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Abstract 

When appiymg the collect~ve nsk model to an analysis of insurer capttal needs, It is 

crucial to constder the effect of correlation betaeen lines of msurance. Recent tvork 

sponsored by the Comnuttee on the Theoty of Risk has sparked the development of 

methods that include correlation m the collecti\e risk model. One of these methods IS 

butlt around the view that correlation IS generated by parameter uncertamty affecting 

several lines of msurance simultaneously. 

This paper uses simulation analyses to esplore the properties of both clawcal and 

Bayesmn methods of quantifymg parameter uncertainty. We conclude that m order to get 

suffícient accuracy to determine the necessary capnal, one must use the combined data of 

several insurers Using the combined data of several insurers forces us to constder a 

collecttve nsk model where parameter uncertamty affects several insurers - as well as 

several lines of tnsurance - simultaneously 
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1. Introduction 

Thc coIIectI\e nsk model has long becn one ofthc pnmary toolh of actuarIal sclcnce. 

Onc can \le\\ thls model <as a computer slmula1lon \\hcrc onc lirst p~cks a random 

numbcr of clalms and then sums the random loss amounts for each claml 

The earl! uscs ofthe collectl\e rlsh model \\crc mos1l>, theoretlcal lllustratlons of the role 

of Insurer surplus and profit mnrgms Such Illustratlons are SIIII common toda‘ m 

msurancc cducational readmgs such as Bo\\ers. Gerber. Jones. ll~chman and Nesbltt 

1 l’I’)7. Ch 131 

Hy 1he late IO7O’s. members of 1he Casualt‘ Actuanal Soclety {vere begmnlng 10 use the 

collect~~c nsk model as Input for real-llfe msurance decwons The early applxations of 

thc coIIectI\e nsk model mcluded retrospectl\e ratmg. c g Mtycrs [19X0]. and aggregate 

stop Ioss relnsur,axce. e g John and Patn!-. [ IYXO1 Mhlch IS also descnbed by Patnk 

~1006~ Bcnr and Nemllck [ IWO] pro, Ide furthcr examples of the use of the collectlre 

nsb modcl m the prlcjng of relnsur,ance contracts Meyers ~19110~ beyns to apply the 

coIIcc~~~c nsl, model to an analysls of Insurer capltal 

‘fh~s paper IS part of a COIICCII~C cffort to eutend the use of the collective risk modcl 10 

D~narn~c Flnanclal .Anal!sls (DFA) One gal of DFA 1s the management of an insurer’s 

capttal An !nsurcr rcqulres suflictent capltal so that Its chance of msol\ency IS 

reasonabh remo1c An Insurer can mannge 11s capital nccds b! structunng lts bwness so 

that It has an acceptably remote chance ola large loss Thls structunng can mclude 1he 

use of relnsurance 

Whlle the collecti\e nsk model arose from theoretlcal eserclses In Insurer solvency, 11 has 

not heen wdel~ urcd In practlce for seltlng solvency standards The mam reason for this 

has bccn that II rcqulrcs that Indlvldual Imes of msurance be Independent Almost 

nobod! belleves thls 10 be true And as \vc shall demonstrate below, assumlng 

mdependcncc can lead to a sigmlicantly understated sol\ ency standard. 
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RecogmLmg this problem. the CAS Committee on the TheoE of Risk commissioned Dr. 

Shaun Wang to debelop versions of the collectlve risk model that do not require one to 

ilssume Independence betiveen Iones of msurance Th~s work led lo a paper titled 

.‘Aggregatlon of Correlated Risk Portfolios Models & Algonthms” which 1s to appear m 

the ne\-t Lolume of the ~ro~~,eedrngs c$rhe Curuaf~y.kruar~al S¿met~~ 

Insplrcd by Dr Wang‘s work, \\e followed v,ith a dlscuwon of his paper, Mqers [ 19991, 

that focused on a verslon of the collective nsk model uhere the cltim count dlstribution 

for cach Ilne of insurance xras conditionally independent given a parameter a Treatmg CI 

as a random vanable leads to a particular kmd of dependence bet\veen lines of msurance. 

In thls paper \ve propose a methodoloE for estnnatmg the variance of a and explore the 

data requirements necessary to provide reliable estimates of thls vanance. 

2. The Collective Risk Model 

For the hti Ime of msurance let 

ph = Espected claim severity, 

CJ,= Variance of the claim severity distributlon. 

hh = Espected claim count. and 

jih + ch.hi = Variance of the clam count distnbution 

Followng Heckman and Me):ers [ 19831. ne call ch the contaglon parameter Ifthe claim 

count dlstrlbutlon IS. 

Pmsson, then ch = 0: 

negative binomial. then ch > 0; and 

bmomial with n lrials, then ch = -I/n 
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A good way to wew the collecttve nsk model is by a Monte-Carlo simulation. 

Simulation Algorithm #l 

The Collective Risk Model Assuming Independence Between Lines of Insurance 

1, For lmes of rnsurance 1 to n, select a random number of claims, I(h, for each line of 

msurance h. 

2. For each line of insurance h, select random clarm amounts Zhk, for k = 1, Kt, Each 

Z,,k has a common distribution (Zk}. 

3. Set X, = EZt+. 
k=l 

4 SetX=EXh. 
h=l 

The collective risk model describes the dtstribution of X 

Meyers [ 1’9’991 sho\\s that lf Kh is independent of Kd for d 3 h, and íT.+ is mdependent of 

h we ha\ e: 

and Cov[Xd,Xh]=Oford#h (2.2) 

We now introduce parameter uncertainty that affects the clrum count distribution that 

affects several Imes of msurance simultaneously. We partition the Imes of msurance into 

cowrmnce groups {G,}. Our next version of the collecttve risk model is deftned as 

follows. 
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Simulation Algorithm #2 

The Collective Risk Model with Parameter Uncertainty 

in the Claim Count Distributions 

1. For each covaxmce group 1. select a, > 0 from a dlstrlbutlon \\lth. 

E[q] = 1 and Var[a,] = g, 

g, is called the cox anance generator for the covanance group i 

2 For Ime of~nsurance h In covanance group I. select a random number of claims Kh, 

from a dlstnbutlon \\rith mean q&, 

3. For each hne of msurance h in colanance group I. select random clalm amounts Zhll 

Iòr L, = 1. bl Each Zhlk has a common dlstri butlon {Z,, [ 

5 Set X., = &- X,, ‘1 

6 Set X :: 2X., 
a-1 

Me)ers [ 1 ‘WI] show that for d # h: 

For d = h: 

(2.3) 

C0\[X,,.X,,]= vÍir[x,]- ih, .a; +p;, .(hh +(l+g,).c,, -k:,,)+g, .hi, .p;, (2.4) 

And for I #J: 

c0v[x,,x,,] = 0 (2 5) 
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The ultimate purpose of thls papcr IS to dlscuss the estlmatlon of the 6,‘s from clami 

count data, so \\e remove clalm sever+ from the aboye equatlons by settmg cach 

pi, = 1 and of> = 0 111s yves us: 

C’ot[K<,>.K,,] = g, -L -h,, (2.6) 

Co\[K ,,,. K,,]=Var[K,]=h,“+(c,,+g,~c,, g,).h?,,. (2 7) 

andforl#J 

Cov[K,,K,,] :- 0. (2 w 

3. The Impact of the Covariance Generator on Required Capital 

The purpose of thls paper 15 IO y\e some estlmators of the co\ ariancc gcncrntor. g. To 

thls end, \\e gve an esample on a hypothetlcal Insurer \vrttmg tòur Iones of~nsurance 

The Insurcr espects 1.000 clams In each lme. and the contayon parameter for each Imc 

1s equal lo 0 ll2 The coianance generator 1s equal to 0 0-I The clalm scverlt! 

dlstrlbutlons are gl\en 111 Meyrrs ~109~~~ Tablcs 3 1 and 3 2 gve various summar) 

statlstlcs of the Insurer’s aggregate loss dlstnbrmon 

Table 3.1 
Aggregate Summary Statistics 

Aggregate Mean 101.581,230 

Aggregate Std De\ 23.270.480 

Table 3.2 
Claim Severity and Claim Count Statistics 

Dlstributlon Name EICountJ StdlCount] E]Scvcr~t?] StdlSe\erityj ElTotal Loss) 

GL-% I M 1000 248 60 36.966 16 124.853 59 36.X6,160 
CL-ã5M I 000 24x 60 40.3-M 87 160.21851 40.348.870 
AL-â I M IOOO 24X.60 11.456 65 76,434 03 1 I .456,650 
AL-FSM I no0 248.60 I2.809 55 99,730 27 12,809~550 
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Table 3 3 and 3 4 give the correlations betaeen each of the lines of insurance for the 

clarrn counts. and for the total tosses. 

Table 3.3 
Claim Count Correlation Matrix 

CL-SIM GL-S5M AL-SlM AL-S5M 

CL-$ I M 1 .ooo 0 647 0 647 0.647 
CL-$SM 0.647 1.000 0 647 0.647 
AL-$lM 0.647 0.647 1 .ooo 0.647 
AL-S5M 0.647 0.647 0 647 1.000 

Table 3.4 
Total Loss Cordation Matrix 

GL-$1 M CL-$5M AL-$IM AL-SSM 

GL-$1 M 1.000 0.53 1 0.453 0.423 
GL-S5M 0 531 1 000 0 440 0.410 
AL-S 1 M 0.453 0 440 1.000 0351 
AL-S5M 0.423 0410 0351 I.000 

We no\v consider some capttal requtrement formulas Let X be a random variable 

representmg the insurer’s aggregate loss. Let: 

F(s) = Pr(X < s) 

f(x) = F’(x) 

0 = Standard Deviatton of X 

C = Required lnsurer Capnal 

Then the requtred capttal can be detined by one of the followmg equattons 

I Probabthty of Rutn Formula F(C + E[X]) = 1 -E 

2. Expected Poltcyholder Delictt Formula: 
~~~-b,\,(~-C-EIX1).f(g)d~ 

E[Xl 
=q 

3 Standard Devtation Formula C = T.a 
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The probablhty of ruin is a common testbook capnal rcquirement formula m actuarial 

mathematics The standard devlatlon formula 1s the probability of ruin formula, when 

apphed to anormal approsimatton of the insurer’s aggregate loss distribution. The 

expected pohcyholder deíiclt formula IS more recent. and takes into account the amount 

of insolvency as well as the probatxhty of insolvency 

We calculated the distnbution of X using the Heckman/Meyers algonthm [ 19831 as 

modiíied by Meyers [ 19991 We then calculated the capital requirements using the above 

formulas (ulth E = 0.01, ?l= 0 OO1 and T = 2 32) for the insurer using various balues of g. 

The results are in Tables 3 5 and 3 6 

s 

0.02 
0.03 
0.04 
0 05 
0 06 

Table 3.5 
The Effect of g on Capital Requirements 

Standard Probabihik Espected 
Dewatton of Rum Pohcyholder Detkt 

42,388,424 43,179,2Y5 46,210,851 
48,535,720 52,492,867 49,606,674 
53,987,534 57,818,856 55,052,91 1 
58,937,183 62.5 16,435 59.X58.191 
63$)2,lYR 66,763.256 64,205.165 

Table 3.6 
The ElTect of g on Capital Requh-ements 

% Deviations from the Base g = 0.04 

Standard Probability Expected 

.5 Dewation of Ruin Policyholder Deliclt 

0.02 -21.5% -25 3% -16 1% 
0.03 -10.1% -9 2% -9 9% 
0.04 0.0% 0 0% 00% 
0 05 9 2% 8 1% 87% 
0 06 176% 15 5% 166% 

The above tables shon that the value of g can have a sygmlicant effect on the required 

surplus 
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4. The Likelihood Function for a Multivariate Claim Count Distribution 

From this point fonvard, \ve shall assume there is only one COI anance group and drop the 

subscnpts i and j m Simulatlon Algonthm #2 

As we estnnate the g parameter across different hnes m a covanance group, we Wll be 

estlmatmg the parameters. xt,and ch. of each claim counl dlstnbution slmultaneously In 

effect. we \\~ll be estlmatmg the parameters of a muhivarlate dlslnbutlon on the random 

vector K = {Kh} 

At thls polnt. It IS helpful to adopt the vector notation C = {c,,}and i = {&} 

The negatlve bmomial claim count dlstnbutlon. condlConal on a. will be obtamed from 

the standard negatiue blnomlal distnbution by multlplymg ils mean, hh, by a 

Following Mqers 1 ISUS]. we shall use the follo\vlng form of the negatike binomlal 

dlstributlon for the probablllty of kh condltlonal on a 

r(lic, tk,,) tc,,a&) k. 
Pr{K, = k,la} = T 

l71íc,,)-r(h,~ + 1) (I+c,,ah,,)““‘i” 

Grven g 2 0. define’: 

a,=I-&,az=l.anda,=l+fi. 

and 

Pr{a=a,}=l/6.Pr{u;az}=2/3.and Pr{a=a,}=l/G. 

One can easily venfy that E[a] = 1 and Varia] = g 

The condltlonal hkellhood of a clalmcount lector kla = {khla} is glven b) 

î(E,h,Cla)= nPr(K, = k,Iaj 
h 

(4 1) 

(4.2) 

(J 3) 
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As I\C go about the cornputatlonal efforts descnbed belo\v. de ~111 \\ork \\lth the log- 

libchhood functlons 

5. Masimum Likelihood Estimation 

Undrr thc assumptlon that clalms are generated b! the process descnbed m Slmulatlon 

Algonthm fil. .a” insurcr \\izhlng to csllmate the parnmeters 7,. C and gtight gaiher data 

hhe that III the follo\\~ng table from IIS OI\TI clams expenence 

Table 5. I 
Insurer Data for Estimating E and g 

Exposure by Line and Yeal 
Ycar Lene 1 Lene 2 Lene 3 Lene 4 
I wx I OO 80 40 20 
I 0’)7 100 x0 JO 20 
1 YK loo X0 40 20 
1 Cl')5 100 X0 40 20 
1 ‘N4 100 x0 JO 20 

Claim Count by Line and Year 
Lene 1 Lme 2 I.lne 3 L1ne 4 

1 ‘)0X 153 131 53 31 
I ‘90 7 96 17 JI 20 
I ‘l’xí 53 x0 35 I 6 
I 995 92 72 45 30 
1994 02 ‘?O 43 I 0 

Estlmated o CI72tj 
Frequenc‘ 

I 1475 1 1350 1 1300 
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We esumated the insurer‘s frequencl- by Ime of insurance by drvtdmg the total claim 

count b‘ the total esposure. We then assumed that c,, q c for all h 

Let c! nnd h! be respectrvely, an obsened claim count vector ‘and an esttmated espected 

chm count x ector for the year ) 

In Table 5 1 the obsened clatm count tector. k 1~~i8.rsequalto(l53, 131,53.31)1 The 

expected clarm count vector. h,,B,. IS equal 10 (1 OO-O 9720, 80. I 1475, 40. I 1350, 

20 1 1300) \\hrch IS equal to (!I7. , 2 01 8. 45 4. 22 6)r The parameler vector, c , 

IS equal lo CC. c. c, cj’ The mastmum hkehhood estrmates cand g of c and S are the 

values ofc nnd g that maGmrt.es: 

(5.1) 

LJsrng Ewel Sol\ er’. we found the maximum ltkelihood estrmate (MLE). E. of c to be 

0 OlO<> and the maxtmum lrkehhood esttmate g ofg to be 0 0245. 

We should note that the data m Table 5 1 was not generated from actual insurer data. II 

was taken from Iixe random drawngs from SimuLaCon Algortthm #2 wrth the “true” 

frequencres set equal to 1 .OOOO for each hne of insurance, the “true” value of c set equal 

lo 0 0200. and he ‘ïrue” value of g set equal lo 0.0400. We repeated the stmulation 100 

trmcs \\rth the follo\\lng results 

Table 5.2 
Properties of MLE’s for c and g 
Derived from 100 Simulations 

of a Single Insurw’s Data 
C Et 

True Value 0.0200 0.0400 
Average MLE 0.0 134 0.0226 
Std. Dev of the MLE 0.0126 0.0208 

One can see from Tables 3 5 and 3 6 that the esttmation errors can lead to a signilicant 

understatmg of the reqwred surplus 
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Based on thls and other similar simulations we conclude that esttmatmg c and g in this 

manner can lead to bmsed and highty volatile results 

We now examine some other estimation methods 

The tirst alternauve is to combine the data of several “sinular” insurers Let A be the set 

of msurers and let a EA We created 40 nearly tdentical “coptes” of our insurer and 

simulated the MLE’s for c and g Table 5.3 belo\v shows the exposures and clatm counts 

for the tirst two msurers in a typical stmulation 

When combming the data of several msurers we maximrze the log-likelihood expression. 

(5 2) 
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Table 5.3 
Multi-lnsurer Data for Estimating c and g 

Lnsurer f# 1 Exposurr by Line and Year 
Year Lene I Lene 2 Line 3 Lme 4 
1998 100 x0 40 20 
19’17 1 00 80 40 20 
1996 100 80 40 20 
1995 100 80 40 20 
1994 100 80 40 20 

Claim Count by Line and Year 
Line I Lene 2 Lene 3 Lene 4 

1 998 69 69 53 20 
1997 09 X0 51 17 
1996 101 7x hX 18 
1995 129 94 47. 17 
1994 82 76 30 15 

hurer #2 Exposurr by Line and Year 
Year Lene 1 Lene 2 Line 3 Lene 4 
199x 20 100 x0 JO 
1997 20 100 X0 40 
I 9% 20 1 OO no 40 
199s 20 100 X0 40 
I w-1 20 1 OO no 40 

Claim Count by Line and Year 
Line 1 Lene 2 Lme 3 Lene 4 

1998 2S 10X 64 4s 
1997 18 88 75 42 
1996 22 x7 94 44 
1995 22 130 69 47 
1994 30 l-17 III 6X 

Insurer #3 Exposure by Line and Yea? 
Year Lene I Lme 2 Lene 3 Line 4 

u ll u u u 

Estlmated 
Frequencq 

, ,oo88 1 0077 1 0088 0 9877 
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WC ran I OO s~mulat~ons of data Ithe that m Table 5 3 and cakulated the mawmum 

Ilhellhood estlmators for c and r: \rlth the follo\\ing results 

Table 5.1 
Properties oTMLE’s for c and g 
Derived from 100 Simulations 

of 40 Insutws’ Data 
c g 

True Value 0 0200 0 o-ion 
Average MLE 0.0 II)‘) 0 03’Y) 
Std. Deu of the MLE o.no22 0 0030 

Based on thls and other s~mllar slmulatlons we conclude that \\e can obtam accurate 

estlmaws of c and g- ~C\ve can get the comblned results of seteral “slmllar” msurers’. 

The ewtence (or non-exIstence) of slmllar insurers opens up a host oflssues We no\\ 

cxplorc a fc\v of thcsc ~ssues 

6. Bayesian Estimation 

\Vc suspcct fe\\ Insurers would agree that they are sufliclently “slmllar” to ‘any othrr 

group of Insurers to full\ accept the results of an analysls Ilhe that gl\en above The) 

might acccpt thc rcsults because they have no quantitatixc altcmatlve. and then 

Judgmrntally modlfy the results Slnce \re conslder it lAel! thatludgment wl1 enter the 

plcturc. ne constder a Bayesian approach to the problem 

Cowdcr a grid (c,.~,) of posslble Lalues of c and g Let {G, } be a set of observatlons 

needed IO calculate the IILellhood functlon for each pomt (c,.&) Let p;, be thr “prior“ 

probablllty of each pomt (c,.g,) 
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Then accordmg to Bayes’ Theorem, the posterior likehhood of each (c,,g,) will be 

proportlonal to’ 

As an Illustration, suppose that we choose a prior so that the pij’s are equally likely. For 

one simulated Ir<?} based on a single msurer’s esposure \re obtened the follo\\mg 

postcnor dlstnbutlon of (c,,gj), nhlch \ve show (part oT) graphically. 

Craph 6.1 

Poslcrior Likclihood lora Sin& lnsunx 
with a UnifoormPnorDistribution 

212 



As an esample, we construct a pnor dlstnbutlon so that 

P,, = flt(Q,c,.g,), 
3.Y 

(6.2) 

where { i;:.} comes from the (simulated here, but m practlce real) data of the 40 “peer 

group” insurers gwen above. We obtamed the follo\\ing posterior distributlon for the 

same msurer that we show graphically. 

Belo\\. UC xx111 shon how to use the posterior dlstributlon ZE input into the collectlve nsk 

model, as described m Simulation Algorithm HZ. 

Graph 6.2 

Posten’or Likclihood fora Sin& Inm-ernith a 
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7. Industry Driven of Correlation 

The Ilhehhood Equatlon 3 6 was denved under the assumptlon that the “driver” of the 

correlation. i e the random vanable a, was mdependent for each IndIvIduaI msurer Thls 

sectlon conslders the consequences of the random variable a being common to all 

msurers To this end. \\e replace Steps 1 and 2 of Slmulatlon Algorithm #2 with the 

more compllcated process 

Simulation Algorithm #3 

The Collective Risk Model with Parameter Uncertainty 

in the Claim Count Disttibutions 

Driven by Industry and Insurer Parameter Uncertaiuty 

I For each co~~arulance group I, select a: and a, as follons 

I 1. Select a> from a distributlon \\lth E[a>] = 1 and Var[a:] = 9,’ 9: IS called 

the Industy covanance generator for co\anance group i 

I 2 Select a, from a distributlon \\lth E[a,] = 1 and Var[a,] = g,. g, 1s called the 

lnsurer cownCance generator for cowiance group 1 

2 For line of Insurance h 111 covanance goup I, select n random number of clzums Khl 

from a dlstributlon \\lth mean aî .a, K,,, 

3. For each hne of Insurance h m covanance group 1. select random clalm amounts Zhll. 

fork = 1, Kh, Each Zhrl has a common dlstnbutton {Z,,} 

5 Set x., = &;, Xh, 

6 Set X=tX., 
I-I 
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We noi\ cnlcul3tc thc moments of the aggregate loss dlstnbutlon descrlbcd by Slmulallon 

Alg0nthn1 03 

(7 1) 

‘1‘0 c~~~lcula~e the \ wanccs and COI annnces analogous to S~mulat~on Algorlthm #2. \\e 

s~mply rc+x the \ anance g, m tlquatlons 2 3.2 4.2 6 and 2 7 \\lth the ehpresslon 

g, ‘2,; ‘2, g,’ 

Let k>’ bc a 1 ec~or of obscrwd cla~m counfs for thc “mdus~r) ” rn )‘ear J An examplc of 

such a tector bnsed on l.able 5.3 IS c,:,,, = (69. 09. 53, 20. 2s. 108. 6-k 45. j’ 

Slnularl! let h: be a \ector of cxpccred clalm COUII~S for thc”mdustn“ III year > 

Thc Ilhellhood funct~on of L,’ condrtlonal nn a ” IS ylen b! 

771~ assoclated lo;-llhcllhood functlon IS ylven b! 

(7 3) 

(7 4) 
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Gven 9” 2 0 deEne 

a” = I-@.a; =l.anda;\ =l+m, 

and (7.5) 

Pr{a~~=a~}=I/6,Pr{a”=a~}=2/3,andPr{aA=a;\}=1/6 

The uncondluonal log-llhehhood funcuon is then gven by: 

8. Manimum Likelihood Estimation Revisited 

Conslder the follomng t\vo situations 

1 g-r>Oandg.‘=O 

2 g = 0 and 8,’ = r > 0. 

From the msurer’s pomt of vie\v, me two situations are identlcal Its espected clarm 

counls are muluphed by a random number each year 

But from the polnt of vle\v of one \\ho IS uymg IO esumate the vanance of the random 

multipller. the srtuations are different In the lirst situatlon. a nen- a IS pmked for each 

msurer for each year In the second situalion’ a” is p~ked owz each year for all rnsurers. 

The esumator should use ihe log-hhelihood function in Equauon 4.6 In the second 

sltuatlon the esumator should use the log-lrkellhood function In Equation 7 6 

We dld 100 slmulations of our 40 insurers where the claim counts are generated b) 

Simulanon Ngonthm #3, \\lth c = 0 02, g = 0 and g* = 0.04. We hen estimated c and 

“g“ using maximum hkehhood on Equatron 4.6, wth the follo\\ing results 
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Table 8.1 
Properties OC MLE’s for c and g 

Dcrived from 100 Simulations of 40 Insurers’ Data 
with Industrywide Parameter Uncertainty 

True Value 0 oczoo 0 Ogo”0 
g:’ 

0.0400 
Average MLE 0 0215 0 0249 - 

Std. Dev of the MLE 0.0039 0.0158 - 

We nest chd 100 slmula~lons of our 40 insurers where the ckum coun% are generated by 

Simulation Algorlthm #3, with c = 0 02, CJ = 0 01 and gn = 0 03 We then estlmatcd c, g 

and g!’ using maximum likehhood on the “correct” Equation 7 6, with the follwlng 

results 

Table 8.2 
Properties of IMLE’s for c, g and g” 

Using Estimated Frequencies 
Derived from 100 Simulations of 40 Insurers’ Data 

with Industrywide Parameter Uncertainw,, 
C s 

True Value 0.0200 0 0100 0 &,o 
Ax erage MLE 00201 0 0114 0 0213 
Std. Dev. of the MLE 0.0023 0 0026 0 0090 

If you used the estimated g and g4 m equatlon 7 2 instead of the true value of g ‘and g”, 

you could signilicantly understate your capital requirements 

II may occur to one that the reason for thls do\\nward blas 1s dueto the fact that we use 

estunated frequencles. rather than true frequencles To test thls we repeated the 

slmulation usmg thc ‘tme” frequency rather than the estlmatcd frequency and obtened 

lhe followng results 

Table 8.3 
Properties of MLE’s for c, g and g” 

Using “True” Frequencies 
Derived from 100 Simulations of 40 Insu~-em’ Data 

with Industrywide Parameter Uncertainty 
5 

n 

True Value o.oc2oo 0 0: “0 0.0300 
Average MLE 0 0200 0 0104 0.0298 
Std. Dev. of the MLE 0.0023 0 0029 0.0033 
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Thts simulation indicates that the bras IS indeed caused by ustng estimated frequenctes in 

the MLE. Howeler, tn practice the “tme” mean is not kno\\n. 

9. Bayesian Estimation Revvisited 

Consider a gnd (eI .c,.g,.g;\) of posstble values of 2, c. g and g” Let {E;‘} be a set of 

obser\attons needed IO calculate the Ithelthood functton for each point(q+ .c,,g,.g’). 

Let p, be the “prtor” probabthty of each pomt()i~y,c,.g,.g~) 

Then accordmg to BaSes’ Theorem. the postertor lthelthood of each (p: ,c, .g, .g:) is 

propontonal to 

Let e;\ be a Lector of exposures for the set of msurers. .4. In bear y Let r,” be tector of 

clarm frequenctes Then each coordrnate of the e\pected clatm count xector ?;ì, IS equal 

to the product of the correspondmg coordmates of CI\ and T,’ Smce the esposures are 

hno\\n ,and the clatm frequenctes are unkno~~n, v.e should put a pnor dtstnbution on the 

gnd (i,'.c,,g,.g,\) 

Let 21 be the postenor probabtltty of cach pomt in the gnd (i,“.c,,g,,g;i) Then one can 

obtam esttmates of ?,‘.c,.g, and g> by the follo\\ang fommlas 

(9.2) 
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We then tested the x anatxlity of these eshmators on our simulated set of40 msurers. Thc 

gnd ~as constructed b! vae m g i;‘,c,.g, and & m the follo\\mg manner. 

I Each component of ro’ fas set equal lo 0 9X75. Each component of i> kxas set 

cqual lo 1 0125 The components for 1 1.2 and 3 mere equally spaced m between. 

2. cn \\as set cqual lo 0 0 I OO CJ 1ia.s set equal 10 0 0300 The components for IZ 1, 2 

and 3 itere equally spaced in betx\een 

3 s,, vas sct cqual 10 0 0020 g.> \!<2$ set equal lo 0 OI XI) lhc components for 1x1. 2 

‘and 3 \\ere equally spaced 111 bet\\een 

4 F i \\as set cqual lo 0 0200 3 i \\as sct equal lo 0 0400 ?hc components for i -1, 2 

and 3 x\erc cqually spnccd m bctneen 

In total. the gnd had 5’ 7 625 polnts We nssumed all pomts m the gnd Lxere equall) 

lik‘zl\ ) 

We mnde IOO slmulated estlmates wth the follo\v~ng results 

Table 8.4 
Proper-ties of Bayesian Estimates for c, g and g’ 

Using “True” Frequencies 
Derived from 100 Simulations of 40 Insu~ws’ Data 

with Industtywide Parameter Ilncertainty 
C s 6 

.\ 

Truc Value 0 0200 0 0 1 00 0 0300 

A\erage Est~matc 0.020 I 0.u ll)5 0 0303 

Std Dev of the Estimate 0.0021 0 002(1 0 ooî7 

Here \\e sec that one can obtaln stable and unlxased (111 the clâsstc statlwcal sense) by an 

approynate use of Bayes’ Theorem 
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9. Using Real Data 

Ths paper has taken a version of the collective rrsk model. in \vhlch the lines of 

msurance are correlakd and esplored some methods of eslimaling parameten of the 

claim count dlstrlbutlons The data used in these methods conwted of both exposures 

and clalm counts that span several years 

We esplored the use of mawmum hkelihood on a smgle msurer’s data to estlmate the 

parameters and concluded that the random variatlon of the eshmates \vere IOO large IO 

derl\ e a reliable estimate of the msurer’s requlred surplus. One can obtain more stable 

esttmates of the parameters by combmmg the data of se\ eral msurers. 

We dre\v [hese concluslons from experiments performed on slmulated “data.” 

We noi\ ralse some of the Issues that one mus1 address when estimating these parameters 

of ihe collect~~c rlsh model UIUI real data from several Insurers. 

1. Clalm Counl Developmenl 

When analy/mg scveral yxs of claim count data, one must take c‘are to dlstmgulsh 

the rnndom 1 analion from the systematlc ckum count development that occurs 

because of delays m reportmg clalms 

2 Insurer Class Dlfferences 

Dlnèrent Insurers can focus on dlfferent ckasses of busmess When analy/.mg Ihe data 

of se\ eral Insurers. one must take care to dlstmgulsh the random variation from íhe 

s>stemauc dllTcrcnces that occur because of the dlfferent cl‘asses of business that 

lnsurers wnte 

3 Insurer StraleLy Changes 

M’hrn anal! ,.tng Ihe data of several Insurers. one must take care IO note thai planned 

chnrlges III lnsurer slrategy that result In changes In clalm counts Thls can be 

dll‘licult becnuse Insurers usually keep thelr strategy changes lo themselles. 

\Ve arr: 111 ihe process of fíttmg this model IO the data of several insurers We are not get 

In a posltlon to sa! ho\\ \\e are addressmg these and other issues. Suffce it to say that 



w are uslng ourJudgment, and we anticipate that the ultimate users ofthis mformalion 

~\nll v,ant to Impose thelr onn judgment. The Bayesian methodology provides a 

frameivork for making theseJudgmentS 

In spite ofthe judgments that one must make, \ve do feel that parameter eslimatcs using 

the combined data of severa1 insurers provIdes a useful starllng pomt for msurers as thq 

go about doing thelr Qnamic Fmanc~al Analys~s. 
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