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ABSTRACT 
DFA makes possible a greater integration of asset management with underwrit- 

ing management. This paper looks at how investment risk and reinsurance can 

affect the overall risk to the company, and how the two can be managed simulta- 

neously. A significant underwriting variable is the risk of loss development, and 

models of the development risk are presented, with some methodology for de- 

terrnining which one is most appropriate given the data at hand. Term-structure 

models are key to asset risk modeling, and a test of these models is proposed. 
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IMPL ICAT IONS OF R E I N S U R A N C E  A N D  R E S E R V E S  ON RISK OF 

I N V E S T M E N T  A S S E T  A L L O C A T I O N  

ASSET-LIABILITY MANAGEMENT 
Property- liability insurers have traditionally managed investment and under- 

writing functions separately, except for some forays into duration matching and 

perhaps to set goals for their investment risk that recognize that they do have 

some underwriting exposure. Dynamic Financial Analysis (DFA), by jointly 

modeling asset and liability risks, provides a means to more closely integrate the 

management of investment and underwriting risk, and thereby directly manage 

the total risk of bottom line results. This paper will focus on modeling GAAP 

pre-tax surplus change, which includes the effect of unrealized gains and losses, 

but any income statement or balance sheet item could be modeled similarly. 

The principal risk elements to pre-tax surplus change are asset risk, reserve de- 

velopment, and current year underwriting results. These each have separate 

modules in the model described below, but some common economic elements, 

such as inflation and interest rates, feed all the modules. 

Looking at assets alone, higher yielding assets generally bear more risk of ad- 

verse deviation, with short-term treasury securities usually regarded as having 

the least risk and least expected return. However adding liabilities - even fixed 

liabilities - to this picture changes the risk profile. If liabilities are of medium 

term, then holding short-term assets could be of higher risk, as interest rates may 

decrease and generate less than enough investment income to cover the liabili- 

ties. Long-term investment also increases in risk in this case, as interest rates 

could go up, requiring liquidation of depressed assets to meet the liabilities. 

Long-term investments may still have higher expected returns than medium 

term, but the insurer with medium-term liabilities will be exposed to more risk 
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than the asset-only investor for using those instruments. On the other hand, me- 

dium-term assets could be carried at a greater reduction in risk than for the usual 

investor in this case. This is the rationale for duration matching. Uncertain li- 

abilities and payout timing complicates the matching process, and can render 

perfect matching impossible. Simulation of loss payment requirements against 

asset fluctuations can be used to estimate the risk of different investment strate- 

gies in this case. 

But the real world keeps intruding: if a company with medium or long-term li- 

abilities grows just with inflation, it tends to have positive cash flow. If positive 

cash flow were a certainty, assets would never have to be liquidated to pay li- 

abilities; the risk-return situation reverts back to the asset-only situation. Add to 

this accounting for bonds at amortized values and long-term investments sud- 

denly become low-risk high-return opportunities. In this paper bonds will be 

evaluated at market, which records more risk for long-term bonds, but the same 

approach could work with amortized costs - with different results expected. 

It is when cash flow is also risky that the DFA approach to asset/liability man- 

agement really shows its merits. Without the shield of reliable positive cash 

flows, the uncertainty about interest rates and loss payout requirements are back, 

complicated by the fact that cash flows will often but not always be positive. All 

of these elements can be simulated simultaneously to quantify their interactions. 

This would allow the measurement of the effect of different reinsurance strate- 

gies, through their impacts on cash flow, on the combined asset/liability risk. In- 

flation can affect both asset values, through the interest rates, as well as premium 

volume and loss payments, and so its impact is complex. Reserves may be infla- 

tion sensitive as well, which would add yet another impact on the surplus 

change. All of these effects can be captured using a DFA approach to asset- 

liability management. 
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MODELING ISSUES 

SCENARIOS AND PROBABILITY 

Prior to DFA modeling, risk was measured by scenario testing. A few scenarios 

were selected and the financial outcomes under those scenarios were computed.  

This enabled management  to have some confidence that their strategies would  

bear up under various sorts of adverse developments.  It did not, however,  allow 

for an assessment of the probability of achieving various earnings targets. With- 

out  knowing the probabilities of the various scenarios arising, management  

could have been sacrificing overall profitability to guard against some exceed- 

ingly rare eventualities. 

DFA can do more than merely increase the number  of scenarios tested. With 

good models of the underlying processes it can generate a set of scenarios that in 

some sense reflects the probability of occurrence of the various outcomes. There 

are of course issues of how well the model represents the processes being mod- 

eled - there is both art and science to modeling. The criterion to which a model  

should be judged is not its ability to generate a wide variety of scenarios, but 

rather its ability to generate scenarios according to their likelihood of occurrence. 

ASSET MODELS 

The asset model ing approach adopted here is to first generate a series of treasury 

yield curves using diffusion models. This is detailed in Appendix 1. Many other 

economic variables, such as the inflation rate and security prices, have histori- 

cally correlated to the current and past yield curves, so these variables can be 

modeled by regression and simulated from the regression models and the simu- 

lated yield curves. This builds in the correlations among these variables with ap- 

propriate levels of random fluctuation. 
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A portfolio of assets and liabilities is subject to risk from complex changes to the 

shape of the yield curve - not just simple upward and downward movements. 

Thus a yield curve model has to be able to generate curves of different shapes, 

and in accordance with the probability that they might arise. In Appendix I we 

introduce measures of yield curve shapes and compare some yield curve models 

and historical data as to the distribution of the shape of the yield curve condi- 

tional on the short term rate. It is shown there that some yield curve models, al- 

though they can generate yield curves of different shapes, tend to generate only 

very restricted shapes of yield curves for any given short-term rate. This is not 

consistent with historical data, and so those models could not be expected to 

produce scenarios in accord with occurrence probabilities. 

RESERVE DEVELOPMENT MODEI.~ 

Many different assumptions can be made about the processes that generate loss 

development. In Appendix 2 a classification scheme is outlined that groups re- 

serve development processes into 64 different classes. This is based on answering 

6 yes-no questions about the development process. Empirical methods of an- 

swering these questions based on triangulated data are also discussed. Once a 

process is identified that plausibly could have generated the loss triangle in 

question, this process can be used to simulate scenarios of future development. 

Doing this study has implications for loss reserving as well, as each process of 

generating loss emergence implies a reserving methodology. The implied meth- 

odology is essentially the one that provides the best estimates of the parameters 

of the process that is generating the development, and is explored in Appendix 2. 

In the examples below it is assumed that this study has been completed, and only 

two of these classes of processes are illustrated. The first starts by generating ul- 

timate losses, and then uses random draws around expected percentages of 

payment to generate the paid losses at each age. This is essentially the process 
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used by Stanard (1985) to testing development methods through loss simulation. 

It turns out that a parameterized form of the Bornheutter-Ferguson method is 

optimal for this process. 

The second process is similar, but the paid losses at each age are then adjusted 

up or down by the difference between actual and expected reserve inflation. In 

this case the paid losses in each year will depend on the inflation for the year, 

and the final ultimate losses will end up different from the initial ultimate origi- 

nally drawn. That sounds like a more realistic process for the generation of actual 

loss histories, but empirical tests of loss development do not always identify an 

effect of post-event inflation. If losses are sensitive to inflation after the loss date, 

the risks to holding a given set of assets will be different from what they would 

be otherwise. The optimal reserving method in this case involves estimating the 

impact of calendar-year inflation (i.e., diagonal trend) on the loss triangle. 

Mack (1994) showed that the chain ladder is optimal for the process that gener- 

ates each age's emerged loss as a factor times the cumulative emerged-to-date for 

the accident year, plus a random element. This process could be used to generate 

losses in a DFA model, but it is not illustrated here. 

UNDERWRITING RISK MODEL,S 

Models of current year underwriting risk can be intricate, but are usually 

straightforward. The approach here is to simulate large individual losses from 

models of frequency, severity, and parameter uncertainty and smaller losses in 

the aggregate from a single aggregate distribution for each line. Then the differ- 

ence between simulated and expected inflation is applied, followed by applica- 

tion of the reinsurance program. 
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SIMULATION ASSUMPTIONS 

COMMON ASSUMPTIONS 

A few simplifying assumpt ions  will be made  in all the s imulat ions in order  to 

h ighl ight  the essential e lements  being tested. These are not  intrinsic to the model,  

however.  First, it will be assumed that  all cash flows take place at  year-end or an  

infinitesimal t ime later at the beg inning  of the next year. Thus  p remiums  are all 

writ ten,  expenses are paid out, and  the remain ing  unea rned  p remiums  are in- 

vested at this instant.  A year  later the payments  to be made  for losses for tha t  

year  and  all previous  accident  years are paid out, any bonds  mature ,  coupon  

payments  are made,  etc. All losses are a s sumed  to pay out  over  a 10-year period 

wi th  an  average payout  lag of three years after policy issuance, bu t  the actual 

payout  pa t tern  may be stochastic. The following inves tment  strategies will be 

tested: shor t  t e rm - every th ing  is in one-year  treasuries; m e d i u m  te rm - all in 

three-year treasuries; long te rm - all in ten-year treasuries; and  stocks plus - 50% 

in stocks and  50% in ten-year treasuries. Surplus  is a s sumed  to be one-four th  of 

assets. 

COMPANY RISK FACTORS 

Several different hypothet ical  companies  will be s imula ted  to test how various 

unde rwr i t i ng  risks interact  wi th  the inves tment  scenarios above. The first will be 

a what- if  test of surplus  only - the reserves and  other  assets are ignored. The sec- 

ond  will assume the company  has  a fixed k n o w n  payout  pa t te rn  - i.e., no  reserve 

risk. The third will be a company  wi th  stochastic reserves - there is a dis t r ibut ion 

a round  each payout  - but  wi th  no  inflation risk - the payouts  have  a r a n d o m  

e lement  bu t  not  correlated wi th  inflation. Fourthly,  the payouts  will be assumed 

correlated with inflation. In this case the reserves will be adjusted at  year-end by 

the ratio of the actual to expected inflation factor. All these tests will be based on 

a re insurance p rogram with  a moderate ly  h igh retention. The final test will re- 

peat  the fourth  wi th  a more  conservat ive approach  to reinsurance.  
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A FEW DET"AII.~ 

For each set of company risk assumptions and each investment strategy, the dis- 

tribution of year-end pre-tax GAAP surplus is simulated. Comparisons are made 

of the mean, standard deviation, and 99 th, 90 th, 10 th and 1st percentile of each 

distribution. These percentiles correspond to the upper and lower 1-in-10 and 1- 

in-100 probability of exceeding levels. 

The strategies and risk profiles tested below are not completely realistic. They are 

intended to illustrate the capabiiities of DFA modeling in the asset-liability man- 

agement arena, and the interaction of that with reserving and reinsurance. Be- 

cause of this and for the sake of simplicity, the CIR (Cox, Ingersoll and Ross) 

model from Appendix I is used for the examples, but with different parameters. 

The initial short-term interest rate r is assumed to be 0.05, and its change is gen- 

erated by the following process: 

dr = 0.2(0.06 - r)dt + 0.075rl/2dz. 

The CPI and Wilshire 5000 stock index are simulated as measures of inflation 

and stock market performance. These are generated by regression on the yield 

curve and lags of the yield curve. The regressions were done on quarterly data, 

so for notational purposes the time periods will be expressed as quarters. Nota- 

tion such as 3L40:12 will denote the third lag of the difference between the 40 

quarter and 12 quarter interest rates, i.e., the 10 year rate less the 3 year rate seen 

9 months ago. Without the colon 0L40 isjust the 10 year rate for the current 

quarter. 

The inflation variable estimated here, denoted qccpi, is the ratio of the CPI for a 

quarter to that for the previous quarter. The variables used in the fit along with 

indications of their significance are shown in the table below. The data used is 
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from the fourth quarter of 1959 to first quarter 1997, as this was available from 

pointers within the CAS website. 

C h a n g e  in  CPI  

Variable 

l:4Lqccpi 

0L40:4 

2L40:20 

3L2:1 

Estimate T-statistic Significance Level 

0.9994 1649.4 <.01% 

-0~2668 -5.3349 < .01% 

0.8486 4.6411 <.01% 

0.7182 3.4663 .07% 

The most important indicator of inflation is recent inflation. The variable used to 

represent this, denoted l:4Lqccpi, is the average of qccpi for the past four quar- 

ters. The coincident variable, 0L40:4 has a negative coefficient. This may be due 

to inflation influencing current interest rates, but with a greater impact on short 

term than long term rates, thus flattening the yield curve. At lag 2 quarters, the 

coefficient for 2L40:20 is positive and at lag 3 quarters that for 3L2:1 is positive. 

These indicate a general tendency for a steeper yield curve to anticipate future 

inflation. The r-squared, adjusted for degrees of freedom, is 65%. The standard 

error of the estimate is 0.0051. Thus the typical predicted quarterly change is ac- 

curate to about half a percentage point. The standard error is the standard devia- 

tion of a residual normally distribution around the predicted point, which can be 

used to draw the scenario actually simulated. The actual vs. fit is graphed in Ap- 

pendix 3. The series can be seen to be fairly noisy, but the model does pick up the 

general movements over time. The residuals are graphed on a normal scale. 

Normality looks to be reasonably consistent with the observed residuals. 

The stock market variable modeled, qcw5, is the ratio of the Wilshire 5000 index 

W5 at the end of a quarter to that at the previous quarter end. In this case the CPI 

percentage change variable qccpi was included in the regression as an explana- 
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tory variable. This allows creation of scenarios that have simulated values of W5 

that are probabilistically consistent with the CPI value for the scenario. 

The fitted equation for quarter ending data 1971 through first quarter 1997 is 

shown in the table below. In this regression only two variables were used, but 

they are composite series. The first, denoted 0-4Lqccpi, is the increase in qccpi 

over the last year, i.e., the current rate less the rate a year earlier. This variable 

has a negative coefficient, indicating that an increase in inflation is bad for equity 

returns. The other variable is denoted qcrelsprd. It represents the previous quar- 

ter's increase in the long-term spread less this quarter's increase in the short-term 

spread. Here the long-term spread is the difference between 10-year and 5-year 

rates, and the short-term spread is the difference between 6-month and 3-month 

rates. The increases noted are the quarter-to-quarter arithmetic increases in these 

spreads. 

The coefficient on qcrelsprd is positive. This variable is positive if the increase in 

the short-term spread is less than the previous increase in the long-term spread, 

or ff its decrease is greater. Either could suggest moderating inflation and interest 

rates, and thus be positive for equity returns. 

Variable 

04Lqccpi 

qcrelsprd 

constant 

Quarterly Change in Wilshire 5000 

Estimate T-statistic Significance Level 

-2.7113 -3.1936 0.2% 

11.869 4.5273 <.01% 

1.02316 145.311 <.01% 

The adjusted-r-squared is only 24% for this regression, indicating that the fit is 

not particularly good. The residual standard deviation is .0721, which allows a 

fairly wide deviation from the model. The fit is graphed in Appendix 3. 
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RESULTS 

The table below shows the mean surplus, the ratio of mean to standard devia- 

tion, and several percentiles of the surplus for the case in which there are no 

losses, just investment of surplus. 

Surplus Only  

M e a n  Mean/SD 1% 10% 90°/o 

Short  

M e d i u m  

Long 

Stocks+ 

99% 

3048 - 3048 3048 3048 3049 

3053 45.3 2867 2967 3125 3227 

3071 19.5 2706 2861 3284 3407 

3136 13.1 2577 2829 3422 3760 

The ratio of mean to standard deviation is chosen as a risk measure for which 

higher is better, as is the case with all the other figures in the table. This table is 

consistent with the idea that riskier investments have higher expected return, but 

could have more adverse developments  as well. The one-year bonds have no risk 

in this case, as they are held a year and then mature. 

The next table shows the results of adding fixed liabilities to the mix. 

Short  

M e d i u m  

Long 

S t o c k s +  

F i x e d  Liabilities 

M e a n  Mean/SD 1% 10% 90% 99% 

3419 3419 3419 3419 3419 

3434 14.8 2798 3104 3705 3953 

3492 7.3 2031 2848 4094 4409 

3581 4.6 1951 2656 4630 5282 

Here the mean surplus is higher, due to the expected profits from the insurance 

business. However ,  the risk is considerably greater, due to the larger investment 

portfolio compared to the same surplus. This works at both the low and high end 

of the probability distribution. 
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Adding variability to the liabilities further increases the risk, as shown below. 

Here the change in the extreme percentiles is greater for the short-term invest- 

ments, showing that the increase in risk over fixed liabilities is greater when in- 

vesting short. 

Short 

M e d i u m  

Long 

Stocks+ 

Variable Liabilities -No Inflation on Reserves  

Mean Mean/SD 1% 10% 90% 99% 

3422 21.0 3085 3220 3626 3821 

3443 11.4 2600 3024 3786 4096 

3470 6.8 2182 2801 4117 4784 

3540 4.1 1762 2287 4661 6120 

If reserves are subject to post-event inflation, risk increases more: 

Short 

Medium 

Long 

Stocks+ 

With  Post-Event Inflation 

Mean Mean/SD 1% 10% 90% 99% 

3429 20.2 3021 3205 3635 3859 

3438 10.6 2589 2972 3816 4289 

3538 6.3 1899 2848 4242 4879 

3569 3.9 1358 2294 4613 6197 

Stocks may pose too much of a risk at the 1% level in this case, where they may 

have been an acceptable risk without post-event inflation. This illustrates the 

value of understanding the reserve-generating process when setting investment 

strategy. 

Finally, buying more reinsurance reduces the expected surplus but also the vari- 

ability of surplus. 
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Shod 

Medium 

Long 

Stocks+ 

No Post-Event Inflation with More Reinsurance 

Mean Mean/SD 1% 10% 90% 99% 

3227 55.3 3271 3351 3500 3618 

3255 14.9 2884 3156 3749 3951 

3345 6.9 2197 2865 4202 4630 

3473 4.4 1773 2564 4909 5642 

For this company, buying more reinsurance with long-term investments has 

lower expected return and more downside risk than buying less reinsurance 

with medium term investments. This strategy would give up considerable up- 

side potential, however. 

CONCLUSION 
The risks to the various investment strategies that an insurer may follow will 

change depending on underwriting risk and reserve development risk. To quan- 

tify this risk the process generating reserve development needs to be identified. 

Once that is done, the trade-offs between different investment strategies and dif- 

ferent underwriting strategies - including alternative reinsurance programs - can 

be quantified by dynamic financial analysis. 
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A P P E N D I X  1 - -  S I M U L A T I N G  A S S E T  P E R F O R M A N C E  

Most asset classes and many economic series have been found to correlate to the 

treasury yield curve. Realistic simulation of the yield curve is an involved un- 

dertaking, and a subject of ongoing research among academics and all sorts of 

financial practitioners. If any researchers have gotten this absolutely right, 

they're keeping it a secret, and probably getting wealthy. Some of the progress in 

this area is discussed below, along with some proposed tests of yield curve 

simulation methods for DFA modeling. 

Once the yield curves have been generated, the other assets and economic values 

can be simulated by regressions against the yield curve and lags of the yield 

curve ( and perhaps against the other economic variables already simulated). 

In each case, a random draw from the error term of the distribution should be 

added to the regression estimate in order to keep the correlations from being per- 

fect (unless they happen to be, which is rare). 

A good deal of the work in yield-curve simulation is done for the purpose of 

pricing or evaluating the pricing of interest-rate options. For this purpose it is 

important that the model captures the current yield curve and its short-term dy- 

namics as precisely as possible. This would be important to insurers who are ac- 

tively trading bond options. However, the usual emphasis in DFA modeling is a 

little different. The risks inherent in different investment strategies over a longer 

time frame are more of a concern. A wide variety of yield curves should be pro- 

duced to test this, but  the model producing the widest variety is not necessarily 

the most useful - the different yield curves should be produced in relative pro- 

portion to their probability of occurring. It would be nice if the short-term fore- 

casts were very close to the current curve, but this is less important for DFA than 

it is for option trading. 
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Historical data on the distribution of yield curves can be used to test the reason- 

ability of the distribution of curves being produced by any given model. How- 

ever, it is not reasonable to expect that the probability of yield curves in a small 

given range showing up in the next two or three years is the same as their his- 

torical appearance. Some recognition needs to be given to the current situation 

and the speed at which changes in the curve tend to occur. Care also needs to be 

exercised in the selection of the historical period to which comparisons are to be 

made. The years 1979-81 exhibited dramatic changes in the yield curve, and the 

analyst needs to consider how prominent  these years will be in the history se- 

lected. It seems reasonable that using a period beginning in the 1950's will give 

this unusual phase due recognition without  over-emphasizing it. 

The following are proposed as general criteria that a model  of the yield curve 

should meet: 

• It should closely approximate the current yield curve. 

• It should produce patterns of changes in the short-term rate that match those 

produced historically. 

• Over  longer simulations, the ultimate distributions of yield curve shapes it 

produces, given any short-term rate, should match historical results. 

This last criterion looks at the contingent distributions of yield curve shapes 

given the short-term rate. Thus it allows for the possibility that the distribution of 

short-term rates simulated even after several years will not match the diversity of 

historical rates. But it does require that for. any given short-term rate the distri- 

bution of yield curves should be as varied as seen historically for that short-term 

rate. It could be argued that somewhat  less variability would  be appropriate, and 

this may be so. How much less would be a matter of judgment, but too little 
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variation in this conditional distribution would  seem ill-advised when  generat- 

ing scenarios to test investment strategies against. 

To measure the distribution of yield curve shapes, some shape descriptors are 

needed. The ones used here are based on differences of interest rates of different 

maturities. The first measures are just the successive differences in yield rates for 

3-month, 1-year, 3-year, and 10-year instruments. Then the differences in these 

differences are taken, and finally the differences of those second differences. The 

first differences quantify the steepness of different parts of the yield curve. These 

would  be zero for a fiat curve. The second differences quantify the rate of change 

in the steepness as you move up the curve. These would  be zero for a linearly 

rising curve. The third difference would be zero for a quadratic curve, and so 

quantifies the degree to which the curve is not quadratic. 

These shape measures will be reviewed historically as a function of the 3-month 

rate. The patterns for these six measures are graphed below along with the re- 

gression lines against the 3-month rate. It is interesting to note that the 1-year / 

3-month yield spread appears to be independent  of the 3-month rate, but the 

longer-term spreads appear to decline slightly with higher 3-month rates. At 

least in the US economy, when the short-term rates are high, the long-term rates 

tend to show less response, perhaps because investors expect the short-term rates 

to come down, and so the yield curve flattens out or even shows reversals (i.e., 

short-term rates higher than long-term). It might be argued that the slopes of the 

regression lines are small enough compared to the noise that they should not be 

considered significant. It turns out, however,  that in testing models against this 

data the non-significance of the slope is a most significant issue - most models 

tend to produce more steeply falling slopes than the data shows. 
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YIELD CURVE MODELS 

Typically the short-term interest rate, denoted as r, is modeled directly, and 

longer-term rates are inferred from the implied behavior of r, along with market 

considerations. The model ing of r is usually done as acont inuously  fluctuating 

diffusion process. This is based on Brownian motion. A continuously moving 

process is hard to track, and processes with random elements do not follow a 

simple formula. These processes are usually described by the probability distri- 

bution for their outcomes at any point in time. A Brownian motion has a simple 

definition for the probabilities of outcomes: the change from the current position 

between time zero and time t is normally distributed with mean zero and vari- 

ance g2t for some a. If r is the short-term interest rate and it follows such a 

Brownian motion, it is customary to express the instantaneous change in r by dr  

= odz. Here z represents a Brownian motion with o=1. If r also has a trend of bt 

during time t, this could be expressed as dr  = bdt + odz. 

Cox, Ingersoll and Ross (1985) provided a model  of the motion of the short-term 

rate that has become widely studied. In the CIR model  r follows the following 

process: 

dr = a(b - r)dt + srl/2dz. 

Here b is the level of mean reversion. If r is above b, then the trend component  is 

negative, and if r is below b it is positive. Thus the trend is always towards b. 

The speed of mean reversion is expressed by a, which is sometimes called the 

half-life of the reversion. Note that the volatility depends on r itself, so higher 

short-term rates would be associated with higher volatility. The period 1979-81 

had high rates and high volatility, and studies that emphasize this period have 
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found  that  the power  of 1/2 on  r is too low. It appears  to be about  r ight  in longer 

s tudies  however .  

Nonetheless ,  the CIR model  fails to capture  other  e lements  of the m o v e m e n t  of 

shor t - term rates. There have been periods of h igh  volatility wi th  low interest  

rates, and  the rates somet imes  seem to gravi tate  towards  a t emporary  mean  for a 

while, then shift  and  go towards  some other. One way to account  for these fea- 

tures is to let the volatility parameter  s and  the revers ion mean  b bo th  be sto- 

chastic themselves.  

Andersen  and  Lund (Working Paper  No. 214, Nor thwes te rn  Universi ty  Depart-  

men t  of Finance) give one such model:  

dr = a(b-  r)dt + srkdzl k>0 

din s 2 = c ( p  - In s2)dt + vdz2 

db = j(q - b)dt + wbl/2dz3 

Here  there are three s t andard  Brownian  mot ion  processes, zl, z2, and  z3. The rate 

r moves  subject to different processes at  different times. It a lways follows a 

mean- rever t ing  process, wi th  mean  b. But tha t  mean  itself changes  over  time, 

fol lowing a mean- rever t ing  process defined by k, q, and  w. The volatili ty pa- 

rameter  s 2 also varies over  t ime via a m e a n  rever t ing geometric  Brownian mot ion  

process (i.e., Brownian  mot ion  on the log). In total there are eight  parameters:  a, 

c, j, k, p, q, v, and  w and  three vary ing  factors r, b, and  s. 

Models  of the shor t - te rm rate can lead to models  of the whole  yield curve. This is 

done  by model ing  the prices of zero-coupon bonds  wi th  different  matur i t ies  all 

paying  $1. If P(T) is the cur ren t  price of such a bond  for matur i ty  T, the implied 

cont inuous ly  c o m p o u n d i n g  interest  rate can be s h o w n  to be - ln[P(T)] /T.  P(T) it- 

self is calculated as the risk adjusted d iscounted  expected value  of $1. Here  "dis- 
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counted" means continuously discounted by the evolving interest rate r, and 

"expected value" means that the mean discount is calculated over all possible 

paths for r. This can be expressed as: 

P(T) = E'[exp(-,frtdt)] 

Where rt is the interest rate at time t, the integral is over the time period 0 to T, 

and E ° is the risk-adjusted expected value of the results of all such discounting 

processes. 

If E were not risk adjusted, P(T) could be estimated by many instances of simu- 

lating the r process to time T over small increments and then discounting back 

over each increment. The risk-adjusted expected value is obtained by using a 

risk-adjusted process to simulate the r's. This process is like the original process 

except that it tends to produce higher r 's over time. These higher rates provide a 

reward for bearing the longer-term interest rate risk. Increasing the trend portion 

of the diffusion process produces the adjusted process. In the CIR model  it is in- 

creased by Kr, where K is called "the market price of risk." Andersen and Lund 

add Krs, and also add a similar risk element to the b diffusion. 

However ,  in the case of the CIR model  a closed form solution exists which sim- 

plifies the calculation. The yield rate for a zero coupon bond of maturity T is 

given by Y(T) = A(T) + rB(T) where: 

A(T) = -2(ab/sZT)lnC(T) - 2aby/s  2 

B(T) = [1 - C(T)I/yT 

C(T) = (1 + xyeV/X - xy) -1 

x = [ ( a  - ~ . )2 + 2s2]-1/2 

y = (a - k, + l /x)/2.  

Note that neither A nor B is a function of r, so Y is a linear function of r (but not 

of T of course). Thus for the CIR model, all the yield curve shape measures de- 
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fined above are l inear functions of r, and  as the th ree -month  rate is as well, the ' 

shape measures  are strictly l inear in the th ree -month  rate. This is in contras t  to 

the historical data, which  shows a dispers ion of the shape  measures  a round  a 

perhaps  l inear relationship. The g raph  below as an example shows the historical 

and  CIR implied I year less 3 mon th  spread as a funct ion of the 3-month  rate, 

a long wi th  the historical t rend line. 

The parameters  used here for the CIR model, from Chan  etal. (1992) are: a=.2339; 

b=.0808; s=.0854, wi th  K set to .03. Different parameter  values could possibly get 

the slope closer to that  of the historical data, but  the dispers ion a round  the line 

cannot  be achieved wi th  this model. Exper imentat ion wi th  different parameter  

values suggests  that  even get t ing the slopes to match historical for all three of the 

first-difference measures  may be difficult as well. 

Historical vs CIR (Fixed Lambda) 
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Another  potential  problem wi th  the CIR model  is that  the very long-term rates 

do not  vary wi th  r at  all, but  it 's not  clear how long the rates have to be for this. 
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Historical vs A&L (Fixed Lambda) 
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The Andersen-Lund model does provide more dispersion around the trend line, 

and also has about the right slope for the 3-month to 1-year spread, as the graph 

above shows. It does not do as well with the 3-year to 10-year spread in either 

Historical vs A&L (Fixed Lambda) 
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slope or dispersion, as shown here. 
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One approach that seems to give a degree of improvement  is to let the market  

price of risk vary as well, through its own stochastic process. This would  allow 

the same short-rate process to generate different yield curves at different times 

due to different market situations. This approach is capable of fixing the slope 

and dispersion problem for the long spread, as shown below. 
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Allowing stochastic market price of risk may improve the CIR model 's  perform- 

ance on these tests as well, but it's not clear how to do this and still maintain a 

closed-form yield curve, which is the main advantage of CIR. 

The table below summarizes some of the comparisons of model  and historical 

results discussed above. For each of the models and each of the yield spreads, the 

linear relationship between the yield spread and the three-month rate is summa- 

rized by three statistics: the slope of the regression line of the spread on the 

three-month rate, the value on that line for r = .06, and the standard deviation of 
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the points around the line. The value at r = .06 was compared instead of the in- 

tercept of the line to show how the model matched historical values for a typical 

interest rate. 

The values were based on simulations of rates about three years beyond the ini- 

tial values. Thus perhaps less variability of the residuals might be justifiable than 

in the historical data, which were quarterly values from 1959 through 1997. The 

whole variety of yield curve shapes from this nearly forty-year period may not 

be likely in just three years. A longer simulation period would thus give a better 

test of these models, and a somewhat lower residual standard deviation than 

historical may be acceptable for the test actually performed. 

1 yr - 3 mo Historical  CIR AL Fixed AL Variable  

Slope 1.17% -7.31% 2.49% 1.66% 

Predicted @ 6% 0.48% 0.23% 0.44% 0.43% 

Std Dev of Residuals 0.35% 0.00% 0.25% 0.43% 

3 y r - l y r  

S lope  -8.41% -16 .58% -5.68% -2.57% 

Predicted @ 6% 0.42% 0.49% 0.39% 0.40% 

Std Dev of Residuals 0.52% 0.00% 0.12% 0.36% 

10 yr - 3 yr 

Slope -8.17% -34.23% -29.22% -9.86% 

Predicted @ 6% 0.35% 0.89% 0.29% 0.32% 

Std Dev of Res idua l s  0.48% 0.00% 0.12% 0.50% 

All the models tested had a lower residual standard deviation for the 3-year to 1- 

year spread than seen historically, but not unreasonably so for the variable price 
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of risk model. The slopes of the 10-year to 3-year spread were allsteeper than 

historical, but again the variable model was best. 

This methodology gives an indication of a method of testing interest rate gen- 

erators. There are quite a few of these in the finance literature, so none of the 

generators tested above can be considered optimal. In addition some refinement 

of the testing methodology may be able to tighten the conclusions discussed 

above. 
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A P P E N D I X  2 - S I M U L A T I N G  L O S S  D E V E L O P M E N T  

The principal task in simulating a company's loss development is identifying the 

stochastic process that generates that development. Testing different processes 

against the historical development data is a way to approach this task. The sec- 

ond task is to model how the company's carried reserves respond to the loss 

emergence scenarios generated. One assumption for this may be that the com- 

pany knows the process that produces its development, and uses a reserving 

methodology appropriate for that process. The simulation would proceed by 

generating loss emergence scenarios stochastically and then applying the se- 

lected reserving method to produce the carried reserves for each scenario. On the 

other hand, if the company has a fixed reserve methodology that it is going to 

use no matter what, then that methodology can be used to produce the carried 

reserves from the simulated emergence. 

For this discussion, "emergence" could either mean case emergence or paid 

emergence, or both. The main concern here is simulating the emerging losses by 

period. This may or may not involve simulating the ultimate losses. For instance, 

one way to generate the losses to emerge in a period is to multiply simulated ul- 

timate losses times a factor drawn from a percentage emerged distribution. This 

is appropriate when the process producing the losses for each period works by 

taking a randomized percent of ultimate losses. This method might involve some 

quite complicated methods of simulating ultimates, but all those that take period 

emergence as a percentage of ultimate will be considered to be using the same 

type of emergence pattern. Several other emergence patterns will be considered 

below, and the reserving methods appropriate for each will be discussed. Then 

methods for identifying the emergence patterns from the data triangles will be 

explored. 
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TYPES OF EMERGENCE PAT'FERNS 

Six characteristics of emergence patterns will be considered here. Each will be 

treated as a binary choice, thus producing 64 types of emergence patterns. How- 

ever there will be sub-categories within the 64, as not all of the choices are actu- 

ally binary. The six basic choices for defining loss emergence processes are: 

Do the losses that emerge in a period depend on the losses already emerged? 

Mack has shown that the chain ladder method assumes an emergence pattern in 

which the emerged loss for a period is a constant factor times the previous 

emerged, plus a random disturbance. Other methods, however, might apply 

factors only to ultimate losses, and then add a random disturbance. The latter is 

the emergence pattern assumed by the Bornheutter~Ferguson (BF) method, for 

example. 

Is all loss emergence proportional? Both the chain ladder and BF methods use 

factors to predict emergence, and so are based on processes where emergence is 

proportional to something - either ultimate losses in the BF case or previously 

emerged in the chain ladder. However, the expected loss emergence for a period 

could be constant - not proportional to anything. Or it could be a factor times 

something plus a constant. If this is the emergence pattern used, then the re- 

serving methodology should also incorporate additive elements. 

Is emergence independent of calendar year events? Losses to emerge in a pe- 

riod may depend on the inflation rate for the period. This is an example of a cal- 

endar year or diagonal effect. Another example is strong or weak development 

due to a change in claim handling methods. Thus this is not a purely binary 

question - if there are diagonal effects there will be sub-choices relating to what 

type of effect is included. The Taylor separation method is an example of a de- 

velopment method that recognizes calendar year inflation. In many cases of di- 

agonal effects, the ultimate losses will not be determined until all the develop- 

ment perio.ds have been simulated. 
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Are the parameters stable? For instance a parameter might be a loss develop- 

ment factor. A stable factor could lead to variable losses due to randomness of 

the development pattern, but the factor itself would remain constant. The alter- 

native is that the factor changes over time. There are sub-cases of this, depending 

on how they change. 

Are the disturbance terms generated from a normal distribution? The typical 

alternative is lognormal, but the possibilities are endless. Clearly the loss devel- 

opment method will need to respond to this choice. 

Are the disturbance terms homoskedastic? Some regression methods of devel- 

opment assume that the random disturbances all have the same variance, at least 

by development age. Link ratios are often calculated as the ratio of losses at age 

j+l divided by losses at age j, which assumes that the variance of the disturbance 

term is proportional to the mean loss emerged. Another alternative is for the 

standard deviation to be proportional to the mean. The variance assumption 

used to generate the emerging losses can be employed in the loss reserving proc- 

ess as well. 

Notation 

Losses for accident year w evaluated at the end of that year will be denoted as 

being as of age 0, and the first accident year in the triangle is year 0. The notation 

below will be used to specify the models. 

Cw,d: cumulative loss from accident year w as of age d 

cw,~: ultimate loss from accident year w 

qw,d: incremental loss for accident year w to emerge in period d 

fd: factor used in emergence for age d 

hw : factor (dollar amount) used in emergence for year w 

gw÷a: factor used in emergence for calendar year w+d 

ad: additive term used in emergence for age d 
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QUESTION I 

The stochastic processes specified by answering the six questions above can be 

numbered in binary by considering yes=l and no=O. Then process 111111 (all an- 

swers yes) can be specified as follows: 

qw,d = cw,dqfd + ew,a (1) 

where ew,a is normally distributed with mean zero. Here fa is a development  

factor applied to the cumulative losses simulated at age d-1. A starting value for 

the accident year is needed which could be called Cw,q. For each d it might be rea- 

sonable to assume that ew, a has a different variance. Note that for this process, 

ultimate losses are generated only as the sum of the separately generated 

emerged losses for each age. 

Mack has shown that for process 111111 the chain ladder is the optimal reserve 

estimation method. The factors fd would  be estimated by a no-constant linear re- 

gression. In process 111110 (heteroskedastic) the chain ladder would also be op- 

timal, but the method of estimating the factors would be different. Essentially 

these would use weighted least squares for the estimation, where the weights are 

inversely proportional to the variance of ew,d. If the variances are proportional to 

Cw,a.1, the resulting factor is the ratio of the sum of losses from the two relevant 

columns of the development  triangle. 

In all the processes 1111xx Mack showed that some form of the chain ladder is 

the best linear estimate, but when the disturbance term is not normal, linear es- 

timation is not necessarily optimal. 

Processes of type 0111xx do not generate emerged losses from those previously 

emerged. A simple example of this type of process is: 
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q~.d = hwfd + ew,d (2) 

Here hw can be interpreted as the ultimate losses for year w, with the factors fd 

summing to unity. For this process, reserving would  require estimation of the f's 

and h's. I call this method of reserving the parameterized BF, as Bornheutter and 

Ferguson estimated emergence as a percentage of expected ultimate. The method 

of estimating the parameters would  depend on the distribution of the distur- 

bance term ew,d. If it is normal and homoskedastic, a regression method can be 

used iteratively by fixing the f's and regressing for the h's, then taking those h's 

to find the best f's, etc. until both f's and h's converge. If heteroskedastic, 

weighted regressions would  be needed. If a lognormal disturbance is indicated, 

the parameters could be estimated in logs, which is a linear model  in the logs. 

QUESTION 2 

Addit ive terms can be added to either of the above processes. Thus an example 

of a 0011xx process would  be: 

qw,d = ad + hwfd + ew,d (3) 

If the f's are zero, this would be a purely additive model. A test for additive ef- 

fects can be made by adding them to the estimation and seeing if significantly 

better fits result. 

QUESTION 3 

Diagonal effects can be added similarly. A 0001xx model  might  be: 

qw,d = ad + hwfdgw+d + ew,d (4) 
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Again this can be tested by goodness of fit. There may be too many parameters 

here. It will usually be possible to reasonably simulate losses without  using so 

many distinct parameters. Specifying relationships among the parameters can 

lead to reduced parameter versions of these processes. For instance, some of the 

parameters might  be set equal, such as hw=h for all w. Note that the 0111xx proc- 

ess qw,d = hfa + ew,d is the same as the O011xx process qw,d = ad + ew,a, as ad can be 

set to hfd. The resulting reserve estimation method is an addit ive version of the 

chain ladder, and is sometimes called the Cape Cod method. 

Another way to reduce the number of parameters is to set up trend relationships. 

For example, constant calendar year inflation can be specified by setting 

gw÷a=(l+j) w÷d. Similar trend relationships can be specified among the h's and f's. 

If that is too much parameter reduction to adequately model  a given data trian- 

gle, a trend can be established for a few periods and then some other trend can 

be used in other periods. 

QUESTION 4 

Rather than trending, the parameters in the loss emergence models could evolve 

according to some more general stochastic process. This could be a smooth proc- 

ess or one with jumps. The state-space model is often used to describe parameter 

variability. This model assumes that observations fluctuate around an expected 

value that itself changes over time as its parameters evolve. The degree of ran- 

dom fluctuation is measured by the variance of the observations around the 

mean, and the movement  of the parameters is quantified by their variances over 

time. The interplay of these two variances determines the weights to apply, as in 

credibility theory. 

To be more concrete, a formal definition of the model follows where the pa- 

rameter is the 2 na to 3 'u development  factor. Let: 
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[~i=2nd to 3rd factor for ith accident year 

yi=3rd report losses for ith accident year 

xi=2nd report losses for ith accident year 

The model  is then: 

yi=xil~i+8i. (5) 

The error term ci is assumed to have mean 0 and variance Gi 2, 

13im~i-i +8i. (6) 

The fluctuation 8i is assumed to have mean 0 and variance vi 2, and to be inde- 

pendent  of the e's. 

In this general case the variances could change with each period i. Usually some 

simplification is applied, such as constant variances over time, or constant with 

occasional jumps in the parameter - i.e., occasional large vi's. 

If this model  is adopted for simulating loss emergence, the estimation of the fac- 

tors from the data can be done using the Kalman filter. 

QUESTIONS 5 AND 6 

The error structure can be studied and usually reasonably understood from the 

data triangles. The loss estimation method associated with a given error structure 

will be assumed to be maximum likelihood estimation from that structure. Thus 

for normal distributions this is weighted least squares, where the weights are the 

inverses of the variances. For lognormal this is the same, but.in logs. 

IDENTIFYING EMERGENCE PATTERNS 

Given a data triangle, what  is the process that is generating it? This is useful to 

know for loss reserving purposes, as then reserve estimation is reduced to esti- 
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marion of the parameters of the generating process. It is even more critical for 

simulation of company results, as the whole process is needed for simulation 

purposes. 

Identifying emergence patterns can be approached by fitting different ones to the 

data and then testing the significance of the parameters and the goodness of fit. 

As more parameters often appear to give a better fit, but reduce predictive value, 

a method of penalizing over-parameterization is needed when comparing com- 

peting models. The method proposed here is to compare models based on sum of 

squared residuals divided by the square of the degrees of freedom, i.e., divided 

by the square of observations less parameters. 

This measure gives impetus to trying to reduce the number of parameters in a 

given model, e.g., by setting some parameters the same or by identifying a trend 

in the parameters. This seems to be a legitimate exercise in the effort of identify- 

ing emergence patterns, as there are likely to be some regularities in the pattern, 

and simplifying the model is a way to uncover them. 

Fitting the above models is a straightforward exercise, but reducing the number  

of parameters may be more of an art than a science. Two approaches may make 

sense: top down, where the full model is fit and then regularities among the pa- 

rameters sought; and bottom up, where the most simplified version is estimated, 

and then parameters added to compensate for areas of poor fit. 

To illustrate this approach, the data triangle of reinsurance loss data first intro- 

duced by Thomas Mack will be the basis of model estimation. 
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Q U E S T I O N S  I R ¢  2 - -  F A C T O R S  A N D  C O N S T A N T  T E R M S  

Table I shows incremental incurred losses by age for some excess casualty rein- 

surance. As an initial step, the statistical significance of link ratios and additive 

constants was tested by regressing incremental losses against the previous cu- 

mulative losses. In the regression the constant is denoted by a and the factor by 

b. This provides a test of question I - dependence of emergence on previous 

emerged, and also one of question 2 - proportional emergence. Here they are 

being tested by looking at whether or not the factors and the constants are sig- 

nificantly different from zero, rather than by any goodness-of-fit measure. 

T a b l e  I - I n c r e m e n t a l  I n c u r r e d  Losses 

0 I 2 3 4 5 6 7 8 9 

5012 3257 2638 898 1734 2642 1828 599 54 172 

106 4179 I I I I  5270 3 1 1 6  1817 -103 673 535 

3410 5582 4881 2268 2594 3479 649 603 

5655 5900 4211 5500 2159 2658 984 

1092 8473 6271 6333 3786 225 

1513 4932 5257 1233 2917 

557 3463 6926 1368 

1351 5596 6165 

3133 2262 

2063 

T a b l e  2 - Stat ist ical  S igni f icance o f  L i n k  Rat ios  and  Constan ts  

O t o l  Jl t o 2  2 t o 3  3 t o 4  4 t o 5  5 t o 6  6 t o 7  7 t o 8  

"a' 5113 4311 1687 2061 4064 620 777 3724 

Std a 1066 2440 13543 1165 2242 2301 145 0 

"b' -0.109 0.049 i0.131 0.041 -0.100 0.011 -0.008 -0.197 

stdb 0.349 0.309 J0.283 0.071 0.114 0.112 0.008 0 

Table 2 shows the estimated parameters and their standard deviations. As can be 

seen, the constants are usually statistically significant (parameter nearly double 
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its standard deviation, or more), but the factors never are. The lack of signifi- 

cance of the factors shows that the losses to emerge at any age d+l are not pro- 

portional to the cumulative losses through age d. The assumptions underlying 

the chain ladder model are thus not met by this data. A constant amount emerg- 

ing for each age usually appears to be a reasonable estimator, however. 

Figure I illustrates this. A factor by itself would be a straight line through the 

origin with slope equal to the development factor, whereas a constant would 

give a horizontal line at the height of the constant. 

Lag I vs. Lag 0 Losses 
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Figure 1 

Although emerged losses are not proportional to previous emerged, they could 

be proportional to ultimate incurred. To test this, the parameterized BF model (2) 

was fit to the triangle. As this is a non-linear model, fitting is a little more in- 

volved. A method of fitting the parameters will be discussed, followed by an 

analysis of the resulting fit. 

To do the fitting, an iterative method can be used to minimize the sum of the 

squared residuals, where the w,d residual is [qw,d-fdhw]. Weighted least squares 

could also be used if the variances of the residuals are not constant over the tri- 

angle. For instance, the variances could be proportional to fdPhw% in which case 

the regression weights would be 1/fdPhwq. 
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A starting point for the f's or the h's is needed to begin the iteration. While al- 

most any reasonable values could be used, such as all f's equal to l / n ,  conver- 

gence will be faster with values likely to be in the ballpark of the final factors. A 

natural starting point thus might be the implied fd's from the chain ladder 

method. For ages greater than 0, these are the incremental age-to-age factors di- 

vided by the cumulative-to-ultimate factors. To get a starting value for age 0, 

subtract the sum of the other factors from unity. Starting with these values for fd, 

regressions were performed to find the hw's that minimize the sum of squared 

residuals (one regression for each w). These give the best h's for that initial set of 

f's. The standard linear regression formula for these h's simplifies to: 

hw = ~,dfdqw,d / ~dfd 2 (7) 

Even though that gives the best h's for those f's, another regression is needed to 

find the best f's for those h's. For this step the usual regression formula gives: 

fd = Ewh~qw.d / Ewh~ (8) 

Now the h regression can be repeated with the new f's, etc. This process contin- 

ues until convergence occurs, i.e., until the f's and h's no longer change with sub- 

sequent iterations. Ten iterations were used in this case, but substantial onver- 

gence occurred earlier. The first round of f's and h's and those at convergence are 

in Table 3. Note that the h's are not the final estimates of the ultimate losses, but 

are used with the estimated factors to estimate future emergence. In this case, in 

fact, h(0) is less than the emerged to date. A statistical package that includes non- 

linear regression could ease the estimation. 

Standard regression assumes each observation q has the same variance, which is 

to say the variance is proportional to f@hw% with p=q=0. If p=q=l the weighted 

regression formulas become: 

hw 2 = ~.,d[q~,d2/fd] / ,~..dfd and 

fd 2 = ~w[qw,d2/hw] / ~whw 
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T a b l e  3 - B F  P a r a m e t e r s  

Age d 

fd I "  

fd ult 

Year w 

hv I s, 

ult 

8 2 

D. 106 0.231 0 .209 

0.162 0.197 0 .204 

0 I 2 

17401 15729 23942 

15981 16501 23562 

3 4 15 6 7 8 9 

11.155 0 .117 0 .083 0.038 0 .032 0.018 0.011 

I).147 0.115 0 .082 0.037 0 .030 0.015 0 .009 

3 4 5 6 7 8 9 

26365 30390 19813 18592 24154 14639 12733 

27269 31587 20081 19032 25155 13219 19413 

For comparison, the development factors from the chain ladder are shown in Ta- 

ble 4. The incremental factors are the ratios of incremental to previous cumuIa- 

tive. The ultimate ratios are cumulativeto ultimate. Below them are the ratios of 

these ratios, which represent the portion of ultimate losses to emerge in each pe- 

riod. The zeroth period shown is unity less the sum of the other ratios. These 

factors were the initial iteration for the fd's shown above. 

Table 4 - Development Factors 

O t o l  I t o 2  2 t o 3  3 t o 4  ql. to5  5 t o 6  6 t o 7  7 t o 8  

Incremental 1.22 0.57 0.26 0.16 0.10 0.04 D.03 0.02 

O t o 9  I t o 9  2 t o 9  3 t o 9  4 t o 9  5 t o 9  6 t o 9  7 t o 9  
I 

Ultimate 6.17 2.78 1.77 1.41 1.21 I .  I 0 1.06 1.03 

0 .162 0 .197 0.204 0 .147 0.115 0.082 0 .037 0 .030 D.015 

8 t o 9  

0.01 

8 t o 9  

1.01 

0 .009 

Having now estimated the BF parameters, how can they be used to test what the 

emergence pattern of the losses is? 

A comparison of this fit to that from the chain ladder can be made by looking at 

how well each method predicts the incremental losses for each age after the ini- 

tial one. The sum of squared errors adjusted for number of parameters is the 

comparison measure, where the parameter adjustment is made by dividing the 

sum of squared errors by the square of [the number of observations less the 
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number of parameters], as discussed earlier. Here there are 45 observations, as 

only the predicted points count as observations. The adjusted sum of squared re- 

siduals is 81,169 for the BF, and 157,902 for the chain ladder. This shows that the 

emergence pattern for the BF (emergence proportional to ultimate) is much more 

consistent with this data than is the chain ladder emergence pattern (emergence 

proportional to previous emerged). 

The Cape Cod (CC) method was also tried for this data. The iteration proceeded 

similarly to that for the BF, but only a single h parameter was fit for all accident 

years. Now: 

h = ~w,afaq~,a / Zw,dfa 2 (9) 

The estimated h is 22,001, and the final factors f are shown in Table 5. The ad- 

justed sum of squared errors for this fit is 75,409. Since the CC is a special case of 

the BF, the unadjusted fit is of course worse than that of the BF method, but with 

fewer parameters in the CC, the adjustment makes them similar. This formula for 

h is the same as the formula for hw except the sum is taken over all w. 

Intermediate special cases could be fit similarly. If, for instance, a single factor 

were sought to apply to just two accident years, the sum would be taken over 

those years to estimate that factor, etc. 

Table 5 - Factors in CC Method 

0 I 2 3 4 5 6 7 8 9 

0.109 0.220 0.213 0.148 0.124 0.098 0.038 0.028 0.013 0.008 

This is a case where the BF has too many parameters for prediction purposes. 

More parameters fit the data better, but use up information. The penalization in 

the fit measure adjusts for this problem, and shows the CC to be a somewhat  
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better model. Thus the data is consistent with random emergence around an ex- 

pected value that is constant over the accident years. 

The CC method would probably work even better for loss ratio triangles than for 

loss triangles, as then a single target ultimate value makes more sense. Adjusting 

loss ratios for trend and rate level could increase this homogeneity.  

In addition, a purely additive development  was tried, as suggested by the fact 

that the constant terms were significant in the original chain ladder, even though 

the factors were not. The development  terms are shown in Table 6. These are just 

the average loss emerged at each age. The adjusted sum of squared residuals is 

75,409. This is much better than the chain ladder, which might be expected, as 

the constant terms were significant in the original significance-test regressions 

while the factors were not. The additive factors in Table 6 differ from those in 

Table 2 because there is no multiplicative factor in Table 6. 

Table 6 - Terms In Addit ive Chain Ladder 

I 2 3 4 5 6 7 8 9 

4849.3 4682.5 3267.1 2717.7 2164.2 839.5 625 294.5 172 

As discussed above, the additive chain ladder is the same as the Cape Cod 

method, although it is parameterized differently. The exact same goodness of fit 

is thus not surprising. 

Finally, an intermediate BF-CC pattern was fit as an example of reduced pa- 

rameter BF's. In this case ages I and 2 are assumed to have the same factor, as are 

ages 6 and 7 and ages 8 and 9. This reduces the number  of f parameters from 9 to 

6. The number of accident year parameters was also reduced: years 0 and I have 

a single parameter, as do years 5 through 9. Year 2 has its own parameter, as 

does year 4, but year 3 is the average of those two. Thus there are 4 accident year 
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parameters, and so 10 parameters in total. Any one of these can be set arbitrarily, 

with the remainder adjusted by a factor, so there are really just 9. The selections 

were based on consideration of which parameters were likely not to be signifi- 

cantly different from each other. 

The estimated factors are shown in Table 7. The accident year factor for the last 5 

years was set to 20,000. The other factors were estimated by the same iterative 

regression procedure as for the BF, but the factor constraints change the simpli- 

fied regression formula. The adjusted sum of squared residuals is 52,360, which 

makes it the best approach tried. This further supports the idea that claims 

emerge  as a percent of ultimate for this data. It also indicates that the various ac- 

cident years and ages are not all at different levels, but that the CC is too much of 

a simplification. The actual and fitted values from this, the chain ladder, and CC 

are in Exhibit 1. The fitted values in Exhibit 1 were calculated as follows. For the 

chain ladder, the factors from Table 4 were applied to the cumulative losses im- 

plied from Table 1. For the CC the fitted values are just the terms in Table 6. For 

the BF-CC they are the products of the appropriate f and h factors from Table 7. 

T a b l e  7 - B F - C C  P a r a m e t e r s  

Age d 0 II 2 3 

fd ° 0 .230 0.230 0.160 0.123 

Year w 0 I 2 3 4 

hw 14829 14829 20962 25895 

Calendar Year Impacts - Testing Question 3 

4 5 0 6 .040 7 8 9 
0.086 0.040 0.017 0.017 

5 6 7 8 ;9 I 
30828 20000 120000 20000 20000 20000 

One type of calendar year impact is high or low diagonals in the loss triangle. 

Mack suggested a high-low diagonal test which counts the number of high and 

low factors on each diagonal, and tests whether or not that is likely to be due to 

chance. Here another high-low test is proposed: use regression to see if any di- 

agonal d u m m y  variables are significant. An actuary will often have information 

about changes in company operations that may have created a diagonal effect. If 
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so, this information could lead to choices of model ing methods - e.g., whether  to 

assume the effect is permanent  or temporary. The diagonal dummies  can be used 

to measure the effect in any case, but knowledge of company operations will 

help determine how to use this effect. This is particularly so if the effect occurs in 

the last few diagonals. 

A diagonal in the loss development  triangle is defined by w+d = constant. Sup- 

pose for some given data triangle, the diagonal w+d=7 is found to be 10% higher 

than normal. Then an adjusted BF estimate of a cell might be: 

qw,a=l.lfdhw if w+d=7, and qw,a=fdhw otherwise(10) 

1 
3 
7 

7 
in a chain ladder 

model. The goal is to get a matrix of data in 

the form needed to do a multiple regression. 

First the triangle (except the first column) is 

2 5 4 The small sample triangle of incremental losses here will 
8 q 
10 be used as an example of how to set up diagonal dummies  

2 1 i0 0 0 0 
8 3 0 0 1 0 
10 7 0 0 0 1 
5 0 3 0 1 !0 
9 0 11 0 0 1 
4 0 0 8 0 I1 

strung out into a column vector. This is the dependent  variable. Then columns 

for the independent  variables are added. The second column is the cumulative 

losses at age 0 for the loss entries that are at age 1, and zero for the other loss en- 

tries. The regression coefficient for this column would be the 0 to I cumulative- 

to-incremental factor. The next two columns are the same for the I to 2 and 2 to 3 

factors. The last two columns are the diagonal dummies.  They pick out the ele- 

ments of the last two diagonals. The coefficients for these columns would be ad- 

ditive adjustments for those diagonals, if significant. 

This method of testing for diagonal effects is applicable to many of the emer- 

gence models. In fact, if diagonal effects are found significant in chain ladder 
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models, they probably are needed in the BF models of the same data, so good- 

ness-of-fit tests should be done with those diagonal elements included. Some ex- 

amples are given in Appendix 2. 

Another popular modeling approach is to consider diagonal effects to be a meas- 

ure of inflation (e.g., see Taylor 1977). In a payment triangle this would be a 

natural interpretation, but a similar phenomenon could occur in an incurred tri- 

angle. In this case the latest diagonal effects might be projected ahead as esti- 

mates of future inflation. An understanding of what in company operations is 

driving the diagonal effects would help address these issues. 

As with the BF model, the parameters of the model with inflation effects, qw.a = 

hwfdgw*d + ew, d, can be estimated iteratively. With reasonable starting values, fix 

two of the three sets of parameters, fit the third by least squares, and rotate until 

convergence is reached. Alternatively, a non-linear search procedure could be 

utilized. As an example of the simplest of these models, modeling qw,a as just 

6756(0.7785) d gives an adjusted sum of squares of 57,527 for the reinsurance tri- 

angle above. This is not the best fitting model, but is better than some, and has 

only two parameters. Adding more parameters to this would be an example of 

the bottom up fitting approach. 

T E S T I N G  Q U E S T I O N  4 - STABIL I 'TY  O F  P A R A M E T E R S  

If a pattern of sequences of high and low residuals is found when plotted against 

time, instability of the parameters may be indicated. This can be studied and a 

randomness in the parameters incorporated into the simulation process, e.g., 

through the state-space model. 
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2nd  to 3rd 5 - te rm mov ing  average 
2 . 4  

2 . 2  

2 

1 . 8  

1 . 6  

1.4 

1.2 

I 

Figure 2 

Figure 2 shows the 2 nd to 3 rd factor by accident year from a large development 

triangle (data in Exhibit 2) along with its five-term moving average. The moving 

average is the more stable of the two lines, and is sometimes in practice called 

"the average of the last five diagonals." There is apparent movement of the mean 

factor over time as well as a good deal of random fluctuation around it. There is a 

period of time in which the moving average is as low as 1.1 and other times it is 

as high as 1.8. 

The state-space model assumes that observations fluctuate around a mean that 

itself changes over time. The degree of random fluctuation is measured by vari- 

ance around the mean, and the movement of the mean by its variance over time. 

The interplay of these two variances determines the weights to apply, as in 

credibility theory. 

The state-space model thus provides underlying assumptions about the process 

by which development changes over time. With such a model, estimation tech- 

niques that minimize prediction errors can be developed for the changing devel- 

opment case. This can result in estimators that are better than either using all 
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data, or taking the average of the last few diagonals. For more details on the state 

space models see the Verrall and Zehnwirth references. 

QUE$?ION$ 5 ~ 6." VARIANCE ASSUMPTIONS 

Parameter estimation changes depending on the form of the variance. Usually in 

the chain ladder model the variance will plausibly be either a constant or pro- 

portional to the previous cumulative or its square. Plotting or fitting the squared 

residuals as a function of the previous cumulative will usually help decide which 

of these three alternatives fits better. If the squared residuals tend to be larger 

when the explanatory variable is larger, this is evidence that the variance is 

larger as well. 

Another variance test would be for normality of the residuals. Normality is often 

tested by plotting the residuals on a normal scale, and looking for linearity. This 

is not a formal test, but it is often considered a useful procedure. If the residuals 

are somewhat positively skewed, a lognormal distribution may be reasonable. 

The non-linear models discussed are all linear in logs, and so could be much 

easier to estimate in that form. However, if some increments are negative, a log- 

normal model becomes awkward. The right distribution for the residuals of loss 

reserving models seems an area in which further research would be helpful. 

CONCLUSION 

The first test that will quickly indicate the general type of emergence pattern 

faced is the test of significance of the cumulative-to-incremental factors at each 

age. This is equivalent to testing if the cumulative-to-cumulative factors are sig- 

nificantly different from unity. When this test fails, the future emergence is not 

proportional to past emergence. It may be a constant amount, it may be propor- 

tional to ultimate losses, as in the BF pattern, or it may depend on future infla- 

tion. 
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The addition of an additive component may give an even better fit. Reduced pa- 

rameter models could also give better performance, as they will be less respon- 

sive to random variation. If an additive component is significant, converting the 

triangle to on-level loss ratios may improve the model. Tests of stability and for 

calendar-year effects may lead to further improvements. 
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A P P E N D I X  3 - -  R E G R E S S I O N  G R A P H S  

Quartedy Change in the CR 1 
Predicted Versus Observ~ [ 
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Quarterly Change in the Wilshice 5000 Equity Price Index 
Predicted Versus Observed 
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