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A b s t r a c t  

Dynmnic Financial Analysis can be viewed as the process of studying profitability and sol- 

vency of an ilmurance firm under a realistic and integrated nmdel of key input random variables 

such as loss frequency and severity, expenses, reinsurance, interest and inflation rates, and asset 

defaults. Traditional nmdels of input variables have generally fitted parameters for a predeter- 

mined family of probability distributiotm. In this paper we discuss applications of some modern 

methods of non-parametric statistics to modeling loss distributions, and possibilities of using 

them for modeling other input variables for tile purpose of arriving at an integrated company 

model. Several examples of inference about the severity of loss, loss distributions percentiles 

and other related quantities based on data smoothing, bootstrap estimates of standard error 

and bootstrap confidence intervals are presented. The examples are based on real-life auto in- 

jury claim data  and the accuracy of our methods is compared with that of standard techniques. 

Model ndju~tment for inflation and bootstrap techniques based on the Kaplan-Meier estimator, 

useful in the presence of policies limits (censored losses), are also considered. 

1 Introduction 

D'Arcy,  Gorve t t ,  Herbers  and Het t inger  (1997) discuss Dynamic  Financial  Analysis  (DFA) for 

insurance  f i rms and point  ou t  the  following two sets  of key variables involved in the  process. 
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Financial Variables: 

• Short-term interest rates; 

• Term premiums; 

• Default premiums; 

• Default risk: 

• Equity premiums; 

• Inflation. 

Underwriting variables: 

• Rate level; 

• Exposures; 

• Loss frequency; 

• Loss severity; 

• Expenses; 

• Catastrophes: 

• Jurisdictiotl; 

• Payment patterns; 

• Reinsurance. 

In that classification, the financial variables generally refer to asset-side generated cash flows 

of the business, and the underwriting variables relate to the cash flows of the liabilities side. The 

process of developing a DFA model begins with the creation of a model of probability distributions 

of the input variables, including the establishment of the proper range of values of input parameters. 

The use of parameters is generally determined by the use of parametric families of distributions. 
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Fitt ing of those parameters is generally followed by either Monte Carlo simulation and integration of 

all inputs for profit testing and optimization, or by the study of the effect of varying the parameters 

on output  variables in sensitivity analysis and basic cash flow testing. Thus traditional actuarial 

methodologies are rooted in parametric approaches which fit prescribed distributions of losses and 

other random phenomena studied (e.g., interest rate or other asset return variables) to the data. The 

experience of the last two decades has shown greater interdependence of basic loss variables (severity, 

frequency, exposures) with asset variables (interest rates, asset defaults, etc.), and sensitivity of the 

firm to all input variables listed above. Increased complexity has been accompanied by increased 

competitive pressures, and more frequent insolvencies. This situation is precisely the reason why 

DFA has come to the forefront of new actuarial methodologies. In our opinion, in order to properly 

address the DFA issues one must carefully address the weaknesses of traditional methodologies. 

These weaknesses can be summarized as originating either from ignoring the uncertainties of inputs, 

or mismanaging those uncertainties. While early problems of DFA could be attributed mostly to 

ignoring uncertainty, we believe at this point the uncertain nature of model inputs is generally. 

acknowledged. Derrig and Ostaszewski (1997) used fuzzy set techniques to handle the mixture 

of probabilistic and non-probabilistic uncertainties in asset/liability considerations for property- 

casualty claims. In our opinion it is now time to proceed to deeper issues concerning the actual 

forms of uncertainty. The Central Limit Theorem and its stochastic process counterpart provide 

clear guidance for practical uses of the normal distribution and all distributions derived from it. But 

one cannot justify similarly fitting convenient distributions to, for instance, loss data and expect 

to easily survive the next significant change in the marketplace. What does work in practice, but 

not in theory, may be merely an illusion of applicability provided by powerful tools of modern 

technology. If one cannot provide a justification for the use of a parametric distribution, then 

a nonparametric alternative should be sl, udied, at least for the purpose of understanding firm's 

exposures. In this work, we will show such a study of nonparametric methodologies as applied 

to loss data, and will advocate the development of an integrated company model with the use of 

nonparametric approaches. 
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1.1 Loss Distributions for D F A  

We begin by addressing the most basic questions concerning loss distributions. The first two 

parameters  generally fitted to the da ta  are claims average size (claims average severity), and the 

number of claim occurrences per unit of exposure (claims frequency). Can we improve on these 

estimates by using nonparametric  methods? 

Consider the problem of estimating the severity of a claim, which is, in its most general setting, 

equivalent to modeling the probability distribution of a single claim size. 'I~-aditionally, this has 

been done by means of fitting some parametric models from a particular continuous family of 

distributions (cf. e.g., Daykin, Pentikalnen, and Pesonen 1994, chapter  3). While this s tandard 

approach has several obvious advantages, we should also realize that  occasionally it may suffer 

some serious drawbacks. 

• Some loss da ta  has a tendency to cluster about  round numbers like $1,000, $10,000, etc., due 

to rounding off the claim amount  and thus in practice follows a mixture of continuous and 

discrete distributions. Usually, parametric models simply ignore the discrete component in 

such cases. 

• The da ta  is often truncated from below or censored from above due to deductibles and /o r  

limits on different policies. Especially, the presence of censoring, if not accounted for, may 

seriously compromise the goodness-of-fit of a fitted parametric distribution. On the other 

hand, t rying to incorporate the censoring mechanism (which is often random in its nature,  

especially when we consider losses failing under several insurance policies with different limits) 

leads to a creation of a very complex model, one often difficult to work with. 

• The loss da ta  may come from a mixture of distributions depending upon some known or 

unknown classification of claim types. 

• Finally, it may happen that  the da ta  simply does not fit any of the available distributions in 

a satisfactory way. 

It seems, therefore, tha t  there are many situations of practical importance where the traditional 
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approach cannot be utilized, and one must look beyond parametric models. In this work we point 

out an alternative, nonparametric approach to modeling losses and other random parameters of 

financial analysis originating from the modern methodology of nonparametric statistics. Especially, 

we analyze possible inroads by the fairly recent statistical methodology known a.s bootstrap into 

dynamic financial analysis. To keep things in focus we will be concerned here only with applications 

to modeling the severity of loss, but the methods discussed may be easily applied to other problems 

like loss frequencies, asset returns, asset defaults, and combining those into models of Risk Based 

Capital, Value at  Risk, and general DFA, including Cash Flow Testing and Asset Adequacy Analysis. 

1.2  The Concept of Bootstrap 

The concept of bootstrap was first introduced in the seminal piece of Efron (1979) and relies on the 

consideration of the discrete empirical distribution generated by a random sample of size n from 

an unknown distribution F. This empirical distribution assigns equal probability to each sample 

item. In the sequel we will write fin for that  distribution. By generating an independent, identically 

distributed (lid) random sequence (resample) from the distribution Fn or its appropriately smoothed 

version, we can arrive at new estimates of various parameters and nonparametric characteristics 

of the original distribution F. This idea is at the very root of the bootstrap methodology. In 

particular, Efron (1979) points out that  the bootstrap gives a reasonable estimate of standard error 

for any estimator, and it can be extended to statistical error assessments and to inferences beyond 

biases and standard errors. 

1 .3  Overview of the Article 

In this paper, we apply tile bootstrap methods to two data sets as illustrations of the advantages of 

resampling techniques, especially when dealing with empirical loss data. The basics of bootstrap are 

covered in Section 2 where we show its applications in estimating standard errors and calculating 

confidence intervals. In Section 3, we compare bootstrap and traditional estimators for quantiles 

and excess losses using some truncated wind loss data. The important concept of smoothing the 

bootstrap estimator is also covered. Applications of bootstrap to auto bodily injury liability claims 
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in Section 4 s h o w  loss e l i m i n a t i o n  ratio estimates together with their s tandard e r ror s  in a c a s e  

of lumpy and clustered da ta  (the da ta  set is enclosed in Appendix B). More complicated designs 

tha t  incorporate da ta  censoring and adjustment for inflation appear in Section 5. Sections 6 and 

7 provide some final remarks and conclusions. The Mathematica 3.0 programs used to perform 

boots t rap calculations are provided in Appendix A. 

2 Boot s t r ap  S tandard  Errors and Confidence Intervals  

As we have already mentioned in the Introduction, the idea of bootstrap is in sampling the empirical 

cumulative distribution function (cdf) fin. This idea is closely related to the following, well known 

statistical principle, henceforth referred to as the "plug-in" principle. Given a parameter of interest 

O(F) depending upon an unknown population cdf F, we estimate this parameter  by ~ = 8(Fn). 

Tha t  is, we simply replace F in the formula for ~ by its empirical counterpart  fin obtained frmn the 

observed data.  The plug-in principlc will not provide good results if fin poorly approximates F or 

if there is information about F other than that  provided by the sample. For instance, in some cases 

we migbt know (or be williug to assume) tha t  F belongs to some parametric family of distributions. 

However, the plug-in principle and the bootstrap may be adapted to this latter situation as well. 

To illustrate the idea, let us consider a parametric family of cdf 's {Fu} indexed by a parameter 

(possibly a vector) and for some given Itl0 let ~0 denote its estimate calculated from the sample. 

The plug-in principle in this case states that  we should estimate O(Fou ) by O(Fuo ). In this case, 

boots t rap is often called parametric,  since a resample is now collected from Fp,,. Here and elsewhere 

in this work we refer to any replica of ~ calculated from a resample as "a boots t rap estimate of 

0(F)" and denote it by 0". 

2.1 The Bootstrap Methodology 

Bickel and Freedman (1981) formulated conditions for consistency of bootstrap, which resulted in 

further extensions of the Efroa's (1979) methodology to a broad range of s tandard applications, 

including quantile processes, multiple regression and stratified sampling. They also argued tha t  
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the use of bootstrap did not require theoretical derivations such as function derivatives, influence 

functions, asymptotic variances, the Edgeworth expansion, etc. 

Singh (1981) made a further point that the bootstrap estimator of the sampling distribution 

of a given statistic may be more accurate than the traditional normal approximation. In fact, it 

turns out thut for many commonly used statistics the bootstrap is asymptotically equivalent to the 

one-term Edgeworth expansion estimator, usually having the same convergence rate, which is faster 

then normal approximation. In many more recent statistical texts the bootstrap is recommended 

for estimating sampling distributions and finding standard errors, and confidence sets. The boot- 

strap methods can be applied to both parametric and non-parametric models, although most of 

the published research in the area is concerned with the non-parametric case since that  is where 

the most immediate practical gains might be expected. Let us note though that  often a simple, 

non-parametric bootstrap may be improved by other bootstrap methods taking into account the 

special nature of the model. In the lid non-parametric models for instance, the smoothed bootstrap 

(bootstrap based on some smoothed version of Fn) often improves the simple bootstrap (bootstrap 

based solely on F,) .  Since in recent years several excellent books on the subject of resampling and 

related techniques have become available, we will not be particularly concerned here with providing 

all the details of the presented techniques, contenting ourselves with making appropriate references 

to more technically detailed works. Readers interested in gaining some basic background in re- 

sampling are referred to Efron and Tibisharani (1993), henceforth referred to as ET. For a more 

mathematically advanced treatment of the subject, we recommend Shan and Tu (1995). 

2 , 2  B o o t s t r a p  S t a n d a r d  E r r o r  E s t i m a t e  

Arguably, one of the most important applications of bootstrap is providing an estimate of standard 

error of 8 (seF(O)). It is rarely practical to calculate it exactly. Instead, one usually approxi- 

mates SeF(O) with the help of multiple resamples. The approximation to the bootstrap estimate of 
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s tandard  error of 0 (or BESE) suggested by Efron (197'9) is given by 

B 

~'eB={b_~l[O'(b)-O'(.)/(B--1)}2}']2 (2.1) 

where 0"(.) = ~ = l  O'(b)/B, 13 is the total number of resamples (each of size n) collected with 

replacement from the plug-in estimate of F (in parametric or non-parametric setting), and 0°(b) 

is the original statistic 0 calculated from the b-th resample (b = 1 . . . .  ,B) .  By the law of large 

numbers 

lim g'es = BESE(O), 
B - o o  

and for sufficiently large n we expect 

BESS(O) ~ seF(0). 

Let us note tha t  B, total number of resamples, may be taken as large as we wish, since we are in 

complete control of the resampling process. It has been shown tha t  for est imating the s tandard 

error, one should take B to be about  250, whereas for different resampled statistics this number 

may have to be significantly increased in order to reach the desired accuracy (see ET). 

2.3 T h e  M e t h o d  of  P e r c e n t i l e s  

Let us now turn to the problem of using the bootstrap methodology to construct  confidence intervals. 

This area has been a major  focus of theoretical work on the bootstrap and several different methods 

of approaching the problem have been suggested. The "naive" procedure described below is by far 

the most efficient one and can he significantly improved in both rate of convergence and accuracy. 

It is, however, intuitively obvious and easy to justify and seems to be working well enough for 

the cases considered here. For a complete review of available approaches to boots t rap confidence 

intervals, see ET. 

Let us consider 0°, a boots t rap estimate of 0 based on a resvanple of size n from the original 
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sample X h . . .  , X~, and let G.  be its distribution function given the observed sample values 

a . ( x )  = P{b" < z l x i  = z i  . . . . .  X .  = 2 . } .  

Recall tha t  for any distribution function F and p E (0,1) we define the p-th quantile of F (sometimes 

also called p-th percentil#) as F-l(p) = inf{z : F(x) > p}. The bootstrap percentiles method gives 

G~q (cr) and G~'l(1 - a )  as, respectively, lower and upper bounds for the 1 - 2 a  confidence interval 

for 0. Let us note that  for most statistics ~ the distribution function of the boots t rap est imator 8" is 

not available. In practice, G~'l(c~) and G:'I(1 - a)  are approximated by taking multiple resamples 

and then calculating the empirical percentiles. In this case the number of resamples B is usually 

much larger than for estimating BESE; in most cases it is recommended that  B _> 1000. 

3 B o o t s t r a p  and S m o o t h e d  Boot s t rap  Est imators  vs Tradi- 

t ional  M e t h o d s  

In making the case for the usefulness of bootstrap in modeling loss distributions we would first like 

to compare its performance with tha t  of the s tandard methods of inference as presented in actuarial  

textbooks. 

3.1 Application to Wind Losses: Quantiles 

Let us consider the following set of 40 losses due to wind-related catastrophes tha t  occurred in 1977. 

These da t a  are taken from Hogg and Klugman (1984) (henceforth referred to as HK) where they 

are discussed in detail in Chapter  3. The losses were recorded only to the nearest $1,000,000 and 

da t a  included only those losses of $2,000,000 or more. For convenience they have been ordered and 

recorded in millions. 
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2, 2, 2, 2, 2, 2, 2, 2, 2, 2 

2, 2, 3, 3, 3, 3, 4, 4, 4, 5 

5, 5, 5, 6, 6, 6, 6, 8, 8, 9 

15, 17, 22, 23, 24, 24, 25, 27, 32, 43 

Using this da ta  set we shah give two examples illustrating the advantages of applying bootstrap 

approach to modeling losses. The problem at hand is a typical one: assuming tha t  all the losses 

recorded above have come from a single unknown distribution F we would like to use the da ta  to 

obtain some good approximation for F and its various parameters. 

First, let us look at  an important  problem of finding the approximate confidence intervals for 

the quantiles.of F.  The s tandard approach to this problem relies on the nornral approximation to 

the sample quantiles (order statistics). Applying this method, Hogg and Klugman have found the 

approximate 95% confidence i~lterval for the .85-th quan~ile of F to be between X30 and X3s which 

for the wind da ta  traaslates into the observed interval 

(9,32).  

They also have noted that  "..This is a wide interval but without additional assumptiot~s this is the 

best we can do. " Is tha t  really true ? To answer this question let us first note that  in this part icular  

case the highly skewed bhlomial distribution of the .85-th sample quantile is approximated by a 

symmetric normal curve. Thus, it seems reasonable to expect that  normal apl)roximation could 

be improved here upon introducing some form of correction for skewness. In the s tandard  normal 

approximation theory this is usually accomplished by considering, in addition to the normal term, 

the first non-normal term in the asymptotic Edgeworth expansion of the binomial distribution. 

The resulting formula is messy and requires the calculation of a sample skewness coefficient as well 

as some refined form of the continnity correction (el. e.g., Singh 1981). On the other hand, the 

boots t rap has been known to make such a correction automatically (Singh 1981) and hence we 

could expect that  a bootstrap approximation would perforxn better here ~. Indeed, in this case (in 

tThis turns out to be true only for a moderate sample size (here: 40); for binomial distribution with lazge n 
(i.e., large sample size) the effect of the bootstrap correction is negligible. In general, the bootstrap approximation 
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the notation of Section 2) we have O(F) = F- l ( . 85 )  and 0 = ff,~t(.85) .~ X(34} - the  34-th order 

statistic which for the wind da ta  equals 24. For sample quantiles the boots t rap distribution G° 

can be calculated exactly (Shao and Tu 1995, p.10) or approximated by an empirical distribution 

obtained from B resamples as described in Section 2. Using either method, the 1 - 2c~ confidence 

interval calculated using the percentile method is found to be between X(2a) and X(3s) (which is 

also in this case the exact confidence interval obtained by using binomial tables). For the wind da ta  

this translates into the interval 

(s,27) 

which is considerably shorter then the one obtained by Hogg and Klugman. 

3.2 Smoothed Bootstrap. Application to Wind Losses: Excess Losses 

As our second example, let us consider the estimation of the probability tha t  a wind loss will 

exceed a $29,500,000 threshold. In our notation tha t  means that  we wish to estimate the unknown 

parameter  1 - F(29.5). A direct application of the plug-in principle gives immediately the value 0.05, 

the nonparametr ic  estimate based on relative frequencies. However, note tha t  the same number is 

also an estimate for 1 - F(29) and 1 - F(31.5), since the relative frequency stays the same for all 

the tbreshold values not present in reported data.  In particular,  since the wind da ta  were rounded 

off to the nearest unit,  the nonparametrie method does not give a good estimate for any non-integer 

threshold. This problem with the same threshold value of $29,000,000 was also considered in HK 

(Ex.4 p. 94 and Ex.1 p. 116). As indicated therein, one reasonable way to deal with the non-integer 

threshold difficulty is first to fit some continuous curve to the data .  The idea seems justified since 

the clustering effect in the wind da ta  has most likely occurred due to rounding off the records. 

In their book Hogg and Klugman have used s tandard techniques based on method of moments 

and maximum likelihood estimation to fit two different parametric models to the wind data:  the 

t runcated exponential with cdf 

F~(z) = 1 - e -(~-15)/~ 1.5 < z < ~ (3.1) 

performs better than normal one for large sample sizes only for continuous distributions. 
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Figure 1: Empirical cdf for the wind data and two parametric approximations fitted by the maximum 
likelihood method. The solid smooth line represents the curve fitted from the exponential family 
(3.1); the dashed line represents the curve fitted from the Pareto family (3.2). The vertical line is 
drawn for reference at x=29.5. 

for ~u > 0, and the truncated Pareto with cdf 

Fc,.~(x)=l- ~ 1 . 5 < x < o o  (3.2) 

for a > 0, A > 0 .  

For the exponential distribution the method of moments as well as maximum likelihood esti- 

mator of/u was found to be # = 7.725. The M L E ' s  for the Pareto distribution parameters were 

= 28.998 and & = 5.084. Similar values were obtained using the method of moments. The 

empirical distribution function for the wind data along with two fitted maximum likelihood models 

are presented in Figure 1. It is clear that the fit is not good at all, especially around the interval 

(16,24). The reason for the bad fit is the fact that both fitted curves are consistently concave down 

for all the x's and F seems to be concave up in this area. The fit in the tails seems to be a little 

better. 

Once we determined the values of the unknown model parametem, MLE estimators for 1 - 

F(29.5) may be obtained from (3.1) and (3.2). The numerical values of these estimates, their 
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Estimate of Approx. 95% c.i. 
Fitted/vlodel 1 - F(29.5) Approx. s.e. (two sided) 

Non-paralnetric (Plug-in) 0.05 0.034 (-0.019, 0.119) 
Exponential 0.027 0.015 (-0.003, 0.057) 

Pareto 0.036 0.024 (-0.012, 0.084) 
3-Step Moving 

Average Smoother 0.045 0.016 (0.013, 0.079) 

Table 1: Comparison of the performance of estimators for 1 - F(29.5) for the wind data. All 
the confidence intervals and variances for the first three estimates are calculated using the normal 
theory approximation. The variance and confidence intervals for the estimate based on the moving- 
average smoother are calculated by means of the approximate BESE and bootstrap percentile 
methods described in Section 2. 

respective variances and 95% confidence intervals are summarized in the second and third row of 

Table 1. In the first row the same characteristics are calculated for the standard non-parametric 

estimate based on relative frequencies. As we may well see, the respective values of the point 

estimators differ considerably from model to model and, in particular, both MLE's are quite far 

away from the relative frequency estimator. Another thing worth noticing is that the confidence 

intervals for all three models have negative lower bounds - they are obviously too long, at least on 

one side. This also indicates that their true coverage probability may be in fact greater than 95%. 

In order to provide a better estimate of 1 - F(29.5) for the wind data we will first need to 

construct a smoothed version of the empirical cdf. In order to do so we employ the following 

data  transformation widely used in image and signal processing theory where a series of raw data 

{Xh Z2,.. • , xn } is often transformed to a new series of data before it is analyzed. The purpose of 

this transformation is to smooth out local fluctuations in the raw data, so the transformation is 

called data smoothingor a smoother. One common type of smoother employs a linear transformation 

and is called a linear filter. A linear filter with weights {co, cl . . . . .  cr-~} transforms the given data 
r - i  

to weighted averages ~3=o cjxt-j for t = r , r  + 1 , . . .  ,n. Notice that the new data set has length 

n - r - 1. If all the weights c~ are equal and they sum to unity, the linear filter is called a r- term 

moving average. For an overview of this interesting technique and its various applications see e.g., 

Simonoff (1007). To create a smoothed version of the empirical cdf for the wind data we have first 

used a 3-term moving average smoother and then linearized in-between any two consecutive data 
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Figure 2: Empirical cdf for the wind data  and its smoothed version obtained using the 3-term 
moving average smoother. The vertical line is drawn for reference at  x=29.5. 

points. The plot of this liuearized smoother along with the original empirical cdf is presented ill 

Figure 2. Let us note tha t  the smoother follows tbe "concave-up-down-up" pattern of the data ,  

which was not tile case with the parametric distributions fitted from the families (3.1) and (3.2). 

Once we have constructed tile smoothed empirical cdf for the wind da ta  we may simply read 

the approximate value of 1 - F(29.5) off tile graph (or better yet, ask the computer to do it for us). 

The resulting numerical value is 0.045. What  is the s.e. for that  estimate? We again may use the 

boots t rap to answer that  question without messy calculations. An approximate value for B E S E  

(with B=1000,  but the result is virtually the same for B=100) is found to be 0.016, which is only 

slightly worse then tbat  of exponential model MLE and much better then the s.e. for the Pareto and 

empirical models. Equivalently, the same result may be obtained by numerical integration. Finally, 

the 95% confidence interval for 1 - F(29.5) is found by means of the boots t rap percentile method 

with the number of replications, B=1000. Here the superiority of bootstrap is obvious, as it gives 

an interval which is the second shortest (again exponential MLE model gives a shorter interval) but, 

most importantly, is bounded away frmn 0. The results are summarized in Table 1. Let us note 

tha t  the result based on a smoothed empirical edf and bootstrap dramatically improves tha t  based 

on the relative frequency (plug-in) estimator and standard normal theory. It is perhaps of interest 
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to note also tha t  the MLE estimator of 1 - F(29.5) in the exponential model is nothing else but  a 

parametr ic  boots t rap estimator. For more details on the connection between MLE estimators and 

boots t rap,  see ET. 

4 C l u s t e r e d  D a t a  

In the previous section we have assumed that  the wind da ta  were distributed according to some 

continuous cdf F.  Clearly this is not always the case with loss data  and in general we may expect 

our theoretical loss distribution to follow some mixture of discrete and continuous cdf's. 

4 . 1  M a s s a c h u s e t t s  A u t o  B o d i l y  I n j u r y  L i a b i l i t y  D a t a  

In the Appendix B we present the set of 432 closed losses due to bodily injuries in car accidents 

under bodily injury liability (BI) policies reported in the Boston Territory (19) for the calendar year 

of 1995, as of mid-1997. The losses are recorded in thousands and are subject to various policy limits 

but have no deductible. Policy limits capped 16 out  of 432 losses which are therefore considered 

right-censored. The problem of bootstrapping censored da ta  will be discussed in the next section; 

here we would like to concentrate on another interesting feature of the data .  Massachusetts BI claim 

da ta  are of interest because the underlying behavioral processes have been analyzed extensively. 

Weisberg and Derrig (1992) and Derrig, Weisberg and Chen (1994) describe the Massachusetts 

claiming environment after a tor t  reform as a "lottery" with general damages for non-economic 

loss (pain and suffering) as the prize. Cummins and Tennyson (1992) showed signs of similar 

pat terns  countrywide while RAND (1995) and the Insurance Research Council (1996) documented 

the pervasiveness of the lottery claims in both tort  and no-fault state injury claim payment systems. 

The overwhelming presence of suspected fraud and buildup claims 2 allow for distorted relationships 

between the underlying economic loss and the liability settlement. Claim negotiators can great ly 

reduce the usual non-economic damages when exaggerated injury and /or  excessive t reatment  are 

claimed as legitimate losses. Claim payments in such a negotiated process with discretionary injuries 

2In e.uto, fraudulent claims axe those in which there w~ no injury or the injury was unrelated to the accident 
whereas buildup claims axe those in which the injury is exaggerated and/or the treatment is excessive. 
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Figure 3: Approximation to the empirical cdf for the BI da ta  adjusted for the clustering effect. 
Left panel shown the graph  plotted for the entire range of observed loss values (0,25). Right panel 
zooms in on the values from 3.5 to 5. Discontinuities can be seen here as the graph 's  "jumps" at  
the observed loss values of high frequency: 3.5, 4, 4.5, 5. 

tend to be clustered at  some usual mutually acceptable amounts,  especially for the run-of-the- 

mill strain and sprain claims. Conners and Feldblum (1997) suggest that  the claim environment, 

ra ther  than the usual rat ing variables, are the key elements needed to understand and estimate 

relationships in injury claim data.  All the da ta  characteristics above tend to favor empirical methods 

over analytic ones. 

Looking at  the frequencies of occurrences of the particular values of losses in Massachusetts BI 

claim da t a  we may see that  several numerical values have especially high frequency. The loss of 

$5,000 was reported 21 times (nearly 5% of all the occurrences), the loss of $20,000 was reported 15 

times, $6,500 and $4,000 losses were reported 14 times, a $3,500 loss was only slightly less common 

(13 times), and the losses of size $6,000 and $9,000 occurred 10 times each. There were also several 

other numerical values tha t  have occurred at  least 5 times. The clustering effect is obvious here 

and it seems that  we should incorporate it into our model. This may be accomplished for instance 

by constructing an approximation to the empirical cdf which is linearized in between the observed 

da ta  values except for the ones with high frequency where it behaves like the original, discrete cdf. 

In Figure 3 we present such an approximate cdf for the BI data.  We have allowed our adjusted edf 

to have discontinuities at  the observed values which occurred with frequencies of 5 or greater. 

185 



4.2 Boots t rap Estimates for Loss Elimination Ratios 

To give an example of statistical inference under this model, let us consider a problem of eliminating 

par t  of the BI losses by purchasing a re-insurance policy tha t  would cap the losses at  some level 

d. Since the BI da ta  is censored a t  $20,000 we would consider here only values of d not exceeding 

$20,000. One of the most important  problems for the insurance company considering purchasing re- 

insurance is an accurate prediction of whether such a purchase would indeed reduce the experienced 

severity of loss and if so, by what  amount.  Typically this type of analysis is done by considering 

the loss elimination ratio (LER) defined as 

EF(X,d) 
LER(d) EFX 

where EFX and EF(X,d) are, respectively, expected value and limited expected value functions 

for a random variable X following a true distribution of loss F. Since LER is only a theoretical 

quant i ty  unobservable in practice, its estimate calculated frmn the da ta  is needed. Usually, one 

considers empirical loss elimination ratio (ELER) given by the obvious plug-in estimate 

ELER(d) = Ep, (X,d) _ ~ i~ l  min(Xi,d) (4.1) 
EF. X ~ i ~  ~ Xi 

where X l , . . .  ,X= is a sample. 

The drawback of ELER is in the fact that  (unlike LER) it changes only at  the values of d being 

equal to one of the observed values of X1 . . . .  ,Xn. It seems, therefore, that  in order to calculate 

approximate LER at  different values of d some smoothed version of ELER (SELER) should be 

considered. SELER may be obtained frmn (4.1) by replacing the empirical cdf Fn by its smoothed 

version obtained for instance by applying a linear smoother (as for the wind da ta  considered in 

Section 3) or a cluster-adjusted linearization. Obviously, the SELER formula may beconm quite 

complicated and its explicit derivation may be tedious (and so would be the derivation of its s tandard  

error). Again, the bootstrap methodology can be applied here to facilitate the computat ion of an 

approximate  value of SELER(d), its s tandard error and confidence interval for any given value of d. 
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Figure 4: Approximate graph of SELER(d)  plotted for the values of d between 0 and the first 
censoring point (20) for the Bl data.  

In Figure 4 we present the gral)h of the S E L E R  estimate for the BI da ta  calculated for the values 

of d ranging from 0 to 20 (lowest censoring point) by means of a bootstrap approximation. This 

approximation was obtained by resampling the cluster-adjusted, liuearized version of the empirical 

cdf (preseuted in the left panel of Figure 3) a large number of times (B = 300) and replicating 

= S E L E R  each time. The resulting sequence of bootstrap estimates 8"(b) (b = 1 , . . . ,  B) was 

then averaged to give the desired approximation of S E L E R .  The calculation of s tandard errors and 

confidence intervals for S E L E R  was done by means of B E S E  and the method of percentiles, as 

described in Section 2. The variances and 95% confidence intervals of S E L E R  for several different 

values of d are presented in Table 2. 

5 Extensions to More Complicated Designs 

So far in our account we have not considered any problelns related to the fact tha t  often in practice 

we may have to deal with truncated (e.g., due to deductible / or censored (e.g., due to policy limit) 

data .  Another frequently encountered difficulty is the need for inflation adjustlnent,  especially with 

da ta  observed over a long period of time. We will address these important  issues now. 
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95% c.i. 
d S E L E R ( d )  s.e, (two sided) 

4 0.505 0.0185 (0.488,0.544) 
5 0.607 0.0210 (0:597,0.626) 

10.5 0.892 0.0188 (0.888,0.911) 
11.5 0.913 0.0173 (0.912,0.917) 
14 0.947 0.0127 (0.933,0.953) 

18.5 0.985 0.00556 (0.98,0.988) 

Table 2: Numerical values of S E L E R ( d )  for the BI data tabulated for several different d along with 
the standard errors and 95% confidence intervals calculated by means of the approximate BESE 
and bootstrap percentile methods described in Section 2. 

5 . 1  P o l i c y  L i m i t s  a n d  D e d u c t i b l e s .  B o o t s t r a p p i n g  C e n s o r e d  D a t a  

Let us consider again the BI data presented in Section 4. There were 432 losses reported out of which 

16 were at  the policy l imits s. These 16 losses may therefore be considered censored from above 

(or right-censored) and the appropriate adjustment for this fact should be made in our approach 

to estimating the loss distribution F. Whereas 16 is less then 4% of the total number of observed 

losses for the BI data, these censored observations are crucial in order to obtain a good estimate of 

F for the large loss values. 

Since the problem of censored data arises naturally in many medical~ engineering, and other 

settings, it has received considerable attention in statistical literature. For the sake of brevity we 

will limit ourselves to the discussion of only one of the several commonly used techniques, the 

so-called Kaplan-Meier (or product-limit) estimator, 

The typical statistical model for right-censored observations replaces the usual observed sample 

X l , . .  , Xn with the set of ordered pairs (Xl, 61),... , ( X a ,  6n) where 

6, = / 0 if X, is censored, 

(, if X~ is not censored 

and the recorded losses are ordered X i  = x l  _< X 2  = x2 _< . . .  _< X n  -- x,~ with the usual convention 

that  in the case of ties the uncensored values x~ (6, = 1) precede the censored ones (6, = 0). The 

aFifteen Io6sc~ were truncated at $ 20,000 and one loss was truncated at $25,000. 

188 



Kaplan-Meier est imator of 1 - F(x)  is given by 

~=,<~ \ n - i +  1 ]  (5.1) 

The product  in the above formula is that  of i terms where i is the smallest positive integer less or 

equal n (the number of reported losses) and such that  x, < x. The Kaplan-Meier estimator, like 

the empirical cdf, is a step function with jumps at  those values xl tha t  are uncensored. In fact, if 

61 = 1 for all i, i = 1 , . . .  , n  (i.e., no censoring occurs) it is easy to see tha t  (5.1) reduces to the 

usual empirical cdf. If the highest observed loss x ,  is censored, the formula (5.1) is not defined 

for the values of x greater then xn. The usual practice is then to add one uncensored da ta  point 

(loss value) xn+l such tha t  z ,  < xn+l and to define S(x) = 0 for x > x , + l .  For instance, for 

:the BI da ta  the largest reported loss was censored at 25 and we had to add one artificial "loss" at  

26 to define the Kaplan-Meier curve for the losses exceeding 25. The number 26 was picked quite 

arbitrarily, in actuarial practice more precise guess of the maximal possible value of loss (e.g. based 

on past  experience) should be easily available. The Kaplan-Meier estimator enjoys several optimal 

statistical properties and can be viewed as a generalization of the usual empirical cdf adjusted for 

the fact of censoring losses. Moreover, t runcated losses or t runcated and censored losses may be 

easily handled by some simple modifications of (5.1). For more detMls and some examples see for 

instance Klugman, Panjer and Willmot (1998 chap.2). 

In the case of loss da ta  coming from a mixture of some discrete and continuous cdf's, like, for 

instance, the BI data ,  the linearization of Kaplan-Meier estimator with adjustment for clustering 

seems to be appropriate. In Figure 5 we present the plots of a linearized Kaplan-Meier est imator 

for the BI da ta  and the approximate empirical cdf function, which was discussed in Section 4, not 

corrected for the censoring effect. It is interesting to note tha t  the two curves agree very well 

up to the first censoring point (20), where Kaplan-Meier estimator s tar ts  to correct for the effect 

of censoring. It is thus reasonable to believe tha t  for instance the values of S E L E R  calculated 

in Table 2 should be close to the values obtained by bootstrapping the Kaplan-Meier estimator. 

This, however, does not have to be the case in general. The agreement between the Kaplan- 
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Figure 5: Linearized and adjusted for clustering Kaplan-Meier estimator of the true loss distribution 
F for the BI da ta  plotted along with the empirical cdf described in Section 4 which was adjusted 
for the clustering effect but disregarded censoring. The two curves agree very well up to the first 
censoring point (20), where Kaplan-Meier estimator (lower curve) starts  to correct for the effect of 
censoring. 

Meier curve and the smoothed cdf of the BI data  is mostly due to the relatively small number of 

censored values. The estimation of other parameters of interest under the Kap[an-Meier model (e.g. 

quantiles, probability of exceedance, etc) as well as their s tandard errors may be performed using 

the boots t rap methodology outlined in the previous sections. For more details on the problem of 

boots t rapping censored data,  see for instance Akritas (1986). 

5.2  Inflation Adjustment 

The adjustment  for the effect of inflation can be handled quite easily in our setting. If X is our 

random variable modeling the loss which follows cdf F ,  when adjusting for inflation we are interested 

in obtaining an estimate of the distribution of Z = (1 + r)X, where r is the uniform inflation rate 
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over the period of concern. If Z follows a cdf G then obviously, 

= F  z 

and the same relation holds when we replace G and F with the usual empirical cdf 's or their 

smoothed versions. 4 In this setting bootstrap techniques described earlier should be applied to the 

empirical approximation of G. 

6 S o m e  F i n a l  R e m a r k s  

Although we have limited the discussion of resampling methods in DFA to modeling losses, even 

with this narrowed scope we have presented only some examples of modern statistical methods 

relevant to the topic. Other important  areas of applications which has been purposely left out here 

include kernel estimation and the use of resampling in non-parametric regression and auto-regression 

models. The latter includes for instance such important problems as bootstrapping time series data ,  

modeling time correlated losses and other time-dependent variables. Over the past several years 

some of these techniques, like non-parametric density estimation, have already found their way 

into actuarial  pracgice (cf. e.g., Klugman at al. 1998). Others, like bootstrap,  are still waiting. 

The purpose of this article was not to give a complete account of the ulost recent developments in 

non-parametric statistical methods but rather to show by example hog' easily they may be adapted 

to the real-life situations and how often they may, in fact, outperform the traditional approach. 

7 C o n c l u s i o n s  

Several examples of the practical advantages of the bootstrap methodology were presented. We 

have shown by example that  in many cases bootstrap provides a better approximation to the 

true parameters of the underlying distribution of interest then the traditional, textbook approach 

relying on the MLE and normal approximation theory. It seems that  bootstrap may be especially 

4Subcls~.ses of losses may inflate at different rates, soft tissue vs hard injuries for the BI data of, an example. The 
theoretical cdf G ma:,' be then derived using multiple inflation rates as welt. 
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useful in the statistical analysis of da ta  which do not follow any obvious continuous paranmtric 

model (or mixture of models) or /and contain a discrete component (like the BI da ta  presented in 

Section 4). The presence of censoring and truncation in the data  does not present a problem for the 

boots t rap which, as seen in Section 5, may be easily incorporated into a s tandard  non-parametric 

analysis of censored or t runcated data.  Of course, most of the boots t rap analysis is typically done 

approximately using a Monte Carlo simulation (generating resamptes), which makes the computer  

an indispensable tool in the bootstrap world. Even more, according to some leading boots t rap 

theorists, automation is the goal: "One can describe the ideal computer-based statistical inference 

machine of the future. The statistician enters the da ta  . . .  the machine answers the questions in 

a way tha t  is optimal according to statistical theory. For s tandard errors and confidence intervals, 

the ideal is in sight if not in band" (quoted from page 393 of ET). 

The resampling methods described in this paper can be used (possibly after correcting for time- 

dependence) to handle the empirical da ta  concerning all DFA model input variables, including 

interest rates and capital market returns. The methodologies also apply to any financial intermedi- 

ary, such as a bank or a life insurance company. It would be interesting, indeed it is imperative, to 

make bootstrap-based inferences in such settings and compare their effectiveness and applicability 

with classical parametric,  trend-based, Bayesian, and other methods of analysis. The boots t rap 

computer  program (using Mathematica 3.0 programming language, see Appendix A) tha t  we have 

developed here to provide smooth estimates of an empirical cdf, BESE, and boots t rap confidence 

intervals could be easily adapted to produce appropriate estimates in Dynamic Financial Analysis, 

including regulatory calculations for Value at  Risk and Asset Adequacy Analysis. It would also 

be interesting to investigate further all areas of financial managenmnt where our methodologies 

may hold a promise of future applications. For instance, by modeling both the asset side (interest 

rates and capital market  returns) and the liabilities side (losses, mortality, etc.), as well as their 

interactions (crediting strategies, investment strategies of the firm) one might create nonparametric 

models of the firm, and use such a whole-company model to analyze value optimization and solvency 

protection in an integrated framework. Such whole company models are more and more commonly 

used by financial intermediaries, but we propose an additional level of complexity by adding the 
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bootstrap estimation of their underlying random structures. This methodology is immensely com- 

putationally intensive, but it holds great promise not just for internal company models, but also for 

regulatory supervision, hopefully allowing for better oversight avoiding problems such as insolven- 

cies of savings and loans institutions in the late 1980s, life insurance firms such as Executive Life 

and Mutual Benefit, or catastrophe-related problems of property-casualty ilmurers. 
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Appendix A 
The computer program written in Mathematica 3.0 programming language used to calculate bootstrap replications, 
bootstrap standard errors estimates (BESE) and bootstrap 95% confidence intervals using the method of  percentiles. 

(* Here we include the standard statistical libraries to be used in our bootstraping program *) 

<< St atist Its" Oat aManlpulat ion" 
<< Statlst its" ContlnuousDIst ribut ions" 

(* Here we define resampling procedure "boot[]" as well as empirical cdf functions: usual empirical cdf "empcdf[]" and its 
smoothed version "cntcdf[]" . Procedure "inv[]' is used by "boot[l" *) 

(* Arguments for the procedures are as follows: 
"boot[]" has two arguments: "lst" (any data list of numerical values) and ,"nosam" (number of  resamples, 

usually nosum=Length[lst] 
"empcdf[]" and "cntcd.f[]" both have two arguments "lst" (any data list of  numerical values) and "x" -the 

numerical argument of function *) 

Inv[x_, Intx_] :=  

Module[{nlx. Length[Istz]}, 
If Ix**0, lstx[[1]], 
I£[x =- I, istx[[nlz]] , k - Floor[(nlz- I) z]; 
((nlx-1) x-k) (istz[[k+2]] -Istx[[k+1]]) +Istx[[k+l]] 

] 
] 

]; 

boot[ix_, nosam] l- Module[{tt, i, a, n, lstz}, Istz - Sort [lx] ; n - Length[Ix] ; 
Istx= Platten[{{21stx[[l]] - Istx[[2]]}, Istx, {21stx[[n]] -Istz[[n- 1]]}}]! 
tt a Rand~Array[UniformDistrlbution [0, i], nosam] ; 

F o r [ i  - 1, i <* nonam , i++ ,  o [ i ]  - l n v [ t t [  [ i ]  ] ,  l s t x ]  ] ; 
Table[all], {i, I, nonam}] 
]~ 

c n t c d f  [ 1 s t _ ,  z_ ]  : .  Modu le  [ { 1 1 .  S o r t  [ Z s t ] ,  n - L e n g t h [ L s t ] ,  I = 1 } ,  

l l * F 1 9 t t e n t ( ( a l X [ [ X ] ] - 1 1 [ [ 2 ] ] } ,  lX,  { 2 1 1 [ [ . ] ] - 1 1 [ [ n - = ] ] ) ) ] ~  
While[£ <- n+2 && x>ll[[i]], £++]; 
If[i == I# 0, If[i-= o÷3, I, ((x- 11[[1- 1]]) / (11[[i]] -11[[i- 1]]) ÷ (i-2)) / (o+ I)]] 
]J 

empcdf  l i s t _ ,  x_] : °  M o d u l e [ { l l  * S o r t  l i n t ] ,  o • L e n g t h [ l o t ] ,  I . 1 ) ,  
wh£1e [£ <0 n &a x > 11 [ [ i ]  ] ,  i . . ]  I 

I £ [ i - : l ,  O, ( i - l )  / n )  
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(* Here we define the bootstrap replications of statistic them[] 
Procedure "them[]" calculates a statistic from the list of date "Ist". 
Procedure "replicate[]" replicates the statistic "thctaN" "norep" number of frees using procedure "boot []" with 
parameters *lst" and 'nosam". As a result of this procedure we obtain a list of replicated values of "them[]" *) 

t h e t a [ I s t _ ]  i -  I ;  (* d e f i n e  your There s t a t i s t i c  b e t e l )  

r e p l i c e t e [ l s t _ ,  norep_,  n o s ~ ]  s .  Module[{l ,  1 1 -  {}}, For [ i -  1, i ~ o n o r e p ,  i÷÷,  
11 - F l e t t e n [ { l l ,  t h e t e [ b o o t [ l s t ,  uosam]]}] 
] ;  11 

1; 

(*Here we calculate BESE and 95% confidence inte~al b~ed on the method of percentiles ~ r  1000 replications *) 

(* run " r e p l i c a t e [ l "  p rocedure ,  s t o r e  the  r e s u l t s  in  v a r i a b l e  " l i s t o f r e p "  *) 

l l e t o f r e p  - r e p l i c e t e [ I s t ,  norep ,  noeam]; 

(* BESE*) 
V e r i e e c e [ l i s t o f r e p ]  

(* 95 i con f idence  i n t e r v a l  f o r  number of  r e p l i c e t i o e s  (eorep) -1000 *) 

95 c l  - { l i s t o f r e p [ [ 2 5 ] ] ,  l l s t e f r e p [ [ 9 ? 5 ] ] }  

©G.Rempala. TheaboveprogramwaswdttcnusingMathematica 3~ programminglanguage. Ma~emat~aisa registe~d 

trademurk of Woffram Research, Inc. 
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Appendix B Maaoach~oottS BZ Data 

NO Injury Type Total Amt Paid Policy Limit 

1 05 $393 $20 ,000  
2 O1 $20 ,000  $500 

$500 3 06 $20,000 
4 08 $900 $20 ,000  
5 06 

05 
7 05 
8 05 

9 05 
i0 
ii 

05 
05 
04 12 

13 05 
14 05 
15 
16 

05 
05 
05 I? 

$i,000 
$I,000 
~1,250 
~1,500 
$1 ,500  
$1,525 
~1,631 
$1,650 
$1,700 
$1,700 
~I,800 
$1,950  
$2 ,000 

$20 ,000  
$20,000 
$20,000 
$20 ,000  
$20,000 
$20 ,000  
$100,000 
$20,000  
820 ,000  

$2 ,100  

$20 ,000  
$20,000 
$20 ,000  
$20 ,000  

1B 05 $25 ,000  
19 05 $2 ,007  $20 ,000  
20 05 $20 ,000  

05 
05 

21 
22 
23 

$2 ,100  
$2,100 
$2,250  05 

$20F000 
$20 ,000  
$20 ,000  
$20,000 24 05 $2 ,250  

25 05 $2 ,250  $20 ,000  
26 05 • $2 ,250 $20 ,000  

05 
05 

27 $2r270 
$2 ,300  28 

29 $2,300 05 

$20,000 
$20,000  

$2,500 

$20,000  
$20 ,000  30 05 82 ,375  

31 05 $2 ,450  $20 ,000  
32 05 $2 ,500 $20 ,000  
33 05 

05 $2,500 34 
$100,000 
$20,000 

35 06 $2,500 $20,000 
36 01 $2,600 $20,000 
37 05 $2,750 $20,000 
38 05 $2 ,800 $20 ,000  
39 05 $2 ,813  

05 
05 

40 
41 

$2,900 
$3,000 
$3,000 
$3r000 
$3,000 

42 05 
43 05 
44 05 
45 05 

$20 ,000  
$20 ,000  
$20 ,000  
820,000 
$20,000  
$20 ,000  
$20 ,000  
$20 ,000  

63 ,000 
46 05 $3 ,000  
47 05 83 ,000  $20 ,000  
48 06 $3 ,000 

$3r000 
$3~000 
$3,000  

49 06 
50 99 
51 06 

$20 ,000  
$50 ,000  
$20 ,000  
820 ,000  

52 05 $3 ,000  $20 ,000  
53 05 820 ,000  83 ,000 

$3 ,000  $20 f000  
$20 ,000  

54 04 
55 05 $3 ,150  
56 05 $3 ,250  $20 ,000  
57 05 $3 ,300  

$3 ,300  
$20 ,000  

58 05 $20 ,000  
59 05 $3 ,300  $20 ,000  
60 04 $20 ,000  
61 

$3 ,500  
$3 ,500  04 $ 1 , 0 0 0 , 0 0 0  

$20 ,000  62 05 $ ] , 5 0 0  
63 01 $3 ,500  $20 ,000  
64 05 $3 ,500  $20 ,000  
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Appendix B Massachusetts sI Data 

NO Z~Jury Type Total Amt Pald Policy Limit 

65 05 $3,500 $20,000 
66 05 $3,500 $20,000 
67 05 $3,900 $20,000 
68 05 
69 

$3r500 $20f000 
04 63,500 $20,000 

70 05 03,500 $20,000 
?1 09 $3,500 $50,000 
72 99 $3,500 $20f000 
73 05 $3,650 $20,000 
74 05 $3,700 $20,000 
75 05 $3,700 $20,000 
76 05 $3,700 $20,000 
77 05 $3,750 $20,000 
78 05 $3,750 $20,000 
79 05 $3,750 $20,000 
80 05 $3,750 $20,000 
01 06 $3,900 $20,000 
82 05 $4,000 620,000 
83 05 $4,000 $ 1 , 0 0 0 , 0 0 0  
84 05 $4,000 $20,000 
e5 05 $4,000 $20,000 
86 05 $4,000 $20,000 
57 04 $4,000 $20,000 
85 06 $4,000 $20,000 
89 05 $4,000 $20,000 
90 05 $4,000 $20,000 
91 05 $4~000 
92 

q2o,ooo 
09 $4,000 $20,000 

93 05 $4,000 $20,000 
94 01 $4,000 $20,000 
95 05 $4,000 $25,000 
96 05 $4,250 $20,000 
97 06 $4,250 $20,000 
98 06 $4,278 $50,000 
99 05 $4,396 $25,000 
i00 05 $4,400 $20,000 
101 05 $4,476 $20,000 
102 05 $4,500 $20,000 
103 05 $4,500 $20,000 
104 05 $4,500 $25,000 
105 05 $4,500 $20,000 
106 i0 $4,500 $20,000 
107 0S $4,500 $20,000 
i08 05 $4,521 $20,000 
109 05 $4,697 $20,000 
110 05 $4,700 $20,000 
iii 05 $4,700 $20,000 
112 05 $4,700 $20,000 
113 04 $4,725 $20,000 
114 05 $4,750 $20,000 
115 05 $5,000 $20,000 
116 05 $5,000 $I00,000 
117 05 $5,000 $20,000 
118 05 $5,000 $20,000 
119 05 $5,000 $20,000 
120 05 $5,000 $20,000 
121 05 $5,000 $20,000 
122 04 $5,000 $20,000 
123 05 $5,000 $20,000 
124 05 $5,000 $20,000 
125 05 $5,000 $20,000 
126 05 $5,000 $20,000 
127 09 $5,000 $20.000 
120 06 $5,000 $20,000 
129 04 $5,000 $20,000 
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NO Injury Type 

130 01 
131 05 
132 05 
133 05 
134 05 
135 05 
136 06 
137 05 
138 05 
139 05 

Total Amt Paid 

$5,000 
$5,000 
$5,000 
$5,000 
$5,000 
$5,000 
$5,100 
$5,200 
$5,200 
$5,200 

140 05 $5,200 
141 05 $5,200 
142 05 $5,200 
143 05 
144 05 
145 05 
146 05 
147 05 
148 05 
149 05 
150 05 
151 04 
152 05 
153 05 
154 05 
155 05 
156 04 
157 05 
158 04 

05 
05 

159 
160 
161 05 
162 04 
163 05 
164 05 
165 05 
166 06 
167 05 
168 05 
169 05 
170 05 
171 05 
172 05 
173 05 
174 05 
175 05 
176 05 
177 06 
178 05 
179 05 
180 05 
181 06 
182 05 
183 05 
104 06 
185 05 
166 05 
187 05 
100 05 
189 01 

$5,200 
$5,225 
$5,250 
$5,250 
$5,292 
$5,296 
$5,300 
$5,300 
$5,300 
$5,333 
$5,333 
$5,333 

Policy Limit 

$20,000 
$20,000 
$20,000 
$20,000 

$100,000 
$20,000 
$20,000 
$20r000 
$20,000 
$20,000 
$20,000 
$20,000 
$20,000 
$20,000 
$20,000 
$20,000 
$ 2 0 , 0 0 0  
$20,000 
$20,000 
$20,000 
$ 2 0 , 0 0 0  
$20,000 
$20,000 
$20,000 
$20,000 

$5,333 $20,000 
$5,344 $20,000 
$5,366 $20,000 
$5,400 
$5,400 
$5,415 
$ 5 , 4 9 7  
$5,500 

$30,000 
$20,000 
$20,000 

$100,000 
$20,000 

$5,500 $20,000 
$5,500 $20,000 
$5,500 
$5,500 
$5,566 
$5,600 
$5,716 
$5,714 
$5,714 
$5,714 
$5,714 
$5,714 
$5,714 
$5,725 
$5,750 
$5,750 
$5,750 
$5,652 
$5,898 
$5,900 
$5,964 
$5,990 
$6,000 
$6,000 
$6,000 
$6,000 
$6,000 

190 05 $6,000 
191 05 $6,000 
192 05 $6,000 

05 193 
194 05 

$6,000 
$6,000 

$20,000 
$20,000 
$20,000 
$25,000 
$20,000 
$20,000 
$20,000 
$ 2 0 , 0 0 0  
$20,000 
$20,000 
$20,000 
$20,000 
$ 2 0 , 0 0 0  

$100,000 
$20,000 
$ 2 0 , 0 0 0  
$ 2 0 , 0 0 0  
$20,000 
$20,000 
$20,000 
$25,000 
$20,000 
$ 2 0 , 0 0 0  
$20,000 
$20,000 
$20,000 
$20,000 
$20,000 
$20,000 
$20,000 
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NO Z n J u r y  ' l E e  T o t a l  Amt P a i d  P o l i c y  L i m i t  

195 06 $6,077 $20 ,000  
196 05 96 ,078  $20 ,000  
197 05 $6,131 $20 ,000  
195 05 $6,166 $20,000  
199 05 $6,166 $20,000  
200 05 $6 ,169  $20 ,000  
201 05 $6 ,171  $20 ,000  
202 05 
203 05 

$6 ,208  
$6 ,263  

05 

$20 ,000  
$20 ,000  

$6 ,519  

204 05 $6 ,318  $20 ,000  
205 05 $6 ,399  $20 ,000  
206 05 $6 ,413  $20 ,000  

'207 05 $6 ,500  $20 ,000  
200 05 $6 ,500  $20 ,000  
209 05 $6 ,500  $20 ,000  
210 05 $6 ,500  $20 ,000  
211 05 $6 ,500  $20 ,000  
212 05 $6,500  $20 ,000  
213 05 $6 ,500  $20 ,000  
216 05 $6 ,500  ~20 ,000  
215 99 $6 ,500  $20 ,000  
216 05 $6 ,500  $20 ,000  
217 05 $6 ,500  $50 ,000  
218 05 $6 ,500  $25 ,000  
219 05 $6 ,500  $20 ,000  
220 $6 ,500  $50 ,000  
221 
222 $6 ,536  

$20 ,000  

$6 ,703  

$20 ,000  04 
223 05 $6 ,545  $20 ,000  
224 01 $6 ,558  $25 ,000  
225 06 $6 ,600  $20 ,000  
226 05 $6 ,600  $20 ,000  
227 06 $6 ,620  $20 ,000  
228 05 $6 ,700  $20 ,000  
229  06 $20 ,000  
230 01 $6 ,743  $25 ,000  
231 05 $6 ,750  $20 ,000  
232 05 $5 ,800  $20 ,000  
233 
236 

$6 ,870  
$6 ,693 

04 
05 

$ 2 0 , 0 0 0  
$50 ,000  

235 05 $6 ,098  $SO,O00 
236 05 $6 ,907 $20 ,000  
237 05 $6,933 $20,000 
238 05 $6 ,935  $100 ,000  
239 05 $6 ,077 $100 ,000  
240 05 $7 ,000  $100 ,000  
241 05 $7 ,000  $20 ,000  
242 05 $7 ,000 $20 ,000  
263 05 $7 ,000  $20 ,000  
246 05 $7 ,000  $20 ,000  
245 05 $7 ,000  $20 ,000  
246 05 $7 ,000  $20 ,000  
247 05 $7 ,014  $20 ,000  
248 04 $7 ,043  $20 ,000  
249 05 $7 ,079  $20 ,000  
250 05 $7 ,118  $20 ,000  
251 05 $7 ,163  $20 ,000  
252 05 $7 ,191  $20 ,000  
253 05 $7 ,200  $20 ,000  
254 05 $7 ,200  $20 ,000  
255 05 $7 ,250  $20 ,000  
256 04 $7,252  $20 ,000  
257 05 $7 ,304  $20 ,000  
258 01 $7 ,412  $25 ,000  
255 Ol $7 ,425  $100 ,000  
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NO Injury 'l'y1;~e Total Am~ Paid Policy Limit 

260 05 
262 
2 6 2  
263 
264 
265 
266 
267 
268 
269 
2 7 0  
271 

05 
05 
05 
05 
05 
05 
05 
05 
89 
O1 
05 

$ 7 f 4 3 2  
$ 7 , 4 4 4  
~ 7 , 4 ~ 7  
$7,500 
$7,500 
$7,500 
$7,S00 
$7r5oo 
$7,500 
$7,500 
$7,564 
$7,820 
$7,629 

$20,000 
$50,000 
$20,000 
$20,000 
$ 2 0 , 0 0 0  
$25,000 
$20,000 
$20,000 
$20,0O0 
$20,000 
$20,000 
$20,000 
$20,000 272 18 

273 05 $7,657 $20,000 
274 01 $ 7 , 6 7 0  

$ 7 , 6 7 1  
$20,000 
$20,000 275 05 

276 04 $7,696 $100,000 
277 04 $7#700 $100,000 
278 05 $7,750 
279 05 
280 

$7~754 
$7,820 05 

$20,000 
$20,000 
$20,000 

281 04 $7,059 $20,000 
282 05 $7,888 $20,000 
203 01 $7,873 $25,000 
204 05 $7,920 $100,000 
205 05 $7,922 $20,000 
286 05 $7 ,9 t5  $20,000 
287 05 $7,954 $20,000 
288 05 $7,981 $20,000 
289 05 $8,000 $100,000 
290 05 $8,000 $100,000 
291 $0,000 $20,000 
292 10 $8,013 $50,000 
293 05 $8,073 $20,000 
294 05 $8,200 $20,000 
298 Ol 08,298 $25,000 
296 06 $8,300 $20,000 
297 Ol $0,420 $20,000 
298 05 $8,485 820,000 
299 05 $8,500 $50,000 
300 05 $8,500 $20,000 
301 99 $8,500 $20,000 
302 05 $8,500 $20,000 
303 05 $0,515 $20,000 
304 05 $8,612 $20,000 
305 05 $8,834 8100,000 
306 05 $8,806 $20,000 
307 05 $8,785 $20,000 
308 05 $8,786 $20,000 
309 05 $8,794 $20,000 
310 05 $8,005 $20,000 
311 OS $8,815 $20,000 
312 05 $8,856 $20,000 
313 05 $8,061 $20,000 
314 06 $8,882 $20,000 
315 05 $8,911 $20,000 
316 05 $8,914 $20,000 
317 05 $8,988 . $20,000 
318 05 $9,000 $100,000 
319 05 $9,000 $20,000 
320 05 $9,000 $20,000 
321 05 $9,000 $20,000 
322 05 $9,000 $20,000 
323 05 $9,000 $0 
324 05 $9,000 $20,000 
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Appendix B Massachusetts BZ Data 

NO Injury T'y'~;~e Total Amt Paid Policy Limit 

325 05 $9,000 $20,000 
326 05 $9,000 $20,000 
327 05 $9,000 $20,000 
328 05 $9,009 $20 ,000  
329 05 $9,020 $20,000 
330 05 $9,030 $25,000 
331 05 $9,051 $20,000 
332 05 $9,053 $20 ,000  
333 05 $9,073 $100,000 
334 05 $9,100 $20,000 
335 01 $9,129 $20,000 
336 05 $9,200 $20,000 
337 05 $9,208 $20,000 
338 05 $9 ,300  $20 ,000  
339 05 $9 ,355  $20 ,000  
340 05 $9,356 $20 ,000  
341 05 $9,392 $20,000 
342 05 $9,395 $I00,000 
343 05 $9,423 $20,000 
344 05 $9 ,428  $20 ,000  
345 05 $9 ,451  $100 ,000  
346 05 $9,500 $20,000 
347 05 $9,500 $20,000  
348 05 $9,602 $20,000 
349 05 $9,710 $20,000 
350 04 $9,881 $25,000 
351 05 
352 00 

$9~909 
$10 ,000  

$20 ,000  
$20,000 

$12,500 

353 06 $10,000 $20 ,000  
354 05 $10,000 $ I 0 0 , 0 0 0  
355 06 $10,000 $20 ,000  
356 04 $10 ,106  $20 ,000  
357 05 $10 ,229  $20 ,000  
358 05 $10,330 $20 ,000  
359 05 $10 ,331  $20 ,000  
360 05 $10,400 $20 ,000  
361 05 $10,505 $100 ,000  
362 04 $10 ,555  $20 ,000  
363 01 $10 ,645  $20 ,000  
354 08 $10,861  $20 ,000  
365 05 $10,960 $20 ,000  
366 05 $11,000 $50 ,000  
367 04 $11 ,000  $100 ,000  
368 05 $11,032 $20,000 
369 05 $11,144 $20,000 
370 05 $11,166 $20,000 
371 01 $11,262 $25,000 
372 05 $11,344 $50,000 
373 99 $11,353 $20,000 
374 05 $11,305 $20,000 
375 01 $11,500 $20,000 
376 05 $11,626 $20,000 
377 05 $11,035 $20,000 
378 99 $11,906 $20,000 
379 05 $11,991 $20,000 
300 04 $12,000 $20,000 
381 05 $12,000 $20,000 
382 05 $12,000 $20 ,000  
383 05 $12,214 $i00,000 
384 05 $12,274 $20,000  
385 05 $12,374 $20,000 
386 99 $12 ,380  $20 ,000  
307 03 
388 05 
309 05 

$12,509 
$12 ,621  

$20 ,000  
$20 ,000  

$100 ,000  
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NO XnJury T3'~,e Total Amt Paid Policy Limit 

390 05 $12,756 $20,000 
391 05 $12,859 $20,000 
392 05 $12 ,908  $20 ,000  
393 07 $13,000 $20,000 
394 05 $13,009 $20,000 
395 05 $13,299 $50,000 
396 04 $13,347 $20,000 
397 05 $13,500 $20,000 
398 05 $13,570 $20,000 
399 99 $13,572 $i00,000 
400 04 $14,181 $20,000 
401 05 $14,700 $20,000 
402 05 $14,953 $20,000 
403 05 $15 ,500  $20 ,000  
404 05 $15,500 $i00,000 
405 05 $15,765 $20,000 
406 18 $16,000 $20,000 
407 05 $16 ,668  $20 ,000  
408 05 ~16,794 $20,000 
409 04 $17,267 $I00,000 
410 
411 
412 
4,13 

99 
99 
15 
05 

414 99 
415 05 
416 07 
417 08 
418 08 
419 07 
420 07 

$18,500  
~15,500 
$19 ,000  
$19 ,012  
$20 ,000  

~20 ,000  
~20 ,000  
820 ,000  
$20 ,000  
$20 ,000  

$20 ,000  $20 ,000  
$20 ,000  $20 ,000  
$20 ,000  $20 ,000  
$20,000 $20 ,000  
$20 ,000  $20 ,000  
$20 ,000  $20 ,000  

421 03 $20 ,000  $20 ,000  
422 06 $20 ,000  $20 ,000  
423 16 $20 ,000  $20 ,000  

$20 ,000  $20 ,000  
$20 ,000  $20 ,000  
$20 ,000  $20 ,000  
$20 ,000  $20 ,000  
$20 ,000  $20 ,000  

424 05 
425 06 
426 05 
427 09 
420 05 
429 01 
430 05 
431 99 
432 02 

$22 ,652  
$2&,500 $50 ,000  
$25 ,000  $25 ,000  
$25 ,000  

$100 ,000  

$100 ,000  
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Injury Type Deecription 

01 MINOR LACERATIONS/CONTUSIONS 

02 SERIOUS LACERATION 

03 SCARRING OR PERMANENT DISFIGUREMENT 

04 NECK ONLY SPRAIN/STRAIN 

05 BACK OR NECK & BACK SPRAINISTRAIN 

06 OTHER SPRAIN/STRAIN 

07 FRACTURE OR WEIGHT BEARING BONE 

08 OTHER FRACTURE 

09 INTERNAL ORGAN INJURY 

I 0 CONCUSSION 

11 PERMANENT BRAIN INJURY 

12 LOSS OF BODY PART 

13 PARALYSIS/PARESIS 

14 JAW JOINT DYSFUNCTION 

15 LOSS OF A SENSE 

16 FATAL I TY 

17 DENTAL 
18 CARTILAGE/MUSCLE/TENDONILIGAM~NT INJURY 

19 DISC HZRNIATION 

20 PREGNANCY RELATED 

21 PRE-EXZSTING CONDITION 

22 PSYCHOLOGICAL CONDITION 

30 NO VISIBLE INJURY 

99 OTHER 

205 



206 


