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Abstract 

Some procedures that are used to calculate aggregate loss distributions and 
claim count distributions assume the claim count distribution is a negative 
binomial distribution. The parameters for the negative binomial distribution 
are often based on data from a small number of loss periods, and the 
estimates may have considerable error. A Bayesian procedure for parameter 
estimation allows the analyst to use some judgment when deriving the 
parameter estimate. This paper derives the Bayesian estimation procedure of 
the negative binomial parameter, p, under the assumption that the prior 
distribution for p is a beta distribution. 
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A BAYESIAN APPROACH TO NEGATIVE BINOMIAL 
PARAMETER ESTIMATION 

Introduction 

Consulting actuaries often calculate probability distributions of aggregate loss. Two 
methodologies, among others, are frequently used to arrive at the distribution of aggregate 
loss. One methodology is to use a theoretical distribution such as the log normal, gamma, 
or other distribution to approximate the aggregate loss distribution. A second 
methodology is to combine a distribution for the number of claims, usually the Poisson or 
negative binomial distribution, and a distribution of claim size. The use of either of these 
methodologies may require an estimate of the parameters of the negative binomial 
distribution. Usually, the actuary is working with a small number of years, and the 
parameter estimate for the claim count distribution may have considerable error. This 
paper provides a Bayesian procedure for estimating the negative binomial parameters that 
will provide some stability to the estimate. 

When selecting a claim count distribution, an argument can be made that the negative 
binomial should be preferred to the Poisson in almost all situations. Two sets of 
assumptions are presented that lead to a negative binomial distribution as opposed to a 
Poisson distribution. First, assume that there are several populations that produce losses, 
for example, losses from the members of a pool or trust or from several divisions of a 
company. Next assume that the number of claims from each population has a Poisson 
distribution with parameter 1,. If the Ys are gamma distributed, the claim count 
distribution for claims from all populations is negative binomial [I, p. 323-41. A 
mathematically equivalent set of assumptions is to assume a Poisson distribution for the 
claim count distribution, and assume that the sampling errors in estimating the Poisson 
parameter have a gamma distribution. Then the claim count distribution including the 
parameter estimation error is negative binomial. In this situation the relationship between 
the negative binomial distribution and the Poisson distribution is analogous to the 
relationship between the t-distribution and the normal distribution. At least one of these 
sets of assumptions is reasonable in almost every situation involving the use of claim count 
distributions in producing a distribution of aggregate loss. 

The following notation for number of claims, size of individual claim, and aggregate loss is 
adopted. Let n, be the number of claims in period t; x, is the size of the ith claim; and 

y, = C x,, i = l,..., nt (1) 
is the aggregate loss for period t. It is well known in the actuarial profession that the 
variance of the distribution of aggregate loss from a compound process of claim count and 
individual loss where claim size and the number of claims are independent is [ 1, p.3 191 

a,* = p&*+ px*cr.* . (2) 
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Thus, if the claim count distribution is negative binomial, the mean and variance of the 
aggregate distribution will depend on the parameters of the negative binomial. Whether a 
theoretical distribution is used to represent the aggregate distribution or the aggregate 
distribution is derived by combining the claim count distribution and the severity 
distribution, an estimate of the parameters of the claim count distribution is required. 

Negative Binomial 

There are several forms of the negative binomial. The form used here is 

P(n) = ( n+;- I)&, -p)” (3) 

where b = k(l - p)/p , and IS.* = k(1 - p)/p2. Solving these two relationships for p and k 
gives p = u,, / cr.’ and k = b’/(cr.’ - u.). To emphasize the dependence on the parameter p, 
expression (3) may be written as 

T(n + k) 
P(nb) = r(n+ l)r(k)P’(l -P)“, 

where r(a) = I,” x’-‘C%. 

This is a conditional distribution for n given a specific value of the parameter p. 

It is assumed that the actuary has made forecasts for the expected number of claims, u,,, 
and the variance of the claim count distribution, o.‘. The method of moments can be 
applied using the relationships above to estimate the parameters p and k of the negative 
biiomial distribution. However, this paper provides a procedure for modifying these 
estimates based on prior beliefs concerning these parameters, This procedure will provide 
some stability to the estimates and will cause extreme sample results from a small number 
of loss periods to be modified toward the actuary’s preconceived notions which may be 
based on past experience. 

Prior Distribution 

Assume that the prior distribution of p is a beta distribution with parameters b and c. 
Thus, the prior distribution is [2;p. 2551 

flp) = !+-‘(I -PY’ 
B(b,c) ’ OCPC I, (5) 

where, B(aJ3) = i x’-I(1 -r)E’& = m is the beta function 
0 
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L.et pp represent the mean of this distribution. pp = b/(b+c). By choosing appropriate 
values for b and c, the actuary can have a subjective notion of the parameter, p, enter into 
the estimation process. For example, if b and c are both assigned values of one, the mean 
of the prior distribution of p, pp is one-halt or if b=l and c=3, pp is one-fourth. The prior 
expected value will be modified based on the sample data for a final estimate which will be 
an average of the subjective prior estimate of the actuary and an estimate based on the 
sample data. 

While the relative sizes of b and c determine the expected value of the prior distribution, 
the absolute size of the sum of b+c will influence the weight given to pp when it is 
averaged with the estimate from the sample data. A procedure for determining the weight 
to be assigned the prior estimate is provided below. With this procedure the actuary can 
influence the relative weights given the prior estimate and the sample estimate based on 
the confidence placed in these estimates. 

Posterior Distribution 

To derive the posterior distribution of p, the joint distribution of p and the observed 
sample must first be calculated. Using (4), the probability of selecting the observed 
sample for a given value of p may written as 

T r(n,+k) 

= p”(l -Ah”, 6 l-(n, +k) 
WY r=I qn, + 1) ’ 

(‘3 

where T is the number of loss periods contained in the sample. Multiplying (6) by the 
prior distribution for p, (S), gives the joint distribution of the observed sample and p. 

(7) 

The probability distribution for an observed sample is obtained by integrating (7) over the 
entire range of p, O<p<l. When the joint distribution of the sample observations and p is 
divided by the marginal distribution for the sample, the conditional distribution of p given 
the observed sample is obtained. Thus, dividing (7), the joint distribution, by (7) 
integrated with respect to p, the distribution for the observed sample, provides the 
conditional distribution for p given the observed sample as 

f(plm,...,nd = , P kT+t-l(l -p)Ln,+l 

bpfl++“‘( 1 -p)En*c-k+ 
(8) 

381 



The denominator of (8) is a beta function, and may be written as B[kT+b,Zn+c], and (8) 
can be written as 

f(plnl.....k) = 
P kT+&l(l -p)Wc-I 

B(kT+ b, In, + c) 

(Sa) is a beta distribution and is the posterior distribution of p given the observed sample. 

For a squared error loss function the Bayes estimator of p is the mean of this posterior 
distribution. 

E(p]nl,...,nT) = ps = 
bpkr+*(l -p)‘~r--l~p 

B(kT+ b, E,,, + c) 

= B(kT+b+ l,Zn,+c) 
B(kT+ b, Z n, + c) 

kT+b 
= kT+b+c+En, 

kT+b 
= kT+b+c+Tm; (9) 

To put the expression at the same level as the forecast value for the number of claims, the 
number of sample periods, T, times the forecast number, m,, is substituted for the total 
number of claims in the sample period in the last step of the derivation 

An estimate of k is required to use expression (9) to calculate pe. One choice is to use the 
estimates of p,, and 4.’ from the sample data and the relationship k = u.*/(o.’ - b) to get 
an estimate of k for use in (9). Substituting this expression for k in (9) produces 

b(l -pJ +p,m,l 
pa= (b+c)(l -p,)+ Tm. 

The Bayes estimate, pe, is an average of the actuary’s subjective estimate, pP = b/(b+c), 
and the sample data estimate, p, = m. Is,,*. The weight given to these estimates depends 
partly on the sum b+c. Let wP be the weight given to pP and w, = I - w, is the weight 
given to p,. Then 

wp pp + (1 - wp) p, = pa- 

Making substitutions for pP and pe and solving for wP gives 

(10) 
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wp = (l-p. )(b+c) I [(l-p )@+c) f nbT1. (11) 

The weight received by the prior estimate depends on the size of (I-p.)(b+c) relative to the 
forecast number of losses and the number of loss periods in the sample, ~LT, the weight 
given to the sample estimate. 

The question to be answered is the value to be assigned to @+c). If an alternative 
question is answered, the value of (b+c) will be determined. The relative weights of p, and 
pb can be made to depend only on the number of loss periods of sample data that is 
available. Suppose that it is determined that equal weights w-ill be given to the two 
estimates when T, periods of data are available. Under this assumption (1-p.)@+c) = 
m,,T., and the weight assigned to w, is 

w, = ~TJ(m,,T~ + m;r) 
= T. I (T. +T). (12) 

For example, if it is decided that the prior value and the sample value should receive equal 
weight when there are four years of sample data, then T. = 4. When T < 4, the prior 
estimate receives more weight than the sample estimate, and vice versa when T > 4. The 
weights assigned to pp and p, by expression (12) for selected numbers of years in the 
sample are: 

Number ofYearsin Sample: 2 4 6 8 10 
Prior Estimate Weight (wp): .667 ,500 ,400 ,333 ,286 
Sample Value Weight (w,): ,333 .500 .600 ,667 ,714 

When the value of T. has been selected, the expression for estimating pa becomes 

PB = Gp, + Tp.) ! (T. + T). (13) 

The estimate of k will need to be calculated such that the negative binomial distribution 
will have an expected value that equals the claim count forecast. The value for k may be 
obtained from the expression k = pam, /(l-p& where m, is the claim count forecast. 
Having estimates of p and k, the estimated variance of the claim count distribution is s,,’ = 
k(l - pB)/pf?. 

An Examole 

The first three columns of the following table show for each year in the sample the 
estimate of the ultimate number of claims and the exposure in terms of head count. The 
fourth column inflates the claim count to an exposure equivalent the exposure for the 
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forecast period by multiplying the claim count for each year by the ratio of the forecast 
exposure to the loss year exposure. The variance for the sample data is calculated in the 
last column. The prior estimate of p is pp = .5. p, is the ratio of the expected claim count 
to the variance, p, = 298/881 = .338. If T. = 4, then using (13) the Bayes estimate is made 
as 

pe’ 
[4(.5)+6(.338)1 = ,403, 

(4+6) 

Using this estimate, k is calculated using the relationship k=pamJ( I-pB) = .403(298)/.597 
= 201. Then the variance of the claim count distribution is estimated using s,,’ = 
k(l-p)/pa2= 201(.597)/.403’= 739. 

A Bayesian procedure has been applied to produce an estimate of the variance of the claim 
count distribution that contains information relative to the analyst’s prior estimates and 
experience. If experience adds valid information, this should be a more reliable estimate 
than one based solely on the sample data. 

When calculating a probability distribution for aggregate losses for an accident year, an 
estimate of the variance of the claim count distribution is often required. When the 
number of accident years in the sample period is relatively small, an estimate based solely 
on the sample data is not reliable. This paper presents a methodology for estimating the 
variance of the claim count distribution that is based on a Bayesian procedure assuming a 
squared error loss function. The mean of the posterior distribution is the estimator that 
minimizes the expected squared error loss. The mean of the posterior distribution is a 
weighted average of the mean of the prior distribution and the sample estimate based on 
the sample moments. It is suggested that the actuary can choose the weights assigned to 
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the prior estimate and the sample estimate that depend on the number of loss periods of 
sample data so that appropriate weights will be given to the two estimates. 
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