivalent development factors are shown in Table 7.1, and
reserve estimates and prediction errors are shown in Table 7.2
(ignoring tail factors).

Comparison of the equivalent development factors from the
Gamma model with those from the overdispersed Poisson model
is uninformative on the whole. It is perhaps surprising at first
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TABLE 7.2

Reserve Estimates And Prediction Errors: Gamma
Model

Reserve Estimates Prediction Error
Model 4 Model 4
Stochastic Model 5 Model 6 Stochastic Model 5 Model 6

Accident Chain Hoerl GAM Chain Hoerl GAM
Year Ladder Curve (dof = 5) Ladder Curve (dof = 5)

1 0 0 0 — — —
2 488 675 450 62% 46% 43%
3 2,086 3,296 2,205 43% 36% 33%
4 5,240 6,818 5,300 36% 32% 29%
5 6,169 7,061 6,313 32% 30% 28%
6 9,750 9,305 9,427 31% 29% 28%
7 15,080 13,029 15,097 31% 29% 29%
8 18,498 15,069 17,671 32% 30% 31%
9 20,470 24,400 20,896 36% 35% 35%
10 60,043 59,576 58,519 52% 48% 48%
Total 137,824 139,229 135,878 25% 23% 24%

sight that the final development factor for the Gamma “chain
ladder” model (1.0086) is greater than the equivalent factor from
the overdispersed Poisson model (1.0078), but at the same time
the reserve estimate is lower (488 vs. 683). This is because the
cumulative fitted values for the final observed diagonal of the
two models are not the same, resulting in the observed effect. In
fact, the cumulative fitted values for the final observed diagonal
are identical to the cumulative paid to date for the overdispersed
Poisson chain ladder model only.

The main difference between the overdispersed Poisson and
Gamma models in this example is in the prediction errors as a
percentage of the total reserve estimates, which for the Gamma
model are around twice those of the Poisson model. Inspection
of the prediction errors of the row reserves gives a hint as to
why this is so. For the Gamma model, the prediction errors for
the earlier years are lower than those for the Poisson model.
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FIGURE 7.1

Fitted Values (Poisson Model) vs. Observed Values

However, the pattern is reversed in the later years, particularly for
year 10. The later years contribute by far the largest proportion
of the total reserves, which is reflected in the high prediction
error of the total.

The fit of the Gamma model is in fact poor in this example,
particularly in the early stages of development, where the large
incremental observed values are given less weight in the model
fitting than in the Poisson model. This is not apparent from an
inspection of residual plots (not shown), which look satisfactory
for both error structures, but becomes apparent when plotting fit-
ted values against observed values (Figures 7.1 and 7.2), which
show clearly the superiority of the Poisson model in this exam-
ple. This is not always the case, however, and care must be taken
in making inferences from these results. For a further example
in which prediction errors of claims reserves are compared us-
ing different error structures and different methodologies, see
England and Verrall [5].
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FIGURE 7.2

Fitted Values (Gamma Model) vs. Observed Values

8. DISCUSSION AND CONCLUSIONS

Given a triangle of data, a simple reserving exercise might
proceed by fitting a chain ladder model (usually a 3, 4, or 5 year
volume-weighted average chain ladder) and looking at the resul-
tant development factors. It would then be common to smooth
the factors manually and consider the necessity of a tail factor
for projecting beyond the range of data observed. Judgment is
used to smooth the factors with the aim of smoothing out ran-
dom variations, particularly in the later stages of development,
while leaving the systematic trend intact. A tail factor might be
chosen by calculating the ratio of cumulative incurred claims to
cumulative paid claims for the oldest accident year, or by fit-
ting a curve to the later development factors and extrapolating
(see, for example, Craighead [3] and Sherman [18]). Advantages
of this procedure are that it is extremely flexible, and it forces
the actuary to look at the data. Disadvantages are that it is time
consuming, statistically inefficient, and it is not always easy to
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be consistent over the level of smoothing (or confident in the
results).

The main strength of the method presented in this paper is
that both the smoothing and extrapolating can be performed at
the same time in the same model. The actuary simply has to
choose one parameter for smoothing across the whole range
of development time, choose an error distribution, and choose
how far to extrapolate (an additional parameter is necessary if
smoothing over accident years). Further advantages are that it
is also possible to obtain measures of precision of the reserve
estimates, and investigate where the data deviate from the fitted
model by viewing residual plots. The fact that standard models
can be fitted by choosing smoothing parameters at the extremes
is a useful additional feature, if only for clarity of understanding,
since at one extreme the model can be considered overparame-
terized, and at the other that the structure is too rigid. However,
we do not consider the method to be a panacea. A thorough
reserving exercise will involve an in depth investigation of the
data, an understanding of the class of business under review, and
a comparison of the results of several reserving methods relying
on complementary sets of data. We believe the method proposed
here is simply an extremely useful additional tool for the reserv-
ing specialist.

Incremental data are used for the method put forward in this
paper: this is both an advantage and a disadvantage. It is advan-
tageous since the method can be used when the data history is
incomplete. If incremental data were recorded by accident year
only after a certain date, accident years prior to that date will have
incomplete runoff information, and a section of the claims trian-
gle in the northwest corner will be missing (this is a reasonably
common occurrence). This presents difficulties using standard
deterministic techniques that rely on cumulative data, but is not
a problem for stochastic techniques which treat the unobserved
data as “missing” and estimate the data as part of the fitting
procedure. The disadvantage is that negative incremental values
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sometimes occur in data based on paid losses, and frequently
occur in data based on incurred losses where case estimates are
often set on a conservative basis and overestimated. The method
proposed is robust to a small number of negative incremental
claims (as in the example), but will always produce positive fitted
values (due to the use of the logarithmic link function) and hence
will always produce development factors greater than one. For
this reason, the techniques are often not suitable for use with
incurred data which often include a series of negative incremental
losses in the later stages of development requiring development
factors less than one.

In the framework proposed in this paper, a constant scale pa-
rameter has been used. This is for ease of exposition; the assump-
tion can be relaxed to allow the scale parameter to be modeled as
part of an extended procedure. The difference between the pre-
diction errors of the overdispersed Poisson and Gamma models
in Section 7 is partly due to the use of a constant scale parame-
ter, and further research is needed to evaluate how much of the
difference can be ameliorated by joint modeling.

The main use of stochastic reserving methods is in the pro-
vision of estimates of reserve variability, not in the reserve es-
timates themselves. Until recently, measures of variability have
been of little interest to most general insurance actuaries, but
interest is likely to increase as the need to parameterize and cali-
brate dynamic financial analysis (DFA) models becomes routine.
Part of a DFA exercise is quantifying reserving risk, and to do
this, it is necessary to have a model that simulates the likely pay-
ments of outstanding liabilities. Stochastic reserving techniques
provide a model structure and a way of calibrating the model to
real data, from which payments can be simulated (taking care to
allow for process and estimation error).

As outlined in Section 2, there is a wide variety of methods
available for stochastic claims reserving. If the use of these meth-
ods increases, it is important that the similarities and differences
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of the models are understood, and their properties examined. By
presenting some of the models within the same framework, and
extending to allow flexibility between the extremes of two well-
known models, it is hoped that this paper has contributed to the
process.
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