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______________________________________________________________________________ 
Abstract 

Motivation. Bootstrapping is a very versatile model for estimating a distribution of possible outcomes for the 
unpaid claims, is relatively easy to use and explain to others, and can be readily “generalized” to be more flexible 
and combined with other related models that can be used to assess risk for a wide variety of enterprise risk 
management issues. While the CAS literature includes several papers that describe the bootstrap model, all of 
these papers are limited to the basic calculations of the model or focus on a particular aspect of the model. In 
contrast, this paper outlines the modifications to the basic algorithm that are required in order to put the 
bootstrap model into practical everyday use. 
Method. This paper will start by pulling all of the issues from different papers into the complete basic bootstrap 
modeling framework using a standard notation. Then it will describe some of the enhancements required for 
practical usage and it will show how the output of the model can be easily “extended” to address other risk 
management issues. It will then expand the basic model and generalize the approach, as well as address many 
common modeling issues that arise during the diagnostic testing of the model parameters and assumptions. 
Finally, it will summarize testing of the model using simulated data and suggest possible areas for further 
research. 
Results. The paper will illustrate the practical implementation of the bootstrap modeling framework as a 
powerful tool for estimating a distribution of unpaid claims. 
Conclusions. The paper outlines the full versatility of the bootstrap model for the practicing actuary. 
Availability. A set of companion Excel files are available at http://www.casact.org/pubs/forum/10fforum/, 
which contains the calculations illustrated in this paper as well as serving as a learning tool for the student or 
practicing actuary. 
 
Keywords. Bootstrap, Over-Dispersed Poisson, Reserve Variability. Reserve Range, Distribution of Possible 
Outcomes. 

              

1. INTRODUCTION 

The term “bootstrap” has a colorful history that dates back to German folk tales of the 18th-

century. It is aptly conveyed in the familiar cliché admonishing laggards to “pull oneself up by their 

own bootstraps.” A physical paradox and virtual impossibility, the idea has nonetheless caught the 

imagination of scientists in a broad array of fields, including physics, biology and medical research, 

computer science, and statistics.  

Bradley Efron, Chairman of the Department of Statistics at Stanford University, is most often 

associated as the source of expanding bootstrapping into the realm of statistics, with his notion of 

taking one available sample and using it to arrive at many others through resampling. His essential 

strategy involves duplicating the original sample and then treating the expanded sample that results 

from the process as a virtual population. Samples are then drawn with replacement from this 

population to verify the estimators. 
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In actuarial science, bootstrapping has become increasingly common in the process of loss 

reserving. The most commonly cited examples point to England and Verrall [9, 10], Pinheiro, et al. 

[25], and Kirschner, et al. [15], who suggest using a basic chain ladder technique to square a triangle 

of paid losses, repeating that randomly and stochastically over a large number of trials. The model 

generates a distribution of possible outcomes, rather than the chain ladder’s typical point estimate, 

thus providing more information about the potential results. For example, without an estimated 

distribution it is impossible to directly estimate the amount of capital required1 or how likely it is that 

the ultimate value of the claims will exceed a certain amount. 

Another advantage of a bootstrap model is that it can be specifically tailored to the statistical 

features found in the data under analysis. This is particularly important as the results of any 

simulation model are only as good as the model used in the simulation process. If the model does 

not fit the data then the results of the simulation may not be a very good estimate of the distribution 

of possible outcomes. Like all models and methods, the quality of a bootstrap model depends on the 

quality of the assumptions. Thus, we will elaborate on the model diagnostics in Section 4. 

A third advantage of a bootstrap model is that it can reflect the fact that insurance loss 

distributions are generally “skewed to the right.” Rather than use the commonly recognized normal 

distribution (which is sometimes used as a simplifying assumption in other models), the bootstrap 

sampling process does not require a distributional assumption. Instead, the level of skewness in the 

underlying data is automatically reflected back into the resampled or pseudo data. 

Another aspect of bootstrap models that could be considered a disadvantage is that they are more 

complex than other methods and thus more time consuming to create. However, once a flexible 

model has been developed they can be used as efficiently as most standard methods. 

There are several disadvantages of bootstrap models that we will discuss in due course as we 

describe how this framework can be modified for a variety of practical uses.2 

1.1 Objectives 

The world of enterprise risk management is changing the horizon for actuaries. Understanding 

the central estimate for insurance claims is no longer adequate when managing risk. Actuaries must 

now measure and understand the distribution of the insurance claims in order to better understand 

and explain risk to management. On the pricing and dynamic risk modeling fronts, the actuarial 

                                                           
1 Without an estimated distribution, required capital could be ‘‘estimated’’ using industry benchmark ratios or other 

rules of thumb, but these do not directly account for the specific risk profile under review. 
2 This section is based in large part on [22]. 
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models have already embraced this new reality. 

Unfortunately, in the reserving area the vast majority of actuaries are focused on deterministic 

point estimates for reserving. This is not surprising, as our primary standard of practice for 

reserving, ASOP 36, seems to be focused exclusively on deterministic point estimates and the 

regulators, via the actuarial opinion, are also focused on deterministic estimates. However, actuaries 

are free to estimate distributions instead of point estimates.3 But nothing seems to be forcing the 

profession towards unpaid claim distributions. 

This is changing due to a number of factors: 

 the SEC is looking for more reserving risk information in the 10-K reports filed by publicly 

traded companies; 

 all of the major rating agencies have built or are building dynamic risk models to help with 

their insurance rating process and welcome the input of company actuaries regarding unpaid 

claim distributions; and 

 companies that use dynamic risk models to help their internal risk management processes 

need unpaid claim distributions. 

One objective of this paper is to show how the bootstrap modeling framework can be used in 

practice, to help the wider adoption of unpaid claim distributions. 

Another potential roadblock seems to be the notion that actuaries are still searching for the 

perfect model to describe “the” distribution of unpaid claims, as if imperfections in a model remove 

it from all consideration since it can’t be “the one.” This notion can also manifest itself when an 

actuary settles for a model that seems to work the best or is the easiest to use, or with the idea each 

model must be used in its entirety or not at all. Interestingly, this notion was dispelled long ago with 

respect to practice for deterministic point estimates as actuaries commonly use many different 

methods, which range from easy to complex, and judgmentally weight the results by accident year 

(i.e., use only parts of a method) to arrive at their best estimate. Thus, another objective of this paper 

is to show how stochastic reserving needs to be similar to deterministic reserving when it comes to 

analyzing and using the best parts of multiple models. 

Finally, most of the papers describing stochastic models, including bootstrap models, tend to 

focus primarily on the theoretical aspects of the model while ignoring the data issues that commonly 

                                                           
3 Indeed, ASOP 43 opened the door a bit further by defining ‘‘actuarial central estimate’’ in such a way that it could 

include either deterministic point estimates or a first moment estimate from a distribution. 
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arise in practice. As a result, most models described in papers can be quite elegantly implemented yet 

can suffer from practical limitations such as only being useful for complete triangles or only for 

positive incremental values. This could also act as a deterrent by limiting the usability of a model to 

specific situations and by giving the impression that using the model is not worth the effort. Thus, 

while keeping as close to the theoretical foundation as possible, another objective of the paper is to 

illustrate how a variety of practical adjustments can be made to accommodate common data issues. 

1.2 Outline 

This paper will start by reviewing the notation from the CAS Working Party on Quantifying 

Variability in Reserve Estimates Summary Report [6] which we will use in this paper. Then we will 

illustrate and expand the foundation developed in other papers for the basic calculations of the 

bootstrap model, including showing how the GLM framework of the model can be “generalized” to 

include diagonal parameters. In order to be consistent with the theoretical foundation yet recognize 

practical needs, we will describe data issues that require enhancements to the basic algorithm. With a 

complete modeling framework established, we can then review the diagnostic tests to ensure that the 

model assumptions are consistent with the statistical features in the data. Should the assumptions 

appear inconsistent, we will suggest adjustments to the model that can be made. 

Even though bootstrapping is a very versatile framework, it is still important to draw from the 

strengths of different models and weight distributions, similar to weighting point estimates, in order 

to get a best estimate of the distribution. Thus, we will briefly explore ways to combine the results of 

different models, including non-bootstrap models with bootstrap models. Since the analysis of 

enterprise risk involves all sources of risk, we will also explore correlation issues for the bootstrap 

model and then describe extensions to the model output and how they can be used for assessing 

risks in addition to reserve risk. In order to use the results with confidence, we will briefly discuss 

some findings related to testing of the model compared to another commonly used model (Mack). 

Finally, we will close with some possible areas for future research. 

2. NOTATION 

The papers that describe the basic bootstrap model use different notation, despite sharing 

common steps. Rather than pick the notation in one of the papers, we will use the notation from the 

CAS Working Party on Quantifying Variability in Reserve Estimates Summary Report [6] since it is 

intended to serve as a basis for further research and the bootstrap model is also described in that 

paper. 
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Many models visualize loss statistics as a two-dimensional array. The row dimension is the annual 

period by which the loss information is subtotaled, most commonly an accident year or policy year. 

For each accident period, w , the ),( dw  element of the array is the total of the loss information as 

of development age d .4 Here the development age is the accounting year5 of the loss information 

expressed as the number of time periods after the accident or policy year. For example, the loss 

statistic for accident year 2 as of the end of calendar year 4 has development age 3 years.  

For this discussion, we assume that the loss information available is an “upper triangular” subset 

of the two-dimensional array for rows nw ,,2,1  . For each row, w , the information is available 

for development ages 1 through 1wn . If we think of year n  as the most recent accounting year 

for which loss information is available, the triangle represents the loss information as of accounting 

dates 1 through n . The diagonal k w d   represents the loss information for each accident period 

w  as of accounting year k .6 

The paper uses the following notation for certain important loss statistics:  

),( dwc : cumulative loss from accident7 year w  as of age d . (Think w  = “when” and 

d  = “delay”) 

)(),( wUnwc  : total loss from accident year w  when claims are at ultimate values.  

),( dwR : future development after age d  for accident year w , i.e., = ),()( dwcwU  . 

),( dwq : incremental loss for accident year w  from d  - 1 to d . 

)(df : factor applied to ),( dwc  to estimate )1,( dwq  or can be used more generally 

to indicate any factor relating to age d . 

)(dF : factor applied to ),( dwc  to estimate ),( nwc  or can be used more generally to 

indicate any cumulative factor relating to age d . 

)(wG : factor relating to accident year w  – capitalized to designate ultimate loss level. 

)( dwh  : factor relating to the diagonal k  along which w + d  is constant. 

                                                           

4 Depending on the context, the ),( dw cell can represent the cumulative loss statistic as of development age d  or the 

incremental amount occurring during the d th development period. 
5 The development ages are assumed to be in yearly intervals for ease of discussion. However, they can be in different 

time units such as half-years, quarters, or months. 
6 For a more complete explanation of this two-dimensional view of the loss information, see the Foundations of Casualty 

Actuarial Science [12], Chapter 5, particularly pages 210-226. 
7 The use of accident year is also used for ease of discussion. All of the discussion could also apply to underwriting year, 

policy year, report year, etc. 
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),( dwe : a mean zero random fluctuation which occurs at the w , d  cell. 

)(xE : the expectation of the random variable x . 

)(xVar : the variance of the random variable x . 

What are called factors here could also be summands, but if factors and summands are both used, 

some other notation for the additive terms would be needed. The notation does not distinguish paid 

vs. incurred, but if this is necessary, capitalized subscripts P  and I  could be used. 

3. THE BOOTSTRAP MODEL 

Even though many variations of the bootstrap model framework are possible, we will focus 

primarily on the most common example that essentially reproduces the basic chain ladder method. It 

will also be helpful to briefly review the assumptions that underpin the basic chain ladder method. 
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The foundation for any model is the data being modeled. Like many commonly used models, 

then, we will start with a triangle array of cumulative data: 

  d       
  1 2 3 … n-1 n 

w  1 c(1,1) c(1,2) c(1,3) … c(1,n-1) c(1,n) 
 2 c(2,1) c(2,2) c(2,3) … c(2,n-1)  
 3 c(3,1) c(3,2) c(3,3) …   
 … … …     

 n-1 c(n-1,1) c(n-1,2)     
 n c(n,1)      

A typical deterministic analysis of this data will start with an array of age-to-age ratios or 

development factors: 

( , )
( , )

( , 1)

c w d
F w d

c w d



. 

(3.1)

Then two key assumptions are made in order to make a projection of the known elements to 

their respective ultimate values. First, it is assumed that each accident year has the same 

development factor. Equivalently, for each 1,2, ,w n  : 

( , ) ( )F w d F d . 

Under this first assumption, one of the more popular estimators for the development factor is 

the weighted average: 

1

1
1

1

( , )ˆ ( )
( , 1)

n d

w
n d

w

c w d
F d

c w d

 


 









. 
(3.2)

Certainly there are other popular estimators in use, but they are beyond our scope at this stage yet 

most are still consistent with our first assumption that each accident year has the same factor. 

Projections of the ultimate values, or ˆ( , )c w n for w = 1, 2, 3, … , n, are then computed using: 

1
ˆˆ( , ) ( , ) ( )

n

i d
c w n c w d F i

 
  . (3.3)

This part of the claim projection algorithm relies explicitly on the second assumption, namely 

that each accident year has a parameter representing its relative level. These level parameters are the 

current cumulative values for each accident year, or ( , 1)c w n w  . Of course variations on this 

second assumption are also common, but the point is that every model has explicit assumptions that 

are an integral part of understanding the quality of that model. 

One variation on the second assumption is to assume that the accident years are completely 

homogeneous. In this case we would estimate the level parameter of the accident years using: 
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1

1
( , )

1

n d

w
c w d

n d

 



 


. 
(3.4)

Complete homogeneity implies that the observations (1, )c d , (2, )c d , …, ( 1, )c n d d   are 

generated by the same mechanism. Interestingly, the basic chain ladder algorithm explicitly assumes 

that the mechanisms generating the observations are NOT homogeneous and effectively that 

“pooling” of the data does not provide any increased efficiency.8 In contrast, it could be argued that 

the Bornhuetter-Ferguson and Cape Cod methods are a “blend” of these two extremes as the 

homogeneity of the future expected result depends on the consistency of the a priori loss ratios and 

decay rate, respectively. 

3.1 Origins of Bootstrapping 

Possibly the earliest development of a stochastic model for the actuarial array of cumulative 

development data is attributed to Kremer [16]. The basic model described by Kremer can be defined 

by the multiplicative representation: 

( , ) '( ) '( ) '( , )P w d G w F d e w d   . (3.5)

Where: '( )G w is a parameter representing the effect of accident year w, 

 '( )F d  is a parameter representing the effect of development period d, and 

 '( , )e w d  is a random error term. 

Taking logarithms of both sides of equation (3.5), the model can be formulated as a two-way 

analysis of variance: 

( , ) log[ ( , )] ( ) ( ) ( , )Y w d P w d G w F d e w d     . (3.6)

Where:   is the overall mean effect on a log scale, 

 ( )G w is the residual effect due to accident year w, 

 ( )F d  is the residual effect due to development period d, 

 ( , )e w d  represent zero mean uncorrelated errors with 2[ ( , )]Var e w d  , and 

( ) ( ) 0G w F d   . (3.7)

This model is further described by England and Verrall [9] and Zehnwirth [39], so we will not elaborate 

further here. It should be noted, however, that the model in (3.6) can be extended by considering alternatives. 

This log-normal model, and generalizations thereof, has also been discussed in Zehnwirth [1, 40], Renshaw 

[30], Christofides [7], and Verrall [37, 38], among others. 

                                                           
8 For a more complete discussion of these assumptions of the basic chain ladder model see Zehnwirth [39]. 
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3.2 The Over-Dispersed Poisson Model 

The genesis of this model into a bootstrap framework originated with Renshaw and Verrall [31] 

when they proposed modeling the incremental claims ),( dwq  directly as the response, with the 

same linear predictor as Kremer [16], but using a generalized linear model (GLM) with a log-link 

function and an over-dispersed Poisson (ODP) error distribution. Then, England and Verrall [9] 

discuss how this model can be used to estimate parameters and use bootstrapping (sampling the 

residuals with replacement) to estimate the complete distribution. More formally, using the 

following: 

,[ ( , )] w dE q w d m  and ,[ ( , )] [ ( , )] z
w dVar q w d E q w d m    (3.8)

, ,ln[ ]w d w dm   (3.9)

,w d w dc     , where: w =1, 2, …, n; d =1, 2, …, n; and 1 1 0   . (3.10)

In this case the   parameters function as adjustments to the constant, c, level parameter and the 

  parameters adjust for the development trends after the first development period. The power, z , 

is used to specify the error distribution with 0z   for normal, 1z   for Poisson, 2z   for Gamma 

and 3z   for inverse Gaussian. Alternatively, we can remove the constant which will cause the   

parameters to function as individual level parameters while the   parameters continue to adjust for the 

development trends after the first development period: 

,w d w d    , where: w =1, 2, …, n; and d =2, …, n. (3.11)

Standard statistical software can be used to estimate parameters and goodness of fit measures. 

The parameter   is a scale parameter that is estimated as part of the fitting procedure while setting 

the variance proportional to the mean (thus “over-dispersed” Poisson for 1z  ). For educational 

purposes, we have included the calculations to solve these equations for a 10 x 10 triangle in the 

“Bootstrap Models.xls” file, but we will illustrate the calculations here for a 3 x 3 triangle for ease of 

exposition and in the “Simple GLM.xls” file. Consider the following incremental data triangle: 

 1 2 3 
1 q(1,1) q(1,2) q(1,3) 
2 q(2,1) q(2,2)  
3 q(3,1)   

In order to set up the GLM model to fit parameters to the data we need to do a log-link or 

transform which results in: 

 1 2 3 
1 ln[q(1,1)] ln[q(1,2)] ln[q(1,3)]
2 ln[q(2,1)] ln[q(2,2)]  
3 ln[q(3,1)]   
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The model is then specified using a system of equations with vectors of w  and d  parameters as 

follows: 

1 2 3 2 3ln[ (1,1)] 1 0 0 0 0q           

1 2 3 2 3ln[ (2,1)] 0 1 0 0 0q           

1 2 3 2 3ln[ (3,1)] 0 0 1 0 0q           

1 2 3 2 3ln[ (1,2)] 1 0 0 1 0q           

1 2 3 2 3ln[ (2,2)] 0 1 0 1 0q           

1 2 3 2 3ln[ (1,3)] 1 0 0 1 1q          . 

(3.12)

Converting this to matrix notation we have: 

Y = X x A (3.13)

Where: 

Y = 

ln[ (1,1)] 0 0 0 0 0

0 ln[ (2,1)] 0 0 0 0

0 0 ln[ (3,1)] 0 0 0

0 0 0 ln[ (1,2)] 0 0

0 0 0 0 ln[ (2,2)] 0

0 0 0 0 0 ln[ (1,3)]

q

q

q

q

q

q

 
 
 
 
 
 
 
 
 

, 

(3.14)

X = 

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 1 0

0 1 0 1 0

1 0 0 1 1

 
 
 
 
 
 
 
 
 

, and 

(3.15)

A = 

1

2

3

2

3







 
 
 
 
 
 
  

. 

(3.16)

In this form we can use the Newton-Raphson method9 to solve for the parameters in the A 

vector that minimize the difference between the Y matrix and the W matrix: 

                                                           
9 Other methods, such as orthogonal decomposition, can also be used to solve for the parameters. 
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W = 

1,1

2,1

3,1

1,2

2,2

1,3

ln[ ] 0 0 0 0 0

0 ln[ ] 0 0 0 0

0 0 ln[ ] 0 0 0

0 0 0 ln[ ] 0 0

0 0 0 0 ln[ ] 0

0 0 0 0 0 ln[ ]

m

m

m

m

m

m

 
 
 
 
 
 
 
 
  

. 

(3.17)

Typically, X is known as the design matrix and W is known as the weight matrix. After solving 

the system of equations we will have: 

1,1 1,1 1ln[ ]m     

2,1 2,1 2ln[ ]m     

3,1 3,1 3ln[ ]m     

1,2 1,2 1 2ln[ ]m       

2,2 2,2 2 2ln[ ]m       

1,3 1,3 1 2 3ln[ ]m        . 

(3.18)

This solution can then be shown as a triangle: 

 1 2 3 
1 ln[m1,1] ln[m1,2] ln[m1,3] 
2 ln[m2,1] ln[m2,2]  
3 ln[m3,1]   

These results can then be exponentiated to the fitted, or expected, incremental results of the 

GLM model: 

 1 2 3 
1 m1,1 m1,2 m1,3 
2 m2,1 m2,2  
3 m3,1   

We will refer to this as the “GLM framework” and have illustrated this model for a simple 3 x 3 

triangle in the “Simple GLM.xls” file. While the GLM framework is used to solve these equations 

for the fitted results, the usefulness of this framework is that the fitted results (with the Poisson 

error distribution assumption) will exactly equal the results that can be derived from volume-

weighted average age-to-age ratios. That is, it can be reproduced by using the last cumulative 

diagonal, dividing backwards successively by each age-to-age factor and subtracting to get the fitted 

incremental results. We will refer to this method as the “simplified GLM”. This has three very useful 

consequences. 

First, GLM portion of the algorithm can be replaced with a simpler link ratio algorithm while still 
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being based on the underlying GLM framework. Second, the use of the age-to-age ratios serves as a 

“bridge” to the deterministic framework and allows the model to be more easily explainable to 

others. And, third, for the GLM algorithm the log-link process means that negative incremental 

values can often cause the algorithm to not have a solution, whereas using the link ratios will 

generally allow for a solution.10 

With a model fitted to the data, the bootstrap process involves sampling with replacement from 

the residuals. England and Verrall [9] note that the deviance, Pearson, and Anscombe residuals 

could all be considered for this process, but the Pearson residuals are the most desirable since they 

are calculated consistently with the scale parameter. The unscaled Pearson residuals and scale 

parameter are calculated as follows: 

,
,

,

( , ) w d
w d z

w d

q w d m
r

m


 . 

(3.19)

,w dr

n p
 




. 
(3.20)

Where n = the number of data cells in the triangle and p = the number of parameters, which is 

typically equal to 2*n – 1.11 Sampling with replacement from the residuals can then be used to create 

new sample triangles of incremental values using formula 3.16. Sampling with replacement assumes 

that the residuals are independent and identically distributed, but it does not require the residuals to 

be normally distributed. Indeed, this is often cited as an advantage of the ODP bootstrap model 

since whatever distributional form the residuals have will flow through the simulation process. Some 

authors have referred to this a “semi-parametric” bootstrap model since we are not parameterizing 

the residuals. 

*
, ,'( , ) z

w d w dq w d r m m   . (3.21)

The sample triangle of incremental values can then be cumulated, new average age-to-age factors 

and loss development factors can be calculated for the sample and applied to calculate a point 

estimate for this data. This process could be described as getting a distribution of point estimates, 

which includes incorporating process variance and parameter variance in the simulation of the 

                                                           
10 More specifically, individual negative cell values may not be a problem. If the total of all incremental cell values in a 

development column is negative, then the GLM algorithm will fail. This situation will not cause a problem fitting the 
model as a link ratio less than one will be perfectly useful. However, this may still cause other problems, which we will 
address in section 4. 

11 The number of parameters could be less than 2*n – 1. For example, if the incremental values are zeros for the last 
three columns in a triangle then there will be three fewer   parameters since none are needed to fit to these zero 
values as the development process is completed already.  
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historical data. In England and Verrall [9] this is the end of the process, but at the end of the 

appendix they note that you should also multiply the resulting distribution by the degrees of 

freedom adjustment factor (3.22), to effectively allow for over-dispersion of the residuals in the 

sampling process. 

n
f

n p



. 

(3.22)

Later, in England and Verrall [10], the authors note that the Pearson residuals (3.19) could be 

multiplied by the degrees of freedom adjustment factor (3.22) in order to correct for a bias in the 

residuals. They also expand the simulation process by adding process variance to the future 

incremental values from the point estimates. To add this process variance, they assume that each 

future incremental value ,w dm  is the mean and the mean times the scale parameter, ,w dm , is the 

variance of a gamma distribution.12 This revised model could now be described as estimating a 

distribution of possible outcomes, which incorporates process variance and parameter variance in 

the simulation of the historical and future data. 

However, Pinheiro et al. [25, 26] noted that the bias correction for the residuals using the degrees 

of freedom adjustment factor (3.22) does not create standardized residuals, which is an important 

step for making sure that the residuals all have the same variance. In order to have standardized 

Pearson residuals, the GLM framework requires the use of a hat matrix adjustment factor. 

  1T TH X X WX X W


 . (3.23)

,
,

1

1
H

w d
i i

f
H




. 
(3.24)

The hat matrix (3.23) is calculated using matrix multiplication of the design matrix (3.15) and the 

weight matrix (3.17). The hat matrix adjustment factor (3.24) uses the diagonal of the hat matrix. In 

Pinheiro, et al. [26] the authors note two important points about the bootstrap process as described 

by England and Verrall [9, 10]. First, the sampling of the residuals should not include any zero-value 

residuals, which are typically in the corners of the triangle.13 The exclusion of the zero-value 

residuals is accounted for in the hat matrix adjustment factor (3.24), but another common 

explanation is that the zero-value cells will have some variance but we just don’t know what it is yet 

so we should sample from the remaining residuals but not the zeros. Second, the hat matrix 

                                                           
12 The Poisson distribution could be used, but it is considerably slower to simulate, so gamma is a close substitute that 

performs much faster in simulation. 
13 Technically, the two ‘‘corner’’ residuals are zero because they each have a parameter that is unique to that incremental 

value which causes the fitted incremental value to exactly equal the actual incremental value. 
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adjustment factor (3.24) is a replacement for the degrees of freedom factor (3.22), which improves 

the calculation of the residuals.14 

Thus, the unscaled Pearson residuals (3.19) should be replaced by the standardized Pearson 

residuals: 

,
, ,

,

( , ) w dH H
w d w dz

w d

q w d m
r f

m


  . 

(3.25)

However, the scale parameter (3.20) is still calculated as before, although the standardized 

Pearson residuals could be used to approximate the scale parameter as follows: 

,
H

w dH r

n
   . 

(3.26)

At this point we have a complete basic “ODP bootstrap” model, as it is often referred to, 

although various stages of this complete model have been in popular use and formally tested. It is 

also important to note that the two key assumptions mentioned earlier, each accident year has the 

same development factor and each accident year has a parameter representing its relative level, are 

equally applicable to this model. 

In order for the reader to test out the different “combinations” of this modeling process the 

“Bootstrap Models.xls” file includes options to allow these historical algorithms to be simulated. 

Our purpose in describing this evolution of the bootstrap model framework is threefold: first, to 

allow the interested reader to better understand the details of the algorithm and how these papers 

have contributed to the model framework; second, to illustrate the value of collaborative research 

via different published papers and the contributions of different authors; and, third, to provide a 

solid basis for us to continue the evolutionary process. 

3.3 Variations on the ODP Model 

When estimating insurance risk it is generally considered desirable to focus on the claim payment 

stream in order to measure the variability of the actual cash flows that directly affect the bottom line. 

Clearly, changes in case reserves and IBNR reserves will also impact the bottom line, but to a 

considerable extent the changes in IBNR are intended to counter the impact of the changes in case 

reserves. To some degree, then, the total reserve movements can act to mask the underlying changes 

due to cash flows. On the other hand, the case reserves represent potential future payments so we 

                                                           
14 This second point was not addressed clearly in Pinheiro et al. [25], but as the authors updated and clarified the paper 

in [26] this issue was more clearly addressed. 
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should not just ignore them and focus exclusively on paid data. 

3.3.1 Bootstrapping the incurred loss triangle 

The ODP model, as described, can be used to model both paid and incurred data. However, the 

resulting distribution from using incurred data will be possible outcomes of the IBNR so they will 

not be directly comparable to the distribution of possible outcomes of the total unpaid (i.e., from 

using paid data). A convenient way of converting the results of an incurred data model to a payment 

stream is to use payment patterns applied to the ultimate value of the incurred claims. This is 

consistent with how a deterministic incurred ultimate can be converted using a paid development 

pattern. If a paid data model is run in parallel with the incurred data model the possible outcomes 

from the paid data model can be used to convert incurred ultimate values to a payment pattern for 

each iteration (and for each accident year individually). 

The “Bootstrap Models.xls” file illustrates this concept. It is worth noting, however, that this 

process allows the “added value” of using the case reserves to help predict the ultimate results to 

work its way into the calculations, thus perhaps improving the estimates, while still focusing on the 

payment stream for measuring risk. In effect, it allows a distribution of IBNR to become a 

distribution of IBNR and case reserves. This process could be made more sophisticated by 

correlating the residual sampling and/or process variance portions of the parallel models. 

Correlations must be considered if, for example, you wanted the iterations showing long payment 

streams to be compared with the iterations with high incurred results. It is also possible to use other 

modeling algorithms such as the Munich chain ladder (see [27]), although that is beyond the scope 

of this paper. 

3.3.2 Bootstrapping the Bornhuetter-Ferguson and Cape Cod models 

Another common issue with using the ODP bootstrap process is that iterations for the latest few 

accident years can produce results with more variance than you would expect given what you 

simulated for the earlier accident years. This is usually due to the fact that age-to-age factors are used 

to extrapolate the sampled values prior to adding process variance, which is completely analogous to 

one of the weaknesses of the deterministic paid chain ladder method. 

As for the deterministic chain ladder method, the ODP bootstrap process can be modified by 

changing the extrapolation of future incremental values by using the Bornhuetter-Ferguson or 

generalized Cape Cod algorithms, among others. These deterministic methods can be converted into 

stochastic models while still using the underlying ODP assumptions and process, and that the 

deterministic assumptions of these methods can also be converted to stochastic assumptions. For 



Bootstrap Modeling: Beyond the Basics 
 

Casualty Actuarial Society E-Forum, Fall 2010  16 

example, instead of simply using a vector of deterministic a priori loss ratios for the Bornhuetter-

Ferguson model, we could add a vector of standard deviations to go with these means, assume a 

distribution and simulate a different a priori loss ratio for every iteration of the model. Finally, it is 

worth noting that these “new” models can be set up separately for paid and incurred data and that 

the paid and incurred assumptions should be internally consistent with each other and with other 

models, as they should be for deterministic methods. 

The “Bootstrap Models.xls” file also illustrates the Bornhuetter-Ferguson and Cape Cod models. 

3.4 Generalizing the ODP Model 

Using deterministic algorithms to enhance the flexibility of the basic ODP bootstrap process is a 

straightforward way to create additional models and to overcome many of the limitations of using 

bootstrapping. However, some limitations are more difficult to overcome just by using these 

algorithms. For example, calendar-year effects can be adjusted using a Berquist-Sherman algorithm 

but it is hard to make the assumptions more stochastic. 

Rather than add essentially deterministic algorithms to a stochastic model, another approach is to 

go back to the original GLM framework and generalize the basic model. Returning to formulas (3.8) 

to (3.11), the GLM framework does not require a certain number of parameters so we are actually 

free to specify only as many parameters as we need to get a robust model. Indeed, it is ONLY when 

we specify a parameter for EVERY accident year and EVERY development year and specify a 

Poisson error distribution that we end up exactly replicating the volume weighted average age-to-age 

factors that allow us to substitute the deterministic algorithm instead of solving the GLM fit. 

Thus, using the original GLM framework we can specify a model with only a few parameters, but 

there are two drawbacks to doing so. First, the GLM must be solved for each iteration of the 

bootstrap model (which may slow down the simulation process) and, second, the model is no longer 

directly explainable to others using age-to-age factors.15 While the impact of these drawbacks should 

be considered, the potential benefits of using the GLM framework can be much greater. 

First, having fewer parameters will help avoid the potential of over-parameterizing the model.16 

For example, if we use only one accident year parameter then the model specified using a system of 

equations is as follows (which is analogous to formula 3.12): 

                                                           
15 However, age-to-age factors could be calculated for the fitted data to compare to the actual age-to-age factors and 

used as an aid in explaining the model to others. 
16 Over-parameterization is a common criticism of the ODP bootstrap model. This will be addressed more completely in 

Section 5. 
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1 2 3ln[ (1,1)] 1 0 0q       

1 2 3ln[ (2,1)] 1 0 0q       

1 2 3ln[ (3,1)] 1 0 0q       

1 2 3ln[ (1,2)] 1 1 0q       

1 2 3ln[ (2,2)] 1 1 0q       

1 2 3ln[ (1,3)] 1 1 1q       

(3.27)

In this case we will only have one level parameter and n-1 development trend parameters, but it 

will only be coincidence that we would end up with the equivalent of average age-to-age factors. 

Interestingly, this model parameterization moves us away from one of the common basic 

assumptions (i.e., each accident year has its own level) and substitutes the assumption that all 

accident years are homogeneous. 

Another example of using fewer parameters would be to only use one development year 

parameter (while continuing to use an accident-year parameter for each year), which would equate to 

the following system of equations: 

1 2 3 2ln[ (1,1)] 1 0 0 0q         

1 2 3 2ln[ (2,1)] 0 1 0 0q         

1 2 3 2ln[ (3,1)] 0 0 1 0q         

1 2 3 2ln[ (1,2)] 1 0 0 1q         

1 2 3 2ln[ (2,2)] 0 1 0 1q         

1 2 3 2ln[ (1,3)] 1 0 0 2q         

(3.28)

In this example the model parameterization would continue to follow the two common 

assumptions (i.e., each accident year has its own level and uses the same development factor), 

although again it would be pure coincidence to end up with the equivalent of average age-to-age 

factors.17 It is also interesting to note that for both of these two examples there will be one 

additional non-zero residual that can be used in the simulations because in each case one of the 

incremental values no longer has a unique parameter – i.e., for (3.27) (3,1)q  is no longer uniquely 

defined by 3 , and for (3.28) (1,3)q  is no longer uniquely defined by 3 . 

This flexibility allows the modeler to use enough parameters to capture the statistically relevant 

level and trend changes in the data without forcing a specific number of parameters.18 

The second benefit, and depending on the data perhaps the most significant, is that this 

                                                           
17 If we were to generalize the development factor assumption to focus on the number of parameters instead, then we 

would have only one parameter instead of a different parameter for each development period. 
18 How to determine which parameters are statistically relevant will be discussed in Section 5. 
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framework allows us the ability to add parameters for calendar-year trends. Adding diagonal 

parameters to (3.11) we now have: 

,w d w d k      , where: w =1, 2, …, n; d =2, …, n; and k =2, …, n. (3.29)

A complete system of equations for the (3.29) framework would look like the following: 

1 2 3 2 3 2 3ln[ (1,1)] 1 0 0 0 0 0 0q               

1 2 3 2 3 2 3ln[ (2,1)] 0 1 0 0 0 1 0q               

1 2 3 2 3 2 3ln[ (3,1)] 0 0 1 0 0 1 1q               

1 2 3 2 3 2 3ln[ (1,2)] 1 0 0 1 0 1 0q               

1 2 3 2 3 2 3ln[ (2,2)] 0 1 0 1 0 1 1q               

1 2 3 2 3 2 3ln[ (1,3)] 1 0 0 1 1 1 1q               

(3.30)

However, there is no unique solution for a system with seven parameters and six equations, so 

some of these parameters will need to be removed. A logical starting point would be to start with a 

model with one accident year (level) parameter, one development trend parameter and one calendar 

trend parameter and then add or remove parameters as needed. The system of equations for this 

basic model is as follows: 

1 2 2ln[ (1,1)] 1 0 0q       

1 2 2ln[ (2,1)] 1 0 1q       

1 2 2ln[ (3,1)] 1 0 2q       

1 2 2ln[ (1,2)] 1 1 1q       

1 2 2ln[ (2,2)] 1 1 2q       

1 2 2ln[ (1,3)] 1 2 2q       

(3.31)

A fourth benefit of the GLM framework is that it can be used to model data shapes other than 

triangles. For example, missing incremental data for the first few diagonals would mean that the 

cumulative values could not be calculated and the remaining values in those first few rows would not 

be useful for the simplified GLM. However, since the GLM framework uses the incremental values 

the entire trapezoid can be used to fit the model parameters.19 

 It should also be noted that the GLM framework allows the future expected values to be directly 

estimated from the parameters of model for each sample triangle in the bootstrap simulation 

process. However, we must solve the GLM within each iteration for the same parameters as we 

originally set up for the model rather than using age-to-age factors to project future expected values. 

The additional modeling power that the flexible GLM framework adds to the actuary’s toolkit 
                                                           
19 We will examine this issue in more detail in Section 4. 
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cannot be overemphasized. Not only does it allow one to move away from the two basic 

assumptions of a deterministic chain ladder method, it allows for the ability to match the model 

parameters to the statistical features you find in the data and to extrapolate those features. For 

example, modeling with fewer development trend parameters means that the last parameter can be 

assumed to continue past the end of the triangle which will give the modeler a “tail” of the 

incremental values beyond the end of the triangle without the need for a specific tail factor. 

While we have continued to illustrate the GLM framework in the body of the paper with a 3 x 3 

triangle, also included in the companion Excel files are a set of “Simple GLM 6___.xls” files that 

illustrate the calculations for these different models using a 6 x 6 triangle. Also, the “Bootstrap 

Models.xls” file contains a “flexible” model for a 10 x 10 triangle that can be used to specify any 

combination of accident year, development year, and calendar year parameters, including setting 

parameters to zero. The flexible GLM model is akin to the incremental log model described in 

Barnett and Zehnwirth [1], so we will leave it to the reader to explore this flexibility by using the 

Excel file. 

4. PRACTICAL ISSUES 

Now that we have expanded the basic ODP bootstrap model in a variety of ways, we also want 

to address some of the key assumptions of the ODP model and some common data issues. 

4.1 Negative Incremental Values 

As noted in Section 3.2, because of the log-link used in the GLM framework the incremental 

values must be greater than zero in order to parameterize a model. However, a slight modification to 

the log-link function will help this common problem become a little less restrictive. If we use (4.1) as 

the log-link function, then individual negative values are only an issue if the total of all incremental 

values in a development column is negative, as the GLM algorithm will not be able to find a solution 

in that case. 

ln[ ( , )]q w d  for ( , ) 0q w d  , 

0  for ( , ) 0q w d  , 

ln[ { ( , )}]abs q w d  for ( , ) 0q w d  . 

(4.1)

Using (4.1) in the GLM framework will help in many situations, but it is quite common for entire 

development columns of incremental values to be negative, especially for incurred data. To give the 

GLM framework the ability to solve for a solution in this case we need to make another 

modification to the basic model to include a constant. 
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, ,ln[ ]w d w dm     (4.2)

Whenever a column or columns of incremental values sum to a negative value, we can find the 

largest negative20 in the triangle, add the absolute value of the largest negative to every incremental 

value in the triangle, set   equal to the largest negative, and solve the GLM using formulas (3.10), 

(3.11), or (3.29). Then when we use (4.2) to calculate the fitted incremental values, the constant   is 

used to reduce each fitted incremental value by the largest negative. 

 The combination of formulas (4.1) and (4.2) allow the GLM framework to handle all negative 

incremental values, which overcomes a common criticism of the ODP bootstrap. Incidentally, these 

formulas can also be used to allow the incremental log model described by Barnett and Zehnwirth 

[1] to handle negative incremental values. 

When using the age-to-age factors to simplify the ODP bootstrap simulation process, the 

solution to negative incremental values needs to focus on the residuals and sampled incremental 

values since an age-to-age factor less than 1.00 will create negative incremental values in the fitted 

values. More specifically, we need to modify formulas (3.19) and (3.21) as follows: 

,
,

,

( , )

{ }
w d

w d

w d

q w d m
r

abs m


 . 

(4.3)

*
, ,'( , ) { }w d w dq w d r abs m m   . (4.4)

While the fitted incremental values and residuals using the age-to-age simplification will generally 

not match the GLM framework solution using (4.1) and (4.2) they should be reasonably close. While 

the “purists” may object to these practical solutions, we must keep in mind that every model is an 

approximation of reality so our goal is to find reasonably close models rather than only restrict 

ourselves to “pure” models. After all, the assumptions of the “pure” models are themselves 

approximations. 

4.1.1 Negative values during simulation 

Even though we have solved problems with negative values when parameterizing a model, 

negative values can still affect the process variance in the simulation process. When each future 

incremental value (using ,w dm  as the mean and the mean times the scale parameter, ,w dm , as the 

variance) is sampled from a gamma distribution to add process variance, the parameters of a gamma 

distribution must be positive. In this case we have two options for using the gamma distribution to 

                                                           
20 The largest negative value can either be the largest negative among the sums of development columns (in which case 

there may still be individual negative values in the adjusted triangle) or the largest negative incremental value in the 
triangle. 



Bootstrap Modeling: Beyond the Basics 
 

Casualty Actuarial Society E-Forum, Fall 2010  21 

simulate from a negative incremental value, ,w dm . 

, ,{ }, { }w d w dGamma abs m abs m     (4.5)

, , ,{ }, { } 2w d w d w dGamma abs m abs m m     (4.6)

Using formula (4.5) is more intuitive as we are using absolute values to simulate from a gamma 

distribution and then changing the sign of the result. However, since the gamma distribution is 

skewed to the right, the resulting distribution using (4.5) will be skewed to the left. Using formula 

(4.6) is a little less intuitive, but seems more logical since subtracting twice the mean, ,w dm , will 

result in a distribution with a mean of ,w dm  while keeping it skewed to the right (since ,w dm  is 

negative). 

Negative incremental values can also cause extreme outcomes. This is most prevalent when 

resampled triangles are created with negative incremental losses in the first few development 

periods, causing one column of cumulative values to sum close to zero and then next column sum 

to a much larger number and, consequentially, age-to-age factors that are extremely large. This can 

result in one or two extreme iterations in a simulation (for example, outcomes that are multiples of 

1,000s of the central estimate). These extreme outcomes cannot be ignored, even if the high 

percentiles are not of interest, because they are likely to significantly affect the mean of the 

distribution. 

In these instances, you have several options. You can 1) remove these iterations from your 

simulation and replace them with new iterations, 2) recalibrate your model, 3) limit incremental 

values to zero, or 4) use more than one model. 

The first option is to identify the extreme iterations and remove them from your results. Care 

must be taken that only truly unreasonable extreme iterations are removed, so that the resulting 

distribution does not understate the probability of extreme outcomes. 

The second option is to recalibrate the model to fix this issue. First you must identify the source 

of the negative incremental losses. For example, it may be from the first row in your triangle, which 

was the first year the product was written, and therefore exhibit sparse data with negative 

incremental amounts. One option is to remove this row from the triangle if it is causing extreme 

results and does not improve the parameterization of the model. 

The third option is to limit incremental losses to zero, where any negative incremental is replaced 

with a zero incremental. This can be done in many ways. Negative incremental values can be 

replaced with zeros in the original data triangles. Negative incremental values can be kept in the 

original data triangles, but replaced with zeros if they appear in the sampled triangles. Negative 
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incremental losses can be kept in the historical sampled triangle but replaced with zeros in the 

projected future incremental losses. Finally, negative incremental values can be replaced with zeros 

based on which development column they are in (this option is used in the “Bootstrap Models.xls” 

file). Judgment is required when deciding amongst these options. 

The most theoretically sound method to deal with negative incremental values is to consider the 

source of these losses. If they are caused by reinsurance or salvage and subrogation, then you can 

model the losses gross of salvage and subrogation, model the salvage and subrogation separately, 

and combine the iterations assuming 100% correlation. 

4.2 Non-Zero Sum of Residuals 

The residuals that are calculated in the bootstrap model are essentially error terms, and should be 

identically distributed with a mean of zero. Generally, however the average of all the residuals is 

non-zero. The residuals are random observations of the true residual distribution, so this 

observation is not necessarily incompatible with the true residual distribution having a mean of zero. 

The real issue is whether these residuals should be adjusted so that their average is zero. For 

example, if the average of the residuals is positive, then re-sampling from the residual pool will not 

only add variability to the resampled incremental losses, but may increase the resampled incremental 

losses such that the average of the resampled loss will be greater than the fitted loss. 

The reason why residuals may not sum to zero is due to differing magnitudes of losses in each 

accident year. If the magnitude of losses is higher for a particular accident year that shows higher 

development than the weighted average, then the average of all the residuals will be negative. If the 

magnitude of losses is lower for a particular accident year that shows higher development than the 

weighted average, then the average of all the residuals will be positive. 

It can be argued that the non-zero average of residuals is a characteristic of the data set, and 

therefore should not be removed. However, if a zero residual average is desired, then one option is 

the addition of a single constant to all residuals, such that the sum of the shifted residuals is zero. 

4.3 Using an N-Year Weighted Average 

The basic ODP bootstrap model can be simplified by using volume-weighted average age-to-age 

factors for all years in the triangle. It is quite common, however, for actuaries to use weighted 

averages that are less than for all years. Thus, it is also important to be able to adjust the ODP 

bootstrap model to use N-year average age-to-age factors. 

For the GLM framework, we can use N years of data by excluding the first few diagonals in the 
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triangle so that we only use N+1 diagonals (since an N-year average uses N+1 diagonals) to 

parameterize the model. The shape of the data to be modeled essentially becomes a trapezoid 

instead of a triangle, the excluded diagonals are given zero weight in the model and we have fewer 

calendar year trend parameters if we are using formula (3.29). When running the bootstrap 

simulations we will only need to sample residuals for the trapezoid that we used to parameterize the 

model as that is all that will be needed to estimate parameters for each iteration. 

Using the simplified GLM we can also calculate N-year average factors instead of all-year factors 

and exclude the first few diagonals when calculating residuals. However, when running the bootstrap 

simulations we would still need to sample residuals for the entire triangle so that we can calculate 

cumulative values. To be consistent with the assumptions of the simplified GLM in this case, we 

would still want to use N-year average factors for projecting the future expected values. 

The calculations for the GLM framework are illustrated in the companion “Simple GLM 6 with 

3yr avg.xls” file. Note that because the GLM framework estimates parameters for the incremental 

data, the fitted values will no longer match the fitted values from the simplified GLM using volume-

weighted average age-to-age factors. However, the fitted values are generally close so the simplified 

GLM will still be a reasonable approximation to the GLM framework. 

4.4 Missing Values 

Sometimes the loss triangle will have missing values. For example, values may be missing from 

the middle of the triangle. Another example is a triangle that is missing the oldest diagonals, if loss 

data was somehow lost or not kept in the early years of writing the book of business. 

If values are missing, then the following calculations will be affected: 

 Loss development factors 

 Fitted triangle – if the missing value lies on the last diagonal 

 Residuals 

 Degrees of freedom 

There are several solutions. The missing value may be estimated using the surrounding values. 

Or, the loss development factors can be modified to exclude the missing value, and there will not be 

a corresponding residual for this missing value. Subsequently, when triangles are resampled, the 

simulated incremental corresponding to the missing value should not be resampled to reproduce the 

uncertainty in the original dataset. 
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If the missing value lies on the last diagonal, the fitted triangle cannot be calculated in the usual 

way. A solution is to estimate the value, or use the value in the second to last diagonal to construct 

the fitted triangle. These are not strictly mathematically correct solutions, and judgment will be 

needed as to their affect on the resulting distribution.  

4.5 Outliers 

There may be extreme or incorrect values in the original triangle dataset that would be considered 

outliers. These may not be representative of the variability of the dataset in the future and, if so, the 

modeler may want to remove their impact from the model.  

There are several solutions. If these values formed the first row of the data triangle, which is 

common, then this whole first row could be deleted, and the model run on a smaller triangle. 

Alternatively, these values could be removed, and dealt with in the same manner as missing values. 

Another alternative is to identify outliers and exclude them from the average age-to-age factors 

(either the numerator, denominator, or both) and residual calculations, as when dealing with missing 

values, but re-sample the corresponding incremental when simulating triangles. 

The calculations for the GLM framework are illustrated in the companion “Simple GLM 6 with 

Outlier.xls” file. Again the GLM framework fitted values will no longer exactly match the fitted 

values from the simplified GLM using volume weighted average age-to-age factors. 

4.6 Heteroscedasticity 

As noted earlier, the ODP model is based on the assumption that the Pearson residuals are 

independent and identically distributed. It is this assumption that allows the model to take a residual 

from one development period/accident period and apply it to the fitted loss in any other 

development period/accident period, to produce the sampled values. In statistical terms this is 

referred to as homoscedasticity and it is important that this assumption is validated.  

A problem is commonly observed when some development periods have residuals that appear to 

be more variable than others – i.e., they appear to have different distributions or variances. If this 

observation is correct, then we have multiple distributions within the residuals (statistically referred 

to as heteroscedasticity) and it is no longer possible to take a residual from one 

development/accident period and deem it suitable to be applied to any other development/accident 

period. In making this assessment, you must account for the credibility of the observed difference, 

and also to note that there are fewer residuals as the development years become older, so comparing 
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development years is difficult, particularly near the tail-end of the triangle.21 

To adjust for heteroscedasticity in your data there are at least two options, 1) stratified sampling, 

or 2) calculating variance parameters. Stratified sampling is accomplished by organizing the 

development periods by group with homogeneous variances within each group and then sampling 

with replacement only from the residuals in each group. While this process is straightforward and 

easy to accomplish, quite often some groups may only have a few residuals in them, which limits the 

amount of variability in the possible outcomes. 

The second option is to sort the development periods into groups with homogeneous variances 

and calculate the standard deviation of the residuals in each of the “hetero” groups. Then calculate 

ih , which is the hetero-adjustment factor, for each group, i : 

,

,

[ ( )]

( )
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i i
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All residuals in group i  are multiplied by ih .  
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(4.8)

Now all groups have the same standard deviation and we can sample with replacement from 

among all ,
iH
w dr . The original distribution of residuals has been altered, but this can be remedied. 

When the residuals are resampled, the residual is divided by the hetero-adjustment factor that applies 

to the development year of the incremental value, as shown in (4.9). 

*

, ,'( , )i
w d w di

r
q w d m m

h
   . 

(4.9)

By doing this, the heteroscedastic variances we observed in the data are replicated when the 

sample triangles are created, but we are able to freely resample with replacement from the entire 

pool of residuals. Also note that we have added more parameters so this will affect the degrees of 

freedom, which impacts the scale parameter (3.20) and the degrees of freedom adjustment factor 

(3.22). Finally, the hetero group parameters should also be used to adjust the variance when 

simulating the future process variance. 

It is possible to modify the GLM framework to also include “hetero group” parameters, but that 

is beyond the scope of this paper. 

                                                           
21 We will illustrate how to use residual graphs and other statistical tests to evaluate heteroscedasticity in Section 5. 
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4.7 Heteroecthesious Data 

The basic ODP bootstrap model requires both a symmetrical shape (e.g., annual by annual, 

quarterly by quarterly, etc. triangles) and homoecthesious data (i.e., similar exposures).22 As discussed 

above, using an N-year weighted average in the simplified GLM model or adjusting to a trapezoid 

shape allow us to “relax” the requirement of a symmetrical shape. Other non-symmetrical shapes 

(e.g., annual x quarterly data) can also be modeled with either the simplified GLM or GLM 

framework, but they will not be discussed in detail in this paper. 

Most often, the actuary will encounter heteroecthesious data (i.e., incomplete or uneven 

exposures) at interim evaluation dates, with the two most common data triangles being either a 

partial first development period or a partial last calendar period. For example, with annual data 

evaluated as of June 30, partial first development period data would have development periods 

ending at 6, 18, 30, etc. months, while partial last calendar period data would have development 

periods as of 12, 24, 36, etc. months for all of the data in the triangle except the last diagonal, which 

would have development periods as of 6, 18, 30, etc. months. In either case, not all of the data in the 

triangle has full annual exposures – i.e., it is heteroecthesious data. 

4.7.1 Partial first development period data 

For partial first development period data, the first development column has a different exposure 

period than the rest of the columns (e.g., in the earlier example the first column has six months of 

development exposure while the rest have 12). In a deterministic analysis this is not a problem as the 

age-to-age factors will reflect the change in exposure. For parameterizing an ODP bootstrap model, 

it also turns to be a moot issue. In addition, since the Pearson residuals use the square root of the 

fitted value to make them all “exposure independent” that part of an ODP bootstrap model is 

likewise unaffected. 

The only adjustment for this type of heteroecthesious data is the projection of future incremental 

values. In a deterministic analysis, the most recent accident year needs to be adjusted to remove 

exposures beyond the evaluation date. For example, continuing the previous example the 

development periods at 18 months and later are all for an entire year of exposure whereas the six 

month column is only for six months of exposure. Thus, the 6-18 month age-to-age factor will 

effectively extrapolate the first six months of exposure in the latest accident year to a full accident 

year’s exposure. Accordingly, it is common practice to reduce the projected future payments by half 

                                                           
22 To our knowledge, the terms homoecthesious and heteroecthesious are new. They are a combination of the Greek homos (or 
ὁμός) meaning the same or hetero (or έτερο) meaning different and the Greek ekthesē (or έκθεση) meaning exposure. 
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to remove the exposure from June 30 to December 31. 

The simulation process for the ODP bootstrap model can be adjusted similarly to the way a 

deterministic analysis would be adjusted. After the age-to-age factors from each sample triangle are 

used to project the future incremental values the last accident year’s values can be reduced (in the 

previous example by 50%) to remove the future exposure and then process variance can be 

simulated as before. Alternatively, the future incremental values can be reduced after the process 

variance step. 

4.7.2 Partial last calendar period data 

For partial last calendar period data, most of the data in the triangle has annual exposures and 

annual development periods, except for the last diagonal which, continuing our example, only has a 

six-month development period (and a six-month exposure period for the bottom cell). For a 

deterministic analysis, it is quite common in this situation to exclude the last diagonal when 

calculating average age-to-age factors, interpolate those factors for the exposures in the last diagonal 

and use the interpolated factors to project the future values. In addition, the last accident year will 

also need to have the future incremental values reduced to remove exposures beyond the evaluation 

date. 

Similarly to the adjustments for partial first development period data, we could adjust the 

calculations and steps in the simplified GLM model, but adjustments to the GLM framework are 

more problematic. Instead of ignoring the last diagonal during the parameterization of the model, an 

alternative is to adjust or annualize the exposures in the last diagonal to make them consistent with 

the rest of the triangle. 

During the bootstrap simulation process, age-to-age factors can be calculated from the fully 

annualized sample triangles and interpolated. Then, the last diagonal from the sample triangle can be 

adjusted to de-annualize the incremental values in the last diagonal – i.e., reversing the annualization 

of the original last diagonal. The new cumulative values can be multiplied by the interpolated age-to-

age factors to project future values. Again, the future incremental values for the last accident year 

must be reduced (in the previous example by 50%) to remove the future exposure.23 

4.8 Exposure Adjustment 

Another common issue in real data is exposures that have changed dramatically over the years. 

                                                           
23 These heteroecthesious data issues are not illustrated in the “Bootstrap Models.xls” file. 
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For example, in a line of business that has experienced rapid growth or is being run off. If the 

earned exposures exist for this data, then a useful option for the ODP bootstrap model is to divide 

all of the claim data by the exposures for each accident year – i.e., effectively using pure premium 

development instead of total loss development. Quite often this will improve the fit of the model to 

the data. 

During the bootstrap simulation process, all of the calculations would be done using the 

exposure-adjusted data and only after the process variance step has been completed would you 

multiply the results by the exposures by year to restate them in terms of total values again. 

4.9 Parametric Bootstrapping 

Because the number of data points used to parameterize the ODP bootstrap model are limited 

(in the case of a 10x10 triangle to 53 residuals), it is hard to determine whether the most extreme 

observation is a one-in-100 or a one-in-1,000 event (or simply, in this example, a one-in-53 event). 

Of course, the nature of the extreme observations in the data will also affect the level of extreme 

simulations in the results. Judgment is involved here, but the modeler will either need to be satisfied 

with the level of extreme simulations in the results or modify the bootstrap algorithm.  

One way to overcome a lack of extreme residuals for the ODP bootstrap model would be to 

parameterize a distribution for the residuals and resample using the distribution (e.g., use a normal 

distribution if the residuals are normally distributed). This option for “sampling residuals” is beyond 

the scope of the companion Excel files, but this is commonly referred to as parametric 

bootstrapping. 

5. DIAGNOSTICS 

The quality of a bootstrap model depends on the quality of the underlying assumptions. When 

any model fails to “fit” the data, it cannot produce a good estimate of the distribution of possible 

outcomes.24 

One of the advantages of the ODP bootstrap model is how readily it can be tailored to some of 

the statistical features of the data using the GLM framework and considerations described in the 

previous two sections. The CAS Working Party, in the third section of their report on quantifying 

variability in reserve estimates [6], identified 20 criteria or diagnostic tools for gauging the quality of 

                                                           
24 While the examples are different, significant portions of sections 5 and 6 are based on [22] and [14]. 
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a stochastic model. The Working Party also noted that, in trying to determine the optimal “fit” of a 

model, or indeed an optimal model, no single diagnostic tool or group of tools can be considered 

definitive. Depending on the statistical features found in the data, a variety of diagnostic tools are 

necessary to best judge the quality of the model assumptions and to change or adjust the parameters 

of the model. In this sense, the diagnostic tools are used to help find the models that ultimately 

provide the best fit to the data. We will discuss some of these tools in detail in this paper. 

The key diagnostic tests are designed for three purposes: to test various assumptions in the 

model, to gauge the quality of the model fit, or to help guide the adjustment of model parameters. 

Some tests may be considered relative in nature, enabling results from one set of model parameters 

to be compared to those of another, for a specific model. In turn, by analyzing these results a 

modeler may then be able to improve the fit of the model. For the most part, however, the tests 

generally can’t be used to compare different models. The objective, consistent with the goals of a 

deterministic analysis, is not to find the one best model, but rather a set of reasonable models. 

Some diagnostic measures include statistical tests, providing a pass/fail determination for some 

aspects of the model assumptions. This can be useful even though a “fail” does not necessarily 

invalidate an entire model; it only points to areas where improvements can be made to the model or 

its parameterization. The goal is to find the sets of models and parameters that will yield the most 

realistic, most consistent simulations, based on statistical features found in the data. 

To illustrate some of the diagnostic tests for the ODP bootstrap model we will consider data 

from England and Verrall [9].25 

5.1 Residual graphs 

The ODP bootstrap model does not require a specific type of distribution for the residuals, but 

they are assumed to be independent and identically distributed. Because residuals will be sampled 

with replacement during the simulations, this requirement becomes important and thus it is 

necessary to test this assumption. A look at graphs of residuals is a good way to do this.  

Figure 5.1 Residual graphs prior to heteroscedasticity adjustment 

 

 

                                                           
25 The data triangle was originally used by Taylor and Ashe (1983) and has been used by other authors. This data is 

included in the “Bootstrap Models.xls” file. 



Bootstrap Modeling: Beyond the Basics 
 

Casualty Actuarial Society E-Forum, Fall 2010  30 

 

 

 

 

 

 

 

 

 

Going clock-wise, and starting from the top-left-hand corner, the graphs in Figure 5.1 show the 

residuals (blue dots) by development period, accident period, and calendar period and against the 

fitted incremental loss (in the lower-right-hand corner). In addition, the graphs include a trend line 

(in pink) that highlights the averages for each period. 

At first glance, the residuals in the graphs appear reasonably random, indicating the model is 

likely a good fit of the data. But a closer look may also reveal potential features in the data that, with 

the benefit of further analysis, may indicate ways to improve the model fit. 

The graphs in Figure 5.1 do not appear to indicate issues with trends, even if the trends for the 

development and accident periods are both essentially straight. That's because the simplified GLM 

specifies a parameter for every row and column of the triangle. The development-period graph does, 

however, reveal a potential heteroscedasticity issue associated with the data. Heteroscedasticity is 

when random variables have different variances. Note how the upper left graph appears to show a 

variance of the residuals in the first three periods that differs from those of the middle four or last 

two periods. 

Adjustments for heteroscedasticity can be made with the “Bootstrap Models.xls” file, which 

enables us to recognize groups of development periods and then adjust the residuals to a common 

standard deviation value. As an aid to visualizing how to group the development periods into 

“hetero” groups, graphs of the standard deviation and range relativities can then be developed. 

Figure 5.2 represents pre-adjusted relativities for the residuals shown in Figure 5.1. 
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Figure 5.2 Residual relativities prior to heteroscedasticity adjustment 

 

 

 

 

 

 

The relativities illustrated in Figure 5.2 help to clarify the veracity of this test, indicating that the 

residuals in the first three periods are different from those in the middle four or the last two. 

However, further testing will be required to assess the optimal groups, which can be performed 

using the other diagnostic tests noted below.  

The residual plots in Figure 5.3 originate from the same data model after setting up “hetero” 

groups for the same array: the first three, middle four, and last two development periods, 

respectively. Determining whether this “hetero” grouping has improved the model fit will require 

review of other diagnostic tests. 
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Figure 5.3 Residual graphs after heteroscedasticity adjustment 

 

 

 

 

 

 

 

 

 

 

 

Comparing the residual plots in Figures 5.1 and 5.3 does show that the general “shape” of the 

residuals has not changed and the “randomness” is still consistent. But the residuals now appear to 

exhibit the same standard deviation, or homoscedasticity. More consistent relativities may also be 

seen in a comparison of the residual relativities in Figures 5.2 and 5.4. 

Figure 5.4 Residual relativities after heteroscedasticity adjustment 

 

 

 

 

 

5.2 Normality test 

The ODP bootstrap model does not depend on the residuals being normally distributed, but 

even so, comparing residuals against a normal distribution remains a useful test, enabling 

comparison of parameter sets and gauging skewness of the residuals. This test uses both graphs and 
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calculated test values. Figure 5.5 is based on the same heteroscedasticity groups used earlier. 

Figure 5.5 Normality plots prior to and after heteroscedasticity adjustment 

 

 

 

 

 

 

Even before the heteroscedasticity adjustment, the residual plots appear close to normally 

distributed, with the data points tightly distributed around the diagonal line. The p-value, a statistical 

pass-fail test for normality, came in at 20.5%, which far exceeds the value generally considered a 

“passing” score of the normality test, which is greater than 5.0%.26 The graphs in Figure 5.5 also 

show N (the number of data points) and the R2 test. After the hetero adjustment, the p-value and R2 

don’t appear to improve, which indicates that the tested “hetero” groups have not made the residual 

distribution more normally distributed. 

While the p-value and R2 tests are straightforward and easy to apply, neither adjusts for additional 

parameters used in the model, a critical limitation. Two other tests, the Akaike Information Criteria 

(AIC) and the Bayesian Information Criteria (BIC), address this limitation, using the difference 

between each residual and its normal counterpart from the normality plot to calculate the Residual 

Sum Squared (RSS) and include a penalty for additional parameters, as shown in (5.1) and (5.2), 

respectively.27 

2
2 ln( ) 1

RSS
AIC p n

n

        
 

(5.1)

ln( ) ln( )
RSS

BIC n p n
n

     
(5.2)

A smaller value for the AIC and BIC tests indicate residuals that fit a normal distribution more 

                                                           
26 Remember that this doesn't indicate whether the bootstrap model itself passes or fails – the bootstrap model doesn’t 

require the residuals to be normally distributed. While not included in the “Bootstrap Models.xls” file, as discussed in 
section 4.9, it could be used to determine whether to switch to a parametric bootstrap process using a normal 
distribution. 

27 There are different versions of the AIC and BIC formula from various authors and sources, but the general idea of 
each version is consistent. 

N = 53 P-Value = R
2
 = 97.2% N = 53 P-Value = R

2
 = 96.4%

Normal:  MU = 0.04,  Sigma = 7.09 AIC = 206.1, BIC = 93.1 Normal:  MU = 0.07,  Sigma = 9.85 AIC = 257.8, BIC = 148.8
20.5% 9.9%
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closely, and this improvement in fit overcomes the penalty of adding a parameter. With some trial 

and error, a better “hetero” grouping was found with the normality results shown in Figure 5.6.28 

For the new “hetero” groups, all of the statistical tests improved dramatically. 

Figure 5.6 Normality plots prior to and after heteroscedasticity adjustment 

 

 

 

 

 

 

5.3 Outliers 

Identifying outliers in the data provides another useful test in determining model fit. Outliers can 

be represented graphically in a box-whisker plot, which shows the inter-quartile range (the 25th to 

75th percentiles) and the median (50th percentile) of the residuals—the so-called box. The whiskers 

then extend to the largest values within three times this inter-quartile range. Values beyond the 

whiskers may generally be considered outliers and are identified individually with a point. 

                                                           
28 In the “Bootstrap Models.xls” file the England and Verrall data was entered as both paid and incurred. The first set of 

“hetero” groups are illustrated for the “incurred” data and the second set of “hetero” groups are illustrated for the 
“paid” data. 

N = 53 P-Value = R
2
 = 97.2% N = 53 P-Value = R

2
 = 99.2%

Normal:  MU = 0.04,  Sigma = 7.09 AIC = 206.1, BIC = 93.1 Normal:  MU = 0.05,  Sigma = 8.51 AIC = 160.8, BIC = 51.7
20.5% 95.4%
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Figure 5.7 Box-Whisker Plots Prior to and After Heteroscedasticity Adjustment 

 

 

 

 

 

 

Figure 5.7 shows an example of the residuals for the second set of “hetero” groups (Figure 5.6). 

A pre-hetero adjustment plot returns four outliers (red dots) in the data model, corresponding to the 

two highest and two lowest values in the previous graphs in Figures 5.1, 5.3, 5.5, and 5.6.  

Even after the hetero adjustment, the residuals still appear to contain three outliers. Now comes a 

very delicate and often tricky matter of actuarial judgment. If the data in those cells genuinely 

represent events that cannot be expected to happen again, the outliers may be removed from the 

model (by giving them zero weight). But extreme caution should be taken even when the removal of 

outliers seems warranted. The possibility always remains that apparent outliers may actually 

represent realistic extreme values, which, of course, are critically important to include as part of any 

sound analysis.  

Additionally, when residuals are not normally distributed a significant number of “outliers” tend 

to result, which may be only an artifact of the function of the distributional shape of the residuals. 

Again, it is preferable to let these stand in order to enable the simulation process to replicate this 

shape. 

While the three diagnostic tests shown above demonstrate techniques commonly used with most 

types of models, they are not the only tests available. Next, we’ll take a look at the flexibility of the 

GLM framework and some of the diagnostic elements of the simulation results. For a more 

extensive list of other tests available, see the report, CAS Working Party on Quantifying Variability 

in Reserve Estimates [6].  

5.4 Parameter adjustment 

As noted in section 5.1 the relatively straight average lines in the development and accident 

period graphs are a reflection of having a parameter for every accident and development period. In 

Interquartile Range = [-4.73, 4.74] Median = -0.87 Interquartile Range = [-6.33, 5.75] Median = -1.14
Outliers = 4 Outliers = 3
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some instances, this is also an indication that the model may be over parameterized. Using the 

“flexible” model in the “Bootstrap Models.xls” file we can illustrate the power of removing some of 

the parameters. 

Starting with the “basic” model which includes only one parameter for accident, development 

and calendar periods (i.e., only one  ,   and   parameter), with a little trial and error we can find 

a reasonably good fit to the data using only three accident, three development and no calendar 

parameters. Adding blue bars to signify a parameter and red bars to signify no parameter (i.e., 

parameter of zero), the residual graphs for the “flexible” model are shown in figure 5.8. 

Figure 5.8 Residual graphs for “flexible” model 
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Using the second set of “hetero” groups we can also check the normality graphs and statistics in 

figure 5.9 and outliers in figure 5.10. Comparing the statistics to the simplified GLM values shown in 

figures 5.6 and 5.7, some values improved while others did not. However, the values are not 

significantly different, yet the “flexible” model is far more parsimonious. 

Figure 5.9 Normality plots for “flexible” model 

 

 

 

 

 

 

 

Figure 5.10 Box-Whisker plots for “flexible” model 
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5.5 Model results 

Once diagnostics have been reviewed, simulations should be run for each model. These 

simulation results may often provide an additional diagnostic tool to aid in evaluation of the model. 

As one example, we will review the results for the England and Verrall data using the simplified 

GLM model. The estimated-unpaid results shown in Figure 5.11 were simulated using 1,000 

iterations with the hetero adjustments from Figure 5.6. 

Figure 5.11 Estimated-Unpaid Model Results 

 

 

 

 

 

 

5.5.1 Estimated-Unpaid Results 

It’s recommended to start diagnostic review of the estimated-unpaid table with the standard error 

(standard deviation) and coefficient of variation (standard error divided by the mean), shown in 

Figure 5.11. Keep in mind that the standard error should increase when moving from the oldest 

years to the most recent years, as the standard errors (value scale) should follow the magnitude of 

the mean of unpaid estimates. In Figure 5.11, the standard errors conform to this pattern. At the 

same time, the standard error for the total of all years should be larger than any individual year. 

Also, the coefficients of variation should generally decrease when moving from the oldest years 

to the more recent years and the coefficient of variation for all years combined should be less than 

for any individual year. With the exception of the 2008 accident year, the coefficients of variation in 

Figure 5.11 seem to also conform, although some random fluctuations may be seen. 

The main reason for the decrease in the coefficient of variation has to do with the independence 

in the incremental claim-payment stream. Because the oldest accident year typically has only a few 

incremental payments remaining, or even just one, the variability is nearly all reflected in the 

coefficient. For more current accident years, random variations in the future incremental payment 

stream may tend to offset one another, thereby reducing the variability of the total unpaid loss. 

England & Verrall Data
Accident Year Unpaid

Paid Chain Ladder Model
Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
1999 3,901 -                  -                  -                  -                  -                  -                  -                  -                  
2000 5,339 93                   125                 134.0% (377)                900                 62                   156                 306                 502                 
2001 4,909 479                 246                 51.3% (115)                1,694              447                 615                 940                 1,186              
2002 4,588 723                 276                 38.2% (51)                  1,892              691                 899                 1,220              1,515              
2003 3,873 984                 293                 29.7% 267                 2,160              976                 1,176              1,453              1,802              
2004 3,692 1,430              366                 25.6% 434                 2,888              1,400              1,670              2,072              2,405              
2005 3,483 2,183              484                 22.2% 896                 3,812              2,140              2,497              3,038              3,483              
2006 2,864 3,909              749                 19.2% 1,793              6,482              3,875              4,402              5,175              5,935              
2007 1,363 4,261              830                 19.5% 1,757              7,865              4,221              4,789              5,700              6,321              
2008 344 4,672              1,839              39.4% 617                 11,009            4,523              5,853              7,878              9,509              

Totals 34,358 18,737            2,769              14.8% 11,019            29,190            18,647            20,533            23,611            25,486            
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While the coefficients of variation should go down, they could also start to rise again in the most 

recent years, which can been seen in Figure 5.11 for 2008. Such a reversal could result from a couple 

of issues: 

 With an increasing number of parameters used in the model, the parameter uncertainty tends 

to increase when moving from the oldest years to the more recent years. In the most recent 

years, parameter uncertainty can grow to “overpower” process uncertainty, which may cause 

the coefficient of variation to start rising again. At a minimum, increasing parameter 

uncertainty will slow the rate of decrease in the coefficient of variation. 

 The model may be overestimating the uncertainty in recent accident years if the increase is 

significant. In that case, the Bornhuetter-Ferguson or Cape Cod model may need to be used 

instead of a chain-ladder model.  

Keep in mind also that the standard error or coefficient of variation for the total of all accident 

years will be less than the sum of the standard error or coefficient of variation for the individual 

years. This is because the model assumes that accident years are independent.  

Minimum and maximum results are the next diagnostic element in our analysis of the estimated-

unpaid claims in Figure 5.11, representing the smallest and largest values from all iterations of the 

simulation. These values will need to be reviewed in order to determine their veracity. If any of them 

seem implausible, the model assumptions would need to be reviewed. Their effects could materially 

alter the mean indication. 
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5.5.2 Mean and Standard Deviation of Incremental Values 

The mean and standard deviation of every incremental value from the simulation process also 

provide useful diagnostic results, enabling us to dig deeper into potential coefficient of variation 

issues that may be found in the estimated-unpaid results. Consider, for example, the mean and 

standard deviation results shown in Figures 5.12 and 5.13, respectively. 

Figure 5.12 Mean of incremental values 

 

 

 

 

 

The mean values in Figure 5.12 appear consistent throughout and support the increases in 

estimated unpaid by accident year that are shown in Figure 5.11. In fact, the future mean values, 

which lay beyond the stepped diagonal line in Figure 5.12, sum to the results in Figure 5.11. The 

standard deviation values in Figure 5.13, however, only appear consistent up to 2007; 2008 has larger 

standard deviations, which again are consistent with the standard deviations seen in Figure 5.11. But 

contrariwise the standard deviations can’t be added because the standard deviations in Figure 5.11 

represent those for aggregated incremental values by accident year, which are less than perfectly 

correlated. 

Figure 5.13 Standard deviation of incremental values 

 

 

 

 

 

6. USING MULTIPLE MODELS 

So far we have focused only on one model. In practice, multiple stochastic models should be 

England & Verrall Data
Accident Year Incremental Values by Development Period

Paid Chain Ladder Model
Accident Mean Values

Year 12 24 36 48 60 72 84 96 108 120
1999 266                 675                 694                 767                 421                 294                 267                 180                 274                 67                   
2000 375                 945                 973                 1,030              588                 400                 376                 251                 383                 93                   
2001 372                 926                 987                 1,040              572                 406                 373                 249                 385                 94                   
2002 369                 916                 967                 1,037              576                 395                 366                 253                 380                 90                   
2003 333                 837                 893                 936                 508                 362                 334                 222                 342                 86                   
2004 351                 876                 943                 983                 546                 384                 354                 237                 362                 93                   
2005 395                 973                 1,028              1,093              606                 425                 389                 266                 400                 97                   
2006 463                 1,165              1,218              1,297              721                 511                 472                 315                 476                 116                 
2007 393                 964                 1,020              1,075              601                 422                 388                 262                 396                 97                   
2008 340                 861                 913                 974                 543                 359                 345                 233                 361                 84                   

England & Verrall Data
Accident Year Incremental Values by Development Period

Paid Chain Ladder Model
Accident Standard Error Values

Year 12 24 36 48 60 72 84 96 108 120
1999 106                 120                 233                 232                 138                 143                 103                 88                   137                 69                   
2000 126                 142                 264                 272                 153                 173                 128                 106                 162                 125                 
2001 131                 134                 260                 281                 156                 174                 127                 102                 205                 129                 
2002 126                 139                 256                 274                 150                 171                 124                 115                 195                 128                 
2003 122                 131                 246                 249                 148                 158                 125                 107                 178                 118                 
2004 128                 134                 252                 259                 151                 167                 132                 108                 187                 127                 
2005 133                 144                 281                 283                 180                 190                 142                 123                 207                 134                 
2006 141                 161                 302                 356                 202                 207                 168                 140                 232                 153                 
2007 124                 142                 297                 326                 185                 180                 138                 115                 208                 124                 
2008 120                 340                 410                 458                 256                 210                 190                 137                 230                 121                 
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used in the same way that multiple methods should be used in a deterministic analysis. First the 

results for each model must be reviewed and finalized, after an iterative process of diagnostic testing 

and reviewing model output. Then these results can be combined by assigning a weight to the results 

of each model.  

Two primary methods exist for combining the results for multiple models: 

 Run models with the same random variables. For this algorithm, every model uses the 

exact same random variables. In the “Bootstrap Models.xls” file, the random values are 

simulated before they are used to simulate results, which means that this algorithm may be 

accomplished by reusing the same set of random variables for each model. At the end, the 

incremental values for each model, for each iteration by accident year (that have a partial 

weight), can be weighted together. 

 Run models with independent random variables. For this algorithm, every model is run 

with its own random variables. In the “Bootstrap Models.xls” file, the random values are 

simulated before they are used to simulate results, which means that this algorithm may be 

accomplished by simulating a new set of random variables for each model. At the end, the 

weights are used to randomly select a model for each iteration by accident year so that the 

result is a weighted “mixture” of models. 

Both algorithms are similar to the process of weighting the results of different deterministic 

methods to arrive at an actuarial best estimate. The process of weighting the results of different 

stochastic models produces an actuarial best estimate of a distribution. 

The second method of combining multiple models can be illustrated using combined Schedule P 

data for five top 50 companies.29 Data for all Schedule P lines with 10 years of history may be found 

in the “Industry Data.xls” file, but we will confine our examination to Parts A, B, and C. For each 

line of business we ran simplified GLM models for paid and incurred data (labeled Chain Ladder), as 

well as paid and incurred data for the Bornhuetter-Ferguson and Cape Cod models described in 

section 3.3. For this section, we will only focus on the results for Part A (Homeowners/Farm 

owners). 

By comparing the results for all six models (or fewer, depending on how many are used)30 a 

qualitative assessment of the relative merits of each model may be determined. Bayesian methods 

                                                           
29 The five companies represent large, medium and smaller companies that have been combined to maintain anonymity. 

For each Part, a unique set of five companies were used. 
30 Other models in addition to a bootstrap model could also be included in the weighting process. 
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can be used to determine weighting based on the quality of each model’s forecasts. The weights can 

be determined separately for each year. The table in Figure 6.1 shows an example of weights for the 

Part A data.31 The weighted results are displayed in the “Best Estimate” column of Figure 6.2. As a 

parallel to a deterministic analysis, the means from the six models could be considered a reasonable 

range (i.e., from $4,059 to $5,242). 

Figure 6.1 Model weights by accident year 

 
 

 

 

 

 

 

Figure 6.2 Summary of results by model 

 

 

 

 

 

 

 

 

 

With our focus on the entire distribution, the weights by year were used to randomly sample the 

specified percentage of iterations from each model. A more complete set of the results for the 

“weighted” iterations can be created similar to the tables shown in section 5. The companion “Best 

Estimate.xls” file can be used to weight six different models together in order to calculate a weighted 
                                                           
31 For simplicity, the weights are judgmental and not derived using Bayesian methods. 

Model Weights by Accident Year
Accident Chain Ladder Bornhuetter-Ferguson Cape Cod

Year Paid Incurred Paid Incurred Paid Incurred TOTAL
1999 50.0% 50.0% 100.0%
2000 50.0% 50.0% 100.0%
2001 50.0% 50.0% 100.0%
2002 50.0% 50.0% 100.0%
2003 50.0% 50.0% 100.0%
2004 50.0% 50.0% 100.0%
2005 50.0% 50.0% 100.0%
2006 12.5% 12.5% 18.8% 18.8% 18.8% 18.8% 100.0%
2007 12.5% 12.5% 18.8% 18.8% 18.8% 18.8% 100.0%
2008 12.5% 12.5% 18.8% 18.8% 18.8% 18.8% 100.0%

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Summary of Results by Model
Mean Estimated Unpaid

Accident Chain Ladder Bornhuetter Ferguson Cape Cod Best Est.
Year Paid Incurred Paid Incurred Paid Incurred (Weighted)
1999 -                  -                  -                  -                  -                  -                  -                  
2000 2                     1                     1                     2                     2                     2                     1                     
2001 38                   36                   25                   25                   25                   32                   37                   
2002 42                   40                   36                   36                   36                   42                   41                   
2003 57                   60                   56                   57                   57                   66                   59                   
2004 98                   98                   94                   92                   92                   106                 99                   
2005 212                 219                 164                 166                 166                 189                 218                 
2006 290                 292                 327                 318                 318                 371                 339                 
2007 677                 665                 715                 701                 701                 823                 739                 
2008 3,826              3,826              2,642              2,840              2,840              3,324              3,192              

Totals 5,242              5,239              4,059              4,236              4,236              4,953              4,726              
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best estimate. An example for Part A is shown in the table in Figure 6.3. 

Figure 6.3 Estimated-unpaid model results (best estimate) 

 

 

 

 

 

 

 

 

6.1 Additional Useful Output 

Three rows of percentile numbers for the normal, lognormal, and gamma distributions, which 

have been fitted to the total unpaid-claim distribution, may be seen at the bottom of the table in 

Figure 6.3. These fitted mean, standard deviation, and selected percentiles are in their respective 

columns; the smoothed results can be used to assess the quality of fit, parameterize a DFA model, or 

used to estimate extreme values,32 among other applications. 

Four rows of numbers indicating the Tail Value at Risk (TVaR), defined as the average of all of 

the simulated values equal to or greater than the percentile value, may also be seen at the bottom of 

Figure 6.3. For example, in this table, the 99th percentile value for the total unpaid claims for all 

accident years combined is 7,442, while the average of all simulated values that are greater than or 

equal to 7,442 is 8,915. The Normal TVaR, Lognormal TVaR, and Gamma TVaR rows are 

calculated similarly, except that they use the respective fitted distributions in the calculations rather 

than actual simulated values from the model. 

An analysis of the TVaR values is likely to help clarify a critical issue: if the actual outcome 

exceeds the X percentile value, how much will it exceed that value on average? This type of 

assessment can have important implications related to risk-based capital calculations and other 

technical aspects of enterprise risk management. But it is worth noting that the purpose of the 

                                                           
32 Of course the use of the extreme values assumes that the models are reliable. 

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Unpaid
Best Estimate (Weighted)

Accident Paid Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
1999 5,234              -                  -                  -                  -                  -                  -                  -                  -                  
2000 6,470              1                     11                   745.3% (52)                  84                   0                     2                     19                   51                   
2001 7,848              37                   39                   104.5% (68)                  263                 28                   56                   112                 164                 
2002 7,020              41                   36                   86.7% (48)                  230                 33                   58                   108                 155                 
2003 7,291              59                   41                   69.1% (41)                  276                 49                   78                   136                 191                 
2004 8,134              99                   49                   49.1% (14)                  377                 90                   121                 188                 259                 
2005 10,800            218                 78                   36.0% 28                   666                 209                 259                 359                 457                 
2006 7,522              339                 129                 38.1% 37                   1,227              321                 402                 570                 739                 
2007 7,968              739                 259                 35.1% 112                 1,981              722                 875                 1,196              1,557              
2008 9,309              3,192              920                 28.8% 1,090              11,122            3,128              3,629              4,792              5,722              

Totals 77,596            4,726              999                 21.1% 2,528              13,422            4,632              5,209              6,554              7,442              
Normal Dist. 4,726              999                 21.1% 4,726              5,400              6,369              7,050              
logNormal Dist. 4,725              968                 20.5% 4,628              5,307              6,461              7,419              
Gamma Dist. 4,726              999                 21.1% 4,656              5,356              6,480              7,354              
TVaR 5,454              6,003              7,311              8,915              
Normal TVaR 5,523              5,996              6,786              7,388              
logNormal TVaR 5,484              6,021              7,054              7,964              
Gamma TVaR 5,518              6,049              7,018              7,824              



Bootstrap Modeling: Beyond the Basics 
 

Casualty Actuarial Society E-Forum, Fall 2010  44 

normal, lognormal, and gamma TVaR numbers is to provide “smoothed” values—that is, that some 

of the random statistical noise is essentially prevented from distorting the calculations. 

6.2 Estimated Cash Flow Results 

An ODP bootstrap model’s output may also be reviewed by calendar year (or by future diagonal), 

as shown in the table in Figure 6.4. A comparison of the values in Figures 6.3 and 6.4 indicates that 

the total rows are identical, because summing the future payments horizontally or diagonally will 

produce the same total. Similar diagnostic issues (as discussed in Section 5) may be reviewed in the 

table in Figure 6.4, with the exception of the relative values of the standard errors and coefficients of 

variation moving in opposite directions for calendar years compared to accident years. This 

phenomenon makes sense on an intuitive level when one considers that “final” payments, projected 

to the furthest point in the future, should actually be the smallest, yet relatively most uncertain. 

Figure 6.4 Estimated Cash Flow (best estimate) 

 

 

 

 

 

 

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Calendar Year Unpaid
Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2009 3,093              726                 23.5% 1,445              9,809              3,024              3,428              4,355              5,101              
2010 799                 186                 23.3% 312                 2,057              786                 900                 1,125              1,329              
2011 362                 97                   26.7% 124                 856                 356                 422                 528                 601                 
2012 191                 63                   32.9% 52                   507                 183                 224                 312                 386                 
2013 118                 52                   44.0% (14)                  430                 110                 144                 212                 285                 
2014 64                   34                   52.8% (61)                  205                 60                   80                   127                 175                 
2015 50                   36                   71.1% (14)                  332                 42                   67                   116                 191                 
2016 41                   39                   95.9% (93)                  296                 31                   56                   112                 177                 
2017 7                     17                   257.3% (60)                  175                 0                     9                     40                   64                   
2018 -                  -                  -                  -                  -                  -                  -                  -                  

Totals 4,726              999                 21.1% 2,528              13,422            4,632              5,209              6,554              7,442              
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6.3 Estimated Ultimate Loss Ratio Results 

Another output table, Figure 6.5, shows the estimated ultimate-loss ratios by accident year. 

Unlike the estimated-unpaid and estimated-cash-flow tables, the values in this table are calculated 

using all simulated values, not just the values beyond the end of the historical triangle. Because the 

simulated sample triangles represent additional possibilities of what could have happened in the past, 

even as the “squaring of the triangle” and process variance represent what could happen as those 

same past values are played out into the future, we are in possession of sufficient information to 

enable us to estimate the complete variability in the loss ratio from day one until all claims are 

completely paid and settled for each accident year.33  

Figure 6.5 Estimated-loss-ratio (best estimate) 

 

 

 

 

 

 

 

The use of all simulated values indicates that the standard errors in Figure 6.5 should be 

proportionate to the means, while the coefficients of variation should be relatively constant by 

accident year. In terms of diagnostics, any increases in standard error and coefficient of variation for 

the most recent years would be consistent with the reasons previously cited in Section 5.4 for the 

estimated-unpaid tables. Risk management-wise, the loss ratio distributions have important 

implications for projecting pricing risk. 

6.4 Distribution Graphs 

The final model output to consider is a histogram of the estimated-unpaid amounts for the total 

of all accident years combined, as shown in the graph in Figure 6.6. This total-unpaid-distribution 

histogram was created by dividing the range of all values generated from the simulation into 100 

                                                           
33 If we are only interested in the “remaining” volatility in the loss ratio, then the values in the estimated-unpaid table 

(Figure 6.3) can be added to the cumulative paid values by year and divided by the premiums. 

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Ultimate Loss Ratios
Best Estimate (Weighted)

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
1999 66.3% 23.9% 36.0% -1.4% 155.5% 65.5% 71.1% 118.7% 146.5%
2000 78.4% 24.1% 30.8% -0.7% 189.8% 77.6% 83.9% 123.8% 157.3%
2001 87.9% 25.5% 29.0% 12.9% 260.1% 88.5% 94.1% 136.1% 175.3%
2002 72.2% 21.9% 30.3% -31.1% 170.8% 71.6% 76.3% 117.4% 143.5%
2003 64.7% 19.2% 29.7% 15.1% 227.3% 63.4% 68.3% 104.6% 125.7%
2004 64.1% 17.3% 27.1% -5.8% 130.7% 62.9% 67.1% 102.1% 118.6%
2005 80.3% 18.8% 23.4% 16.4% 165.7% 79.1% 84.5% 119.6% 139.1%
2006 55.1% 16.3% 29.5% 7.9% 205.9% 53.8% 57.6% 89.7% 106.1%
2007 56.7% 16.2% 28.6% 10.1% 123.8% 56.8% 60.7% 89.0% 106.4%
2008 83.6% 20.6% 24.6% 33.1% 307.1% 81.8% 87.9% 123.5% 150.9%

Totals 70.1% 6.7% 9.5% 50.0% 114.7% 69.9% 74.1% 81.0% 87.7%
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buckets of equal size and then counting the number of simulations that fall within each bucket. 

Dividing the number of simulations in each bucket by the total number of simulations (1,000 in this 

case) enables us to arrive at the frequency or probability for each bucket or bar in the graph. 

Because the simulation results typically appear jagged, as they do in Figure 6.6, a Kernel density 

function (the blue line) is also used to calculate a smoothed distribution fit to the histogram values.34 

A Kernel density function may be conceptualized as a weighted average of values close to each point 

in the jagged distribution, with systematically less weight being given to values furthest from the 

points evaluated.35 

Figure 6.6 Total Unpaid Claims Distribution 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Another useful strategy for graphing the total unpaid distribution may be accomplished by 

creating a summary of the six model distributions used to determine the weighted “best estimate” 

                                                           
34 Essentially, a Kernel density function will estimate each point in the distribution by weighting all of the values near 

that point, with less weight given the further the other points are from each respective point. 
35 For a more detailed discussion of Kernel density functions, see Wand & Jones, Kernel Smoothing, Chapman & Hall, 

1995. 

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)
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and distribution. An example of this graph using the kernel density functions is shown in Figure 6.7. 

Figure 6.7 Summary of model distributions 

  

 

 

 

 

 

 

 

 

 

 

The corresponding tables and graphs for the Part B and Part C results are shown in Appendices 

A and B, respectively. 

6.5 Correlation 

Results for an entire business unit can be estimated, after each business segment has been 

analyzed and weighted into best estimates, using aggregation. This represents another area where 

caution is warranted. The procedure is not a simple matter of “adding up” the distributions for each 

segment. In order to estimate the distribution of possible outcomes for the company as a whole a 

process that incorporates the correlation of results among segments must be used.36 

Simulating correlated variables is commonly accomplished with a multivariate distribution whose 

parameters and correlations have been previously specified. This type of simulation is most easily 

applied when distributions are uniformly identical and known in advance (for example, all derived 

from a multivariate normal distribution). Unfortunately, these conditions do not exist for the ODP 

bootstrap model, a process that does not allow us to know the characteristics of distributions in 

                                                           
36 This section assumed the reader is familiar with correlation. 

Five Top 50 Companies
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advance. If their shapes turn out, indeed, to be different, then another approach will be needed. 

Two useful correlation processes for the bootstrap model are location mapping and re-sorting.37 

With location mapping, each iteration will include sampling residuals for the first segment and 

then going back to note the location in the original residual triangle of each sampled residual.38 Each 

of the other segments is sampled using the residuals at the same locations for their respective 

residual triangles. Thus, the correlation of the original residuals is preserved in the sampling process. 

The location-mapping process is easily implemented in Excel and does not require the need to 

estimate a correlation matrix. There are, however, two drawbacks to this process. First, it requires all 

of the business segments to come with data triangles that are precisely the same size with no missing 

values or outliers when comparing each location of the residuals.39 Second, the correlation of the 

original residuals is used in the model, and no other correlation assumptions can be used for stress 

testing the aggregate results. 

The second correlation process, re-sorting, can be accomplished with algorithms such as Iman-

Conover or Copulas, among others. The primary advantages of re-sorting include:  

 The triangles for each segment may have different shapes and sizes  

 Different correlation assumptions may be employed 

 Different correlation algorithms may also have other beneficial impacts on the aggregate 

distribution  

For example, using a t-distribution Copula with low degrees of freedom rather than a normal-

distribution Copula, will effectively “strengthen” the focus of the correlation in the tail of the 

distribution. This type of consideration is important for risk-based capital and other risk modeling 

issues. 

To induce correlation among different segments in the bootstrap model, a calculation of the 

correlation matrix using Spearman’s Rank Order and use of re-sorting based on the ranks of the 

total unpaid claims for all accident years combined may be done. The calculated correlations for 

Parts A, B, and C based on the paid residuals after hetero adjustments may be seen in the table in 

                                                           
37 For a useful reference see Kirschner, et al. [15]. 
38 For example, in the “Bootstrap Models.xls” file the locations of the sampled residuals are shown in Step 15, which 

could be replicated iteration by iteration for each business segment. 
39 It is possible to fill in “missing” residuals in another segment using a randomly selected residual from elsewhere in the 

triangle, but in order to maintain the same amount of correlation the selection of the other residual would need to 
account for the correlation between the residuals, which complicates the process. 
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Figure 6.8. 

Figure 6.8 Estimated Correlation and P-values 

 

 

 

 

 

 

 

Using these correlation coefficients, the “Aggregate Estimate.xls” file, and the simulation data for 

Parts A, B, and C, we can then calculate the aggregate results for the three lines of business that are 

summarized in the table in Figure 6.9. A more complete set of tables for the aggregate results is 

shown in Appendix C. 

Figure 6.9 Aggregate estimated unpaid 

 

 

 

 

 

 

Note that using residuals to correlate the lines of business, as in the location mapping method, 

and measuring the correlation between residuals, as in the re-sorting method, are both liable to 

create correlations that are close to zero. For reserve risk, the correlation that is desired is between 

the total unpaid amounts for two segments. The correlation that is being measured is the correlation 

between each incremental future loss amount, given the underlying model describing the overall 

trends in the data. This may or may not be a reasonable approximation. 

Correlation is often thought of as being much stronger than “close to zero.” For pricing risk, the 

correlation that is desired is between the loss ratio movements by accident year between two 

Rank Correlation of Residuals after Hetero Adjustment - Paid
LOB 1 2 3

1 1.00 0.52 0.23
2 0.52 1.00 0.25
3 0.23 0.25 1.00

P-Values of Rank Correlation of Residuals after Hetero Adjustment - Paid
LOB 1 2 3

1 0.00 0.00 0.09
2 0.00 0.00 0.08
3 0.09 0.08 0.00

Five Top 50 Companies
Aggregate All Lines of Business

Accident Year Unpaid

Accident Paid Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
1999 18,613            -                  -                  -                  -                  -                  -                  -                  -                  
2000 20,618            31                   12                   37.5% (21)                  117                 30                   34                   50                   77                   
2001 22,866            115                 40                   34.8% 12                   354                 108                 137                 189                 234                 
2002 22,842            211                 43                   20.3% 107                 419                 205                 234                 293                 333                 
2003 22,351            387                 52                   13.4% 221                 660                 381                 415                 478                 547                 
2004 22,422            741                 86                   11.5% 439                 1,097              735                 791                 894                 981                 
2005 24,350            1,514              150                 9.9% 874                 2,062              1,507              1,600              1,788              1,911              
2006 19,973            2,958              264                 8.9% 1,944              4,153              2,945              3,087              3,427              3,753              
2007 18,919            5,533              475                 8.6% 3,623              7,612              5,506              5,778              6,356              6,845              
2008 15,961            12,565            1,195              9.5% 8,649              20,314            12,526            13,230            14,542            15,970            

Totals 208,915          24,056            1,324              5.5% 19,572            32,759            24,008            24,852            26,193            27,644            
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segments. This correlation is not as likely to be close to zero, so correlation of loss ratios (e.g., for 

the data in Figure 6.5) is often done with a different correlation assumption compared to reserving 

risk. 

7. MODEL TESTING 

Work on testing stochastic unpaid claim estimation models is still in its infancy. Most papers on 

stochastic models display results, and some even compare a few different models, but they tend to 

be void of any statistical evidence regarding how well the model in question predicts the underlying 

distribution. This is quite understandable since we don’t know what the underlying distribution is, so 

with real data the best we can hope for is to retrospectively test a very old data set to see how well a 

model predicted the actual outcome.40 

Testing a few old data sets is better than not, but ideally we would need many similar data sets to 

perform meaningful tests. One recent paper authored by the General Insurance Reserving Oversight 

Committee (GI ROC) in their papers for the General Insurance Research Organizing (GIRO) 

conference in 2007 titled “Best Estimates and Reserving Uncertainty” [28] and their updated in 2008 

titled “Reserving Uncertainty” [29] took a first step in performing more meaningful statistical testing 

of a variety of models.  

A large number of models were reviewed and tested in these studies, but one of the most 

interesting portions of the studies were done by comparing the unpaid liability distributions created 

by the Mack and ODP bootstrap model against the “true” artificially generated unpaid loss 

percentiles. To accomplish these tests, artificial datasets were constructed so that all of the Mack and 

ODP bootstrap assumptions, respectively, are satisfied. While the artificial datasets were recognized 

as not necessarily realistic, the “true” results are known so the Working Parties were able to test to 

see how well each model performed against datasets that could be considered “perfect”. 

7.1 Mack model results 

To test the Mack model, incremental losses were simulated for a 10 x 10 square of data based on 

the assumptions of the Mack model. For the 30,000 datasets simulated, the upper triangles were 

used and the Mack model was applied to estimate the expected results and various percentiles. The 

actual results (lower triangle) for each iteration were then compared to the Mack estimates to see 

                                                           
40 For example, data for accident years 1990 to 2000 could be completely settled and all results known as of 2010. Thus, 

we could use the triangle as it existed at year end 2000 to test how well a model predicts the final results. 



Bootstrap Modeling: Beyond the Basics 
 

Casualty Actuarial Society E-Forum, Fall 2010  51 

how often they exceeded each tested percentile. If the model is working well, then the actual results 

should exceed the estimated percentiles one minus the percentile percent of the time – e.g., for the 

90th percentile, the actual results should exceed the estimated 10% of the time. 

In the test, the proportion of simulated scenarios in which the “true” outcome exceeded the 99th 

percentile of the Mack method’s results was around 8-13%. If the Mack method’s distribution was 

accurate, this should be 1%. However, it appears that the distribution created by the Mack method 

underestimates tail events. 

7.2 Bootstrap model results 

To test the ODP bootstrap model, incremental losses were simulated for a 10 x 10 square of data 

based on the assumptions of the ODP bootstrap model. For the 30,000 datasets simulated, the 

upper triangles were used and the OPD bootstrap model from England and Verrall [9 and 10] were 

used to estimate the expected results and various percentiles. Similarly, the proportion of simulated 

scenarios in which the “true” outcome exceeded the 99th percentile of the Bootstrap method’s 

results was around 2.6-3.1%. 

Thus, the bootstrap model performed better than the Mack model for “perfect” data, even 

though the results for both models were somewhat deficient in the sense that they both seem to 

underpredict the extremes of the “true” distribution. In fairness, it should be noted however, that 

the ODP bootstrap model that was tested did not include many of the “advancements” described in 

section 3.2. 

7.3 Future testing 

The testing done for GIRO was a significant improvement over simply looking at results for 

different models, without knowing anything about the “true” underlying distribution. The next step 

in the testing process will be to test models against “true” results for realistic data instead of 

“perfect” data. The CAS Loss Simulation Model Working Party is testing a model that will create 

datasets from the claim transaction level up. The goal is to create thousands of datasets based on 

characteristics of real data that can be used for testing various models. 

8. FUTURE RESEARCH 

With testing of stochastic models in its infancy, much work in the area of future research is 

needed. We only offer a few such areas. 
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 Expand testing of the ODP bootstrap model with realistic data using the CAS loss simulation 

model. 

 Expand the ODP bootstrap model in other ways, for example use of the Munich chain ladder 

with an incurred/paid set of triangles, or the use of claim counts and average severities. 

 Research other risk analysis measures and how the ODP bootstrap model can be used for 

enterprise risk management. 

 Research how the ODP bootstrap model can be used for Solvency II requirements in Europe 

and the International Accounting Standards. 

 Research into the most difficult parameter to estimate: the correlation matrix. 

9. CONCLUSIONS 

With this paper we endeavored to show how the ODP bootstrap model can be used in a variety 

of practical ways, and to illustrate the diagnostic tools the actuary needs to assess whether the model 

is working well. By doing so, we believe that this toolset can become an integral part of the actuaries 

regular estimation of unpaid claim liabilities, rather than just a “black box” to be used only if 

necessary. 
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Supplementary Material 
There are several companion files designed to give the reader a deeper understanding of the concepts discussed in 

the paper. The files are all in the “Beyond the Basics.zip” file. The files are: 
 
Model Instructions.doc – this file contains a written description of how to use the primary bootstrap modeling files. 
 
Primary bootstrap modeling files: 
Industry Data.xls – this file contains Schedule P data by line of business for the entire U.S. industry and five of the 

top 50 companies, for each LOB that has 10 years of data. 
  
Bootstrap Model.xls – this file contains the detailed model steps described in this paper as well as various modeling 

options and diagnostic tests. Data can be entered and simulations run and saved for use in calculating a weighted best 
estimate. 

 
Best Estimate.xls – this file can be used to weight the results from six different models to get a “best estimate” of the 

distribution of possible outcomes. 
 
Aggregate Estimate.xls – this file can be used correlate the best estimate results from 3 LOBs/segments. 
 
Correlation Ranks.xls – this file contains the ranks used to correlate results by LOB/segment. 
 
Simple example calculation files: 
Simple GLM.xls – this file illustrates the calculation of the GLM framework for a simple 3 x 3 triangle. 
 
Simple GLM 6.xls – this file illustrates the calculation of the GLM framework for a simple 6 x 6 triangle. 
 
Simple GLM 6 with Outlier.xls – this file illustrates how the calculation of the GLM framework for a simple 6 x 6 

triangle is adjusted for an outlier. 
 
Simple GLM 6 with 3yr avg.xls – this file illustrates how the calculation of the GLM framework for a simple 6 x 6 

triangle is adjusted to only use the equivalent of a three-year average (i.e., the last four diagonals). 
 
Simple GLM 6 with 1 Acc Yr Parameter.xls – this file illustrates the calculation of the GLM framework using only 

one accident year (level) parameter, a development year trend parameter for every year and no calendar year trend 
parameter for a simple 6 x 6 triangle. 

 
Simple GLM 6 with 1 Dev Yr Parameter.xls – this file illustrates the calculation of the GLM framework using only 

one development year trend parameter, an accident year (level) parameter for every year and no calendar year trend 
parameter for a simple 6 x 6 triangle. 

 
Simple GLM 6 with 1 Acc Yr & 1 Dev Yr Parameter.xls – this file illustrates the calculation of the GLM framework 

using only one accident year (level) parameter, one development year trend parameter and no calendar year trend 
parameter for a simple 6 x 6 triangle. 

 
Simple GLM 6 with 1 Acc Yr 1 Dev Yr & 1 Cal Yr Parameter.xls – this file illustrates the calculation of the GLM 

framework using only one accident year (level) parameter, one development year trend parameter and one calendar year 
trend parameter for a simple 6 x 6 triangle. 

 



Bootstrap Modeling: Beyond the Basics 
 

Casualty Actuarial Society E-Forum, Fall 2010  55 

Appendix A – Schedule P, Part B Results 

In this appendix the results for Schedule P, Part B (Private Passenger Auto Liability) are shown. 

Figure A.1 Estimated-unpaid model results (best estimate) 
Five Top 50 Companies

Schedule P, Part B -- Private Passenger Auto Liability (in 000,000's)
Accident Year Unpaid

Best Estimate (Weighted)
Accident Paid Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
1999 11,816            -                  -                  -                  -                  -                  -                  -                  -                  
2000 12,679            27                   4                     14.8% 14                   41                   27                   29                   33                   37                   
2001 13,631            66                   8                     12.4% 35                   96                   66                   70                   81                   88                   
2002 14,472            142                 21                   14.9% 73                   225                 141                 153                 178                 201                 
2003 13,717            270                 32                   11.7% 146                 390                 269                 286                 324                 361                 
2004 13,090            525                 68                   12.9% 277                 767                 526                 559                 641                 709                 
2005 12,490            1,048              127                 12.2% 553                 1,503              1,048              1,100              1,278              1,387              
2006 11,598            2,148              222                 10.4% 1,124              3,066              2,150              2,249              2,511              2,865              
2007 10,306            3,960              383                 9.7% 2,115              5,421              3,962              4,103              4,611              5,158              
2008 6,357              8,195              778                 9.5% 4,554              11,486            8,174              8,549              9,434              10,682            

Totals 120,157          16,380            898                 5.5% 12,811            19,377            16,341            16,836            17,863            18,955            
Normal Dist. 16,380            898                 5.5% 16,380            16,986            17,857            18,469            
logNormal Dist. 16,380            904                 5.5% 16,355            16,975            17,909            18,595            
Gamma Dist. 16,380            898                 5.5% 16,364            16,976            17,884            18,541             

Figure A.2 Estimated cash flow (best estimate) 
Five Top 50 Companies

Schedule P, Part B -- Private Passenger Auto Liability (in 000,000's)
Calendar Year Unpaid

Best Estimate (Weighted)
Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2009 8,090              459                 5.7% 6,153              9,603              8,081              8,335              8,843              9,338              
2010 3,944              225                 5.7% 3,127              4,787              3,935              4,079              4,311              4,560              
2011 2,162              132                 6.1% 1,586              2,672              2,165              2,239              2,376              2,514              
2012 1,125              77                   6.9% 864                 1,450              1,124              1,171              1,252              1,326              
2013 546                 42                   7.7% 404                 697                 545                 571                 617                 672                 
2014 275                 20                   7.4% 205                 371                 274                 288                 310                 327                 
2015 137                 15                   11.2% 97                   192                 137                 146                 162                 179                 
2016 71                   6                     8.2% 50                   93                   71                   74                   80                   86                   
2017 30                   3                     11.0% 15                   41                   31                   32                   35                   38                   
2018 -                  -                  -                  -                  -                  -                  -                  -                  

Totals 16,380            898                 5.5% 12,811            19,377            16,341            16,836            17,863            18,955             

Figure A.3 Estimated-loss-ratio (best estimate) 
Five Top 50 Companies

Schedule P, Part B -- Private Passenger Auto Liability (in 000,000's)
Accident Year Ultimate Loss Ratios

Best Estimate (Weighted)
Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
1999 75.6% 9.2% 12.1% 38.2% 103.8% 75.6% 77.5% 92.8% 100.2%
2000 81.8% 9.7% 11.9% 43.8% 112.6% 81.9% 83.9% 99.7% 107.4%
2001 83.5% 9.6% 11.5% 47.6% 116.1% 83.4% 85.6% 101.0% 110.3%
2002 79.4% 9.0% 11.4% 45.3% 108.7% 79.4% 81.3% 97.0% 103.1%
2003 68.9% 7.2% 10.5% 39.3% 94.7% 68.7% 70.7% 82.7% 89.0%
2004 65.7% 7.4% 11.3% 36.3% 89.1% 65.5% 67.3% 80.1% 85.6%
2005 66.5% 7.6% 11.4% 36.2% 91.6% 66.3% 68.1% 80.9% 87.3%
2006 66.4% 5.8% 8.7% 33.6% 92.3% 66.4% 67.3% 76.6% 86.4%
2007 70.1% 6.2% 8.8% 40.4% 95.8% 69.9% 71.0% 81.1% 90.6%
2008 71.1% 6.4% 8.9% 41.5% 98.6% 71.2% 73.0% 81.3% 91.2%

Totals 72.3% 2.4% 3.3% 63.7% 80.6% 72.2% 73.8% 76.3% 78.0%  
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Figure A.4 Mean of incremental values 
Five Top 50 Companies

Schedule P, Part B -- Private Passenger Auto Liability (in 000,000's)
Accident Year Incremental Values by Development Period

Best Estimate (Weighted)
Accident Mean Values

Year 12 24 36 48 60 72 84 96 108 120
1999 5,257              3,374              1,464              850                 460                 225                 113                 59                   32                   25                   
2000 5,625              3,613              1,566              908                 490                 240                 121                 61                   34                   27                   
2001 6,086              3,906              1,690              981                 531                 261                 131                 67                   37                   29                   
2002 6,489              4,168              1,805              1,044              567                 279                 140                 71                   39                   31                   
2003 6,233              3,996              1,730              1,003              544                 268                 134                 68                   38                   30                   
2004 6,073              3,894              1,689              978                 528                 261                 131                 67                   37                   29                   
2005 6,035              3,869              1,679              973                 527                 259                 130                 66                   37                   29                   
2006 6,050              3,882              1,685              1,032              571                 271                 138                 66                   40                   30                   
2007 6,301              4,042              1,798              1,037              577                 272                 139                 66                   41                   30                   
2008 6,361              4,202              1,811              1,048              581                 276                 140                 66                   41                   30                    

Figure A.5 Standard deviation of incremental values 
Five Top 50 Companies

Schedule P, Part B -- Private Passenger Auto Liability (in 000,000's)
Accident Year Incremental Values by Development Period

Best Estimate (Weighted)
Accident Standard Error Values

Year 12 24 36 48 60 72 84 96 108 120
1999 643                 417                 188                 109                 62                   35                   14                   14                   4                     3                     
2000 677                 437                 195                 115                 66                   36                   15                   14                   5                     4                     
2001 708                 456                 201                 119                 70                   38                   16                   14                   5                     4                     
2002 745                 481                 215                 127                 72                   40                   16                   16                   5                     4                     
2003 663                 423                 188                 115                 65                   38                   15                   15                   5                     4                     
2004 691                 441                 201                 122                 67                   39                   15                   17                   5                     4                     
2005 692                 448                 200                 119                 69                   39                   16                   15                   5                     4                     
2006 530                 348                 156                 112                 70                   36                   14                   14                   5                     4                     
2007 556                 363                 178                 109                 67                   37                   14                   13                   5                     3                     
2008 571                 406                 179                 109                 66                   37                   14                   14                   5                     3                      
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Figure A.6 Total unpaid claims distribution 
Five Top 50 Companies

Schedule P, Part B -- Private Passenger Auto Liability (in 000,000's)
Total Unpaid Distribution
Best Estimate (Weighted)

12.8K 13.4K 14.1K 14.8K 15.4K 16.1K 16.8K 17.4K 18.1K 18.8K 19.4K

P
ro

b
ab

ili
ty

Total Unpaid
 

Figure A.7 Summary of model distributions 
Five Top 50 Companies

Schedule P, Part B -- Private Passenger Auto Liability (in 000,000's)
Summary of Model Distributions

(Using Kernel Densities)
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Appendix B – Schedule P, Part C Results 

In this appendix the results for Schedule P, Part C (Commercial Auto Liability) are shown. 

Figure B.1 Estimated-unpaid model results (best estimate) 
Five Top 50 Companies

Schedule P, Part C -- Commercial Auto Liability (in 000,000's)
Accident Year Unpaid

Best Estimate (Weighted)
Accident Paid Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
1999 1,563              -                  -                  -                  -                  -                  -                  -                  -                  
2000 1,469              3                     2                     70.8% (1)                    12                   2                     4                     6                     8                     
2001 1,387              12                   4                     31.4% 3                     31                   12                   14                   19                   22                   
2002 1,350              28                   5                     19.5% 12                   53                   28                   31                   37                   41                   
2003 1,342              58                   8                     13.9% 33                   84                   59                   64                   71                   79                   
2004 1,198              116                 17                   14.9% 61                   191                 115                 127                 146                 158                 
2005 1,061              249                 34                   13.8% 151                 334                 250                 272                 304                 322                 
2006 853                 472                 56                   11.9% 323                 628                 479                 516                 553                 577                 
2007 645                 834                 73                   8.8% 605                 1,015              844                 891                 937                 965                 
2008 294                 1,178              106                 9.0% 904                 1,484              1,181              1,262              1,337              1,366              

Totals 11,162            2,950              149                 5.0% 2,434              3,363              2,949              3,055              3,186              3,276              
Normal Dist. 2,950              149                 5.0% 2,950              3,050              3,194              3,295              
logNormal Dist. 2,950              150                 5.1% 2,946              3,048              3,202              3,314              
Gamma Dist. 2,950              149                 5.0% 2,947              3,048              3,198              3,306               

Figure B.2 Estimated cash flow (best estimate) 
Five Top 50 Companies

Schedule P, Part C -- Commercial Auto Liability (in 000,000's)
Calendar Year Unpaid

Best Estimate (Weighted)
Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2009 1,171              65                   5.5% 974                 1,374              1,172              1,214              1,280              1,321              
2010 806                 46                   5.7% 657                 960                 806                 838                 882                 911                 
2011 488                 35                   7.1% 364                 595                 490                 512                 544                 571                 
2012 256                 27                   10.7% 174                 343                 255                 274                 303                 324                 
2013 125                 15                   12.2% 73                   177                 124                 136                 150                 160                 
2014 58                   8                     13.7% 35                   90                   57                   63                   71                   76                   
2015 30                   5                     15.8% 17                   47                   30                   33                   39                   42                   
2016 14                   3                     24.6% 4                     25                   13                   16                   19                   22                   
2017 3                     2                     55.4% (0)                    12                   3                     4                     6                     7                     
2018 -                  -                  -                  -                  -                  -                  -                  -                  

Totals 2,950              149                 5.0% 2,434              3,363              2,949              3,055              3,186              3,276               

Figure B.3 Estimated-loss-ratio (best estimate) 
Five Top 50 Companies

Schedule P, Part C -- Commercial Auto Liability (in 000,000's)
Accident Year Ultimate Loss Ratios

Best Estimate (Weighted)
Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
1999 89.5% 3.2% 3.5% 80.2% 99.5% 89.5% 91.8% 94.5% 96.3%
2000 81.3% 2.8% 3.5% 72.9% 90.1% 81.2% 83.3% 86.0% 87.4%
2001 73.1% 2.6% 3.5% 63.8% 81.8% 73.2% 74.8% 77.4% 79.2%
2002 60.6% 2.1% 3.5% 53.7% 66.2% 60.6% 62.1% 64.1% 65.5%
2003 55.5% 1.9% 3.5% 48.9% 61.4% 55.5% 56.9% 58.7% 59.8%
2004 53.8% 2.1% 3.9% 47.5% 60.2% 53.8% 55.3% 57.3% 58.5%
2005 51.5% 2.2% 4.3% 43.1% 57.9% 51.6% 53.0% 55.1% 56.5%
2006 53.7% 2.9% 5.3% 43.5% 62.1% 53.9% 55.7% 58.1% 59.8%
2007 59.6% 3.6% 6.1% 46.9% 68.6% 59.9% 62.4% 65.0% 66.6%
2008 61.8% 4.6% 7.5% 49.4% 75.3% 62.1% 65.3% 68.7% 70.2%

Totals 62.5% 0.9% 1.5% 59.6% 65.3% 62.5% 63.1% 64.0% 64.6%  
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Figure B.4 Mean of incremental values 
Five Top 50 Companies

Schedule P, Part C -- Commercial Auto Liability (in 000,000's)
Accident Year Incremental Values by Development Period

Best Estimate (Weighted)
Accident Mean Values

Year 12 24 36 48 60 72 84 96 108 120
1999 332                 384                 345                 244                 135                 64                   29                   17                   12                   3                     
2000 312                 360                 326                 229                 127                 61                   27                   15                   11                   3                     
2001 297                 343                 311                 218                 121                 57                   26                   15                   9                     3                     
2002 292                 339                 305                 214                 118                 56                   25                   16                   10                   3                     
2003 296                 343                 309                 218                 119                 58                   28                   17                   11                   3                     
2004 276                 322                 288                 203                 111                 62                   26                   15                   10                   3                     
2005 270                 312                 280                 199                 128                 64                   27                   16                   10                   3                     
2006 265                 308                 278                 224                 128                 65                   27                   16                   10                   3                     
2007 299                 348                 331                 239                 136                 68                   29                   17                   11                   3                     
2008 294                 370                 320                 231                 132                 67                   27                   16                   11                   3                      

Figure B.5 Standard deviation of incremental values 
Five Top 50 Companies

Schedule P, Part C -- Commercial Auto Liability (in 000,000's)
Accident Year Incremental Values by Development Period

Best Estimate (Weighted)
Accident Standard Error Values

Year 12 24 36 48 60 72 84 96 108 120
1999 18                   35                   18                   15                   21                   14                   5                     4                     3                     2                     
2000 17                   34                   18                   15                   19                   13                   5                     4                     3                     2                     
2001 17                   34                   17                   15                   20                   13                   5                     4                     3                     2                     
2002 16                   32                   17                   14                   19                   14                   5                     4                     3                     1                     
2003 17                   32                   17                   14                   20                   13                   6                     4                     3                     2                     
2004 16                   32                   16                   14                   19                   14                   6                     3                     3                     1                     
2005 16                   32                   16                   14                   22                   15                   6                     4                     3                     2                     
2006 16                   31                   16                   25                   22                   15                   6                     4                     3                     1                     
2007 17                   35                   29                   22                   22                   14                   7                     4                     3                     2                     
2008 17                   45                   27                   21                   21                   13                   6                     4                     3                     2                      
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Figure B.6 Total unpaid claims distribution 
Five Top 50 Companies

Schedule P, Part C -- Commercial Auto Liability (in 000,000's)
Total Unpaid Distribution
Best Estimate (Weighted)
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Figure B.7 Summary of model distributions 
Five Top 50 Companies

Schedule P, Part C -- Commercial Auto Liability (in 000,000's)
Summary of Model Distributions

(Using Kernel Densities)
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Appendix C – Aggregate Results 

In this appendix the results for the correlated aggregate of the three Schedule P lines of business 
(Parts A, B, and C) are shown, using the correlation calculated from the paid data after adjustment 
for heteroscedasticity. 

Figure A.1 Estimated-unpaid model results (best estimate) 
Five Top 50 Companies

Aggregate All Lines of Business
Accident Year Unpaid

Accident Paid Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
1999 18,613            -                  -                  -                  -                  -                  -                  -                  -                  
2000 20,618            31                   12                   38.2% (26)                  111                 30                   35                   49                   78                   
2001 22,866            115                 40                   34.7% 5                     348                 106                 136                 190                 240                 
2002 22,842            211                 43                   20.5% 109                 397                 205                 234                 295                 348                 
2003 22,351            387                 51                   13.2% 230                 624                 381                 416                 482                 532                 
2004 22,422            741                 86                   11.6% 432                 1,080              732                 788                 883                 1,003              
2005 24,350            1,514              156                 10.3% 876                 2,079              1,506              1,601              1,779              1,908              
2006 19,973            2,958              267                 9.0% 1,771              3,970              2,942              3,092              3,428              3,704              
2007 18,919            5,533              487                 8.8% 3,472              7,657              5,525              5,770              6,402              6,981              
2008 15,961            12,565            1,410              11.2% 7,894              21,492            12,527            13,260            14,919            16,794            

Totals 208,915          24,056            1,644              6.8% 18,197            34,272            23,963            25,008            26,726            28,724            
Normal Dist. 24,056            1,644              6.8% 24,056            25,164            26,760            27,880            
logNormal Dist. 24,055            1,635              6.8% 24,000            25,124            26,835            28,105            
Gamma Dist. 24,056            1,644              6.8% 24,018            25,143            26,822            28,044             

Figure A.2 Estimated cash flow (best estimate) 
Five Top 50 Companies

Aggregate All Lines of Business
Calendar Year Unpaid

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2009 12,354            1,018              8.2% 9,070              19,805            12,305            12,931            13,951            15,231            
2010 5,549              348                 6.3% 4,293              7,187              5,535              5,768              6,123              6,499              
2011 3,012              188                 6.2% 2,349              3,740              3,012              3,129              3,329              3,491              
2012 1,572              114                 7.3% 1,262              2,009              1,563              1,641              1,769              1,865              
2013 789                 73                   9.3% 583                 1,117              785                 830                 913                 1,019              
2014 397                 42                   10.5% 260                 552                 395                 420                 470                 512                 
2015 217                 39                   18.1% 133                 505                 211                 234                 289                 351                 
2016 125                 40                   32.3% (13)                  396                 116                 142                 200                 266                 
2017 40                   18                   44.6% (25)                  208                 36                   42                   71                   98                   
2018 -                  -                  -                  -                  -                  -                  -                  -                  

Totals 24,056            1,644              6.8% 18,197            34,272            23,963            25,008            26,726            28,724             

Figure A.3 Estimated loss ratio (best estimate) 
Five Top 50 Companies

Aggregate All Lines of Business
Accident Year Ultimate Loss Ratios

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
1999 73.7% 9.5% 12.9% 39.8% 110.8% 73.4% 77.6% 91.2% 99.7%
2000 80.7% 9.6% 11.9% 50.0% 122.2% 80.5% 84.5% 97.4% 107.9%
2001 84.2% 10.1% 12.0% 53.4% 139.7% 84.2% 88.4% 101.0% 112.9%
2002 75.7% 9.0% 11.9% 42.2% 119.1% 75.6% 79.2% 92.6% 100.5%
2003 66.5% 7.8% 11.7% 40.7% 116.9% 66.2% 70.0% 80.3% 89.2%
2004 64.3% 7.4% 11.6% 37.4% 97.3% 64.0% 67.8% 78.4% 86.0%
2005 70.7% 8.4% 11.9% 41.1% 104.5% 70.2% 74.0% 86.5% 94.6%
2006 61.2% 6.9% 11.3% 38.4% 119.4% 60.8% 63.1% 74.3% 82.4%
2007 64.0% 7.5% 11.7% 40.4% 93.5% 63.9% 66.4% 78.7% 86.4%
2008 75.5% 9.8% 13.0% 46.7% 168.1% 74.8% 78.4% 92.6% 107.2%

Totals 70.8% 2.9% 4.0% 62.0% 88.1% 70.7% 72.5% 75.7% 78.0%  
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Figure A.4 Mean of incremental values 
Five Top 50 Companies

Aggregate All Lines of Business
Accident Year Incremental Values by Development Period

Accident Mean Values
Year 12 24 36 48 60 72 84 96 108 120
1999 9,292              4,873              2,023              1,183              635                 310                 153                 81                   67                   30                   
2000 10,524            5,354              2,154              1,254              666                 326                 162                 84                   75                   31                   
2001 11,868            5,902              2,324              1,333              713                 348                 174                 90                   82                   34                   
2002 11,809            6,018              2,398              1,382              740                 363                 181                 94                   82                   35                   
2003 11,790            5,934              2,343              1,355              722                 354                 178                 93                   82                   34                   
2004 12,243            5,985              2,313              1,327              703                 356                 175                 92                   85                   33                   
2005 14,191            6,560              2,419              1,369              741                 367                 181                 94                   98                   32                   
2006 11,951            5,878              2,290              1,418              775                 366                 186                 92                   81                   39                   
2007 12,654            6,215              2,525              1,440              793                 371                 188                 93                   83                   39                   
2008 16,129            6,928              2,585              1,463              801                 378                 191                 94                   86                   40                    

Figure A.5 Standard deviation of incremental values 
Five Top 50 Companies

Aggregate All Lines of Business
Accident Year Incremental Values by Development Period

Accident Standard Deviation Values
Year 12 24 36 48 60 72 84 96 108 120
1999 1,503              607                 216                 123                 72                   39                   16                   15                   27                   7                     
2000 1,549              615                 224                 132                 76                   40                   17                   14                   28                   12                   
2001 1,755              681                 242                 137                 81                   43                   18                   15                   37                   14                   
2002 1,704              702                 252                 145                 81                   44                   18                   17                   34                   12                   
2003 1,714              657                 230                 135                 76                   42                   17                   16                   35                   15                   
2004 1,743              662                 231                 138                 79                   43                   18                   17                   38                   13                   
2005 1,998              762                 253                 148                 83                   44                   19                   16                   47                   16                   
2006 1,745              624                 201                 141                 86                   40                   19                   15                   29                   16                   
2007 1,850              678                 246                 138                 85                   42                   18                   14                   32                   17                   
2008 2,534              918                 270                 147                 88                   45                   20                   15                   37                   18                    

Figure A.6 Total unpaid claims distribution 
Five Top 50 Companies

Aggregate All Lines of Business
Total Unpaid Distribution
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Abbreviations and notations 
Collect here in alphabetical order all abbreviations and notations used in the paper 
AIC: Akaike Information Criteria ELR: Expected Loss Ratio 
APD: Automobile Physical Damage GLM: Generalized Linear Models 
BIC: Bayesian Information Criteria ERM, Enterprise Risk Management 
BF: Bornhuetter-Ferguson MLE: Maximum Likelihood Estimate 
CC: Cape Cod ODP: Over-Dispersed Poisson 
CL: Chain Ladder OLS: Ordinary Least Squares 
CoV: Coefficient of Variation RSS: Residual Sum Squared 
DFA, Dynamic Financial Analysis SSE: Sum of Squared Errors 
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