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Abstract 

The mathematics of excess of loss coverages and retrospec- 

tive rating involves heavy algebra, mainly because the indemnity 

payment under such contracts assumes different functional forms 

in different parts of the loss size. ,This paper presents a 

graphical approach to the theory, in which the indemnity payment 

under various conditions is represented by the areas of regions 

in a graph described by the cumulative distribution function of 

size of loss. Many intricate formulas and relations occurring in 

the two subjects, some expressible algebraically only in very 

complicated forms, can be understood simply and clearly through 

the pictures. Treated visually in this paper are many 

mathematical relations and results included in the examination 

syllabus. 



1. INTRODUCTION 

The theory of excess of loss coverages and retrospective 

rating involves rather complicated mathematics. The underlying 

ideas in most cases are relatively simple, but the heavy algebra 

is often a great mental burden to the actuary and the student. 

This paper applies a graphical technique to excess of loss 

coverages and retrospective rating. Most of the algebraic 

results on these topics are capable of being interpreted in terms 

of the graphs. The advantages of this approach are that the 

results so derived are, for most people, easier to understand and 

that formulas can be easily remembered and written down. 

Graphical methods are widely used in mathematics and 

statistics to present visually ideas which would otherwise be 

abstruse. Many mathematical ideas have geometric as well as 

symbolic interpretation. For example, the integral of a 

positive-valued function can be regarded as the area under the 

curve representing the function as well as the antiderivative of 

the function. The use of diagrams and graphs to present 

numerical information in statistics is more well known. Graphs 

in statistics are also used to explain ideas such as density 

functions and cumulative distribution functions. In actuarial 

science graphical methods have not been extensively utilized. 

The graphical device we are going to present is for the 

explanation of the underlying mathematical ideas. It will not 
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only provide powerful insight into the abstract relations, but 

also make the mathematical procedure much easier to follow 

compared with algebraic manipulations. For those who always 

prefer algebra, it will serve at least as a very useful 

supplement to the predominantly algebraic treatment that has been 

given to the subject in the literature. 

To start with, consider a large number of losses, of sizes 

Xl, X2, ***I Xk, occurring nI, n2, . . . . nk times, respectively, 

with n = nl+...+nk. In Figure 1 we represent these losses by 

means of a cumulative frequency curve, in which the abscissa 

represents the loss size, and the ordinate represents the 

cumulative loss ci = nl+...+ni, ilk. This representation is 

different from the usual form in statistical textbooks, where the 

abscissa and ordinate are reversed, but agrees with the 

representation in Snader. See also Philbrick (1985). 

Figure 1 

A Cumulative Frequency Curve 

0 
Cumulative claim CO"nt 
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The curve is a step function (with argument along the vertical 

axis) which has a jump of "i at the point Xi. Consider the 

shaded vertical strip in the graph. It has an area equal to 

niXi+ Summing all such vertical strips we have 

Total amount of loss = nlxl+...+nkxk 

We may therefore interpret the area of the vertical strip 

corresponding to Xi as the amount of loss of size Xi, and the 

total enclosed area below the cumulative frequency curve as the 

total amount of loss. In fact, we have a new way of viewing the 

cumulative frequency function curve. This curve can be 

constructed by arranging the losses in ascending order of 

magnitude, and laying them from left to right with each loss 

occupying a unit horizontal length. 

Now let X be a random variable representing the amount of 

loss incurred by a risk. Define the cumulative distribution 

function (cdf) F(x) as 

F(x) = Prob(X ( x). 

Figure 2 shows the graph of a continuous cdf. Consider the 

vertical strip in the graph, with area xdF(x). If we sum up all 

these strips, we will obtain the expected value of X, i.e. 

E(X) = lrn xdF(x) , 
0 
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Figure 2 

Cdf Curve and Expectation 

which is represented by the enclosed area below the cdf curve 

(the shaded area in the graph). We may interpret the expected 

loss as composed of losses of different sizes, and the strip 

xdF(x) as the contribution from losses of size between x and 

x+dx. Throughout this paper, an expression such as E(X) 

represents the expected value of a random variable X. 

Limited oavmenta. As an immediate application consider a 

coverage which pays for losses up to a limit L only. Figure 

3(a) shows that a loss of size not more than L, such as S1, is 

paid in full, while a loss of size S2, which is greater than L, 

is paid only an amount L. By summing up vertical strips as 

before, except that strips with length greater than L are limited 

to length L, we obtain the expected payment per loss under such a 

coverage as the shaded area in Figure 3(a). 
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Figure 3 

Expected Loss with (a) Limit and (b) Deductible 

0 
$1 1 

Deductibles. Likewise a coverage which pays for losses 

subject to a flat deductible D and up to limit L has expected 

payment per loss represented by the shaded area in Figure 3(b). 

Size- As another application we first derive an 

integration identity. Consider Figure 4(a). The vertical strip 

has area xdF(x) and the horizontal strip, G(x)dx, where 

G(x) = 1 - F(x). 

Summing up the vertical strips and the horizontal strips 

separately we have 

J" xdF(x) = /=G(x)dx = E(X), 
0 0 
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because each of the integrals is equal to the 

the cdf curve, which, as we have seen, also 

expected loss E(X). The equality can also be 

derived via integration by parts. 

Figure 4. 

enclosed area below 

represents the 

algebraically 

Size and Layer Views of Losses 

The two modes of summation correspond, in fact, to two views 

of the losses. The vertical strips group losses by size, whereas 

the horizontal strips group the loss amounts by layer. We may 

therefore call them the size method and the layer method. It is 

often more convenient to evaluate the expected loss in a layer by 

the layer fashion, i.e. summing horizontal strips, than by the 

size method, i.e. summing vertical strips. For example, consider 

the layer of loss between a and b in Figure 4(b). The expected 

loss in this layer is represented by the shaded area. The layer 

method of summation gives simply 
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;G(x)dx. 
a 

To express this integral by the size method is more difficult. A 

moment's reflection, with the help of Figure 4(b), yields the 

following expression for the integral: 

;xdF'(x) + bG(b) - aG(a). 
a 

Again, the equality of the two expressions can be established via 

integration by parts. 

The more complicated expression derived from the size method 

is the form commonly found in the literature. This is because, 

although the integral associated with the layer method is simple 

in form, G(x) is a function that is generally more difficult to 

integrate. This disadvantage disappears, however, when the 

distribution is given numerically, as, for example, when actual 

experience is used. The retrospective rating Table M and Table L 

have been constructed by the layer method; see Simon (1965) and 

Skurnik (1975). We shall give the graphical interpretation 

later. 
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2. EXPECTED VALUX PIUZMIUM 

Generally, given a loss X, a coverage would pay an amount 

depending on the value of X. We may represent this function by 

s(X) ' The expected payment per 1055 is 

E(gW 1 = I” q(x)dFt”(x). 
0 

The number of losses incurred by a risk in a policy period is a 

random variable, N, 50 that the total loss payment is 

which is the sum of a random number of random variables. It is 

customarily assumed that the ,105s severity X is distributed 

independently of the 1055 frequency N. With this assumption it 

can be shown that the expected payment in a policy period is 

E(Y) = WW.E(s(~) 1, 

which says that the expected value pure premium of a risk is the 

product of average frequency of 1055 and the average severity. 

See for example Miccolis (1977). 

Increased Limits Coveraag. A liability insurance coverage 

is generally written to cover a 1055 in full up to a specified 

maximum dollar amount for any one 1055. Let k be such a policy 

limit. We can express the payment function g(X; k) of a 1055 

X as 
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x, O<X<k 
g(X; k) - 

k k c X. 

The expected payment per loss under this coverage can be 

expressed as 

E(g(X; k)) = : xdF(x) + kG(k). 
0 

The formula is demonstrated graphically in Figure 5, where 

integral on the right is represented by the shaded area below the 

broken vertical line, while the term kG(k) is represented 

simply by the rectangle above the line. 

Figure 5 

Losses with Indemnity Limited to k 

a Fir) - 1 

Rates are generally published for some standard limit called 

the basic limit; let this be b, say. Increased limits rates 

are expressed as a factor, I(k), called the increased limits 

factor, to be applied to the basic limit pure premium rate. Thus 
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I (W = [E(g(X: k)).E(N)J / [E(g(X; b)).E(N)I 

= E(g(X: k)) / E(g(X: b)), 

which depends on the distribution of size of loss only: see 

MiCCOliS (1977). The situation is demonstrated in Figure 6, 

where the increased limits factor is the ratio of the area of the 

shaded area up to k, to the shaded area up to b. The picture 

also displays another property of theeincreased limits factor. 

Miccolis (1977) shows that the derivative of I(k) can be 

expressed as 

I’(k) = G(k) / E(g(X: b) I. 

Figure 6 

Increased Limits Factor 

cumu1ativ* cl*im frequency 

The picture shows that when k is increased by dk, the area 

representing the expected payment is increased by G(k)dk. Hence 

the result shown above. 
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hiccolis (1977) also discusses a consistency test for 

increased limits factors. A picture will provide much better 

insight into this question. In Figure 7 the enclosed region 

below the cdf curve is divided into horizontal panels which, 

for convenience of exposition, have equal width. The horizontal 

lines serve to subdivide a loss, such as L, into layers. With 

layers of equal width, the picture makes it quite plain that the 

expected payment in any layer is less than that in a preceding 

layer. If the layers are of d.ifferent widths, this property 

holds between the layers for the expected payment per unit 

coverage. Hence the increased limits factor must increase at a 

decreasing rate as the increased limit increases. This is the 

consistency test. ActuaEly Figure 7 also shows that this is a 

common sense argument: a loss must have penetrated a lower layer 

before it reaches an upper layer. 

Figure 7 

Consistency of Increased Limit Factor 

0 1 
cumu1at1ve Chin! frequ*ncy 
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Excessof An excess of loss contract 

generally-covers losses in excess of a retention R, subject to 

a maximum limit L. The payment under such a contract may be 

expressed as a function of the loss X: 

I 

0, O<XsR 

h(X; R, L) = X - R, R<XsS 

L, s < x, 

where 

S = R+L. 

Figure 8 

Losses with Retention and Limit 

0 A D F 
culnulativ* Cldm frequency 

The situation may be described by means of the graph in Figure 8. 

For a loss such as represented by the line L1 or LR, the 

payment is represented by that portion of the line which falls 

inside the shaded region BGEC. The expected payment under such 

contract has been derived in the literature by the size method, 
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and can be expressed in many different forms; the following are 

given in Miccolis (1977). 

E(h(X; R, L)) = - R)dF(x) + u;(S) 
R 

= /" xdF(x) - r tF1s) - F(R) 1 + x(S) 
R 

= Is xdF(x) + SG(S) - RG(R). 
R 

Figure 8 gives a simple graphical explanation of these 

integration results. They can be expressed in terms of the areas 

of the various regions shown in the graph, respectively as 

follows. 

E(h(X; R, L)) = BHC + HGEC 

= ADCB - ADHB + HGEC 

= ADCB + DFEC - AFGB. 

Each of these is equal to the shaded area in the graph. 

It is, of course, much easier to express the expected 

payment of such an excess of loss contract by the layer method: 

E{h(X: R, L)) = JR G(x)dx. 
S 

The result is plain from Figure 8; it can also be derived from 

the integral expressions given above via integration by parts. 

Relations in the mathematics of excess of loss coverages 

could take on very complicated algebraic form, sometimes 

concealing the simplicity of the underlying idea. For example, 
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Patrik (1978) gives an expression for the expected loss excess of 

R subject to a upper limit of L in terms of E(X)-R and other 

quantities. This is 

E(X)-R + Prob(XSR).(R-E(XIXSR))) 

- Prob(XLR+L).[E(XIX2R+L) - (R+L)J. 

This can be demonstrated by the graph.in Figure 9 where A, B, 

C, D, represent areas of t'he respective regions. The above 

relation says simply that 

B = (A + B + C) - (A + D) + D - C, 

because 

B = expected excess loss 

AtBtC= E(X), i.e. expected loss 

AtD-R 

D - Prob(X I R) . (R - E(XIXsR)) 

c = Ptob(X 2 RtL) [E(XIXkR+L) - (RtL)] 

as is clear from the picture. 

Figure 9 

Excess of Loss Coverage 

0 Flr) 1 



3. TREND 

The effects of economic and social inflationary trends are 

to increase the size of losses. These effects act differently on 

the first dollar and the excess of loss coverages. Suppose the 

effect of inflation is, after a period of time, to change a loss 

of size x to a loss of size xl, such that 

x' = a(x)- 

Assume that a(X) is a monotonic function, and let Fl(xt) be 

the cdf of xl, i.e. the cdf after inflation. Then 

Fl(x’) = F(x), 

and 

Fl( a(X)) = F(x). 

The effect of inflation is demonstrated in Figure 10, where the 

lower curve represents the cdf before inflation, and the upper 

curve represents the cdf after inflation. The graph shows that 

a loss AB of size x becomes a loss AC of size x1. When, 

starting from the cdf curve F(x), each size of loss, as 

represented by the vertical distance from the horizontal axis to 

the curve F(x), is extended according to the function 

X' = a(X), we obtain the cdf curve after inflation. A simple 

case of inflation is one in which the loss is increased by a 

uniform multiplicative factor a, so that 

xl = ax 
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Figure 10 

Effect of Inflation 

/ 

/ 

- 

Cumulative claim frcqusmY 

In this case the cdf curve after inflation, F'(x*), is 

obtained by extending each loss before inflation by a constant 

factor a-l. 

It is well known that an excess of loss coverage is more 

seriously affected by inflation (assuming, for example, a uniform 

rate for all loss sizes): see, for example, Ferguson (1975). 

Figure 11 gives a dramatic demonstration of the leveraged effect 

of inflation on the excess of loss coverage. Let the rate of 

inflation be uniform for all sizes of loss, and the cdf curve 

after inflation be constructed from the curve before inflation as 

described above. The additional amount of loss resulting from 

inflation is shown in Figure 11 as the more heavily shaded 

region. If the retention R remains fixed, the expected excess 

loss payment is increased proportionally much more than indicated 

by the general rate of inflation. 
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Figure 11 

Effect of Inflation on Excess Losses 

0 
cMIu1ativ* claim frequency 

Since the total increase by inflation is divided between the 

basic limit loss and the excess loss, thebasic limit loss is 

expected to incur an inflationary increase at a lower rate than 

the total limit rate. This topic has been treated in Finger 

(1976). Figure 12 gives a graphical demonstration of this 

effect and also shows the following algebraic result (see, for 

example, Miccolis, 1977): 

E(g(X’: b) 1 - a E(g(X; b/a)). 

The picture says that the new expected basic limits loss, 

represented by the shaded area, is equal to the old expected loss 

up to the limit b/a, represented by the dotted area, extended 

by a factor a-l. A vertical line through the two-tone shaded 

region in Figure 12 bears this proportionality. 
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Figure 12 

Effect of Inflation on Basic Limit bosses 

0 1 
CWUlatiVe cldm fr*qumcy 

The study of the effect of inflation on excess of loss 

coverages can lead to rather complicated algebraic expressions. 

For example, Ferguson (1975) relates the pure premium of an 

excess of loss coverage with indexing to the pure premium of one 

without indexing, the difference being expressed as a discount on 

the coverage without indexing. In an excess of loss coverage 

with indexing, the retention increase with inflation. A moment's 

reflection shows that the discount can be determined by comparing 

the expected loss under one contract with that under another. 

Let g be the average excess loss trended and indexed, R be 

the retention, a-l be the proportional increase due to 

inflationary trend, A' be excess cost (per claim) on claims 

that exceed the retention as a result of inflation, and k be 

the multiplying factor which is equal to G(R). Then Figure 13 

shows that 
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E(Lo) - k? + k(a - l)R + k A' , 

E(LI) = k i? , 

where E(Lo) is the expected excess 'Loss without indexing and 

E(LI) the expected excess loss with indexing. Thus 

E(Jq) 
D-l:- 

E(Lo) 

1 
- l- 

1 + R(a-1)/z + l/E' 

I 

D - l- 
1 + R(a-1)/z 

as proposed by Ferguson (1975), neglecting the relatively small 

term involving I. 

Figure 13 

Indexing Excess of Loss Coverage 

B I 
c\nu1at1ve claim fr*queney 
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4. RRTROSPECTIVR RATING 

Excess Pure Premium RatiQ . pe first consider the 

mathematics of the excess pure premium ratio, commonly denoted by 

(a(r). This is defined to be a risk's average amount of loss in 

excess of r times'its expected loss, divided by the expected 

loss. It is also known as the table M charge, while the table 

M savings at the entry ratio r (meaning r times the expected 

loss) is defined as the expected amount by which the risk's 

actual loss falls short of r times the expected loss, divided 

by the expected loss. More precisely, let 

A = actual loss of the risk: 

E = E(A), the expected loss; 

Y * A/E, actual loss in units of expected loss: and 

Ft.1 - the cumulative distribution function of Y. 

Then 

and 

903 = ,” (Y - r)dFW) 
r 

*W = F (r - y)dF(Y). 
0 

These functions are illustrated in Figure 14, where the cdf F(y) 

is graphed against the entry ratio y. The functions P(r) and 

$(r) are represented by the areas indicated in the graph. A 

number of mathematical properties are now clearly demonstrated. 
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Figure 14 

Functions in Retrospective Rating 

(1) By definition, the bounded area below the F(x) curve is 

equal to 1. Hence p(O) - 1. 

(2) I(r) is a decreasing function of r, and g(r) + 0 as 

r + -. 

(3) J, 03 is an increasing function of r; its value is 

unbounded as r + m 

(4) Consider the samll strip at y = r in the graph. This shows 

that an increment dr from r will yield a decrease 

G(r)dr in 4(r). Hence 

9’ (r) = (d/dr) p(r) = -G(r). 

A second differentiation yields 



where f(r) is the density function of the entry ratio, 

a result well known in the literature [Valerius 1942). 

Similarly, we may deduce from Figure 14 that 

and 

q’ W = (d/W rl(r) - F(r) 

11*'(r) = f(r). 

(5) Consider the area of the rectangle on the interval from 0 

to r in Figure 14. This gives the relation 

r - [l - PO31 + *WI, 

or 

JI W - p(r) + r - 1; 

this is a fundamental relation connecting $02 and P(r). 

A result more general than (5) above can also be obtained 

quite easily from Figure 15. Let 

r1E if A s rlE 

L- A if rlE -z A I r2E 

r2* if r2E < A. 

Then the cdf of L/E can be represented by the solid line in 

Figure 15. The shaded area represents the quantity E(L)/E and 
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we have 

EiL)/E - $(rl) + P(r2) = 1, 

or 

E(L)/E = 1 + Jl(rl) - P(r2). 

see Skurnick (1974). 

Figure 15 

Expectation of L in Retrospective Rating 

0 1 

petrosoective Ratinq. In the Workers' Compensation 

Retrospective Rating Plan, the retrospective premium R is 

given by 

R = b + CA, 

subject to a maximum premium G and a minimum premium H, 

where b is the basic premium and C is the loss conversion 
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factor (LCF), and where b is alternatively represented by 

b = BP, 

with P as the standard premium (before any applicable expense 

gradation) and B as the basic premium ratio. Let k be 

actual loss that will produce the maximum premium: 

and let 

G = b + ck 

rG = LJE. 

Similarly, define LB to be 

Ii = b + CLB, 

rli = k/E. 

Further, let 

Then the retrospective premium can be represented by 

R = b + CL. 



For ease of exposition, we ignore the tax factor. If we identity 

rR and rC with rl and r2 respectively, then Figure 16 shows 

the quantity E(L) as the area of the shaded region OFDCBA. It 

then follows that 

E(L) = E - g(rG)E + Q(rH)E 

= E-I, 

where 

I - Ew(rG) - $trH)l 

is called the net insurance charge of Table M. If the plan is 

to be balanced, the expected retrospective premium must be equal 

to the sum of the total expenses, e, and the expected loss, E: 

E(R) - e + E. 

On the other hand, it also follows from the above that 

E(R) - b + C(E - I). 

Equating these two quantities we obtain the basic premium in 

terms of the expense, expected loss, and the net insurance 

charge: 

b + C(E - I) = e + E 

or 

b = e - (C - l)E + I. 
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A formula relating the charge difference to the minimum 

premium, expected loss and expense provision has been used to 

facilitate the determination of retrospective rating values from 

specified maximum and minimum premiums. This formula can be 

derived with the help of Figure 16. 

Figure 16 

Retrospective Rating Premium 

Consider the equation 

R -b + CL 

Taking expectation and representing the expectation E(L) by 

the shaded area of Figure 16 we have 

e+E = b + CE [OFDCBA]. 
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On the other hand, we have for the minimum premium H: 

H = b + CrH 

= b + CE [OFEAJ. 

Taking the difference on both sides of the two equations above we 

have 

(e + E) - H = CE [BEDC] 

= CE [ptrH) - g3(rG)1' 

This formula, together with the formula 

G - H = CE(rG - rH)# 

which is much easier to derive, can be used to determine the 

rating values given the maximum and minimum premiums. One may 

interpret the difference in charge, gtrH) - P)(rC), as indicated 

by the dotted area in Figure 16, to be the difference between 

the expected retrospective premium and the minimum premium, apart 

from a conversion factor CE. 

Construction. A Table M has been constructed by 

Simon (1965); see also Skurnick (1974). The algebra involved in 

the construction procedure appears to be rather complicated. 

Actually the idea is very simple when this is. expressed in a 

graph. Figure 17 shows a cumulative frequency curve constructed 

from observed data on risks within a premium group. Let the loss 

ratios be arranged in ascending order: RI, R2,..., Rk, with Ri 
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Figure 17 

Table M Construction 
Rb _____ - _______ ---_-------w--- 

hd 
a 4 

---- -_______- ----------- 
----- _______ ---------- 

a 
k 
P 
t: 
B 
< 
l 

I I c\tsu1.tivm Glum count 

occurring Ni times. Also let the total number of claims be 

T = Nl+...+Nk. The cumulative freguency up to Ri, i.e. 

Ti - N1+...+Ni is plotted against Ri for each i so as to 

form a step function whose abscissa in the interval (Rir Ri+1) 

is the cumulative frequency Tit as shown in Figure 17. We may 

think of this graph as a rescaled version of the cdf curve 

plotted against the entry ratio. It now appears quite clearly 

that the value of !ii for the entry ratio corresponding to Ri 

is simple the shaded area in Figure 17 divided by the total 

enclosed area below the cumulative frequency curve. The entry 

ratio corresponding to Ri is simple Ri divided by the average 

loss ratio IN~R~/T. 

A convenient procedure to construct a Table M is to sum the 

horizontal strips downward, cumulatively, starting from the strip 

corresponding to (Rk-1, Rk), down to the strip corresponding to 

(0, R1). It is convenient also to sum the frequencies downward, 
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cumulatively, because the cumulative sum of such frequencies down 

to and including Ni+= is the length of the strip corresponding 

to the interval (Ri, Ri+l). Thus let 

i 
Sl,i - jilNj ) 

which is represented by the length of the strip on (Ri, Ri+l)' 

and 

S2,i = S2,1+1 + S1,i+1 (Ri+1 - Ri), 

which describes the fact that the sum of the strips above Ri is 

obtained by adding the strip on (Ri, Ri+l) to the sum of the 

strips above Ri+1* The value of 9 at the entry ratio 

corresponding to Ri is then S2,i/S2,0, with S2,0 equal to 

the total area of all the strips. The entry ratio corresponding 

to Ri is obtained by normalization: 

S2 0 
ri - Ri /(&I. 

S1,o 

We may think of Ri as loss expressed in an arbitrary unit and 

the denominator as the expected loss in this unit. The procedure 

is described in algebraic form by Skurnick. It is easy to see 

that this is a layer approach. 

Table. A retrospective rating plan may provide for a per 

accident limit on losses. The table of charges which 

incorporates this per accident limitation is called the Table L, 
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which has been described by Skurnick (1974). Let A be the 

actual unlimited loss, as before, A* be the actual limited 

loss, and F*(.) be the cdf of Y* = A*/E. Then the Table L 

charge is defined as (Skurnick, 1974) 

P*(r) = - r)dF*(y) + k, 
r 

where k is the loss elimination ratio 

k = [E - A*]/E 

Further, the Table L savings are defined as 

$* I Ir (r - y)dF*W. 
.O. 

In Figure 18 the curves for F(y) and F*(y) are plotted against 

the entry ratio r - A/E. F(y) is necessarily situated above 

F*(Y) r and by the definition of r, the enclosed area below the 

F(y) curve is equal to 1, while the enclosed area below the 

F*(y) curve is 1 - k. The area of the shaded belt is equal to 

the loss elimination ratio k. Many of the properties of the 

Table L charges, as presented by Skurnick (1974), can be easily 

obtained from the graph. For example, consider the limited loss 
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r1E 

L = A* 

r2E 

if A* ( rlE 

if rlE < A* I r2E 

if r2E < A*. 

Figure 13 

Table L Functions 

cmu1ative claim frequency 

Then E(L*)/E is represented by the dotted area in Figure 18. 

We deduce that 

E(L*]/E - JI* (rl) + [p*(r2) - k] = 1 - k 

and hence 

E(L*)/E = 1 + Q* (rl) - P*(r,), 

as in Skurnick (1974). As another example, identify r1 and r2, 

respectively, with rH and rG as defined before. Also let 

R* = b* + CL* 
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be the retrospective premium with per accident limitation. Then, 

combining the equation 

E(R*) = e + E = b* + CErH + CE[$W(rH) -,P(rC)I, 

which follows from the fact that the expected retrospective 

premium is b* plus the dotted area (converted), with the 

equation 

H = b* + C-H I 

we have the Table L version of a familiar formula 

e+E-H = CE [9*&f) - (a*(Q)], 

the last factor on the right being represented by the dotted area 

between rl = rH and r2 = rC in Figure 18. As a final example 

of the use of Figure 18, one may consider the constructions of 

Table L. This can be done in a manner similar to the 

construction of Table M, except that the cumulative fregaency 

function of the limited loss is used, and the final result has to 

be adjusted for the loss elimination factor k. 

AswnDtotic Behavior. As the premium size becomes large, the 

limiting form of the charge takes on a simple function. The 

graphs in Figure 19 help us to understand the asymptotic 

behavior. Consider the case with no per loss limitation. 

117 



Figure 19 

Limiting Case in Retrospective Rating 
l b e 

Lomaer Leasea With loss 
nearly qua1 all equal 1Imitat1on 

0 1 0 1 I 

Cumulative claim frequency * 

Figure 19(a) shows a cdf curve for losses which are nearly equal; 

here the p(r) region almost forms an rectangle. When all losses 

are equal, the cdf F(x) is a step function with a single jump 

at x = 1, as shown in Figure 19(b). The Table M charge P(r) 

at the entry point r is represented by the area of the 

rectangle between r and 1. Hence 

1 

l-r rll 
90-I = o 

1 -cr. 

The limiting case with per loss limitation is shown in Figure 

19 (c) . Here the cdf F*(x) is shown as the horizontal line 

x=1-k, where it has its single jump. The Table L charge P*(r) 

is the area of the rectangle between r and l-k, plus the loss 

elimination ratio k. Thus 

t 

l-r 
P)*(r) = 

k 

r < l-k 

l-k I r. 
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Other Anwlications. There are other interesting 

mathematical relations in the mathematics of retrospective 

rating, and many such intricate relations are presented in 

Carlson (1941). It is a great burden to follow the algebra of 

the many complicated relations presented there. Most of these, 

however, become much clearer if we make use of the graphical 

approach adopted here. Rather than go through the numerous 

equations and formulas in Carlson (1941), we present a particular 

example to illustrate the power of our graphical method. Let us 

pick, almost at random, equations (15a) in Carlson, which can be 

explained as follows. Let the minimum premium be greater than 

the basic premium, and the maximum premium be equal to the 

standard premium: 

H > B, G = P. 

Then, in Carlson's notation, 

P - Rv = C(P's - H's) 

= C(P' - H') - C(H'p - P'p). 

These equations follow immediately from Figure 20 with the 

following interpretation of Carlson's notations: 

P = b + CP' 

Rv = expected retrospective premium 

= b + C[OECBAH'] 
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Figure 20 

Relationships in Retrospective Rating 

P’s = OBP’ 

H’s - OAH’ 

H'P * ADF 

P'P = BCF. 
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5. CONCLUSION 

This paper presents a graphical approach to the mathematics 

of excess of loss coverages and related topics. The graphs serve 

to simplify and clarify much of the complicated algebra which has 

hitherto been the sole vehicle to express the mathematical ideas 

involved. We hope this will become a useful addition to the 

actuarial tool box of the student and the practicing casualty 

actuary alike. This technique has been used in explaining the 

principles of coinsurance and its many properties (Lee, 1985). 

Philbrick (1985) uses the same idea to describe size of loss 

distributions. 
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