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Abstract
When applying the collective nsk model to an analysis of insurer capital needs, it is
crucial to consider the effect of correlation between lines of insurance. Recent work
sponsored by the Commuttee on the Theory of Risk has sparked the development of
methods that include correlation in the collective risk model. One of these methods is
built around the view that correlation i1s generated by parameter uncertainty affecting

several lines of insurance simultaneously.

This paper uses simulation analyses to explore the properties of both classical and
Bayesian methods of quantifying parameter uncertainty. We conclude that in order to get
sufficient accuracy to determine the necessary capital, one must use the combined data of
several insurers. Using the combined data of several insurers forces us to consider a
collective nsk model where parameter uncertainty affects several insurers — as well as

several lines of insurance — simultaneously.
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1. Introduction
The collective nsk model has long been one of the primary ools of actuarial science.
One can view this model as a computer simulation where one first picks a random

number of ¢claims and then sums the random loss amounts for each claim

The early uses of the collective risk model were mostly theoretical illustrations of the role
of insurer surplus and profit margins. Such illustrations are still common today 1n
insurance educalional readings such as Bowers. Gerber, Jones, Hickman and Nesbitt

[1997. Ch 13]

By the lale 1970°s, members of the Casualty Actuanal Society were beginning to use the
collective risk model as input for real-life insurance decisions. The early applications of
the collective risk model included retrospective rating. e g Mevers {1980}, and aggrepate
stop loss reinsurance, e g John and Patnk [1980] which is also descnbed by Patrik
{1996] Bear and Nemlick [1990}] provide further examples of the use of the collective
nsk model in the pricing of reinsurance contracts. Mevers {1989} begins 1o apply the

collective nisk model 1o an analysis of insurer capital

This paper is part of a collective effort to extend the use of the collective risk modecl to
Dynamic Financial Analysis (DFA). One goal of DFA 15 the management of an insurer’s
capttal  An insurer requires suffictent capital so that 1ts chance of insolvency 1s
reasonably remote  An insurer can manage its capital needs by structunng its business so
that 1t has an accepiably remote chance of a large loss. This structurning can include the

use of remsurance

While the collective risk model arose from theoretical exercises in insurer solvency, it has
not been widelv used in practice for setting solvency standards. The main reason for this
has been that it requires that individual lines of insurance be independent. Almost
nobody beheves this to be true. And as we shall demonstrate below, assuming

independence can lead to a significantly understated solvency standard.
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Recognizing this problem, the CAS Committee on the Theory of Risk commissioned Dr.
Shaun Wan'g to develop versions of the collective nisk model that do not require one to
assume independence between lines of insurance. This work led to a paper titled

= Aggregation of Correlated Risk Portfolios: Models & Algorithms™ which is to appear in

the next volume of the Proceedings of the Casualty Actuartal Society.

Inspired by Dr. Wang's work, we followed with a discussion of his paper, Meyers [1999],
that focused on a version of the collective risk model where the claim count distribution
for cach line of insurance was conditionally independent given a parameter . Treating o

as a random variable leads to a particular kind of dependence between lines of insurance.

In this paper we propose a methodology for estimating the variance of o and explore the

data requirements necessary to provide reliable estimates of this variance.

2. The Collective Risk Model

For the h™ line of insurance let:
u, = Expected claim severity,

o, = Variance of the claim severity distribution;

Ay = Expected claim count; and
Ay + o A} = Variance of the claim count distribution.

Following Heckman and Meyers [1983], we call ¢, the contagion parameter. If the claim

count distribution is:
Poisson, then ¢, = 0;
negative binomial, then ¢, > 0; and

binomial with n trials, then ¢, = -1/n.

200



A good way to view the collective nsk model is by a Monte-Carlo simulation.
Simulation Algorithm #1
The Collective Risk Model Assuming Independence Between Lines of Insurance

1. For lines of insurance | 10 n, select a random number of claims, Ky, for each line of

insurance h.

1o

For each line of insurance h, select random claim amounts Zy, fork =1, ... K;. Each

Zi has a common distribution {Z,}.

Kh
3. Set Xy = 3 Zy .
k=l

n
4. Set X=Y X!
h=1

The collective risk model describes the distribution of X.

Meyers [1999] shows that if K, is independent of K4 for & # h, and Z, is independent of
Ky, we have:

Var[Xp ] =Ay -0f +pE (Ap+ep M) @1

and Cov[Xy,X,]=0ford=h. (2.2)
We now introduce parameter uncertainty that affects the claam count distribution that
affects several lines of insurance simultaneously. We partition the lines of insurance into

covariance groups {G;}. Our next version of the collective risk model is defined as

follows.
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Simulation Algorithm #2
The Collective Risk Model with Parameter Uncertainty
in the Claim Count Distributions

1. For each covaniance group i, select o > 0 from a distribution with:
Eloe] = I and Var[as] = g,

g, is called the covariance generator for the covariance group i.

[§8]

For line of insurance h in covanance group i, select a random number of claims Kj;

from a distribution with mean oAy,

3. For each line of insurance h in covanance group i, select random claim amounts Zy;

fork = 1. .. K, Each Z; has a common distribution {Z,;}.
Ky,
4 Set X, =X 7Z,.
Bl
5. Set X,, = thc,xhl'

6 SetX=¥ X,

-1
Mevers [1999] shows that for d = h:

CO\"[Xd”X}“]:gI Ay Ha Ay, (2.3)

Ford = h:

Cov[X, Xy ]=Var[X, ] =&, -op +ui (A +(+g) ¢y AL ) +e, A1, 24
And fori:):

Cov[X,.X,]=0. (2.5)



The ultimate purpose of this paper is to discuss the estimation of the g;’s from claim

count data, so we remove claim seventy from the above equations by setting each

p, =land o; =0 This gives us:

Cov[K,.K,]=8 A, A, (2.6)

and ford = h
CO\[Km ,K_“] = Var[Km ] =A,+ (Cm +8 +C, 8, )- }‘:h.- (V)]

and for1#:
CO\'[KWKM] =0, (2.8)

3. The Impact of the Covariance Generator on Required Capital

The purpose of this paper is o give some estimators of the covanance generator, 8. To
this end, we give an example on a hypothetical insurer writing tour lines of insurance.
The insurer expects 1,000 claims in each line, and the contagion parameter for each line
1s equal 1o 0.02. The covanance generator is equal to 0.04. The claim seventy
distributions are given in Mevers 1999} Tables 3.1 and 3.2 give various summary

statistics of the insurer’s aggrepate loss distribution

Table 3.1
Aggregate Summary Statistics
Aggregate Mean 101,581,230
Aggregate Std. Dev. 23.270,489
Table 3.2

Claim Severity and Claim Count Statistics
Distribution Name E[Count] Std[Count] E|Scverity] Stdf{Severity] E[Total Loss)

GL-$1M 1000 248.60 36.966 16 124,853.59 36,966,160
GL-$5M 1000 248 60 40348 87 160,218.51 40,348,870
AL-$1M 1000 248.60 11,456.65 76,434.03 11,456,650
AL-$5M 1000 248.60 12,809.55 99,730.27 12,809,550
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Table 3.3 and 3.4 give the correlations between each of the lines of insurance for the

clatm counts, and for the total losses.

GL-$IM
GL-$5M
AL-$1M
AL-$5M

GL-$1M
GL-$5M
AL-31M
AL-$5M

Table 3.3
Claim Count Correlation Matrix

GL-$1M GL-$5M AL-$1IM AL-$5M

1.000
0.647
0.647
0.647

0.647
1.000
0.647
0.647

Table 3.4
Total Loss Correlation Matrix

0.647
0.647
1.000
0.647

0.647
0.647
0.647
1.000

GL-$1M GL-$5M AL-$1M AL-$5M

1.000
0.531
0.453
0.423

0.531
1.000
0.440
0.410

0.453
0.440
1.000
0.351

0.423
0.410
0.351
1.000

We now consider some capital requirement formulas. Let X be a random vanable

representing the insurer’s aggregate loss. Let:

C = Required Insurer Capiial

F(x) = Pr{X <x}
f(x)=F(x)
¢ = Standard Deviation of X

Then the required capital can be defined by one of the following equations

1 Probability of Ruin Formula:

2. Expected Policyholder Deficit Formula:

3. Standard Deviation Formula

F(C+E[X]D)=1-¢.

J’" (x - C— E[X])- f(x)dx
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The probabulity of ruin is a common textbook capital requirement formula in actuarial

mathematics. The standard deviation formula is the probability of ruin formula, when

applied to a normal approximation of the insurer’s aggrepate loss distribution. The

expected policyholder deficit formula 1s more recent, and takes into account the amount

of insolvency as well as the probability of insolvency.

We calculated the distribution of X using the Heckman/Mevers algorithm [1983] as

modifted by Meyers [1999]. We then calculated the capital requirements using the above

formulas (with € = 0.01, 1 =0.001 and T = 2.32) for the insurer using various values of g.

The results are in Tables 3.5 and 3.6.

0.02
0.03
0.04
0.05
0.06

8

0.02
0.03
0.04
0.05
0.06

Table 3.5
The Effect of g on Capital Requirements
Standard Probability Expected
Deviation of Ruin Policyholder Deficit
42,388,424 43,179,285 46,210,851
48,535,720 52,492,867 49,606,674
53,987,534 57,818,856 55,052,911
58,937,183 62,516,435 59,858,191
63,502,198 06,763,256 64,205,165
Table 3.6

The Effect of g on Capital Requirements
% Deviations from the Base g = 0.04

Standard Probability Expected
Deviation of Ruin Policyholder Deficit
-21.5% -25.3% -16.1%
-10.1% -92% -9.9%

0.0% 0.0% 0.0%

9.2% 8.1% 87%

17.6% 15.5% 16.6%

The above tables show that the value of g can have a significant effect on the required

surplus.
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4. The Likelihood Function for 2 Multivariate Claim Count Distribution

From this point forward, we shall assume there is only one covarnance group and drop the
subscripts i and j in Simulation Algonthm #2

As we estimate the g parameter across different lines in a covariance group, we will be
estimating the parameters, An and cn, of each claim count distribution simultaneously In
effect. we will be estimating the parameters of a multivariate distribution on the random

vector K ={K, }

Al this point, it is helpful to adopt the vector notation ¢ = {c, and A = {1, }

The negative binomial claim count distribution, conditional on ¢, will be obtained from

the standard negative binomal distnbution by multiplying its mean, Ay, by o

Following Meyers | 1999}, we shall use the following form of the negative binomial

distribution for the probability of ki conditional on o.

I'(lic, +k,) _A('c,,alh_)k“ @)

T7e,) Tk, + 1) (1+c,on,) ™™

Pr{K, = kla}=

Given g > 0, define’:

o, = l—@,a: =lLand ;= l+\/£,
and 4.2)
Pric=o,}=1/6 Priu=a.}=2/3 and Pria=0,} = 1/6.
One can easily venfy that E[o] = 1 and Var|a| = g.
The conditional likelihood of a claim count vector Ko = {kh]a} is given by:

(kA To) = [T Pr(K, =k, Jo). #3)

" As pointed out i Meyers [ 1999], this discrete distribution for o was motivated by the Gauss-FHermite
numencal integration formula. One can casily derive similar distributions with more points.
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The unconditional likelihood of a claim count vector k = {k,}is given by:

L ARAde) 2ok da .
[kih€.g) - ‘ U ; ,;+7,.6_,

44)

As we go about the computational efforts described below, we will work with the log-

likelihood functions:

L{kA.ga) = In{¢{k.A.€la)): and (4.5)
Lkicu} PCLEREN L[k Aa)
L R T (4.6)

! 6 3 6

5. Maximum Likelihood Estimation

Under the assumption that claims are generated by the process described in Simulation
Algorithm #2, an insurer wishing 10 estimate the parameters %. ¢ and gmight gather data

hke that in the following table from 11s own claims experience
Table 5.1
Insurer Data for Estimating c and g

Exposure by Line and Year
Year Line | Line 2 Line3 Line 4

1998 100 80 40 20
1997 100 80 40 20
1996 100 80 40 20
1995 100 30 40 20
1994 100 80 40 20

Claim Count by Line and Year
Line | Line2 Line 3 Line 4

1998 153 131 53 31

1997 96 77 41 20

1996 53 89 45 16

1995 92 72 45 30

1994 92 90 43 16
Estimated

09720 L1475 11350  1.1300
Frequency
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We estimated the insurer’s frequency by line of insurance by dividing the total claim

count by the total exposure. We then assumed that ¢, = ¢ for all h.

Let k, and A be respectively, an observed claim count vector and an estimated expected

clarm count vector for the vear y.

In Table 5 1 the observed claim count vector, Ewm, is equal to (153, 131, 53,31)". The
expected claim count vector, ;\,‘\\)qx. is equal to (100-0.9720, 80-1 1475, 40-1.1350,
20-1.1300)" which is equal to (97.2, 91 8, 45 4. 22 6)". The parameter vector, ¢,

is equal to (c. ¢, ¢. ¢)'. The maximum hkelihood estimates &and § of ¢ and g are the

values of ¢ and p that maximizes:
Yk, Ee) 6.1

Using Excel Solver'™, we found the maximum hkelihood estimate (MLE), ¢, of ¢ to be

0.0169 and the maximum likelihood estimate § of g to be 0.0245.

We should note that the data in Table 5.1 was not generated from actual insurer data. It
was taken from five random drawings from Simulation Algonthm #2 with the “true”
frequencies set equal to 1.0000 for each line of insurance, the “true” value of ¢ set equal
10 0.0200. and the “true” value of g set equal to 0.0400. We repeated the simulation 100
times with the following results.
Table 5.2
Properties of MLE’s forc and g

Derived from 100 Simulations
of a Single Insurer’s Data

C g
True Value 0.0200 0.0400
Average MLE 0.0134 0.0226

Std. Dev. of the MLE  0.0126  0.0208

One can see from Tables 3.5 and 3.6 that the estimation errors can lead to a significant

understating of the required surplus.
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Based on this and other similar simulations we conclude that estimating ¢ and g in this

manner can lead to biased and highiy volatile results.
We now examine some other estimation methods

The first alternative is to combine the data of several “similar” insurers. Let A be the set
of insurers and let a € A We created 40 nearly tdentical “copies™ of our insurer and
simulated the MLE’s for ¢ and g. Table 5.3 below shows the exposures and claim counts

for the first two mnsurers in a typical simulation.

When combining the data of several insurers we maximize the log-likelihood expression:

gL(i;;i',,z,g). (5.2)
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Table 5.3

Multi-Insurer Data for Estimating c and g

Insurer #1
Year
1998
1997
1996
1995
1994

1998
1997
1996
1993
1994

Insurer #2
Year
1998
1997
1996
1995
1994

1998
1997
1996
1995
1994
Insurer #3
Year

L

Estimated
Frequency

Exposure by Line and Year
Line 1 Line 2 Line 3 Line 4

100 80 40 20
100 80 40 20
100 80 40 20
100 80 40 20
100 80 40 20

Claim Count by Line and Year
Line | Ling 2 Line 3 Line 4

69 69 33 20
99 80 51 17
101 78 68 18
129 94 42 17
82 76 30 15

Exposure by Line and Year
Line 1 Line2 Line3 Line4

20 100 80 40
20 100 80 40
20 100 80 40
20 100 80 40
20 100 80 40

Claim Count by Line and Year
Line | Line2 Line3 Lined

25 108 64 45
18 38 75 42
22 87 94 44
22 130 69 47
30 147 111 68
Exposure by Line and Year?
Line 1 Line2 Line3 Lined
U 4 u L

1.0088 1.0077 1.0088 0.9877
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We ran 100 simulations of data like that in Table 5.3 and calculated the maxtmum

likelihood estimators [or ¢ and g with the following results.

Table 5.4
Properties of MLE’s forcand g
Derived from 100 Simulations
of 40 Insurers’ Data

c B
True Value 0.0200  0.0400
Average MLE 0.0199  0.0399

Sid. Dev. of the MLE ~ 0.0022  0.0030

Based on this and other similar simulations we conclude that we can obtain accurate

estimates of ¢ and g —1f we can get the combined results of several “similar™ insurers”.

The existence (or non-existence) of similar insurers opens up a host of issues. We now

explore a few of these 1ssues.

6. Bayesian Estimation

We suspect few msurers would agree that they are sufficiently “similar™ to any other
group of insurers to fully accept the results of an analysis like that given above. They
might accept the results because they have no quantitative alternative, and then
judgmentally modify the results. Since we consider it likely that judgment will enter the

picture. we constder a Bayvesian approach to the problem.

Consider a grid (c,.g)) of possible values of c and g. Let {f(_‘_}be a set of abservations

needed to calculate the likelithood function for each point (ci.g;) Let pj be the “prior”

probability of each point (c,.g)

* We varied the exposure for the Iines i the pattern: 100,80,40.207 20,100 .80 43, 40,20,100 .80, and
80.40,20.100

* The reader may observe that the expected claim counts [or the insurer 1o this simulated sample were
significantly smaller than the insurer discussed in Section 3 above. We also did a simulation where the
nsurers were 10 times as large. We obtained $td Dev[¢]= 00011 and $td Dev[2] = 00022
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Then according to Bayes® Theorem, the posterior likelihood of each (c;,g;) will be

proportional to®
[14k,:%,.c..8,)p,. (6.1)
;

As an 1llustration, suppose that we choose a prior so that the p;'s are equally likely. For

one simulated {i(_‘, } based on a single insurer’s exposure we obtained the following

posterior distribution of (ci,gj), which we show (part of) graphically.

Graph 6.1

Posterior Likelihood for a Single Insurer
with a Uniform Prior Distribution

* For the time being we are assuming that the expected claim count is known. We wll address this problem
below
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As an example, we construct a prior distribution so that

p, = [Tek;:Rc..8,). (62)
ay

where {I_(;} comes from the (simulated here, but in practice real) data of the 40 “peer

group” insurers given above. We obtained the following posterior distribution for the

same insurer that we show graphically.

Below, we will show how to use the posterior distribution as input into the collective risk

model, as described in Simulation Algornithm #2.

Graph 6.2

Posterior Likelihood for a Single Insurer with a
Prior Distribution Based on Industry Data




7. Industry Drivers of Correlation

The likelihood Equation 3 6 was denved under the assumption that the “driver” of the

correlation. i.e. the random variable o, was independent for each individual insurer. This

section considers the consequences of the random variable ¢ being common to all

insurers. To this end, we replace Steps 1 and 2 of Simulation Algorithm #2 with the

more complicated process.

6.

Simulation Algorithm #3
The Collective Risk Model with Parameter Uncertainty
in the Claim Count Distributions
Driven by Industry and Insurer Parameter Uncertainty

For each covariance group i, select o and a, as follows.

A

1.1. Select o from a distribution with E[(x;‘] =1land Var[otj\]: gt g’ iscalled
the industrv covariance generator for covariance group i.

L 2. Select o, from a distribution with E[r,]=1and Var[er, |=g,. g, is called the
insurer covanance generator for covariance group 1
For line of insurance h in covariance group i, select a random number of claims Ky,

from a distribution with mean af* -o; - K.

For each line of insurance h in covariance group 1, select random claim amounts Zy,;,

fork =1, ... K, Each Zy; has a common distnbutton {Z;}.
Ky,

Set X, =3 Z,, .
k-l

Set X,, = zhe(i, Xy -

Set X:iX,,.

=1
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We now calculate the moments of the aggregate loss distribution described by Simulation

Algonthm #3

F{u;‘ -(1,] = E [(xj‘ -a,lu;‘" ] =k, [n.',"]f 1 (7.1)

'
v,

Var[u;" u] = E“‘\[Var[ul“ -al\a;‘ ]]+\""(,¢[If[a;" .u,,u," H

_E A PV b
“E . [(Lx, } \ar[u‘]} var,, [(1| ] 72)
H(1-gt) e el
g gl ey
To calculate the variances and covariances analogous to Simulation Algorithm #2, we

simply replace the vanance g, in Equations 2.3, 2.4, 2.6 and 2 7 with the expression

Let li;‘ be a vector of observed claim counts for the “industny ™ in veary. An example of
such a vector based on Table 5.3 1s K, = (69, 69. 53. 20,25, 108, 64,45, . )"
Simtlarly let l\\ be a vector of expected claim counts for the “industry™ in year y

The hikelihood function of k* conditional en o™ is given by
v g N

[(R;‘;X";,E,glu"):Hf(:ldc;‘_‘u"i"}..é,g). (73)

a

The assoctated log-likelihood function is given by:

L[:l};";)_(: ,E.g}a'*) =y L(f(;;a'\i‘y cg,) (7.4

(3]
—
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Given g* > 0 define
(.)L;*:]—\/3g_",oz':N =1l and o} = [+3g*,
and (1.5)
Pr{a’ =} =1/6, Pr{a* =} =2/3,and Pr{a* =aj}=1/6

The unconditional log-likelihood function is then given by:

L{K} 23 i gl ) Z.e[.(li':_l’:.é.g‘u?) e[.(i,*_i;,:gn;‘)

Ll_("\;)—»'\_.", g*)=1In + += 7.6
( TN cgg) A 3 A (7.6)

8. Maximum Likelihood Estimation Revisited
Consider the following two situations.
1 g=r>0andg*=0

2 g=0Oandg'=r1r>0.

From the insurer’s point of view, the two situations are identical. lts expected claim

counts are multiplied by a random number each vear.

But from the point of view of one who is trying to estimate the vanance of the random
multiplier, the situations are different. In the first situation, a new o is picked for each
insurer for each year In the second situation, o™ is picked once each year for all insurers.
The estimator should use the log-likelihood function in Equation 4.6. In the second

situation the esttmator should use the log-likelihood function in Equation 7.6.

We did 100 simulations of our 40 insurers where the claim counts are generated by
Simulation Algorithm #3, with ¢ = 0.02, g = 0 and g" = 0.04. We then estimated ¢ and

“g” using maximum likelihood on Equation 4.6, with the following results.
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Table 8.1
Properties of MLE’s forcand g

Derived from 100 Simulations of 40 Insurers’ Data

with Industrywide Parameter Uncertainty\

¢ g g

True Value 0.0200 00000 0.0400
Average MLE 0.0218 00249 —
Std. Dev. of the MLE  0.0039  0.0158 —

We next did 100 simulations of our 40 insurers where the claim counts are generated by
Simulation Algorithm #3, with ¢ = 0.02, g =0.01 and g* =003 We then estimated ¢, g
and g" using maximum likelthood on the “correct” Equation 7.6, with the following

results.

Table 8.2
Properties of MLE’s for ¢, g and g*
Using Estimated Frequencies
Derived from 100 Simulations of 40 Insurers’ Data
with Industrywide Parameter Uncertainty\

c
True Value 00200 00100 00300
Average MLE 0.0201 0.0114  0.0213

Std. Dev. of the MLE ~ 0.0023  0.0026  0.0090

If you used the estimated g and g* in equation 7.2 instead of the true value of g and g*,

you could significantly understate your capital requirements

It may occur to one that the reason for this downward bias 1s due to the fact that we use
estimated frequenctes, rather than true frequencies. To test this we repeated the
simulation using the “true” frequency rather than the estimated frequency and obtained
the following results.
Table 8.3
Properties of MLE’s for ¢, g and g*
Using “True” Frequencies

Derived from 160 Simulations of 40 Insurers’ Data
with Industrywide Parameter Uncertainty

c g g
True Value 0.0200  0.0100  0.0300
Average MLE 00200 00104 00298

Std. Dev. of the MLE ~ 0.0023  0.0029  0.0033
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This simulation indicates that the bias is indeed caused by using estimated frequencies in

the MLE. However, in practice the “true” mean is not known.

9. Bayesian Estimation Revisited

Consider a grid (7_&\) c.g.et ) of possible values of A", ¢, gand g* Let {i\\} be a set of
observations needed 1o calculate the likelihood function for each poim(i",\y.c,,g,.g, )

Let p; be the “prior” probability of each poim(i',\y,cl.g\,g(‘) .

Then according to Bayes™ Theorem. the posterior likelihood of each (X“ C,.8 gf) is

proportional to:

Hf(ﬁ;j;ig.c,.g‘,g;“)-p, .1

Let é;" be a vector of exposures for the set of insurers, A, in yeary. Let £ be vector of
clam frequencies. Then each coordinate of the expected claim count vector Xl\\ 1s equal
to the product of the corresponding coordinates of é;‘ and T*. Since the exposures are
known and the claim frequencies are unknown, we should put a prior distribution on the

gnd (f}c.g,.8').

Let 2 be the posterior probability of each point in the gnd (f',",c,,g,,g,"). Then one can

obtain estimates of f*.c g and g* by the following formulas

ff‘\ :Z~‘\ 2
¢= Zc, P

' (9.2)
8= 2
=Yg
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We then tested the vanability of these estimators on our simulated set of 40 insurers. The

gnd was constructed by varving f“‘,c,.gl and g" n the lollowing manner.

I Each component of f* was set equal to 0 9875. Each component of i was set

equal 10 1.0125. The components for1 = 1.2 and 3 were equally spaced in belween.

2. cowas sel equal to 00100 ¢y was set equal to 0.0300. The components for i=1, 2
and 3 were equally spaced in between
3. gowas set equal 1o 0.0020. g4 was set equal to 0.0180. The components for i=1, 2

and 3 were equally spaced in between.

4 g’ was set equal to 0.0200. g} was set equal to 0 0400. The components for i-1, 2

and 3 were cqually spaced 1n between

In total. the gnd had 5' = 625 points. We assumed all points in the grid were equally

likely*
We made 100 simulated estimates with the following results.

Table 8.4
Properties of Bayesian Estimates for ¢, g and g*
Using “True” Frequencies
Derived from 100 Simulations of 40 Insurers® Data
with Industrywide Parameter Uncertainty

c g
True Value 0.0200  0.0100 00300
Average Estimate 0.0201  0.0105 00303

Std Dev of the Esumate  0.0021 0.0020 00027

Here we see that one can obtain stable and unbiased (in the classic statistical sense) by an

appropnate use of Bayes™ Theorem.

* This “equally hikchy™ is as subjective as any other assumption that one can make. The spacing of the grid
15 one part of the subjectivaly. Another subjeclive assumption 1s that the frequencies for the four lines of
insurance move logether.
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9. Using Real Data

This paper has taken a version of the collective risk model, in which the lines of
insurance are correlated and explored some methods of estimating parameters of the
claim count distributions. The data used in these methods consisted of both exposures

and claim counts that span severa! vears.

We explored the use of maximum likelihood on a single insurer’s data to estimate the
parameters and concluded that the random variation of the estimates were too large to
derive a rehable estimate of the insurer’s required surplus. One can obtain more stable

estimates of the parameters by combining the data of several insurers.
We drew these conclusions from experiments performed on simulated “data.”

We now raise some of the issues that one must address when estimating these parameters

of the collective risk model with real data from several insurers.

1. Claxm Count Development
When analyzing several years of claim count data, one must take care to distinguish
the random variation from the systematic claim count development that occurs

because of delays in reporting claims.

=]

Insurer Class Differences
Different insurers can focus on different classes of business When analyzing the data
of several insurers. one must take care 1o distinguish the random variation from the
systematc differences that occur because of the different classes of business that

insurers wnte

3. Insurer Strategy Changes
When analyzing the data of several insurers, one must take care 1o note that planned
changes in mnsurer strategy that result in changes in claim counts. This can be

difficult because insurers usually keep their strategy changes 1o themselves.

We are in the process of fitting this model to the data of several insurers. We are not yet

In a position to sayv how we are addressing these and other issues. Suffice it to say that



we are using our judgnient, and we anticipate that the ultimate users of this information
will want to impose their own judgment. The Bayesian methodology provides a

framework for making these judgments.

In spite of the judgments that one must make, we do feel that parameter estimates using
the combined data of several insurers provides a useful starting point for insurers as they

20 about doing their Dynamic Financial Analysis.
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