Risk and Uncertainty: A Fallacy of Large Numbers

(Reprint)

by Paul A. Samuelson

RISK AND UNCERTAINTY:
 A FALLACY OF LARGE NUMBERS'

Abstract

Experienco shows that while a single ovent may have a probability spread, a large ropetition of independent single events gives a greater approach toward certainty. This corresponds to the mathematically provable Law of Large Numbers of James Bernouli. This ralid property of large numbers is often given an invalid interpretation. Thus people say an insurance company reduces its risk by increasing the number of ships it insures. Or thes refuse to accent a mathematically favorable bet, but afrec to a large enough repetition of such bets: e. g., beliering it is almost a sure thing that there will be a million heads when two million symmetric coins are tossed even though it is highly uncertain there will bo one head out of two coitus tossed. The correct relationshlp (that an insurer reduces tatal risk by subdividing) is nointed out and a strong theorem is proved: that a person whose utility schedule prevents him from ever taking a specific favorable bet when offered ouly once can never rationally take a large sequence of such fair bets, if expectod utility is maninized. The intransitivity of altermative decision criteria-such as selecting out of any tro situations that one which will more probably leave you better off-is also demonstrated.

1. Introduction. "There is safety in numbers.n 'So people tell one. But is there: And in what possible sense?

The issue is of some importance for economic behavior. Is it true that an insurauce company reduces its risk by doubling the number of ships it insures ; Can one distinguish between risk and uncertainty by supposing that tho former can count on some remorseless cancelling ont of actuarial risks?

To throw light on a facet of this problem, I shall formulate and prove a theorem that should dispell one fallacy of wide currency.
2. A test of valor. - S. Llam, already a distinguished mathematician when we were Junior Fellows together at Harvard a quarter century ago, once said: © I define a coward as someone who will not bet when you offer him two-to-one odds and let him choose his side.n

With the centuries old St. Petersburg Paradox in my mind, I pedantically corrected lim: : lou mean will not make a sufficiently small bet (so that the change in the marginal utility of money will not contaminate his choice). .
3. A guinea pig speafs. - Recalling this conversation, a fow yuars ago I offered some lunch colleagues to bet each $\$ 200$ to $\$ 100$ that the side of a coin they specified rould not appear at the first toss. One distingui-

[^0]shed scholar - who lays no claim to advanced mathematical skills - gave the following answer:
"I won't bet because I would feel the $\$ 100$ loss more than the $\$ 200$ gain. But I'll take you on if you promise to let me make 100 such bets.

What was behind this interesting answer He, and many others, have given something like the following explanation. *One toss is not enough to make it reasonably sure that the law of averages will turn out in my favor. But in a hundred tosses of a coin, the law of large numbere will make it a darn good bet. I am, so to speak, virtually sure to come out ahead in such a sequence, and that is why I accept the sequence while rejecting the single toss."
4. Maxtmum loss and probable loss, - What are we to think about this answer? Here are a few observations.
a) If it hurts much to lose $\$ 100$, it must cortainly hurt to lose 100 $x \$ 100=\$ 10,000$. Yet there is a distinct possibility of so extreme a loss. Granted that the probability of so long a riun of repetitions is, by most numerical calculations, extremely low : less than 1 in a million (or $1 / 2^{100}$), still, if a person is already at the very minimum of subsistence, with a marginal utility of income that becomes practically infinite for any loss, be might act like a minimarer ${ }^{1}$ and eschew options that could involve any losses at all. [Note: increasing the sequence from $n=100$ to $n=1,000$ or $\mathrm{n} \mapsto \rightarrow \infty$, will obviously not tempt such a minimazer - even though the probability of any loss becomes gigantically tiny].
b) Shifting your focus from the maximum possible loss (which grows in full proportion to the length of the sequence), you may calculate the probability of making no loss at all. For the single toss, it is of course one-half. For 100 tosses, it is the probability of getting 34 or more correot hesds (or, alternatively, tails) in 100 tosses. By the usual binomial calculation and normal approximation, this probability of making a gain is found to be very large, $P_{100}=.99+$. If this has not reduced the probsbility of a loss by enough, it is evident that by increasing n from 100 to some larger number will succeed in reducing the probability of a loss to as low as rou want to prescribe in advance.
c) Indeed, James Bernoulli's so-called Law of Large Numbers guarantees you this: « Suppose I offer you favorable odde at each toss so that your mathematical expectation of gain is k per cent in terms of the money you put at risk in each toss. Then you can choose a long-onough sequence of tosses to raake the probability as near as you like to one that your earuings will be indefinitely near k per cent return on the total money you put at risk $>$.

[^1]
Abstract

5. Irrationality of comiounding a mistake. - The *virtual cortainty n of making a large gain must at first glance coom a poworful argumont in favor of the decision to contract for a long sequence of favorable bets. But should it be, when we recall that virtual oer'jainty cannot be complete certainty and realize that the improbable loss will be very great indeed if it doos occur 9

If a person is concerned with maximizing the expected or average value of the utility of all possible outcomes ${ }^{1}$ and my colleague assures me that he wants to stand with Daniel Bernoulli, Bentham, Ramsey, v. Noumann, Marschak, and Savage on this basic issue-it is simply not sufficient to look at the probability of a gain alone. Each outcome must have its utility reokoned at the appropriate probability; and when this is done it will be found that no sequence is acceptable if each of its single plays is not acceptable. This is a basic theorem.

One dramatic way of seeing this is to go back to the St. Petersburg Paradox itself. No matter how high a price my colleague agreed to pay to engage in this classic game, the probability will approach one that he will come out as much ahead as he cares to specify in advance. ${ }^{\text {a }}$

6. AN ALTERNATIVE AXIOM SYSTEM OF MAXIMIZING PROBABILTTIES.

No slave can serre two independent masters. If one is an expected-utility. masimizer he cannot generally be a maximizer of the probability of some gain. However, economists ought to give serious attention to the merits of various alternatire axiom systems. Here is one that, at first glance, has superficial attractiveness.

Ariom: In choosing between two décisions, A and B, select that one which will more probably leave you better off. L.e., belect A over B if it is more probable that the gain given by A is larger than that on B, or, in formulas:

$$
\begin{aligned}
& \text { Prob }\left\{A^{\prime} \text { s gain }>B^{\prime} \text { s gain }\right\}>\begin{array}{l}
1 \\
2
\end{array} \\
& \text { [abbreviate the above to } A>B] .
\end{aligned}
$$

Similarly with respect to any pair of (A, B, C, D, ...).
In terins of the above system, call A agreeing to bet on one toss; B deciding not to toss at all; and C agreeing to a long sequence of tosses. Then clearly,

$$
A=B, C>B, C>A
$$

So my friend's decision to accept the long sequence turns out to agree with this asiom system. However, if D is the decision to accept a sequence of two tosses, my friend said he would not undertake it; and jet, in this

[^2]systom, $D>B$. Moroover, call E the decision to accept the following bet: you win a million dollars with probability .51 but lose a million with probability . 49 . Fow conld accept such a bet; and of those who could, few would. Yot in this axiom systam $\mathrm{E}>\mathrm{B}$.

Thore is a further fatal objection to this axiom system. It neod not satisty transitivity relations among 3 or more choices. Thus, it is quite possible to have $X>Y, Y>Z$ and $Z>X$.

One oxamplo is onough to show this pathologinal possibility. Let X be a situation that is a shade more likoly to give you a small gain rather than a large loss. By this axiom system you will prefer it to the Situation Y, which gives you no chance of a gain or loss. And you will prefer Y to Situation Z, which makes it a shade more likely that you will reccive a small loss rather than a large gain. But now let us compare Z and X. Instead of acting transitively, you will prefer Z to X for the simple reason that Z will give you the better outcome in every situation except the one in which simultaneously the respective outcomes would be the small gain and the small loss, a compound event whose probability is not much moro than about one-quarter (equal to the product of two independent probabilities that are respectively just above one-balf).
7. Proof that dnfairness can only breed unfairness. - After the above digression, there remains the task to prove the basic theorem already enunciated.

Thcorem. If at each income or wealth level within a range, the expected utility of a certain investment or bet is worse than abstention, then no sequence of such independent ventures (that leaves one within the specified range of income) can have a favorable expected utility.
'lhus, if you would always refuse to take favorable odds on a single toss, you must rationally refuse to participate in any (finite) sequence of such tosses.

The logic of the proof can be briefly indicated. If you will not accept one toss, you cannot accept two - since the latter could be thought of as consisting of the (unwise) decision to accept one plus the open decision to sccept a second. Even if you were stuck with the first outcome, you would cut your further (utility) losses and refuse the terminal throw. By extending the reasoning from 2 to $3=2+1, \ldots$, and from n-1 to n, we rule out any sequence at all.'

[^3]
RISK AND UNCERTAINTY

8. Conclusions. - Now that I have demonstrated the fallacy that there is safety in numbers - that actuarial risks must allegredly cancel out in the sense relevant for investmont decisions - 3 few general remarks may be in order.

Firstly, when an insurance company doubles the number of ships it insures, it does also double the range of its possible losses or gains. (This does not deny that it reduces the probability of its losses.) If at the same time that it doubles the pool of its risks, it doubles the number of its owners, it has indeed left the maximum possible loss per owner unchanged; but - and this is the gern of truth in the expression «there is safety in numbers, - the insurance company has now succeeded in reducing the probability of each loss; the gain to each owner now becomes a more certain one.

In short, it is not so much by adding new risks as by subdividing risks among more people that insurance companies reduce the risk of each. To see this, do not double or change at all the original number of ships insured br the company: but let each owner sell half his shares to each new owner. Then the risk of loss to each owner per dollar now in the company will bave indeed been reduced.

Undoubtediy this is what my colleague really had in mind. In refusing a bet of $\$ 100$ against $\$ 200$, he should not then have specified a sequence of 100 such bets. That is adding risks. He should have asked to subdivide the risk and asked for a sequenco of 100 bets, each of which was 100th as big (or $\$ 1$ against $\$ 2$). If the money odds are favorable and if we can subdivide the bets enough, any expected-utility-maximizer can be coaxed into a favorable-odds bet - for the obvious reason that the utility function's currature becomes more and more negligible in a sufficiently limited range around any initial position. For sulticiently small bets we get more-than-a-fair game in the utility space, and my basic theorem goes nicely into reverse. ${ }^{1}$

Secondly, and finally, some economists have tried to distinguish betreen risk and uncertainty in the belief that actuarial probabilities can reduce risk to virtual certainty. The limit laws of probability grind fine but they do not grind that exceeding fine. I suspect there is often confusion between two similar-sounding situations. One is the case where the owner of a lottery has sold out all the tickets; the buyers of the tickets then face some kind of risky uncertainty, but the owner has completely cancelled out his risks whatever the draw may show - which is not a case of risk as against uncertsinty, but really refleets a case of certainty without any risks at all. Another casf; is that in which the management of Monto Carlo or of the anmbers game* do business with their customers. The management makes sure that the odds are in their favor: but they can nerer make sure that a ran of luck will not go against them and break the house foven though " sey can reduce this probability of ruin to a positive fraction).

In erery actuarial situation of mathematical probability, no matter

[^4]how large tho numbers in the samplo, wo are loft with a finite sample: in the appropriate limit law of probability there will necessarily be left an epsilon of uncertainty even in so-called risk situations. As Gertrude Stein never said: Epsilon ain't zero. This virtual remark has great importance for the atterapt to create a difference of kind between risk and uncortainty in the economics of investment and decision-making.
P. A. Samuelison

Cambridge, Massachusetts Institute of Technology.

[^0]: S See the artick of M. B. De Fioetti, " La decisione nell incertezza, " in Scientia, April-mey 1963. p. 61.
 : I might have quibbled that the chap could have a corner in his Bernoulli-Ramsey. Neumann utility foxction at bis initial point, and thus escape the charge of cowardice or (even worse) irrativality. This. however, would have been a quibble since Ulam could move him from the corner by giving him dollar and then test his "courage." As for the "St Petecshure Paredon." sootnote 2, Sestion 5 .

[^1]: In the Literature of atatistical deciaion malciog, a minimater is defined as one who acte so as to insure that his maximum poesible loss is at a minimom.

 - I assume the coin is a reasonably naw one. If it has developed some blas toward landing on one side, and if prior experimentation leads you to prefor one side to bet on, sou can hope to do eren better than as given above. Noto: for defniteness I asame that when sou decide to bet on e sequence of tosses, you are beld to the full contract and camot ont out in midstream; nor can you learn the coin's blas in tho early toeses, since you are toli ituuediately the result of your 100-toss play.

[^2]: ${ }^{1}$ I. c. he arta to macimize $U=p_{1} U_{1}+p_{1} U_{1}+\ldots+p_{n} U_{n}$ whore U_{1} represents the atdility of eech possible outcome and pi represonts its reepeotive probability.
 ${ }^{2}$ The : Paredor. (Daniel Barnoulli, St. Petersbarg, 1738) says, that turnig a coln unth head appears for the Arst time. and to get S1. or $2.4 . \ldots$ 2n-1 2. ... according to the number of taras regoired, is a favorable bet no matter how large the amount to bo paid for it To araid spech a paradox, D. Bernoulli sugseeted dealing with the utilitios rather than with moner rafees (that is, with a concave scale with diminishing incromenta). To get rid of any finifill tarinity in the problem, see the modifed sequence of finlte tosses for the Petersburs situacion in P. A. Samuolson, The SI. Pecersburg Paradox as a Divergent Double Limil Internaiional Economic Review , Vol. 1, N. 1, January, 1960), pp. 31-37.

[^3]: - Nathematically, if rou start at a known utility Ut, the probability of onding after one renture with et least \dot{U}_{t+1} can be written as $\mathrm{F}\left(\mathrm{U}_{t+1}, U_{t}\right)$. By hypothests, in the utility metric each tos* is an unfair game (even though it may be raore than fafr ame in the mones metric). Or

 $$
 E\left(U_{t+1} / U_{t}\right)=\int_{-\infty}^{\infty} U_{t+1} d F\left(U_{t+t}, U_{t}\right) U<t .
 $$

 It is an easy theorem that repeated (identical and indepondent) fair games field a tair fame; and repeated unfair ganies yield an untalr game. Speolifcally, the probability of cetting at least $U_{t+k}=\Sigma$, after starting out with $U_{t}=. \bar{Y}$ and playing a sequenco of k games, is given by
 $F(X, Y)^{\circ} G(X, Y)$ is the integral $\int_{-\infty}^{\infty} F(X, S) d G(S, Y), \quad A n d$, if $\int_{-\infty}^{\infty} X d F(X, Y)<Y$ then necessarily $\int_{-\infty}^{\infty} X d F_{i}\left(X, Y:<Y\right.$ and $\ldots \int_{\infty}^{\infty} X d F k(X, Y)<Y$.

[^4]: C. my cited 1960 paper. I should warn against undue extrapolation of my theorem. It doed not say one ar ast alwass refuse a sequence if onc refuses a single venture: if, at hitber income lerels the single tosses become accoptable, and at lower levols the penalty of rosses doss not be ome inflite, there inight well be a long sequence that is optional.

