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Abstract

In a linear model for loss reserving, Gauss–Markov prediction is the natural
principle of prediction: It minimizes the mean squared error of prediction over
the class of all unbiased linear predictors, and it provides exact formulas for
predictors and their mean squared error of prediction. Another advantage of
Gauss–Markov prediction is in the fact that the Gauss–Markov predictor of
a sum is just the sum of the Gauss–Markov predictors of the single terms of
that sum such that essentially only the most elementary quantities have to be
predicted.
The use of Gauss–Markov prediction in loss reserving is not new. For example,
the additive (or incremental loss ratio) method and the Panning method are
based on Gauss–Markov prediction in an appropriate linear model. Here we
propose a systematic study of Gauss–Markov prediction in these and several
related models. This leads to a variety of new methods of loss reserving, and
for each of these models and methods we obtain straightforward estimators of
the mean squared error of prediction.
To complete the discussion, we also explain certain limitations of the Gauss–
Markov principle in connection with the chain–ladder method.

∗Corresponding author. E–mail address: klaus.d.schmidt@tu-dresden.de
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1 Introduction

For at least six decades, loss reserving was determined by a variety of heuristic
methods among which the most popular ones are the chain–ladder method described
by Tarbell [1934] and the Bornhuetter–Ferguson method proposed by Bornhuetter
and Ferguson [1972].

The first stochastic model for loss reserving is probably that of Hachemeister and
Stanard [1975]. In their model, the incremental losses are independent and Poisson
distributed with a multiplicative structure of the expectations, and it turns out that
maximum–likelihood estimations leads to the chain–ladder predictors. Their model
thus provides a first justification of the chain–ladder method, but because of the
Poisson assumption it applies to claim numbers rather than claim amounts.1

About two decades later, a couple of papers appeared which considerably advanced
the use of stochastic models in loss reserving. In one of these papers, Mack [1991]
proposed a model in which the incremental losses are uncorrelated with a multi-
plicative structure of the expectations and variances and in which least squares
estimation leads to the additive (or incremental loss ratio) method. Subsequently,
Mack [1993] proposed another but similar model in which least squares estimation
leads to the chain–ladder method.2 In both of these papers, however, emphasis is
on parameter estimation and not on prediction of future losses.

It is easy to see that the additive model of Mack [1991] is a linear model, and it
follows from Schmidt and Schnaus [1996] that the chain–ladder model of Mack [1993]
is a sequential linear model.3 But this was certainly not the usual way of looking at
these models at the time when they were published, and it is the merit of Halliwell
[1996] of having pointed out that linear models are most useful in loss reserving
since the Gauss–Markov principle provides not only estimators of parameters but
also predictors of future losses.

About another decade later, linear models turned out to be a driving force for the
development of new methods of loss reserving: Inspired by Braun [2004], Pröhl and
Schmidt [2005] proposed a sequential linear model in which Gauss–Markov predic-
tion leads to a multivariate version of the chain–ladder method4 and Hess, Schmidt
and Zocher [2006] proposed a linear model in which Gauss–Markov prediction leads
to a multivariate version of the additive method. Both methods are of interest for

1Extensions of the model of Hachemeister and Stanard [1975], which allow for dependence
within the accident years and in which maximum–likelihood estimation still produces the chain–
ladder predictors of the ultimate cumulative losses were proposed by Schmidt and Wünsche [1998]
and by Schmidt and Zocher [2005].

2It is remarkable that the assumptions of the model of Hachemeister and Standard [1972] and
those of the model of Mack [1993] cannot be fulfilled simultaneously; see Hess and Schmidt [2002]
for a comparison of a variety of models for the chain–ladder method.

3See Schmidt [2003] and Radtke and Schmidt [2004].
4Another paper which is in the spirit of Pröhl and Schmidt [2005] that of Kremer [2005].
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simultaneous prediction for dependent lines of business.5 At the same time, Panning
[2006] proposed a linear model which in a certain sense is intermediate between the
linear model for the additive method and the sequential linear model for the chain–
ladder method. More recently, Kloberdanz and Schmidt [2009] used a bivariate
version of the additive model to approach the paid & incurred problem which was
first studied by Halliwell [1997] and later by Quarg and Mack [2004, 2008].

At this point, it is useful to briefly review some basic aspects of linear and general
linear models and of Gauss–Markov estimation and prediction in such models; a
more precise discussion will be given in Section 3.

A linear model (or regression model) essentially consists in the assumption that the
unknown expectations of certain random variables X1, . . . , Xs can be expressed as
linear functions of certain unknown parameters β1, . . . , βr with r < s. This means
that, for every i ∈ {1, . . . , s}, there exist known coefficients ai,1, . . . , ai,r such that

E[Xi] =
r∑

k=1

ai,k βk

The point is that in a linear model the s unknown expectations are explained by r
unknown parameters such that the problem of estimating s expectations is reduced
to that of estimating only r < s parameters. A general principle for estimating
the parameters in a linear model is Gauss–Markov estimation which consists in the
computation of the Gauss–Markov estimators βGM

k minimizing the mean squared
error of estimation

E[(β̂k−βk)
2]

over all estimators β̂k which are linear in X1, . . . , Xs and unbiased for βk. Thus,
with respect to the mean squared error of estimation, the Gauss–Markov estimator
βGM

k is the best linear unbiased estimator of βk.

In a general linear model, only the first s1 < s random variables are observable
while the remaining s2 := s− s1 random variables are non–observable. In this case,
Gauss–Markov estimation of the parameters is still possible by replacing s with s1

in the previous identities, but the real problem is Gauss–Markov prediction of the
non–observable random variables which consists in the computation of the Gauss–
Markov predictors XGM

j with j ∈ {s1+1, . . . , s1+s2} minimizing the mean squared
error of prediction

E[(X̂j−Xj)
2]

over all predictors X̂j which are linear and unbiased for Xj in the sense that E[X̂j] =
E[Xj]. Thus, with respect to the mean squared error of prediction, the Gauss–
Markov predictor XGM

j is the best linear unbiased predictor of Xj.

Under mild conditions on the coefficients and the variances and covariances of the
random variables, Gauss–Markov estimators and predictors exist and are unique. To

5See Schmidt [2006b] for a survey of the results of these papers.
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determine Gauss–Markov estimators and predictors, the variances and covariances
of the random variables must be known or have to be estimated but no further
assumptions on their joint distribution have to be made.6 Moreover, since Gauss–
Markov estimators and predictors are linear and unbiased, it is evident that also the
mean squared errors of estimation and prediction are determined by the variances
and covariances.

Since loss reserving aims at the prediction of future losses from those observed in the
past, every stochastic model for loss reserving typically has to consist of observable
and non–observable random variables representing past and future losses. Therefore,
general linear models provide a wide class of stochastic models which meet the basic
requirement on every stochastic model for loss reserving.

Whenever it is judged to be appropriate, the use of general linear models in loss
reserving is strongly recommendable since
– explicit formulas can be given for Gauss–Markov predictors of reserves and for

their mean squared error of prediction, and
– estimators of the mean squared errors of prediction can be obtained by simply

replacing unknown variances and covariances with appropriate estimators.
Of course, the choice of a particular stochastic model for loss reserving should not
be determined by such technical advantages but rather by statistical analysis and
actuarial judgement. In many cases, however, such considerations will not end up
with a single model and the choice of a general linear model could be reasonable.

In the present paper we propose Gauss–Markov prediction in a general linear model
as a common approach to the additive method, the Panning method and a new
method which is a combination of both and could be extended further. We thus
extend results of Ludwig, Schmeisser and Thänert [2009].

This paper is organized as follows: We first present the typical data structure in
loss reserving (Section 2) and discuss Gauss–Markov prediction in the general linear
model (Section 3). We then apply the general results on Gauss–Markov prediction
to the additive model (Section 4), the Panning model (Section 5) and the combined
model (Section 6). For the sake of comparison, we also consider the Mack model
for the chain–ladder method (Section 7) which because of its sequential structure
presents certain difficulties with regard to the estimation of the mean squared errors
of prediction for reserves.7 Finally, we present a numerical example (Section 9) and
we conclude with some remarks (Section 8).

6In particular, it is not necessary to assume that the random variables are jointly normally
distributed. The popularity of the normal assumption is probably due to the fact that, if it holds,
then the Gauss–Markov estimators agree with the maximum–likelihood estimators. While the
normal assumption is inessential for Gauss–Markov estimation and prediction, it is of interest for
the construction of confidence intervals or prediction intervals; these topics, however, will not be
dealt with in the present paper.

7The use of plug–in estimators for estimating the mean squared errors of prediction is not possi-
ble in the Mack model; instead, certain approximations seem to be unavoidable in the construction
of estimators or the mean squared errors of prediction and it appears to be difficult to quantify
the approximation errors.
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2 Data Structure

In the present paper, we consider a portfolio of risks and we assume that each claim
of the portfolio is settled either in the accident year or in finitely many subsequent
development years.

To model such a portfolio, we consider a family of square integrable random variables

{Zi,k}i∈{−m,...,n},k∈{0,...,n}

and we interpret the random variable Zi,k as the loss of accident year i which is
settled with a delay of k years and hence in development year k and in calendar year
i + k. We refer to Zi,k as the incremental loss of accident year i and development
year k.

We assume that the incremental losses Zi,k are observable for calendar years i+k ≤ n
and that they are non–observable for calendar years i + k ≥ n + 1. The observable
incremental losses are represented by the following run–off trapezoid :

Accident Development Year

Year 0 1 . . . k . . . n−i . . . n−1 n

−m Z−m,0 Z−m,1 . . . Z−m,k . . . Z−m,n−i . . . Z−m,n−1 Z−m,n

...
...

...
...

...
...

...
0 Z0,0 Z0,1 . . . Z0,k . . . Z0,n−i . . . Z0,n−1 Z0,n

1 Z1,0 Z1,1 . . . Z1,k . . . Z1,n−i . . . Z1,n−1

...
...

...
...

...
i Zi,0 Zi,1 . . . Zi,k . . . Zi,n−i

...
...

...
...

n−k Zn−k,0 Zn−k,1 . . . Zn−k,k

...
...

...
n−1 Zn−1,0 Zn−1,1

n Zn,0

In the traditional case m = 0, the run–off trapezoid reduces to a run–off triangle.
The case m ≥ 1 is of interest, since it is always desirable to have more than one
completely developed accident year and since this also turns out to be necessary for
certain stochastic models which to some extent specify the joint distribution of the
family of all incremental losses.

For the stochastic models to be considered in this paper, it is essential to linearize the
run–off trapezoid of observable incremental losses and the triangle of non–observable
incremental losses. Therefore, we define the random vectors
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X1 :=




Z−m,0

...
Zn,0

...
Z−m,k

...
Zn−k,k

...
Z−m,n

...
Z0,n




and X2 :=




Zn,1

...
Zn−k+1,k

...
Zn,k

...
Z1,n

...
Zn,n




such that X1 represents the run–off trapezoid of observable incremental losses and
X2 represents the triangle of non–observable incremental losses.

The first problem is to predict
(1) the accident year reserves

Ri :=
n∑

k=n−i+1

Zi,k

for i ∈ {1, . . . , n},
(2) the calendar year reserves

R(c) :=
n∑

i=c−n

Zi,c−i

for c ∈ {n+1, . . . , 2n}, and
(3) the total reserve

R :=
n∑

k=1

n∑

i=n−k+1

Zi,k

In either case, the problem is to predict d′X2 for a suitable vector d.

The second problem is to estimate the mean squared error of prediction for the
predictors of these reserves.

Casualty Actuarial Society E-Forum, Fall 2010 6

esmith
Typewritten Text

esmith
Typewritten Text
.



3 Gauss–Markov Prediction

in the General Linear Model

The stochastic models of loss reserving to be studied in the present paper are special
cases of the following general linear model for a random vector

X =

(
X1

X2

)

consisting of an observable part X1 and a non–observable part X2 with square
integrable coordinates:

General Linear Model: There exist known matrices A1 and A2 and
an unknown parameter vector β such that

E

[(
X1

X2

)]
=

(
A1

A2

)
β

Moreover, A1 has full column rank and var[X1] is invertible.

The general linear model is more general than the traditional linear model since
it involves the non–observable part X2. In particular, the problem is not only to
estimate the parameter vector β but also to predict the non–observable random
vector X2. The matrices A1 and A2 are called the design matrices of the general
linear model.

For the remainder of this section, we assume that the assumptions of the general
linear model are fulfilled.

Following an idea of Hamer [1999], the best way to simultaneously estimate the
parameter vector β and predict the non–observable random vector X2 is to predict
a target quantity of the form

T = C0β + C1X1 + C2X2

with matrices C0,C1,C2 of suitable dimensions which also allows for the prediction
of linear combinations of the coordinates of X1 and X2.

Since only X1 is observable, every random variable T̂ which is a (measurable) trans-
formation of X1 is said to be a predictor of T.

A predictor T̂ is said to be an admissible predictor of T if there exists a matrix Q
satisfying

T̂ = QX1

and

QA1 = C0 + C1A1 + C2A2
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Because of the first identity, every admissible predictor T̂ of T is linear (in X0), and
because of the second identity it is also unbiased since

E[T̂] = E[QX1]

= QE[X1]

= QA1β

= (C0 + C1A1 + C2A2)β

= C0β + C1A1β + C2A2β

= C0β + C1E[X1] + C2E[X2]

= E[C0β + C1X1 + C2X2]

= E[T]

An admissible predictor T̂ of T is said to be a Gauss–Markov predictor of T if it
minimizes the mean squared error of prediction

E[(T̂−T)′(T̂−T)]

which is sometimes also called the mean squared error of prediction of T̂ and is
denoted by m.s.e.p.[T̂]. Since every admissible predictor T̂ of T is unbiased, we

have E[T̂−T] = 0 and hence

E[(T̂−T)′(T̂−T)] = E[trace((T̂−T)(T̂−T)′)]

= trace(E[(T̂−T)(T̂−T)′)]

= trace(var[T̂−T] + E[T̂−T] E[T̂−T]′)

= trace(var[T̂−T])

We have the following result:

3.1 Proposition (Gauss–Markov Theorem). There exists a unique Gauss–
Markov predictor TGM of T and it satisfies

TGM = Cβ∗ + C1X1 + C2X
∗
2

with
β∗ := (A′

1Σ
−1
11 A1)

−1A′
1Σ

−1
11 X1

and
X∗

2 := A2β
∗ + Σ21Σ

−1
11

(
X1−A1β

∗)

Moreover,

var[TGM−T] = Kvar[β∗]K + C2(Σ22−Σ21Σ
−1
11 Σ12)C

′
2

with K := C + C2A2 −C2Σ21Σ
−1
11 C′

2 and var[β∗] = (A′
1Σ

−1
11 A1)

−1.

Proposition 3.1 is well–known; see e. g. Rao and Toutenburg [1995], Radtke and
Schmidt [2004], Schmidt [2004] and, in particular, Hamer [1999].
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The previous result shows that Gauss–Markov prediction of the target quantity T
is based on Gauss–Markov estimation of the parameter β. Although the following
result is a special case of Proposition 3.1, we state it because of its importance and
for later reference:

3.2 Corollary. The Gauss–Markov estimator βGM of β satisfies

βGM = (A′
1Σ

−1
11 A1)

−1A′
1Σ

−1
11 X1

and
var[βGM] = (A′

1Σ
−1
11 A1)

−1

In the models considered in this paper, we always have Σ12 = O. In this case, we
obtain particularly simple formulas for the Gauss–Markov predictor of X2 and for
the variance of the prediction error:

3.3 Corollary. Assume that Σ12 = O. Then the Gauss–Markov predictor XGM
2

of X2 satisfies
XGM

2 = A2β
GM

and
var[XGM

2 −X2] = A2var[βGM]A′
2 + Σ22

Because of the previous result, the mean squared error of prediction

E[(XGM
2 −X2)

′(XGM
2 −X2)] = trace

(
var[XGM

2 −X2]
)

is the sum of the estimation error trace(A2var[βGM]A′
2) and the random error

trace(Σ22).

Finally, the Gauss–Markov predictor of a linear transformation C2X2 of X2 is easily
obtained from the Gauss–Markov predictor of X2:

3.4 Corollary. The Gauss–Markov predictor (C2X2)
GM of C2X2 satisfies

(C2X2)
GM = C2X

GM
2

and
var[(C2X2)

GM−C2X2] = C2var[XGM
2 −X2]C

′
2

Because of the previous result, Gauss–Markov prediction is linear in the sense that
the Gauss–Markov predictor of a linear combination of non–observable random vari-
ables is the same linear combination of their Gauss–Markov predictors.

We shall also need a conditional version of the general linear model and of the
Gauss–Markov Theorem. For a sub–σ–algebra G ⊆ F , the G–conditional linear
model is defined as follows:
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G–Conditional General Linear Model: There exist observable G–
measurable random matrices A1 and A2 and an unknown parameter
vector β such that

EG
[(

X1

X2

)]
=

(
A1

A2

)
β

Moreover, A1 has full column rank and varG[X1] is invertible.

Here and in the sequel, EG[Xi ] and varG[Xi ] denote the G–conditional expecta-
tion and the G–conditional variance of Xi , respectively; accordingly, covG[X1,X2]
denotes the G–conditional covariance of X1 and X2.

The discussion of the G–conditional general linear model is entirely analogous to
that of the general linear model: Replace the admissible predictors by the G–
conditionally admissible predictors (which are obtained by replacing the matrix Q
by a G–measurable random matrix Q and which are linear and G–conditionally
unbiased in the sense that their G–conditional expectation coincides with that of
the target quantity) and replace the first and second order moments by their G–
conditional counterparts.
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4 Gauss–Markov Loss Prediction

in the Extended Additive Model

The extended additive model is defined as follows:

Extended Additive Model: There exist known parameters vi, wi ∈
(0,∞) with i ∈ {−m, . . . , n} as well as unknown parameters ζk ∈ R and
σ2

k ∈ (0,∞) with k ∈ {0, . . . , n} such that the incremental losses satisfy

E[Zi,k] = vi ζk

cov[Zi,k, Zj,l] = wi σ
2
k δi,j δk,l

for all i, j ∈ {−m, . . . , n} and k, l ∈ {0, . . . , n}.
In the extended additive model, the accident year parameter vi is usually referred
to as a volume measure of accident year i; for example, the volume measure could
be the total premium income or the number of contracts in the accident year. Since
the first identity in the extended additive model can be written as

E[Zi,k/vi] = ζk

the development year parameter ζk is the expected incremental loss ratio of develop-
ment year k (with respect to the volume measures) and is assumed to be independent
of the accident year such that the collection of these parameters forms a development
pattern; see Schmidt and Zocher [2009].

The extended additive model extends the traditional additive model in which it is
assumed that m = 0 and that wi = vi holds for all i ∈ {−m, . . . , n}; see Mack
[1991], Radtke and Schmidt [2004], Hess, Schmidt and Zocher [2006], and Schmidt
and Zocher [2009]. The reason for considering the extended additive model becomes
evident from its comparison with the extended Panning model (Section 5) and with
the combination of both models (Section 6).

Assume that the assumptions of the extended additive model are fulfilled. Then the
expectation of the random vector X1 of all observable incremental losses satisfies

E







Z−m,0

...
Zn,0

...
Z−m,k

...
Zn−k,k

...
Z−m,n

...
Z0,n







=




v−m · · · 0 · · · 0
...

...
...

vn · · · 0 · · · 0
...

...
...

0 · · · v−m · · · 0
...

...
...

0 · · · vn−k · · · 0
...

...
...

0 · · · 0 · · · v−m

...
...

...
0 · · · 0 · · · v0







ζ0

...
ζk

...
ζn




Casualty Actuarial Society E-Forum, Fall 2010 11

esmith
Typewritten Text



such that there exist a design matrix A1 having full column rank and a parameter
vector β satisfying E[X1] = A1β, and the expectation of the random vector X2 of
all non–observable incremental losses satisfies

E







Zn,1

...
Zn−k+1,k

...
Zn,k

...
Z1,n

...
Zn,n







=




0 vn · · · 0 · · · 0
...

...
...

...
0 0 · · · vn−k+1 · · · 0
...

...
...

...
0 0 · · · vn−k · · · 0
...

...
...

...
0 0 · · · 0 · · · v1

...
...

...
...

0 0 · · · 0 · · · vn







ζ0

ζ1

...
ζk

...
ζn




Moreover, the variance Σ11 of X1 satisfies

var







Z−m,0

...
Zn,0

...
Z−m,k

...
Zn−k,k

...
Z−m,n

...
Z0,n







=




w−mσ2
0 · · · 0 · · · 0 · · · 0 · · · 0 · · · 0

...
. . .

... · · · ...
. . .

... · · · ...
. . .

...
0 · · · wnσ2

0 · · · 0 · · · 0 · · · 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

...
...

0 0 0 · · · w−mσ2
k · · · 0 · · · 0 · · · 0

...
...

... · · · ...
. . .

... · · · ...
. . .

...
0 0 0 · · · 0 · · · wn−kσ2

k · · · 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

...
...

0 0 0 · · · 0 · · · 0 · · · w−mσ2
n · · · 0

...
...

... · · · ...
...

... · · · ... · · · ...
0 0 0 · · · 0 · · · 0 · · · 0 · · · w0σ

2
n




and is thus invertible, and the variance Σ22 of X2 satisfies

var







Zn,1

...
Zn−k+1,k

...
Zn,k

...
Z1,n

...
Zn,n







=




wnσ2
1 · · · 0 · · · 0 · · · 0 · · · 0

...
. . .

...
...

...
. . .

...
...

...
0 · · · wn−k+1σ

2
k · · · 0 · · · 0 · · · 0

... · · · ...
. . .

... · · · ...
. . .

...
0 · · · 0 · · · wnσ2

k · · · 0 · · · 0
...

. . .
...

...
...

. . .
...

...
...

0 · · · 0 · · · 0 · · · w1σ
2
n · · · 0

... · · · ...
...

... · · · ... · · · ...
0 · · · 0 · · · 0 · · · 0 · · · wnσ2

n




Furthermore, we have Σ12 = cov[X1,X2] = O. We thus obtain the following result:

4.1 Theorem. The extended additive model is a linear model.

In a first step, we compute the Gauss–Markov estimators of the coordinates of the
parameter vector and their covariances:
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4.2 Lemma (Gauss–Markov estimation of parameters). In the extended
additive model, the Gauss–Markov estimators of the coordinates of the parameter
vector satisfy

ζGM
k =

∑n−k
i=−m viZi,k/wi∑n−k

i=−m v2
i /wi

and

cov[ζGM
k , βGM

l ] =
1∑n−k

i=−m v2
i /wi

σ2
k δk,l

for all k, l ∈ {0, 1, . . . , n}.

Proof. The coordinates of the random vector A′
1Σ

−1
11 X1 satisfy

(
v−m · · · vn−k

)



w−mσ2
k · · · 0

...
. . .

...
0 · · · wn−kσ

2
k




−1 


Z−m,k
...

Zn−k,k


 =

(
n−k∑

i=−m

viZi,k

wi

)
1

σ2
k

Moreover, the matrix A′
1Σ

−1
11 A1 is diagonal and its diagonal elements satisfy

(
v−m · · · vn−k

)



w−mσ2
k · · · 0

...
. . .

...
0 · · · wn−kσ

2
k




−1 


v−m
...

vn−k


 =

(
n−k∑

i=−m

v2
i

wi

)
1

σ2
k

Because of Corollary 3.2, we have βGM = (A′
1Σ

−1
11 A1)

−1A′
1Σ

−1
11 X1 and hence

ζGM
k =

∑n−k
i=−m viZi,k/wi∑n−k

i=−m v2
i /wi

which is the first identity, and we also have var[βGM] = (A′
1Σ

−1
11 A1)

−1 and hence

cov[ζGM
k , ζGM

l ] =
1∑n−k

i=−m v2
i /wi

σ2
k δk,l

which is the second identity. 2

In a second step, we compute the Gauss–Markov predictors of the non–observable
incremental losses and the covariances of their prediction errors:

4.3 Lemma (Gauss–Markov prediction of incremental losses). In the
extended additive model, the Gauss–Markov predictors of the non–observable incre-
mental losses satisfy

ZGM
i,k = vi ζ

GM
k

and
cov[ZGM

i,k −Zi,k, Z
GM
j,l −Zj,l] =

(
vivj var[ζGM

k ] + wi σ
2
k δi,j

)
δk,l

for all i, j ∈ {−m, . . . , n} and k, l ∈ {0, . . . , n} such that min{i+k, j+l} ≥ n + 1.
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Proof. Because of Corollary 3.3, we have XGM
2 = A2β

GM. For all i ∈ {−m, . . . , n}
and k ∈ {0, . . . , n} such that i + k ≥ n + 1, this yields

ZGM
i,k = vi ζ

GM
k

which is the first identity.
Corollary 3.3 also provides an identity for var[XGM

2 −X2], but in the present model
the direct computation of the elements of this matrix seems to be more transparent.
Consider i, j ∈ {−m, . . . , n} and k, l ∈ {0, . . . , n} such that min{i+k, j+ l} ≥ n+1.
Lemma 4.2 yields

cov[ZGM
i,k , ZGM

j,l ] = cov[viζ
GM
k , vjζ

GM
l ]

= vivj cov[ζGM
k , ζGM

l ]

= vivj var[ζGM
k ] δk,l

and we also have

cov[Zi,k, Zj,l] = wi σ
2
k δi,j δk,l

Since ZGM
i,k and ZGM

j,l are linear combinations of observable incremental losses whereas
Zi,k and Zj,l are non–observable incremental losses, we have cov[ZGM

i,k , Zj,l] = 0 =
cov[Zi,k, Z

GM
j,l ] and hence

cov[ZGM
i,k −Zi,k, Z

GM
j,l −Zj,l] = cov[ZGM

i,k , ZGM
j,l ] + cov[Zi,k, Zj,l]

= vivj var[ζGM
k ] δk,l + wi σ

2
k δi,j δk,l

which is the second identity. 2

In a third step, we compute the Gauss–Markov predictors of reserves and their mean
squared errors of prediction:

4.4 Theorem (Gauss–Markov prediction of reserves). In the extended
additive model,
(1) the Gauss–Markov predictors of the accident year reserves satisfy

RGM
i = vi

n∑

k=n−k+1

ζGM
k

and

cov[RGM
i −Ri, R

GM
j −Rj] = vivj

n∑

k=n−i∧j+1

var[ζGM
k ] + wi

(
n∑

k=n−i+1

σ2
k

)
δi,j

for all i, j ∈ {1, . . . , n}; in particular,

E[(RGM
i −Ri)

2] = v2
i

n∑

k=n−i+1

var[ζGM
k ] + wi

n∑

k=n−i+1

σ2
k

holds for all i ∈ {1, . . . , n}.
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(2) the Gauss–Markov predictors of the calendar year reserves satisfy

RGM
(c) =

n∑
i=c−n

vi ζ
GM
c−i

and

cov[RGM
(c) −R(c), R

GM
(d) −R(d)] =

n∑

i=c∨d−n

vivi−|c−d| var[ζGM
c∨d−i]+

(
n∑

i=c−n

wi σ
2
c−i

)
δc,d

for all c, d ∈ {n+1, . . . , 2n}; in particular,

E[(RGM
(c) −R(c))

2] =
n∑

i=c−n

v2
i var[ζGM

c−i ] +
n∑

i=c−n

wi σ
2
c−i

holds for all c ∈ {n+1, . . . , 2n}.
(3) the Gauss–Markov predictor of the total reserve satisfies

RGM =
n∑

k=1

(
n∑

i=n−k+1

vi

)
ζGM
k

and

E[(RGM−R)2] =
n∑

k=1

(
n∑

i=n−k+1

vi

)2

var[ζGM
k ] +

n∑

k=1

(
n∑

i=n−k+1

wi

)
σ2

k

Proof. Let us first consider the accident year reserves. We have

Ri =
n∑

k=n−i+1

Zi,k

and, since Gauss–Markov prediction is linear, we obtain

RGM
i =

n∑

k=n−i+1

ZGM
i,k

which because of Lemma 4.3 gives the first identity. This yields

RGM
i −Ri =

n∑

k=n−i+1

(ZGM
i,k −Zi,k)

and because of Lemma 4.3 we obtain

cov[RGM
i −Ri, R

GM
j −Rj] = cov

[
n∑

k=n−i+1

(ZGM
i,k −Zi,k),

n∑

l=n−j+1

(ZGM
j,l −Zj,l)

]
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=
n∑

k=n−i+1

n∑

l=n−j+1

cov[ZGM
i,k −Zi,k, Z

GM
j,l −Zj,l]

=
n∑

k=n−i+1

n∑

l=n−j+1

(
vivj var[ζGM

k ] + wi σ
2
k δi,j

)
δk,l

=
n∑

k=n−i∧j+1

(
vivj var[ζGM

k ] + wi σ
2
k δi,j

)

= vivj

n∑

k=n−i∧j+1

var[ζGM
k ] + wi

(
n∑

k=n−i+1

σ2
k

)
δi,j

which is the second identity. Since Gauss–Markov predictors are unbiased, the third
identity follows from the second.
Let us now consider the calendar year reserves. We have

R(c) =
n∑

i=c−n

Zi,c−i

and hence

RGM
(c) =

n∑
i=c−n

ZGM
i,c−i

which because of Lemma 4.3 gives the first identity. This yields

RGM
(c) −R(c) =

n∑
i=c−n

(ZGM
i,c−i−Zi,c−i)

and because of Lemma 4.3 we obtain

cov[RGM
(c) −R(c), R

GM
(d) −R(d)] = cov

[
n∑

i=c−n

(ZGM
i,c−i−Zi,c−i) ,

n∑

j=d−n

(ZGM
j,d−j−Zj,d−j)

]

=
n∑

i=c−n

n∑

j=d−n

cov[(ZGM
i,c−i−Zi,c−i), (Z

GM
j,d−j−Zj,d−j)]

]

=
n∑

i=c−n

n∑

j=d−n

(
vivj var[ζGM

c−i ] + wi σ
2
c−i δi,j

)
δc−i,d−j

=
n∑

i=c∨d−n

vivi−|c−d| var[ζGM
c∨d−i] +

(
n∑

i=c−n

wi σ
2
c−i

)
δc,d

which is the second identity.
Let us finally consider the total reserve. We have

R =
n∑

k=1

n∑

i=k+1

Zi,k
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and, since Gauss–Markov prediction is linear, we obtain

RGM =
n∑

k=1

n∑

i=k+1

ZGM
i,k

which because of Lemma 4.3 gives the first identity. This yields

RGM −R =
n∑

k=1

n∑

i=k+1

(ZGM
i,k −Zi,k)

and because of Lemma 4.3 we obtain

E[(RGM−R)2] = var[RGM−R]

= var

[
n∑

k=1

n∑

i=n−k+1

(ZGM
i,k −Zi,k)

]

=
n∑

k=1

var

[
n∑

i=n−k+1

(ZGM
i,k −Zi,k)

]

=
n∑

k=1

n∑

i=n−k+1

n∑

j=n−k+1

cov[ZGM
i,k −Zi,k, Z

GM
j,k −Zj,k]

=
n∑

k=1

n∑

i=n−k+1

n∑

j=n−k+1

(
vivj var[ζGM

k ] + wi σ
2
k δi,j

)

=
n∑

k=1

(
n∑

i=n−k+1

vi

)2

var[ζGM
k ] +

n∑

k=1

(
n∑

i=n−k+1

wi

)
σ2

k

which is the second identity. 2

In the special case where m = 0 and wi = vi holds for all i ∈ {−m, . . . , n}, the
Gauss–Markov predictors of incremental losses and reserves are identical with the
predictors used in the traditional additive method of loss reserving. This means that
Gauss–Markov prediction in the extended additive model provides simultaneously an
extension of the additive method and its justification based on a general statistical
principle.

Via Lemma 4.3 and Lemma 4.2, the mean squared errors of prediction depend on
unknown variance parameters which may be estimated as follows:

4.5 Theorem (Estimation of variance parameters). In the extended additive
model with m ≥ 1 and for every k ∈ {0, . . . , n}, the random variable

σ̂2
k :=

1

m + n− k

n−k∑
i=−m

1

wi

(Zi,k−viζ
GM
k )2

is an unbiased estimator of σ2
k.
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Proof. Consider i ∈ {−m, . . . , n−k}. By Lemma 4.2, we have E[viζ
GM
k ] = E[Zi,k]

and thus

E[(Zi,k−viζ
GM
k )2] = var[Zi,k−viζ

GM
k ]

= var[Zi,k]− 2 vi cov[Zi,k, ζ
GM
k ] + v2

i var[ζGM
k ]

Recall that

var[Zi,k] = wi σ
2
k

Furthermore, using Lemma 4.2 and Lemma 4.3 we obtain

cov[Zi,k, ζ
GM
k ] = cov

[
Zi,k,

∑n−k
j=−m vjZj,k/wj∑n−k

j=−m v2
j /wj

]

=
n−k∑

j=−m

vj/wj∑n−k
h=−m v2

h/wh

cov[Zi,k, Zj,k]

=
n−k∑

j=−m

vj/wj∑n−k
h=−m v2

h/wh

wi σ
2
k δi,j

= vi
1∑n−k

h=−m v2
h/wh

σ2
k

and Lemma 4.2 yields

var[ζGM
k ] =

1∑n−k
h=−m v2

h/wh

σ2
k

Therefore, we have

E[(Zi,k−viζ
GM
k )2] = var[Zi,k]− 2 vi cov[Zi,k, ζ

GM
k ] + v2

i var[ζGM
k ]

= wi σ
2
k − 2 v2

i

1∑n−k
h=−m v2

h/wh

σ2
k + v2

i

1∑n−k
h=−m v2

h/wh

σ2
k

=

(
wi − v2

i∑n−k
h=−m v2

h/wh

)
σ2

k

and hence

n−k∑
i=−m

1

wi

E[(Zi,k−viζ
GM
k )2] =

n−k∑
i=−m

1

wi

(
wi − v2

i∑n−k
h=−m v2

h/wh

)
σ2

k

=
(
(m+1+n−k)− 1

)
σ2

k

= (m+n−k) σ2
k

which proves the assertion. 2
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In the case m = 0, the assertion of Theorem 4.5 remains valid for k ∈ {0, . . . , n−1}.
To obtain an estimator of σ2

n also in this case, one may choose a parametric class
{fc | c ∈ C} of real functions (e.g. the class {f(a,b) : R → R | (a, b) ∈ (0,∞)2} with
f(a,b)(x) = a e−bx), determine ĉ ∈ C satisfying

n−1∑

k=0

(
fĉ(k)− σ̂2

k

)2

= inf
c∈C

n−1∑

k=0

(
fc(k)− σ̂2

k

)2

and define

σ̂2
n := fĉ(n)

If the sequence {σ̂2
k}k∈{0,...,n−1} is decreasing, one might alternatively define σ̂2

n :=
σ̂2

n−1.

Now estimators of the mean squared errors of prediction can be obtained by replacing
the variance parameters by their estimators in the formulas for the mean squared
errors of prediction.
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5 Gauss–Markov Loss Prediction

in the Extended Panning Model

In the present section, we denote by F0 the σ–algebra generated by the family
{Zi,0}i∈{−m,...,n} of the losses of development year 0. The extended Panning model
is defined as follows:

Extended Panning Model: There exist known F0–measurable random
parameters wi with wi > 0 and i ∈ {−m, . . . , n} as well as unknown
parameters ξk ∈ R and σ2

k ∈ (0,∞) with k ∈ {0, . . . , n} such that the
incremental losses satisfy

EF0 [Zi,k] = Zi,0 ξk

covF0 [Zi,k, Zj,l] = wi σ
2
k δi,j δk,l

for all i, j ∈ {−m, . . . , n} and k, l ∈ {0, . . . , n}. Moreover, Zi,0 > 0 holds
for all i ∈ {−m, . . . , n}.

In the extended Panning model, the initial losses Zi,0 replace the volume measures
used in the extended additive model. Since the first identity in the extended Panning
model implies

E[Zi,k/Zi,0] = ξk

the development year parameter ξk is assumed to be independent of the accident
year such that the collection of these parameters forms a development pattern; see
Schmidt and Zocher [2009].

The extended Panning model extends the traditional Panning model in which it is
assumed that m = 0 and that wi = 1 holds for all i ∈ {−m, . . . , n}; see Panning
[2006] and Schmidt and Zocher [2009]. The reason for considering the extended
Panning model becomes evident from its comparison with the extended additive
model (Section 4) and with the combination of both models (Section 6).

The following results are entirely analogous to those for the extended additive model
and can be obtained by replacing the volume measures vi used in the extended
additive model by the initial losses Zi,0 and by replacing the first and second order
moments by their F0–conditional counterparts.

5.1 Theorem. The extended Panning model is an F0–conditional linear model.

5.2 Lemma (Gauss–Markov estimation of parameters). In the extended
Panning model, the F0–conditional Gauss–Markov estimators of the coordinates of
the parameter vector satisfy

ξGM
k =

∑n−k
i=−m Zi,0Zi,k/wi∑n−k

i=−m Z2
i,0/wi
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and

covF0 [ξGM
k , ξGM

l ] =
1∑n−k

i=−m Z2
i,0/wi

σ2
k δk,l

for all k, l ∈ {0, 1, . . . , n}.

5.3 Lemma (Gauss–Markov prediction of incremental losses). In the
extended Panning model, the F0–conditional Gauss–Markov predictors of the non–
observable incremental losses satisfy

ZGM
i,k = Zi,0 ξGM

k

and

covF0 [ZGM
i,k −Zi,k, Z

GM
j,l −Zj,l] =

(
Zi,0Zj,0 varF0 [ξGM

k ] + wi σ
2
k δi,j

)
δk,l

for all i, j ∈ {−m, . . . , n} and k, l ∈ {0, . . . , n} such that min{i + k, j + l} ≥ n + 1.

5.4 Theorem (Gauss–Markov prediction of reserves). In the extended
Panning model,
(1) the F0–conditional Gauss–Markov predictors of the accident year reserves satis-

fy

RGM
i = Zi,0

n∑

k=n−k+1

ξGM
k

and

covF0 [RGM
i −Ri, R

GM
j −Rj] = Zi,0Zj,0

n∑

k=n−i∧j+1

varF0 [ξGM
k ]+wi

(
n∑

k=n−i+1

σ2
k

)
δi,j

for all i, j ∈ {1, . . . , n}; in particular,

EF0 [(RGM
i −Ri)

2] = Z2
i,0

n∑

k=n−i+1

varF0 [ξGM
k ] + wi

n∑

k=n−i+1

σ2
k

holds for all i ∈ {1, . . . , n}.
(2) the F0–conditional Gauss–Markov predictors of the calendar year reserves satis-

fy

RGM
(c) =

n∑
i=c−n

Zi,0 ξGM
c−i

and

covF0 [RGM
(c) −R(c), R

GM
(d) −R(d)]

=
n∑

i=c∨d−n

Zi,0Zi−|c−d|,0 varF0 [ξGM
c∨d−i] +

(
n∑

i=c−n

wi σ
2
c−i

)
δc,d
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for all c, d ∈ {n+1, . . . , 2n}; in particular,

EF0 [(RGM
(c) −R(c))

2] =
n∑

i=c−n

Z2
i,0 varF0 [ξGM

c−i ] +
n∑

i=c−n

wi σ
2
c−i

holds for all c ∈ {n+1, . . . , 2n}.
(3) the F0–conditional Gauss–Markov predictor of the total reserve satisfies

RGM =
n∑

k=1

(
n∑

i=n−k+1

Zi,0

)
ξGM
k

and

EF0 [(RGM−R)2] =
n∑

k=1

(
n∑

i=n−k+1

Zi,0

)2

varF0 [ξGM
k ] +

n∑

k=1

(
n∑

i=n−k+1

wi

)
σ2

k

In the special case where m = 0 and wi = 1 holds for all i ∈ {−m, . . . , n}, the
Gauss–Markov predictors of incremental losses and reserves are identical with the
predictors used in the traditional Panning method of loss reserving. This means that
Gauss–Markov prediction in the extended Panning model provides simultaneously
an extension of the Panning method and its justification based on a general statistical
principle.

The unknown variance parameters may be estimated as follows:

5.5 Theorem (Estimation of variance parameters). In the extended Panning
model with m ≥ 1 and for every k ∈ {0, . . . , n}, the random variable

σ̂2
k :=

1

m + n− k

n−k∑
i=−m

1

wi

(Zi,k−Zi,0ξ
GM
k )2

is an F0–conditionally unbiased estimator of σ2
k.

The final remarks of Section 4 apply to the extended Panning model as well.
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6 Gauss–Markov Loss Prediction

in the Combined Model

Because of the similarity of the extended additive model and the extended Panning
model, it is natural to consider convex combinations of these models. As in the previ-
ous section, we denote by F0 the σ–algebra generated by the family {Zi,0}i∈{−m,...,n}
of the losses of development year 0. The combined model is defined as follows:

Combined Model: There exist known F0–measurable random para-
meters vi, wi with vi, wi > 0 and i ∈ {−m, . . . , n} as well as unknown
parameters ζk, ξk ∈ R and σ2

k ∈ (0,∞) with k ∈ {0, . . . , n} such that the
incremental losses satisfy

EF0 [Zi,k] = vi ζk + Zi,0 ξk

covF0 [Zi,k, Zj,l] = wi σ
2
k δi,j δk,l

for all i, j ∈ {−m, . . . , n} and k, l ∈ {0, . . . , n}. Moreover, Zi,0 > 0
holds for all i ∈ {−m, . . . , n} and viZj,0 6= vjZi,0 holds for some i, j ∈
{−m, . . . , 0} with i 6= j.

It is evident that the combined model combines the extended additive model and
the extended Panning model: Formally, putting ξk := 0 yields the extended additive
model and putting ζk := 0 yields the extended Panning model. However, the analysis
of the combined model turns out to be a bit more subtle than the analysis of the
extended additive and Panning models.

Assume that the assumptions of the combined model are fulfilled. Then the F0–
conditional expectation of the random vector X1 of all observable incremental losses
satisfies

EF0







Z−m,0

...
Zn,0

...
Z−m,k

...
Zn−k,k

...
Z−m,n

...
Z0,n







=




v−m · · · 0 · · · 0 Z−m,0 · · · 0 · · · 0
...

...
...

...
...

...
vn · · · 0 · · · 0 Zn,0 · · · 0 · · · 0
...

...
...

...
...

...
0 · · · v−m · · · 0 0 · · · Z−m,0 · · · 0
...

...
...

...
...

...
0 · · · vn−k · · · 0 0 · · · Zn−k,0 · · · 0
...

...
...

...
...

...
0 · · · 0 · · · v−m 0 · · · 0 · · · Z−m,0

...
...

...
...

...
...

0 · · · 0 · · · v0 0 · · · 0 · · · Z0,0







ζ0

...
ζk

...
ζn

ξ0

...
ξk

...
ξn




such that there exist an F0–measurable random design matrix A1 having full column
rank and a parameter vector β satisfying EF0 [X1] = A1β. A similar identity holds
for the F0–conditional expectation of the random vector X2 of all non–observable

Casualty Actuarial Society E-Forum, Fall 2010 23



incremental losses. Moreover, the F0–conditional variance of the random vector X
is the same as in the extended additive model and the extended Panning model.

6.1 Theorem. The combined model is an F0–conditional linear model.

For a concise and transparent presentation of the result for the combined model, we
now introduce some auxiliary random variables. By assumption, we have

0∑
i=−m

0∑
j=−m

(viZj,0−vjZi,0)
2 > 0

We may thus define, for k ∈ {0, . . . , n} and r, s ∈ {0, 1, 2},

Y
(r,s)
k := 2

∑n−k
i=−m vr

i Z
s
i,0/wi∑n−k

i=−m

∑n−k
j=−m(viZj,0−vjZi,0)2/wiwj

and straightforward calculation shows that

Y
(r,s)
k =

∑n−k
i=−m vr

i Z
s
i,0/wi

(
∑n−k

i=−m v2
i /wi)(

∑n−k
i=−m Z2

i,0/wi)− (
∑n−k

i=−m viZi,0/wi)2

Note that these random variables are F0–measurable.

6.2 Lemma (Gauss–Markov estimation of parameters). In the combined
model, the F0–conditional Gauss–Markov estimators of the coordinates of the para-
meter vector satisfy

ζGM
k = Y

(0,2)
k

n−k∑
i=−m

viZi,k

wi

− Y
(1,1)
k

n−k∑
i=−m

Zi,0Zi,k

wi

ξGM
k = Y

(2,0)
k

n−k∑
i=−m

Zi,0Zi,k

wi

− Y
(1,1)
k

n−k∑
i=−m

viZi,k

wi

as well as

covF0 [ζGM
k , ζGM

l ] = Y
(0,2)
k σ2

k δk,l

covF0 [ζGM
k , ξGM

l ] = −Y
(1,1)
k σ2

k δk,l

covF0 [ξGM
k , ξGM

l ] = Y
(2,0)
k σ2

k δk,l

and, in particular,

covF0

[(
ζGM
k

ξGM
k

)
,

(
ζGM
l

ξGM
l

)]
= varF0

[(
ζGM
k

ξGM
k

)]
δk,l

for all k, l ∈ {0, 1, . . . , n}.
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Proof. We have

A′
1Σ

−1
11 X1 =




(
1

σ2
k

n−k∑
i=−m

viZi,k

wi

)

k∈{0,...,n}(
1

σ2
k

n−k∑
i=−m

Zi,0Zi,k

wi

)

k∈{0,...,n}




and

A′
1Σ

−1
11 A1 =




diag

(
1

σ2
k

n−k∑
i=−m

v2
i

wi

)

k∈{0,...,n}
diag

(
1

σ2
k

n−k∑
i=−m

viZi,0

wi

)

k∈{0,...,n}

diag

(
1

σ2
k

n−k∑
i=−m

viZi,0

wi

)

k∈{0,...,n}
diag

(
1

σ2
k

n−k∑
i=−m

Z2
i,0

wi

)

k∈{0,...,n}




Therefore, we have

A′
1Σ

−1
11 A1 =

(
U V
V W

)

with suitable diagonal matrices U,V,W, and we also have

(
U V
V W

)−1

=

(
(U−VW−1V)−1 −U−1V(W−VU−1V)−1

−W−1V(U−VW−1V)−1 (W−VU−1V)−1

)

Therefore, straightforward calculation yields

(A′
1Σ

−1
11 A1)

−1 =

(
diag(Y

(0,2)
k σ2

k)k∈{0,...,n} − diag(Y
(1,1)
k σ2

k)k∈{0,...,n}
− diag(Y

(1,1)
k σ2

k)k∈{0,...,n} diag(Y
(2,0)
k σ2

k)k∈{0,...,n}

)

We thus obtain

(A′
1Σ

−1
11 A1)

−1A′
1Σ

−1
11 X1 =




(
Y

(0,2)
k

n−k∑
i=−m

viZi,k

wi

− Y
(1,1)
k

n−k∑
i=−m

Zi,0Zi,k

wi

)

k∈{0,...,n}(
Y

(2,0)
k

n−k∑
i=−m

Zi,0Zi,k

wi

− Y
(1,1)
k

n−k∑
i=−m

viZi,k

wi

)

k∈{0,...,n}




and hence

ζGM
k = Y

(0,2)
k

n−k∑
i=−m

viZi,k

wi

− Y
(1,1)
k

n−k∑
i=−m

Zi,0Zi,k

wi

ξGM
k = Y

(2,0)
k

n−k∑
i=−m

Zi,0Zi,k

wi

− Y
(1,1)
k

n−k∑
i=−m

viZi,k

wi
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The above identity for (A′
1Σ

−1
11 A1)

−1 also yields

covF0 [ζGM
k , ζGM

l ] = Y
(0,2)
k σ2

k δk,l

covF0 [ζGM
k , ξGM

l ] = −Y
(1,1)
k σ2

k δk,l

covF0 [ξGM
k , ξGM

l ] = Y
(2,0)
k σ2

k δk,l

which completes the proof. 2

We can now compute the Gauss–Markov predictors of the non–observable incremen-
tal losses and the covariances of their prediction errors:

6.3 Lemma (Gauss–Markov prediction of incremental losses). In the
combined model, the F0–conditional Gauss–Markov predictors of the non–observable
incremental losses satisfy

ZGM
i,k = vi ζ

GM
k + Zi,0 ξGM

k

and

covF0 [ZGM
i,k −Zi,k, Z

GM
j,l −Zj,l]

=

((
vi

Zi,0

)′
varF0

[(
ζGM
k

ξGM
k

)] (
vj

Zj,0

)
+ wiσ

2
kδi,j

)
δk,l

for all i, j ∈ {−m, . . . , n} and k, l ∈ {0, . . . , n} such that min{i + k, j + l} ≥ n + 1;
in particular,

EF0 [(ZGM
i,k −Zi,k)

2] =

(
vi

Zi,0

)′
varF0

[(
ζGM
k

ξGM
k

)](
vi

Zi,0

)
+ wi σ

2
k

holds for all i ∈ {−m, . . . , n} and k ∈ {0, . . . , n} such that i + k ≥ n + 1.

Proof. The first identity is evident. Furthermore, Lemma 6.2 yields

covF0 [ZGM
i,k , ZGM

j,l ] = covF0 [vi ζ
GM
k +Zi,0ξ

GM
k , vj ζGM

l +Zj,0 ξGM
l ]

= covF0

[(
vi

Zi,0

)′ (
ζGM
k

ξGM
k

)
,

(
vj

Zj,0

)′ (
ζGM
l

ξGM
l

)]

=

(
vi

Zi,0

)′
covF0

[(
ζGM
k

ξGM
k

)
,

(
ζGM
l

ξGM
l

)](
vj

Zj,0

)

=

(
vi

Zi,0

)′
varF0

[(
ζGM
k

ξGM
k

)](
vj

Zj,0

)
δk,l

Since covF0 [ZGM
i,k , Zj,l] = 0 = covF0 [Zi,k, Z

GM
j,l ] and

covF0 [Zi,kZj,l] = wi σ
2
k δi,jδk,l

Gauss-Markov Loss Prediction in a Linear Model
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we obtain

covF0 [ZGM
i,k −Zi,k, Z

GM
j,l −Zj,l]

= covF0 [ZGM
i,k , ZGM

j,l ] + covF0 [Zi,kZj,l]

=

((
vi

Zi,0

)′
varF0

[(
ζGM
k

ξGM
k

)](
vj

Zj,0

)
δk,l + wiσ

2
kδi,j

)
δk,l

which is the second identity. 2

The following result on the Gauss–Markov predictors of reserves and their expected
squared prediction errors is formally identical with the results for the extended
additive model and the extended Panning model:

6.4 Theorem (Gauss–Markov prediction of reserves). In the combined
model,
(1) the F0–conditional Gauss–Markov predictors of the accident year reserves satis-

fy

RGM
i = vi

n∑

k=n−k+1

ζGM
k + Zi,0

n∑

k=n−k+1

ξGM
k

and

covF0 [RGM
i −Ri, R

GM
j −Rj]

=

(
vi

Zi,0

)′ ( n∑

k=n−i∧j+1

varF0

[(
ζGM
k

ξGM
k

)])(
vj

Zj,0

)
+ wi

( ∑

k=n−i+1

σ2
k

)
δi,j

for all i, j ∈ {1, . . . , n}; in particular,

EF0 [(RGM
i −Ri)

2]

=

(
vi

Zi,0

)′ ( n∑

k=n−i+1

varF0

[(
ζGM
k

ξGM
k

)])(
vi

Zi,0

)
+ wi

∑

k=n−i+1

σ2
k

holds for all i ∈ {1, . . . , n}.
(2) the F0–conditional Gauss–Markov predictors of the calendar year reserves satis-

fy

RGM
(c) =

n∑
i=c−n

(
vi ζ

GM
c−i + Zi,0 ξGM

c−i

)

and

covF0 [RGM
(c) −R(c), R

GM
(d) −R(d)]

=
n∑

i=c∨d−n

(
vi

Zi,0

)′
varF0

[(
ζGM
c∨d−i

ξGM
c∨d−i

)](
vi−|c−d|

Zi−|c−d|,0

)
+

(
n∑

i=c∨d−n

wiσ
2
c−i

)
δc,d

Gauss-Markov Loss Prediction in a Linear Model
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for all c, d ∈ {n+1, . . . , 2n}; in particular,

EF0 [(RGM
(c) −R(c))

2]

=
n∑

i=c−n

(
vi

Zi,0

)′
varF0

[(
ζGM
c−i

ξGM
c−i

)](
vi

Zi,0

)
+

n∑
i=c−n

wiσ
2
c−i

holds for all c ∈ {n+1, . . . , 2n}.
(3) the F0–conditional Gauss–Markov predictor of the total reserve satisfies

RGM =
n∑

k=1

n∑

i=n−k+1

(
vi ζ

GM
k + Zi,0 ξGM

k

)

and

EF0 [(RGM
i −Ri)

2]

=
n∑

k=1




n∑

i=n−k+1

vi

n∑

i=n−k+1

Zi,0




′

varF0

[(
ζGM
k

ξGM
k

)]



n∑

i=n−k+1

vi

n∑

i=n−k+1

Zi,0




+
n∑

k=1

(
n∑

i=n−k+1

wi

)
σ2

k

The proof of Theorem 6.4 is analogous to that of Theorem 4.4 (using Lemma 6.3
instead of Lemma 4.3).

Finally, the unknown variance parameters may be estimated as follows:

6.5 Theorem (Estimation of variance parameters). In the combined model
with m ≥ 2 and for every k ∈ {0, . . . , n}, the random variable

σ̂2
k :=

1

m + n− k − 1

n−k∑
i=−m

1

wi

(
Zi,k − (viζ

GM
k +Zi,0ξ

GM
k )

)2

is an F0–conditionally unbiased estimator of σ2
k.

The proof of Theorem 6.5 is analogous to that of Theorem 4.5 (using Lemmas 6.2
and 6.3 instead of Lemmas 4.2 and 4.3).

In the case m = 1, the assertion of Theorem 6.5 remains valid for k ∈ {0, . . . , n−1},
and in the case m = 0 it remains valid for k ∈ {0, . . . , n−2}. Thus, the final remarks
of Section 4 apply mutatis mutandis to the combined model as well.

Gauss-Markov Loss Prediction in a Linear Model

Casualty Actuarial Society E-Forum, Fall 2010 28

esmith
Typewritten Text
.



7 Loss Prediction in the Mack Model

For the sake of comparison, the present section provides a brief discussion of the
famous Mack model for the chain–ladder method. In a sense to be made precise
below, the Mack model is related to linear models but it is not a linear model as
such.

For k ∈ {0, . . . , n}, we denote by Fk the σ–algebra generated by the family

{Sj,l}l∈{0,...,k}, j∈{−m,...,n−l}

of all observable cumulative losses up to development year k and, for i ∈ {−m, . . . , n}
and k ∈ {0, . . . , n}, we denote by Fi,k the σ–algebra generated by the family

{Si,l}l∈{0,...,k}

of all cumulative losses of accident year i up to development year k; note that the
definition of F0 is in accordance with that used in Sections 5 and 6. The Mack
model is defined as follows:

Mack Model: The accident years are independent (in the sense that
the family of σ–algebras {Fi,n}i∈{−m,...,n} is independent ) and, for every
development year k ∈ {1, . . . , n}, there exist unknown parameters ϕk ∈ R
and σ2

k ∈ (0,∞) such that the cumulative losses satisfy

EFi,k−1 [Si,k] = Si,k−1 ϕk

varFi,k−1 [Si,k] = Si,k−1 σ2
k

for all i ∈ {−m, . . . , n}. Moreover, Si,k > 0 holds for all i ∈ {−m, . . . , n}
and k ∈ {0, . . . , n−1}.

In the Mack model, the cumulative losses Si,k replace the incremental losses used
in the models considered before, the cumulative losses Si,k−1 replace the volume
measures used in the extended additive model and the initial losses used in the
extended Panning model, and they also replace the accident year parameters wi

used in each of these models. Since the first identity in the Mack model implies

E[Si,k/Si,k−1] = ϕk

the development year parameter ϕk is assumed to be independent of the accident
year and the collection of these parameters forms a development pattern; see Schmidt
and Zocher [2009].

The Mack model is due to Mack [1993] who assumed that m = 0.

Assume that the assumptions of the Mack model are fulfilled. Then we have, for
every k ∈ {1, . . . , n},

EFk−1







S−m,k
...

Sn−k,k





 =




S−m,k−1
...

Sn−k,k−1


 ϕk

Gauss-Markov Loss Prediction in a Linear Model
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and

EFk−1 [Sn−k+1,k] = Sn−k+1,k−1 ϕk

as well as

varFk−1







S−m,k
...

Sn−k,k





 =




S−m,k−1 · · · 0
...

. . .
...

0 · · · Sn−k,k−1


 σ2

k

and

varFk−1 [Sn−k+1,k] = Sn−k+1,k−1 σ2
k

and we also have

covFk−1 [Si,k, Sj,k] = 0

for all i, j ∈ {−m, . . . , n−k+1} such that i 6= j; see Schmidt and Schnaus [1996].
We thus obtain the following result:

7.1 Theorem. For every development year k ∈ {1, . . . , n}, the Mack model
provides an Fk−1–conditional linear model for the family {Si,k}i∈{−m,...,n−k+1}.

Because of Theorem 7.1, the Mack model may be called a sequential linear model.

Let us first consider Gauss–Markov estimation of the parameter in the conditional
linear models provided by the Mack model:

7.2 Lemma (Gauss–Markov estimation of parameters). In the Mack model
and for every development year k ∈ {1, . . . , n}, the Fk−1–conditional Gauss–Markov
estimator of the parameter ϕk satisfies

ϕGM
k =

∑n−k
i=−m Si,k∑n−k

i=−m Si,k−1

and

varFk−1 [ϕGM
k ] =

1∑n−k
i=−m Si,k−1

σ2
k

The linear models for the families {Si,k}i∈{−m,...,n−k+1} cannot be extended to the
families {Si,k}i∈{−m,...,n} since the cumulative losses Si,k−1 with i ∈ {n−k+2, . . . , n}
are non–observable and hence cannot be part of the design matrix of a conditional
linear model (in which the design matrix is assumed to be observable); therefore,
Gauss–Markov prediction is possible only for the non–observable cumulative losses
Sn−k+1,k of the first non–observable calendar year n+1:

Gauss-Markov Loss Prediction in a Linear Model
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7.3 Lemma (Gauss–Markov prediction of cumulative losses). In the Mack
model and for every development year k ∈ {1, . . . , n}, the Fk−1–conditional Gauss–
Markov predictor of the cumulative loss Sn−k+1,k satisfies

SGM
n−k+1,k = Sn−k+1,k−1ϕ

GM

At this point, let us recall that, for every k ∈ {1, . . . , n}, the chain–ladder factor
ϕCL

k is defined as

ϕCL
k :=

∑n−k
i=−m Si,k∑n−k

i=−m Si,k−1

and that, for all i, k ∈ {0, . . . , n} such that i + k ≥ n, the chain–ladder predictor of
the cumulative loss Si,k (which is non–observable for i+k ≥ n+1) is defined as

SCL
i,k := Si,n−i

k∏

l=n−i+1

ϕCL
l

(such that SCL
i,n−i = Si,n−i). Thus, Lemmas 7.2 and 7.3 assert that

ϕGM
k = ϕCL

k

and

SGM
n−k+1,k = SCL

n−k+1,k

holds for all k ∈ {1, . . . , n}. Since Gauss–Markov predictors are unbiased, the
previous identity yields

E[SCL
i,k −Si,k] = 0

and hence

E[(SCL
i,k −Si,k)

2] = var[SCL
i,k −Si,k]

for all i, k ∈ {1, . . . , n} such that i + k = n + 1, and it can be shown that these
identities are also true for all i, k ∈ {1, . . . , n} such that i + k ≥ n + 2.

Following Mack [1993], however, one should consider the Fn–conditional mean
squared error of prediction

EFn [(SCL
i,k −Si,k)

2] = varFn [SCL
i,k −Si,k]+

(
EFn [SCL

i,k −Si,k]
)2

instead of the unconditional mean squared error of prediction E[(SCL
i,k−Si,k)

2]. Since

EFn [SCL
i,k ] = Si,n−i

k∏

l=n−i+1

ϕCL
l

EFn [Si,k] = Si,n−i

k∏

l=n−i+1

ϕl
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we have

EFn [SCL
i,k −Si,k] = Si,n−i

(
k∏

l=n−i+1

ϕCL
l −

k∏

l=n−i+1

ϕl

)

which shows that the chain–ladder predictors fail to be Fn–conditionally unbiased.
Thus, the bias does not vanish in the identity for the Fn–conditional mean squared
error of prediction, which is most unfortunate since obviously plug–in estimators
cannot be used to estimate the bias. By contrast, Mack [1993] has shown that the
Fn–conditional variance of the prediction error satisfies

varFn [SCL
i,k −Si,k] = Si,n−i

k∑

l=n−i+1

(
l−1∏

h=n−i+1

ϕh

)
σ2

l

(
k∏

h=l+1

ϕ2
h

)

(which provides the identity

varFn [Si,k] = Si,n−i

k∑

l=n−i+1

(
l−1∏

h=n−i+1

ϕh

)
σ2

l

(
k∏

h=l+1

ϕ2
h

)

needed in Theorem 7.4 below). In conclusion, estimation of the bias causes a serious
difficulty in the estimation of the Fn–conditional mean squared error of prediction
of the chain–ladder predictor of a non–observable cumulative loss.

These observations also apply to the chain–ladder predictors of non–observable in-
cremental losses which are defined as

ZCL
i,k := SCL

i,k − SCL
i,k−1

and, in particular, to the chain–ladder predictors of reserves which are defined as

RCL
i :=

n∑

k=n−i+1

ZCL
i,k

RCL
(c) :=

n∑
i=c−n

ZCL
i,c−i

RCL :=
n∑

k=1

n∑

i=n−k+1

ZCL
i,k

This can be seen from the following result:

7.4 Theorem (Chain–ladder prediction of reserves). In the Mack model,
(1) the chain–ladder predictors of the accident year reserves satisfy

EFn [RCL
i −Ri] = Si,n−i

(
n∏

k=n−i+1

ϕCL
k −

n∏

k=n−i+1

ϕk

)
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and

EFn [(RCL
i −Ri)

2] =

(
Si,n−i

(
n∏

k=n−i+1

ϕCL
k −

n∏

k=n−i+1

ϕk

))2

+ varFn [Si,n]

as well as
covFn [RCL

i −Ri, R
CL
j −Rj] = varFn [Si,n] δi,j

(2) the chain–ladder predictors of the calendar year reserves satisfy

EFn [RCL
(c)−R(c)]

=
n∑

i=c−n

Si,n−i

((
c−i−1∏

k=n−i+1

ϕCL
k

)
(ϕCL

c−i−1)−
(

c−i−1∏

k=n−i+1

ϕk

)
(ϕc−i−1)

)

and

EFn [(RCL
(c)−R(c))

2]

=

(
n∑

i=c−n

Si,n−i

((
c−i−1∏

k=n−i+1

ϕCL
k

)
(ϕCL

c−i−1)−
(

c−i−1∏

k=n−i+1

ϕk

)
(ϕc−i−1)

))2

+
n∑

i=c−n

(
varFn [Si,c−i−1] (ϕc−i−1)2 + Si,n−i

(
c−i−1∏

k=n−i+1

ϕk

)
σ2

c−i

)

(3) the chain–ladder predictor of the total reserve satisfies

EFn [RCL−R] =
n∑

i=1

Si,n−i

(
n∏

k=n−i+1

ϕCL
k −

n∏

k=n−i+1

ϕk

)

and

EFn [(RCL−R)2] =

(
n∑

i=1

Si,n−i

(
n∏

k=n−i+1

ϕCL
k −

n∏

k=n−i+1

ϕk

))2

+
n∑

i=1

varFn [Si,n]

A proof of Theorem 7.4 will be given in the Appendix.

Theorem 7.4 provides explicit formulas for the Fn–conditional mean squared errors of
prediction, but the use of plug–in estimators in these formulas is not recommendable
since it would result in wiping out a part of the Fn–conditional mean squared errors
of prediction.

7.5 Theorem (Estimation of variance parameters). In the Mack model with
m ≥ 1 and for every k ∈ {1, . . . , n}, the random variable

σ̂2
k :=

1

m + n− k

n−k∑
i=−m

1

Si,k−1

(Si,k−Si,k−1ϕ
CL
k )2
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is an Fk−1–conditionally unbiased estimator of σ2
k.

As noted before, the use of plug–in estimators for the parameters of the development
pattern in the formulas provided by Theorem 7.4 is not recommendable. Mack [1993]
proposed the estimators

ÊFn [(RCL
i −Ri)

2]

:= (SCL
i,n )2

n∑

k=n−i+1

(
1∑n−k

h=−m Sh,k

+
1

SCL
i,k

)
σ̂2

k

ϕCL
k

= (SCL
i,n )2

n∑

k=n−i+1

1∑n−k
h=−m Sh,k

σ̂2
k

ϕCL
k

+ (SCL
i,n )2

n∑

k=n−i+1

1

SCL
i,k

σ̂2
k

ϕCL
k

for the Fn–conditional mean squared errors of prediction of the accident year reserves
and

ÊFn [(RCL−R)2]

:=
n∑

i=1

n∑
j=1

SCL
i,n SCL

j,n

n∑

k=n−i∧j+1

1∑n−k
h=−m Sh,k

σ̂2
k

ϕCL
k

+
n∑

i=1

(SCL
i,n )2

n∑

k=n−i+1

1

SCL
i,k

σ̂2
k

ϕCL
k

for the Fn–conditional mean squared error of prediction of the total reserve. The
construction of each of these estimators involves certain approximations.

Apparently, no estimators have been proposed in the literature for the conditional
mean squared errors of prediction of the calendar year reserves.
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8 Remarks

In the Panning model and in the combined model, it would be sufficient to assume
Zi,0 > 0 only for i ∈ {1, . . . , n}, but then the formulas for predictors and mean
squared errors of prediction have would have to be modified as to avoid divisions by
zero.

The accident year parameters wi may e. g. be chosen as follows:
– In the extended additive model, one may choose wi := 1 (corresponding to the

traditional Panning model) or wi := vi (traditional additive model) or, more
generally, wi := α + βvi with α, β ∈ [0, 1] and α + β = 1.

– In the extended Panning model, one may choose wi := 1 (traditional Panning
model) or wi := vi (corresponding to the traditional additive model) or wi :=
Zi,0 (in analogy with the traditional additive model) or, more generally, wi :=
α + βvi + γZi,0 with α, β, γ ∈ [0, 1] and α + β + γ = 1.

– In the combined model, one may choose wi := 1 (corresponding to the tra-
ditional Panning model) or wi := vi (corresponding to the traditional additive
model) or wi := Zi,0 or, more generally, wi := α+βvi+γZi,0 with α, β, γ ∈ [0, 1]
and α + β + γ = 1.

The combined model uses volume measures and initial losses as regressors and thus
provides an example for a broad class of general linear models combining different
sources of information on the accident years. As there are several possible choices
for the volume measure, like the number of contracts, the premium income, market
statistics or even information on a similar portfolio of risks, one might want to use
some of them simultaneously; also, as for example in excess–of–loss reinsurance, one
might want to use several volume measures but avoid initial losses. In both cases,
it is straightforward to construct appropriate modifications of the combined model
and the analysis of the resulting models would follow the lines of Section 6.

For the additive method and the Panning method, the principle of Gauss–Markov
prediction in an appropriate linear model shows that, under certain assumptions on
the first and second order moments of the incremental losses,
– the predictors used in these methods are unbiased and minimize the mean

squared error of prediction, and
– the mean squared errors of prediction can be estimated by the simple use of

plug–in estimators for the unknown variance parameters.
In addition, the systematic use of Gauss–Markov prediction in a linear model leads
to variations and combinations of these methods; see Section 9 below for nine such
methods using the available information in a slightly different way. The analysis of
results from different but similar methods may be useful to study the sensitivity of
result with respect to model variations and to analyze the impact of loss develop-
ment data and volume measures; see also Schmidt and Zocher [2009] for a similar
discussion of another family of models and methods.

Unfortunately, the situation is not that comfortable for the chain–ladder method.
While the Mack model was certainly a breakthrough in stochastic modelling for the
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chain–ladder method and provides a partial justification of that method, it seems
that in this model
– the question of whether or not the chain–ladder predictors minimize the mean

squared error of prediction cannot be settled and that
– the construction of estimators of the mean squared errors of prediction presents

a serious problem and seems to require certain delicate approximations.
This is due to the sequential character of the Mack model, which provides a linear
model for every development year but not for the entire loss development.
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9 A Numerical Example

In the present section we illustrate the results of this paper by a numerical example.
In the example, we consider a portfolio of auto liability and use the incremental
losses provided by Braun [2004], truncated at development year 9, and the volume
measures proposed by Merz and Wüthrich [2009]. These data are presented in
Table 1.

For each of the additive model, the Panning model and the combined model we
consider the three cases in which the accident year parameters of the variances are
chosen as wi = 1, wi = vi and wi = Zi,0, respectively, and we also consider the
Mack model in which the corresponding parameters are the cumulative losses Si,k−1.
The Gauss–Markov estimators of the parameters ζk (additive model and combined
model), ξk (Panning model and combined model) and ϕk (Mack model) are displayed
in Tables 2–5.

In the combined model, the signs of the Gauss–Markov estimators given Table 4
show that the volume measures and the initial losses have an opposite effect on
the Gauss–Markov predictors of reserves; see Theorem 6.4. The Gauss–Markov
predictors of the reserves of accident years 1–9, the total reserves and the reserves
of calendar years 10–18 are displayed in Table 6.

The standard error of prediction is defined as the square root of the mean squared
error of prediction and measures uncertainty in the monetary unit. The estimated
standard errors of prediction are displayed in Table 7.

As an alternative measure of uncertainty, one could also consider the coefficient of
variation which is defined as the ratio between the standard error of prediction and
the predictor and is dimension–free. The coefficients of variation are displayed in
Table 8.

Of course, the choice of a stochastic model should not be driven by the numerical
results which it produces. Nevertheless, model selection should perhaps proceed in
steps, starting with the choice of a plausible class of models (like the class of general
linear models) and subsequently shrinking this class to only a few models or even
a single one. In this process a comparative analysis of a family of similar models
could help to obtain some insight into some of the characteristics of these models.

For the example considered here, we make the following observations:
– The choice of regressors (volume measures in the additive model, initial losses

in the Panning model, and both of them in the combined model) may affect the
predictors and the standard errors of prediction. For example, for the Panning
model, the predictors of the total reserves are smaller and the standard errors
of calendar year 10 are larger than for the additive model and the combined
model.
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– The choice of the accident year parameters may affect the predictors and the
standard errors of prediction. For example, for wi = 1, the total reserves are
larger and the standard errors are smaller than for wi = vi and wi = Zi,0.

– For the Mack model, the predictors are in the range of those obtained for the
other models but the standard errors are larger.

Such considerations combined with actuarial judgement could help to determine
estimates of reserves and estimates of standard errors of prediction for the portfolio
under consideration.

Nevertheless, such an analysis for a particular portfolio cannot justify a general
preference for a particular stochastic model.
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Appendix

Here we present a proof of Theorem 7.4:

Proof. We have RCL
i −Ri = SCL

i,n − Si,n and hence

EFn [RCL
i −Ri] = EFn [SCL

i,n −Si,n]

= Si,n−i

(
n∏

k=n−i+1

ϕCL
k −

n∏

k=n−i+1

ϕk

)

Since the accident years are independent, we also have

covFn [RCL
i −Ri, R

CL
j −Rj] = covFn [SCL

i,n −Si,n, S
CL
j,n−Sj,n]

= covFn [Si,n, Sj,n]

= varFn [Si,n] δi,j

In particular, we have

EFn [(RCL
i −Ri)

2] = varFn [RCL
i −Ri] +

(
EFn [RCL

i −Ri]
)2

= varFn [Si,n] + S2
i,n−i

(
n∏

k=n−i+1

ϕCL
k −

n∏

k=n−i+1

ϕk

)2

This proves (1).
We have

RCL
(c) −R(c) =

n∑
i=c−n

((SCL
i,c−i−SCL

i,c−i−1)− (Si,c−i−Si,c−i−1))

=
n∑

i=c−n

(SCL
i,c−i−Si,c−i)−

n∑
i=c−n

(SCL
i,c−i−1−Si,c−i−1)

and hence

EFn [RCL
(c)−R(c)]

=
n∑

i=c−n

EFn [(SCL
i,c−i−Si,c−i)]−

n∑
i=c−n

EFn [(SCL
i,c−i−1−Si,c−i−1)]

=
n∑

i=c−n

Si,n−i

(
c−i∏

k=n−i+1

ϕCL
k −

c−i∏

k=n−i+1

ϕk

)
−

n∑
i=c−n

Si,n−i−1

(
c−i−1∏

k=n−i+1

ϕCL
k −

c−i−1∏

k=n−i+1

ϕk

)

=
n∑

i=c−n

Si,n−i

((
c−i−1∏

k=n−i+1

ϕCL
k

)
(ϕCL

c−i−1)−
(

c−i−1∏

k=n−i+1

ϕk

)
(ϕc−i−1)

)

Since the accident years are independent, we also have

varFn [RCL
(c)−R(c)] = varFn

[
n∑

i=c−n

((
SCL

i,c−i−SCL
i,c−i−1

)
−

(
Si,c−i−Si,c−i−1

))]
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= varFn

[
n∑

i=c−n

(
Si,c−i−Si,c−i−1

)]

=
n∑

i=c−n

varFn [Si,c−i−Si,c−i−1]

as well as

varFn [Si,c−i−Si,c−i−1] = varFn [Si,c−i−1] (ϕc−i−1)2 + Si,n−i

(
c−i−1∏

k=n−i+1

ϕk

)
σ2

c−i

and hence

varFn [RCL
(c)−R(c)] =

n∑
i=c−n

(
varFn [Si,c−i−1] (ϕc−i−1)2 + Si,n−i

(
c−i−1∏

k=n−i+1

ϕk

)
σ2

c−i

)

In particular, we have

EFn [(RCL
(c)−R(c))

2]

= varFn [RCL
(c)−R(c)] +

(
EFn [RCL

(c)−R(c)]
)2

=
n∑

i=c−n

(
varFn [Si,c−i−1] (ϕc−i−1)2 + Si,n−i

(
c−i−1∏

k=n−i+1

ϕk

)
σ2

c−i

)

+

(
n∑

i=c−n

Si,n−i

((
c−i−1∏

k=n−i+1

ϕCL
k

)
(ϕCL

c−i−1)−
(

c−i−1∏

k=n−i+1

ϕk

)
(ϕc−i−1)

))2

This proves (2).
We have RCL −R =

∑n
i=1(R

CL
i −Ri) and hence

EFn [RCL−R] =
n∑

i=1

EFn [RCL
i −Ri]

=
n∑

i=1

Si,n−i

(
n∏

k=n−i+1

ϕCL
k −

n∏

k=n−i+1

ϕk

)

From (1) we obtain

varFn [RCL −R] =
n∑

i=1

varFn [RCL
i −Ri]

=
n∑

i=1

varFn [Si,n]

In particular, we have

EFn [(RCL−R)2] = varFn [RCL−R] +
(
EFn [RCL−R]

)2

=
n∑

i=1

varFn [Si,n] +

(
n∑

i=1

Si,n−i

(
n∏

k=n−i+1

ϕCL
k −

n∏

k=n−i+1

ϕk

))2
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This proves (3). 2
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