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1 Introduction

For most actuarial modeling applications, model parameters are unknown and
must be estimated. If the associated parameter estimation error is not recog-
nized in the modeling, there is a good chance that a substantial portion of the
adverse (and favorable) loss potential will appear to be diversified away in the
aggregation process.

There is an old fable about buying eggs at 10¢ each and selling them for $1.00
per dozen, making up the difference by doing high volume. The misestimation
of the required price is not diversified by volume. Rather, it is a systematic
risk that has to be analyzed separately. Similarly parameter risk is a form of
systematic risk that does not diversify with volume, although it may diversify
across portfolios to some degree.

1.1 Sources of Uncertainty

Parameter risk is the uncertainty as to whether the parameters are appropriate
for the phenomenon that we are attempting to model. This uncertainty results
from the following factors:

Sampling risk Parameters are estimated from an observed sample. Parameter
uncertainty results from differences between that sample and the popula-
tion.

Data bias Parameters that are used to model outcomes of events that occur
during an exposure period are estimated from observations from an expe-
rience period. We often adjust these observations in an attempt to correct
for differences between the experience and exposure periods. The most
common such adjustment is the trending of claims amounts. This ad-
justment is intended to remove this bias created by cost level differences.
However, if the data are not adjusted correctly then a bias may persist
or possibly even be exacerbated. Furthermore, if the amount of the ad-
justment itself is uncertain, then it should be treated as an additional
parameter in the model.

The purpose of this Study Note is to demonstrate that for common approaches
for determining mean estimates of actuarial model parameters there exist asso-
ciated parameter uncertainty models. These uncertainty models are intended to
address Sampling Risk. However, this Study Note does not include details re-
garding the theory and derivation of those uncertainty models. Readers should
consult appropriate sources for that information.

There are (at least) four additional sources of uncertainty that should be rec-
ognized.
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Process risk refers to the inherent uncertainty of the insurance claims process.
Process risk can diversify away as discussed in Section 1.2.

Model misspecification is the risk that the wrong model is being estimated
and applied. For example, this is the risk that we use an exponential
model when the phenomenon follows a Pareto distribution. Insufficient
parameter identification is also a type of model misspecification.

Actuarial model risk is a broad form of misspecification risk that results
from the possibility that the entire actuarial modeling framework may not
be appropriate for the phenomenon being modeled. For example, we may
model ultimate losses using a loss development model when ultimate claim
amounts are not proportional to claim amounts as of the valuation date.
Discussion of this risk, which may be significant, is beyond the scope of
this Study Note.

Insufficient parameter identification results when we fail to recognize re-
lationships in our models or fail to recognize that certain elements of our
model are subject to uncertainty. Examples include:

� Our model may not recognize correlations between development fac-
tors in adjacent intervals.

� We may not recognize that relativity between the frequency for a
class and the frequency for a base class is an estimated parameter.

1.2 Principles of Diversification

One ad-hoc adjustment sometimes applied in order to capture parameter risk is
to add further spread to the frequency and severity distributions. However this
approach only adds process risk which will wash out with diversification.

To illustrate the problem, consider applying uncertain trend to the collective
risk model. Let N be the random variable for the number of claims, and denote
amount of the jth claim as Xj , where the claims amounts are all independent
and identically distributed (IID) and independent of N. We then have:

L =
N∑
j=1

Xj (1.1)

E(L) = E(N)E(X) (1.2)

V ar(L) = E(N)V ar(X) + E(X)2V ar(N) (1.3)

To understand the effect of diversification, consider the coefficient of variation
(CV, the ratio of standard deviation to mean) of L as a proxy for model uncer-
tainty. It is more convenient to calculate square of the CV s [CV (L)2] which is
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the ratio of the variance divided by the mean squared = V ar(L)/E(L)2:

CV (L)2 =
V ar(L)

E(L)2
(1.4)

=
E(N)V ar(X) + E(X)2V ar(N)

E(N)2E(X)2

=
V ar(X)

E(N)E(X)2
+
V ar(N)

E(N)2
(1.5)

Actuaries often assume that the CV is constant for severity distributions.

Likewise, for frequency distributions the ratio of variance to mean is often as-
sumed to be constant. We denote that ratio as VM and offer the following
examples:

� For a Poisson Distribution , VM is equal to 1.

� For the negative binomial distribution with parameters r and β, with mean
r and variance r(1 + β), VM is 1 + β, which is often taken as a constant
as volume changes.

In any case, VM is constant under the addition of IID exposure units.

By substitution, we have

CV (L)2 =
CV (X)2

E(N)
+

VM

E(N)
(1.6)

The numerators of (1.6) are constant under increase in exposure units and infla-
tion, so CV (L)2 decreases proportionally to the inverse of the expected number
of claims, and thus can get quite small as volume increases. This is the problem
with the collective risk model without parameter uncertainty. The volatility can
get unrealistically low leading the actuary to believe that there is no risk in large
insurance portfolios. This is a dangerous conclusion as it would lead the insurer
to write more business. If we also consider the risk that models for X and N
may be incorrectly specified (see the example of the eggs), we understand that
potential financial loss actually increases with volume.

1.2.1 Uncertain Trend Example

We provide the following example to demonstrate how the aggregate claims
random variable is affected by uncertain trend. Including the risk of uncertain
trend or other systematic risk will put a minimum on CV (L) that cannot be
reduced by diversification (i.e. it is not inversely proportional to E(N)).

Let J denote a random trend factor with mean 1.00. We then have the following
relationships:
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E(J) = 1 (1.7)

CV (J)2 =
V ar(J)

E(J)2

= V ar(J) (1.8)

Our claims model and its characteristic functions for the trended claim amount
K may be expressed as follows:

K = JL (1.9)

E(K) = E(JL)

= E(J)E(L)

= E(L) (1.10)

V ar(K) = V ar(JL)

= E(J)2V ar(L) + E(L)2V ar(J) + V ar(J)V ar(L)

= V ar(L) + E(L)2CV (J)2 + CV (J)2V ar(L) (1.11)

CV (K)2 =
V ar(L) + E(L)2CV (J)2 + CV (J)2V ar(L)

E(L)2

= CV (L)2 + CV (J)2 + CV (L)2 × CV (J)2 (1.12)

We can now observe that CV (K) has a minimum of CV (J) even if CV (L)2

goes to zero (as E(N) is large). That is, the uncertainty in the trend parameter
is not diversified away.

2 Parameter Estimation Methods

We address three common approaches of parameter estimation in this Study
Note. For the first two approaches there is a formal methodology for modeling
the distribution of parameter fitting errors. This provides quantification of
estimation risk.

Regression analysis is used to estimate the parameters of a dependency rela-
tionship. Although the category of regression analysis includes non-linear
approaches, this Study Note focuses on linear approaches.
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Maximum likelihood estimation is most commonly used in estimating fre-
quency and severity distributions. The resulting parameters are referred
to as maximum likelihood estimators (MLEs).

Although the last approach is less formal, it is no less subject to parameter risk
and in fact, it may be subject to greater parameter risk.

Model free methods are commonly used by actuaries in certain applications
such as estimation of claim development factors.

3 Parameter Uncertainty Models

3.1 Uncertainty in Regression Parameters

When the data displays dependencies and is (approximately) normally dis-
tributed after accounting for those dependencies, actuaries will often use re-
gression to estimate parameters. A common example exists with the modeling
of the relationship between claim amounts (X ) and time (t) which is often
modeled using the following relationship:

Yi = lnXi = β0 + β1ti + εi (3.1)

where β0 is often referred to as the intercept and β1 is often referred to as the
slope or regression coefficient.

We observe the following about this relationship:

� Using the log-transform of claim amounts implies that claim values are log-
normally distributed. This may be appropriate if the Xis are individual
claim observations but possibly not if they are averages.

It also implies that the growth in claim amounts is exponential rather than
linear. This is a generally accepted assumption.

� Exponentiation of the regression coefficient β1 less unity (i.e. eβ1 − 1)
represents an estimate of the annual rate of severity trend.

� E(Yi|ti) = β0 + β1ti, often written as µi, is the mean of the distribution
of the logs of the claim amounts at time ti.

We should recognize that regression techniques not only provide estimates of
parameters such as β1 and quantities such as µi but also the uncertainty of those
estimates. More specifically, for a regression on N data points, the estimated
standard deviation of the regression error term, εi, of the regression may be
expressed as:

σ̂y =

√
SSE

N − 2
(3.2)
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We denote the sample standard deviation1 of the observed times (tis) as σt. The
estimators then have the following properties which are discussed in textbooks
on regression.

� The standard error of b1 (the estimator of β1) may be estimated as

σ̂b1 =
σ̂y

σt
√
N − 1

. (3.3)

The residuals of b1 after subtracting β1 and scaling by the standard error
of b1 follow a Student’s t-distribution with N − 2 degrees of freedom.

� The (1− α)% confidence interval is equal to

b1 ± tN−2,1−α
2
σ̂b1 (3.4)

� The standard error of mi, the estimator of µi obtained by substituting bs
for βs, is calculated as follows:

σ̂µi = σ̂y

√
1 +

1

N
+

(ti − t)2
(N − 1)σ2

t

(3.5)

Similar to equation 3.3, the scaled residuals of µi also follow Student’s
t-distribution with N -2 degrees of freedom.

- We can observe that, as N becomes large, σ̂µi approaches σ̂y.

- The standard error increases as ti is further from t.

- The (1− α)% prediction interval is equal to

Ŷi ± tN−2,1−α
2
σ̂µi (3.6)

Particularly when fitting regression models to average values, N (and, by ex-
tension, (N − 2)) may be “small” which leads to a Student’s t-distribution with
considerable dispersion. This may result in “unreasonable” parameter values for
the regression parameters at higher or lower percentile levels. Excessive disper-
sion of estimators of parameters is consistent with lack of statistical significance
of regression parameters. Issues related to the significance of regression parame-
ters are outside the scope of this Study Note. Readers should consult textbooks
on regression analysis for the derivation of the formulae above or for a more
complete understanding of the development of the uncertainty model.

1This is the unbiased standard deviation with denominator N − 1.
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3.2 Uncertainty in Parameters Estimated by Maximum
Likelihood

The likelihood function (L) represents the probability that a sample is observed
given a model and parameters. It is calculated as the product of probability
functions in the discrete case or density functions in the continuous case. As
it is computationally more efficient, we generally work with the negative of the
log-likelihood (NLL) which is the negative value of the sum of the logarithms
of the probability (density) functions . Specifically for a continuous model with
density function f , we have:

L(x; θ) =
∏

f(xi) (3.7)

NLL(x; θ) = −
∑

ln f(xi) (3.8)

The maximum of L occurs at the minimum of NLL. The minimum of NLL can
often be calculated by setting its derivatives with respect to the parameters of
the probability (density) function to zero and solving for the parameters. How-
ever in more complicated models the minimization must be done numerically.

3.2.1 Large Samples

As described in Loss Models [2], for large N , the distribution of the parameter
estimates is asymptotically normal and the inverse of the Hessian matrix
(also referred to as the Hessian and denoted H ) provides the variances and
covariances of the parameters. The Hessian is comprised of the second partial
derivatives of a function of interest, in this case the NLL. The Hessian of the
NLL function is also referred to as the information matrix.2

3.2.2 Pareto Example

In this section, we demonstrate the calculation for the Pareto distribution with
the following properties:

F (x) = 1− x−α (3.9)

f(x) = αx−α−1 (3.10)

ln(f(x)) = ln(α) + (−α− 1) ln(x) (3.11)

2Most optimization software will numerically calculate the information matrix.
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We then calculate the NLL as follows:

NLL = −
n∑
i=1

ln f(xi)

= −
n∑
i=1

(ln(α) + (−α− 1) ln(xi))

= −
n∑
i=1

ln(α) + (α+ 1)
n∑
i=1

ln(xi)

= −nln(α) + (α+ 1)
n∑
i=1

ln(xi) (3.12)

To solve for the MLE of α, we taking the derivative of the NLL with respect
to α and solve:

dNLL

dα
=
−n
α

+
n∑
i=1

ln(xi) = 0

α̂ =
n∑n

i=1 ln(xi)
(3.13)

To determine the variance of the MLE, we take second partial derivatives of the
NLL as follows:

∂2NLL

∂α2
=

n

α2
(3.14)

With only one parameter, the H is a 1× 1 matrix.

H =
[

n
α2

]
(3.15)

H−1 =
[

α2

n

]
(3.16)

So for large n, the maximum likelihood estimator of the Pareto parameter is
normally distributed with mean = α̂ and estimated variance = α̂2/n.

�

We leave it to the reader to verify the uncertainty models for the exponential
and lognormal distributions below.

3.2.3 Limited Samples Sizes

For insurance samples the sample size is usually not asymptotic to infinity and
the normal distribution often is inappropriate. For instance, a normal distribu-
tion might imply too high a probability of negative values for parameters and
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Table 1: Examples

Model Lognormal(µ, σ) exponential(λ)

Mean eµ+σ
2/2 1/λ

MLE µ̂ =

∑
lnxi
n

, λ̂ =
n∑
xi

σ̂ =

∑
(lnxi − µ̂)2

n

H

 n

σ2
0

0
2n

σ2

 n

λ2

H−1

 σ2

n
0

0
σ2

2n

 λ2

n

functions of parameters that have to be positive. A reasonable alternative in
that case is to use the gamma distribution for each parameter, with the cor-
relation structure of the multivariate normal. This can be implemented using
the normal copula with gamma marginal distributions. As the sample sizes get
larger, the gamma approaches the normal, so using it is consistent with the
asymptotic theory.

3.2.4 The Pareto Example

Returning to our Pareto example, we recall that the log of a Pareto variate is
exponentially distributed and the sum of exponentials is gamma. From 3.13,
we recognize that the Pareto variates are in the denominator of the MLE of
α. As a result, we understand that α̂ is inverse gamma distributed with mean
and variance of estimators being α̂ and α̂2/n, respectively. This agrees what
was calculated is Section 3.2.2. The associated inverse gamma shape and scale
parameters would be n+ 2 and α(n+ 1), respectively.

It would be tempting to use this inverse gamma as the distribution of the true
parameter given the fit. However it is just the opposite - that inverse gamma
is the distribution of the estimator given the true parameter. Especially with
skewed distributions like the inverse gamma, these two distributions are not the
same.

This is a natural setup for Bayesian analysis. We know the distribution of the
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estimator given the parameters but want the distribution of the parameters
given the estimator. If the MLE were also the Bayes estimate from some prior
distribution of the parameters, then Bayes Theorem would provide the posterior
distribution of the parameters given the estimate. This happens in one setting,
and the resulting posterior distribution of the parameters turns out to be gamma
in that case.

3.2.5 Bayes Theorem

Bayes Theorem provides a formula for the posterior distribution for Y given X,
using the distributions of X, Y and X given Y . That is:

f(Y |X) = f(X|Y )
f(Y )

f(X)
(3.17)

We can think of Y as the true parameter, which is considered a random variable
since it is not known, and X as the data. Then, the prior distribution of
Y is f(Y ) and f(X|Y ) is the conditional distribution of the data given the
parameter. We want to find the conditional distribution of Y given X, and in
that context f(X) in equation 3.17 can be considered as a normalizing constant
(not a function of Y) needed to make the distribution integrate to unity. As
such, Bayes Theorem can also be expressed as:

f(Y |X) ∝ f(X|Y )f(Y ) (3.18)

Where ∝ indicates proportionality - meaning equal up to factors not containing
Y . This formulation allows the use of so-called non-informative priors - such as,
in this case f(Y ). The prior f(Y ) is thus expressed by suppressing factors not
containing Y . This allows the prior f(Y ) itself to be expressed up to a constant
factor, and in fact does not even have to integrate to a finite number as long
as f(Y |X) does. This gives the possibility of prior distributions that are very
spread out on the real line and so have little or no impact on the estimated
parameters.

Common examples are f(Y ) ∝ 1 on the whole real line, or f(Y ) ∝ 1/Y on the
positive reals. These can be expressed as limits of the same distributions on
(−M,M) or (1/M,M) as M grows without limit. Thus they are very diffuse.
Such non-informative priors can give insights into the estimation uncertainty.

For the Pareto, the prior is for the parameter α, and for a positive parameter
a useful non-informative prior is f(α) ∝ 1/α . The anti-derivative of this prior
is ln(α), which slowly diverges at both ends of the positive real line. Thus it
has infinite weight at both ends of the range, and as a result does not bias
the parameter either up or down. In comparison, for a positive parameter, the
prior f(α) ∝ 1 only diverges at the right end of the range, and tends to pull
parameters up.
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In this example f(X|α) is the distribution of the observations given α. If P is
the product of the observations, it is easy to show that

f(X|α) ∝ αn/Pα+1 (3.19)

If we substitute β = −ln1/P , we have:

f(X|α) ∝ αn exp (−βα) (3.20)

Comparing this to the gamma density shows that the distribution of the param-
eter given the data is a gamma distribution with shape parameter n and mean
= 1/average[lnxj ]. This mean is the MLE for α, which supports the use of this
particular non-informative prior. This gamma distribution is thus the posterior
distribution for the true α, with mean equal to the MLE estimate.

A similar exercise for the Poisson with mean λ and n samples which have sum
of observations S gives a gamma posterior distribution for λ with mean S/n
and shape parameter S. This again agrees with the MLE and has a gamma
distribution for the true parameter. Both examples support the idea of using
gamma distributions for the parameter uncertainty.

3.3 Uncertainty in Model Free Estimators

Development factors can be calculated within a parametric or model-free frame-
work. The factors themselves are parameters, but the distinction is whether or
not a distribution is assumed for the deviation of the losses from what would be
estimated by applying the factors, that is, for the distribution of the residuals
of the development factor approach.

One method for quantifying the estimation errors of the factors is bootstrapping.
This method resamples the residuals and uses them to create new, artificial
triangles. The factors are repeatedly estimated from these artificial triangles,
and an empirical distribution of the factors is thus built up. Bootstrapping is a
straightforward approach but has potential pitfalls that require some care.

� For example, it should be recognized that there are a different number of
observations used in the estimation of successive incremental development
factors, so each “parameter” has its own number of degrees of freedom.
The degrees of freedom is an input to the resampling process.

In nonlinear models, the degrees of freedom can be estimated by Ye’s
method of generalized degrees of freedom[3] (gdf). The gdf for an observed
point, for an estimation procedure, is the derivative of the fitted point with
respect to the observed point. If that derivative is one, the observed point
has the power to pull the model to it with an exact match. This would
show up for instance in fitting a quintic polynomial to 6 points, which
it can fit exactly, using up all the degrees of freedom. The gdf agrees
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with the usual notion of degrees of freedom in linear models, and is more
appropriate in nonlinear models.

Even when using the gdf degrees of freedom for each point’s residual, how-
ever, bootstrapping is regarded as unreliable in small samples (e.g., less
than 40 observations per fitted parameter). There are too few residuals
to get a representative resample. This leads to the method of parametric
bootstrapping, which draws from fitted distributions instead of the ob-
served residuals. This would only be applicable in the case where there
is a parametric model for the residuals. For instance, if residuals are as-
sumed to be over-dispersed Poisson, resampling can be done from this
distribution.

� The approach outlined in England and Verall (2002) uses Pearson residu-
als, rp, which are calculated using the following approach:

rp =
observation− estimated parameter

estimated parameter1/2
(3.21)

� A technical problem is that bootstrapping gives the distribution of the
estimated parameters given the true parameters, but what is needed is
the distribution of the true parameters given the estimated parameters.
This difference will be important especially with asymmetric distributions.
This is the same problem that was encountered in the Pareto example,
and which there led to replacing the inverse gamma distribution by the
gamma. This is a known problem with bootstrapping which is addressed
in textbooks on the subject, but is beyond the scope of this Study Note.

� In development triangles another pitfall of resampling is that the model
might not hold for the data.

- For instance, in slowly developing lines, the first report claim amounts
might often be near zero. The second report might then be well
modeled as a constant (for the initial valuation of claims that are
true IBNR at the first report) plus a factor times first report (for
development of the small number of reported claims). If the model
uses just a factor, there might be some very high observed factors that
would not apply in general but might when the first report is very
low. Resampling can generate obviously inappropriate development
in this case - such as a large residual combined with a large initial
value - basically because the wrong model is being used to estimate
claims at second report.

- Also if there are calendar-year effects in the data but not in the
model, bootstrapping can again be distorted because it is resampling
residuals of a model that does not apply.

If the development factors are estimated by MLE from a parametric model,
the inverse of the Hessian (information matrix) can be used to quantify the
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parameter uncertainty in the factors, just as in any other MLE case. Clark(2006)
[1] gives an example of this. Comparison studies have found the results of this
method to be comparable to bootstrapping the parameter uncertainty, and using
the information matrix in this way avoids many of the pitfalls of bootstrapping.

4 Incorporating parameter risk
in simulation models

Actuaries typically use simulation to model risk and uncertainty. Parameter es-
timation is easily incorporated in a simulation through a two-stage process: in
each scenario, we first simulate the parameters from the parameter-risk distribu-
tions, and then simulate the process from the simulated parameters. Examples
of this approach are as follows:

� In our example of uncertain trend from Section 2, we would first simulate
aggregate claims from the collective risk model, and then simulate J which
is then multiplied by the aggregate claims. This approach results in a
similar floor imposed on the simulated claims CV (K).

� In our Pareto example, we first simulate the parameter value and then
simulate claims based on that parameter.

Even if the process risk diversifies away, the parameter risk will not.

5 Conclusion

It should be noted that this approach assumes that:

Parameter risk is one of the principal elements that have to be quantified to
obtain reasonable representations of risky processes. As we demonstrated, in
a loss simulation environment, simulating from the collective risk model with-
out recognizing parameter risk can wash out most of the actual risk. This is
particularly true for high-volume lines.

In this Study Note, we have provided an overview of approaches to estimate
parameter uncertainty based on the manner in which the parameters are esti-
mated. Interested readers should consult textbooks and other papers for details
related to the theory on the parameter uncertainty models.
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