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Abstract 

For decades the lognormal random variable has been widely used by actuaries to analyze heavy-tailed insurance 
losses.  More recently, especially since ERM and Solvency II, actuaries have had to solve problems involving the 
interworking of many heavy-tailed risks.  Solutions to some of these problems may involve the relatively 
unknown extension of the lognormal into the multivariate realm.  The purpose of this paper is present the basic 
theory of the lognormal random multivariate. 
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1. INTRODUCTION 

The lognormal random variable  σμ,~NXeY   is familiar to casualty actuaries, especially to those in 

reinsurance.  It vies with the Pareto for the description of heavy-tailed and catastrophic losses.  

However, unlike the Pareto, all its moments are finite.  Moreover, the formula for the lognormal 

moments is rather simple:   2σμ 22nnn eYE  .  So its first two moments are   2σμ 2 eYE  and 

    22 σ2σ2μ22 eYEeYE   .  Hence, its variance is      1
2σ2  eYEYVar , a formula so well known 

that actuaries commonly refer to 1
2σ e  as the “CV squared” of the lognormal.  But in recent years, 

with the rise of ERM and capital modeling, actuaries have needed to model many interrelated 

random variables.  If these random variables are heavy-tailed, it may be apt to model them with the 

lognormal random multivariate, which we will now present.1 

                                                 
1 The standard reference for the lognormal distribution is Klugman [1998, Appendix A.4.1.1].  On the subject of heavy-
tailed distributions, see Klugman [1998, §2.7.2] and Halliwell [2013]. 
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2. MOMENT GENERATION AND THE LOGNORMAL MULTIVARIATE 

The lognormal random multivariate is xy e , where 
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x  is an n×1 normal multivariate with 

n×1 mean μ and n×n  variance Σ.  As a realistic variance, Σ must be positive-definite, hence 

invertible.2 

 

The probability density function of the normal random vector x with mean µ and variance Σ is:3 
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dVfx .  The single integral over n  represents an n-multiple integral over each 

xj from –∞ to +∞; ndxdxdV 1 .  The moment generating function of x is 
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x , where t is an n×1 vector.  Partial derivatives of the moment generating 

function evaluated at 10t  n  equal moments of x, since: 
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The lognormal moments come directly from the normal moment generating function.  For example, 

if jet  , the jth unit vector, then        jX
j YEeEeEM jj   x

x
ee .  Likewise, 

                                                 
2 For a review of positive-definite matrices see Judge [1988, Appendix A.14]. 
3 See Johnson and Wichern [1992, Chapter 4] and Judge [1988, §2.5.7]. 
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     kj
XX

kj YYEeeEM kj  eex .  So the normal moment generating function is the key to the 

lognormal moments. 

 

The moment generating function of the normal random vector x is: 
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A multivariate “completion of the square” results in the identity: 

          ttμt2ΣtμxΣtμxxt2μxμx 11    

We leave it for the reader to verify the identity.  By substitution, we have: 

 
 

    

 
      

 
     

2ttμt

2ttμt

2ttμt

x

ΣtμxΣtμx
2

1

x

ttμt2ΣtμxΣtμx
2

1

x

xt2μxμx
2

1

1

2

1

2

1

2

1
t

1

1

1














































e

e

edVe

dVe

dVeM

n

n

n

n

n

n






x

 

The reduction of the integral to unity in the second last line is due to the fact that 

 
     ΣtμxΣtμx
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n
 is the probability density function of the normal random vector with 

mean tμ   and variance Σ. 
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So the moment generating function of the normal multivariate  ,μ~ Nx  is   2ttμtt  eM x .  As 

a check:4 
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And for the second derivative: 
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The lognormal moments follow from the moment generating function: 

        2μ2eeμee e jjjjjjjj eeMeEeYE j
X

j
  x

x  

The second moments are conveniently expressed in terms of first:  
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So,             1,   jkeYEYEYEYEYYEYYCov kjkjkjkj , which is the multivariate equivalent of 

the well-known scalar formula   1
2σ2  eeCV X .  The whole variance matrix can be expressed as 

                                                 
4 The vector formulation of partial differentiation is explained in Judge [1988, Appendix A.17]. 
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       nneEEVar 
 





  1yyy , where ‘◦’ represents elementwise multiplication (the Hadamard 

product).  Defining the diagonalization of a vector as  
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1  , we may express 

the variance in terms of the usual matrix multiplication as         yyy EdiageEdiagVar nn
  1 .  

Because   yEdiag  is diagonal in positive elements (hence, symmetric and positive-definite), 

 xVar  is positive-definite if and only if nne 
 1  is positive-definite.  Although beyond the scope of 

this paper, it can be proven5 that if Σ is positive-definite, as stipulated above, then so too is 

nne 
  1 .6 

3. CONCLUSION 

The mean and the variance of the lognormal multivariate are straightforward extensions of their 

scalar equivalents.  Simulating lognormal random outcomes is nothing more than exponentiating 

simulated normal random multivariates.  Therefore, one faced with the problem of modeling several 

heavy-tailed random variables in a mean-variance framework may find an acceptable solution in the 

lognormal random multivariate. 
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