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Abstract

In a linear model for loss reserving, Gauss—Markov prediction is the natural
principle of prediction: It minimizes the mean squared error of prediction over
the class of all unbiased linear predictors, and it provides exact formulas for
predictors and their mean squared error of prediction. Another advantage of
Gauss—Markov prediction is in the fact that the Gauss—Markov predictor of
a sum is just the sum of the Gauss—Markov predictors of the single terms of
that sum such that essentially only the most elementary quantities have to be
predicted.

The use of Gauss—Markov prediction in loss reserving is not new. For example,
the additive (or incremental loss ratio) method and the Panning method are
based on Gauss—Markov prediction in an appropriate linear model. Here we
propose a systematic study of Gauss—Markov prediction in these and several
related models. This leads to a variety of new methods of loss reserving, and
for each of these models and methods we obtain straightforward estimators of
the mean squared error of prediction.

To complete the discussion, we also explain certain limitations of the Gauss—
Markov principle in connection with the chain—ladder method.

*Corresponding author. E-mail address: klaus.d.schmidt@tu-dresden.de
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1 Introduction

For at least six decades, loss reserving was determined by a variety of heuristic
methods among which the most popular ones are the chain-ladder method described
by Tarbell [1934] and the Bornhuetter—Ferguson method proposed by Bornhuetter
and Ferguson [1972].

The first stochastic model for loss reserving is probably that of Hachemeister and
Stanard [1975]. In their model, the incremental losses are independent and Poisson
distributed with a multiplicative structure of the expectations, and it turns out that
maximum-likelihood estimations leads to the chain—ladder predictors. Their model
thus provides a first justification of the chain—ladder method, but because of the
Poisson assumption it applies to claim numbers rather than claim amounts.!

About two decades later, a couple of papers appeared which considerably advanced
the use of stochastic models in loss reserving. In one of these papers, Mack [1991]
proposed a model in which the incremental losses are uncorrelated with a multi-
plicative structure of the expectations and variances and in which least squares
estimation leads to the additive (or incremental loss ratio) method. Subsequently,
Mack [1993] proposed another but similar model in which least squares estimation
leads to the chain-ladder method.? In both of these papers, however, emphasis is
on parameter estimation and not on prediction of future losses.

It is easy to see that the additive model of Mack [1991] is a linear model, and it
follows from Schmidt and Schnaus [1996] that the chain-ladder model of Mack [1993]
is a sequential linear model.® But this was certainly not the usual way of looking at
these models at the time when they were published, and it is the merit of Halliwell
[1996] of having pointed out that linear models are most useful in loss reserving
since the Gauss—Markov principle provides not only estimators of parameters but
also predictors of future losses.

About another decade later, linear models turned out to be a driving force for the
development of new methods of loss reserving: Inspired by Braun [2004], Préhl and
Schmidt [2005] proposed a sequential linear model in which Gauss—Markov predic-
tion leads to a multivariate version of the chain-ladder method* and Hess, Schmidt
and Zocher [2006] proposed a linear model in which Gauss-Markov prediction leads
to a multivariate version of the additive method. Both methods are of interest for

Extensions of the model of Hachemeister and Stanard [1975], which allow for dependence
within the accident years and in which maximum-likelihood estimation still produces the chain—
ladder predictors of the ultimate cumulative losses were proposed by Schmidt and Wiinsche [1998]
and by Schmidt and Zocher [2005].

2It is remarkable that the assumptions of the model of Hachemeister and Standard [1972] and
those of the model of Mack [1993] cannot be fulfilled simultaneously; see Hess and Schmidt [2002]
for a comparison of a variety of models for the chain—ladder method.

3See Schmidt [2003] and Radtke and Schmidt [2004].

4 Another paper which is in the spirit of Préhl and Schmidt [2005] is that of Kremer [2005].
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simultaneous prediction for dependent lines of business.® At the same time, Panning
[2006] proposed a linear model which in a certain sense is intermediate between the
linear model for the additive method and the sequential linear model for the chain—
ladder method. More recently, Kloberdanz and Schmidt [2009] used a bivariate
version of the additive model to approach the paid & incurred problem which was
first studied by Halliwell [1997] and later by Quarg and Mack [2004, 2008].

At this point, it is useful to briefly review some basic aspects of linear and general
linear models and of Gauss—Markov estimation and prediction in such models; a
more precise discussion will be given in Section 3.

A linear model (or regression model) essentially consists in the assumption that the
unknown expectations of certain random variables X7, ..., X can be expressed as
linear functions of certain unknown parameters (3q, ..., 3, with r < s. This means
that, for every i € {1,..., s}, there exist known coefficients a;1, ..., a;, such that

ElXi] = Z i 1 B
=1

The point is that in a linear model the s unknown expectations are explained by r
unknown parameters such that the problem of estimating s expectations is reduced
to that of estimating only r < s parameters. A general principle for estimating
the parameters in a linear model is Gauss—Markov estimation which consists in the
computation of the Gauss—Markov estimators ™ minimizing the mean squared
error of estimation

E[(Be—06r)7] .
over all estimators Zf\k which are linear in Xj,..., X, and unbiased for ;. Thus,
with respect to the mean squared error of estimation, the Gauss—Markov estimator

OM s the best linear unbiased estimator of (3.
In a general linear model, only the first s; < s random variables are observable
while the remaining s, := s — s; random variables are non—observable. In this case,
Gauss—-Markov estimation of the parameters is still possible by replacing s with s;
in the previous identities, but the real problem is Gauss—Markov prediction of the
non—observable random variables which consists in the computation of the Gauss—
Markov predictors XJGM with j € {s1+1,..., 81+ 52} minimizing the mean squared
error of prediction R

E((X;—X;)’]

over all predictors X ; which are linear and unbiased for X in the sense that £ X i) =
E[X;]. Thus, with respect to the mean squared error of prediction, the Gauss—
Markov predictor X ]GM is the best linear unbiased predictor of X;.

Under mild conditions on the coefficients and the variances and covariances of the
random variables, Gauss—Markov estimators and predictors exist and are unique. To

5See Schmidt [2006b] for a survey of the results of these papers.
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determine Gauss—Markov estimators and predictors, the variances and covariances
of the random variables must be known or have to be estimated but no further
assumptions on their joint distribution have to be made.® Moreover, since Gauss—
Markov estimators and predictors are linear and unbiased, it is evident that also the
mean squared errors of estimation and prediction are determined by the variances
and covariances.

Since loss reserving aims at the prediction of future losses from those observed in the
past, every stochastic model for loss reserving typically has to consist of observable
and non—observable random variables representing past and future losses. Therefore,
general linear models provide a wide class of stochastic models which meet the basic
requirement on every stochastic model for loss reserving.

Whenever it is judged to be appropriate, the use of general linear models in loss

reserving is strongly recommendable since

—  explicit formulas can be given for Gauss—Markov predictors of reserves and for
their mean squared error of prediction, and

—  estimators of the mean squared errors of prediction can be obtained by simply
replacing unknown variances and covariances with appropriate estimators.

Of course, the choice of a particular stochastic model for loss reserving should not

be determined by such technical advantages but rather by statistical analysis and

actuarial judgement. In many cases, however, such considerations will not end up

with a single model and the choice of a general linear model could be reasonable.

In the present paper we propose Gauss—Markov prediction in a general linear model
as a common approach to the additive method, the Panning method and a new
method which is a combination of both and could be extended further. We thus
extend results of Ludwig, Schmeisser, and Thanert [2009].

This paper is organized as follows: We first present the typical data structure in
loss reserving (Section 2) and discuss Gauss—Markov prediction in the general linear
model (Section 3). We then apply the general results on Gauss—Markov prediction
to the additive model (Section 4), the Panning model (Section 5),and the combined
model (Section 6). For the sake of comparison, we also consider the Mack model
for the chain-ladder method (Section 7), which because of its sequential structure
presents certain difficulties with regard to the estimation of the mean squared errors
of prediction for reserves.” Finally, we present a numerical example (Section 9) and
we conclude with some remarks (Section 8).

6Tn particular, it is not necessary to assume that the random variables are jointly normally
distributed. The popularity of the normal assumption is probably due to the fact that, if it holds,
then the Gauss—Markov estimators agree with the maximum-likelihood estimators. While the
normal assumption is inessential for Gauss—Markov estimation and prediction, it is of interest for
the construction of confidence intervals or prediction intervals; these topics, however, will not be
dealt with in the present paper.

"The use of plug-in estimators for estimating the mean squared errors of prediction is not possi-
ble in the Mack model; instead, certain approximations seem to be unavoidable in the construction
of estimators or the mean squared errors of prediction and it appears to be difficult to quantify
the approximation errors.
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2 Data Structure

In the present paper, we consider a portfolio of risks and we assume that each claim
of the portfolio is settled either in the accident year or in finitely many subsequent
development years.

To model such a portfolio, we consider a family of square integrable random variables

{Zi,k}ie{—m,...,n},ke{o,...,n}

and we interpret the random variable Z;; as the loss of accident year i which is
settled with a delay of k£ years and hence in development year k and in calendar year
i + k. We refer to Z; 5, as the incremental loss of accident year ¢ and development
year k.

We assume that the incremental losses Z; , are observable for calendar years i+k <n
and that they are non—observable for calendar years i + k > n + 1. The observable
incremental losses are represented by the following run—off trapezoid:

Accident Development Year

Year 0 1 ...k N ... n—1 n
—m Z_m70 Z_m71 N Z—m,k . Z—m,n—i e Z—m,n—l Z_mm
0 Zo70 ZO,I NN Z07k - ZO,n—i e ZO,n—l ZO,n

1 Zl,O Z171 Zl,k Zl,n—i Zl,n—l

1 Z@Q Zi,l NN Zi,k . Zi,n—i

n—k Znk0 ZLn-kl - Dn_kk

n—1 Zn-1,0 Zn-1,1

n Zn,O

In the traditional case m = 0, the run—off trapezoid reduces to a run—off triangle.
The case m > 1 is of interest, since it is always desirable to have more than one
completely developed accident year and since this also turns out to be necessary for
certain stochastic models which to some extent specify the joint distribution of the
family of all incremental losses.

For the stochastic models to be considered in this paper, it is essential to linearize the
run—off trapezoid of observable incremental losses and the triangle of non—observable
incremental losses. Therefore, we define the random vectors
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Z—m,O

. Zn
Zn0 :
: Zn—k+1,k
Z_mk

X, = : and X, = Dk
Dk k :
: Zin
Z—mn :
: Zn.n
Zom

such that X, represents the run—off trapezoid of observable incremental losses and
X, represents the triangle of non-observable incremental losses.

The first problem is to predict
(1) the accident year reserves

n
R; = E Zik
k=n—i+1

forie{1,...,n},
(2) the calendar year reserves

R(c) = Z Zi,cfi

for c € {n+1,...,2n}, and
(3) the total reserve

n n
Ro= 2 2 Zu
k=1 i=n—k+1
In either case, the problem is to predict d’X, for a suitable vector d.

The second problem is to estimate the mean squared error of prediction for the
predictors of these reserves.
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3 Gauss—Markov Prediction
in the General Linear Model

The stochastic models of loss reserving to be studied in the present paper are special
cases of the following general linear model for a random vector

consisting of an observable part X; and a non-observable part X, with square
integrable coordinates:

General Linear Model: There exist known matrices A, and A, and
an unknown parameter vector (3 such that

X, _ (A
fl(x) = ()
Moreover, A has full column rank and var[X,] is invertible.

The general linear model is more general than the traditional linear model since
it involves the non-observable part X,. In particular, the problem is not only to
estimate the parameter vector 3 but also to predict the non—observable random
vector X,. The matrices A; and A, are called the design matrices of the general
linear model.

For the remainder of this section, we assume that the assumptions of the general
linear model are fulfilled.

Following an idea of Hamer [1999], the best way to simultaneously estimate the
parameter vector 3 and predict the non-observable random vector X, is to predict
a target quantity of the form

T = C)B8+CX, +CX,

with matrices C,, C, C, of suitable dimensions which also allows for the prediction
of linear combinations of the coordinates of X, and X,.

Since only X, is observable, every random variable T which is a (measurable) trans-
formation of X, is said to be a predictor of T.

A predictor T is said to be an admissible predictor of T if there exists a matrix Q
satisfying

T = QX1
and
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Because of the first identity, every admissible predictor T of T is linear (in X,), and
because of the second identity it is also unbiased since

E[T] = E[QX]
= QE[X]
= QA8
= (Cy+CA, +CA,))B
= CyB8+CA 8+ CA,8
= CyB+ C E[X, ]+ CE[X,]
= E[COIB + G X, + CQXQ]
= E[T]

An admissible predictor T of T is said to be a Gauss—Markov predictor of T if it
minimizes the mean squared error of prediction

E[(T = T)(T - T)]

which is sometimes also called the mean squared error of prediction of T and is

A~

denoted by m.s.e.p.[T]. Since every admissible predictor T of T is unbiased, we
have E[T — T] = 0 and hence

E[(T-T)Y(T-T) = E[trace((T — T)(T —T))]
trace(E[(T — T)(T — T)")]
trace(var|T — T] + E[T — T] E[T — T
= trace(var[T — TJ) .
We have the following result:
3.1 Proposition (Gauss—Markov Theorem). There exists a unique Gauss—

Markov predictor TSM of T and it satisfies

TM = CB* +C, X, +C,X;

with
B = (A,121_11A1)_1A,121_11X1
and
X5 = A8+ 253 (Xl_Al/B*)
Moreover,

var[TM —T] = Kvar[3"]K + Cy(Zy— 20, 2112 ,)C)
with K := C + C,A, — C,X%,, X1 'C}, and var[3*] = (A/Z'A)~L

Proposition 3.1 is well-known; see e.g. Rao and Toutenburg [1995], Radtke and
Schmidt [2004], Schmidt [2004] and, in particular, Hamer [1999].
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The previous result shows that Gauss—Markov prediction of the target quantity T
is based on Gauss—Markov estimation of the parameter 3. Although the following
result is a special case of Proposition 3.1, we state it because of its importance and
for later reference:

3.2 Corollary. The Gauss—Markov estimator B™ of B satisfies
M = (AIZHA)TAIS X,
and

Var[IBGM] = (A/121711A1)71 .

In the models considered in this paper, we always have 3,, = O. In this case, we
obtain particularly simple formulas for the Gauss-Markov predictor of X, and for
the variance of the prediction error:

3.3 Corollary. Assume that 3., = O. Then the Gauss—Markov predictor XM
of X, satisfies
XgM = AzﬁGM

and
var[X$M—-X,] = Ayvar[3°MAL + %, .

Because of the previous result, the mean squared error of prediction
E[(X$M-X,)(X§M-X,)] = trace (Var[XQGM—XQD

is the sum of the estimation error trace(A,var[8°M]A%) and the random error
trace(Xqy,).

Finally, the Gauss—Markov predictor of a linear transformation C,X,, of X, is easily
obtained from the Gauss-Markov predictor of X,:

3.4 Corollary. The Gauss—Markov predictor (C,X,)™ of C,X,, satisfies
(CQXQ)GM = szgM

and
var[(C,X,) M = C,X,] = Cyvar[X5V —X,|C}

Because of the previous result, Gauss-Markov prediction is linear in the sense that
the Gauss—Markov predictor of a linear combination of non—observable random vari-
ables is the same linear combination of their Gauss—Markov predictors.

We shall also need a conditional version of the general linear model and of the
Gauss—Markov Theorem. For a sub—o—algebra G C F, the G—conditional linear
model is defined as follows:
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G—Conditional General Linear Model: There exist observable G-
measurable random matrices A, and A, and an unknown parameter

vector B such that
X A
g 1 _ 1
=) - (8)e

Moreover, A, has full column rank and var9[X,] is invertible.

Here and in the sequel, EY[X;] and varY[X;] denote the G—conditional expecta-
tion and the G—conditional variance of X, respectively; accordingly, cov9[X,, X,]

denotes the G—conditional covariance of X, and X,.

The discussion of the G—conditional general linear model is entirely analogous to
that of the general linear model: Replace the admissible predictors by the G-
conditionally admissible predictors (which are obtained by replacing the matrix Q
by a G—measurable random matrix Q and which are linear and G—conditionally
unbiased in the sense that their G—conditional expectation coincides with that of
the target quantity) and replace the first and second order moments by their G-
conditional counterparts.
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4 Gauss—Markov Loss Prediction
in the Extended Additive Model

The extended additive model is defined as follows:

Extended Additive Model: There exist known parameters v;, w; €
(0,00) with i € {—m,...,n} as well as unknown parameters ¢ € R and
o2 € (0,00) with k € {0,...,n} such that the incremental losses satisfy

E[sz] = v; Gk

COV[ZZ'JC, Zj,l] = w; O']% 5@',]' 5k,l
foralli,j € {—m,....,n} and k,l € {0,...,n}.

In the extended additive model, the accident year parameter v; is usually referred
to as a volume measure of accident year i; for example, the volume measure could
be the total premium income or the number of contracts in the accident year. Since
the first identity in the extended additive model can be written as

ElZp/vi] = G

the development year parameter (;, is the expected incremental loss ratio of develop-
ment year k (with respect to the volume measures) and is assumed to be independent
of the accident year such that the collection of these parameters forms a development
pattern; see Schmidt and Zocher [2009].

The extended additive model extends the traditional additive model in which it is
assumed that m = 0 and that w; = v; holds for all i € {—m,...,n}; see Mack
[1991], Radtke and Schmidt [2004], Hess, Schmidt and Zocher [2006], and Schmidt
and Zocher [2009]. The reason for considering the extended additive model becomes
evident from its comparison with the extended Panning model (Section 5) and with
the combination of both models (Section 6).

Assume that the assumptions of the extended additive model are fulfilled. Then the
expectation of the random vector X, of all observable incremental losses satisfies

"/ Zomo \ ] Vo e 0 o0
Z’I’L 0 Un O 0
: Co
7 —mk 0 Vem 0
E = : Ce
Zn—k k 0 Un—k 0
: Cn
7 mn 0 0 V_m
L\ Zon i 0 0 v
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such that there exist a design matrix A, having full column rank and a parameter
vector B3 satisfying E[X,] = A8, and the expectation of the random vector X, of
all non—observable incremental losses satisfies

[/ Zna 7 0 vn 0 0
Zn—k+1,k 0 0 Upn—ky1 -+ O ¢
. ’ o . . G
El|l Zua = loo Uk 0 :
— - Ck
.Zl,n 0 0 0 V1 Cn
'\ Zon 0 0 0 Un
Moreover, the variance 3, of X, satisfies
[/ Zomo \] wimgg... o |... 0 0 0 .0
Z i 0 0 0 W_po? - 0 0 0
var = :
Zn—k,k 0 0 0 0 wn_ko,% 0 0
7 mm 0 0 0 0 0 W02 0
L\ Zon ] 0 0 0 0 0 0 wogi
and is thus invertible, and the variance 3., of X, satisfies
[/ Zpa 7 w"g% 0 .0 0o --- 0
Zn—k+1,k 0 Wp_j410% -+ 0 0 0
var Dk = 0 0 wna,% 0 0
Zin 0 |- 0 - 0 w02 0
L\ Zun ] 0 0 .0 0 ---wnag

Furthermore, we have 3,, = cov[X,, X,] = O. We thus obtain the following result:
4.1 Theorem. The extended additive model is a linear model.

In a first step, we compute the Gauss—Markov estimators of the coordinates of the
parameter vector and their covariances:
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4.2 Lemma (Gauss—Markov estimation of parameters). In the extended
additive model, the Gauss—Markov estimators of the coordinates of the parameter

vector satisfy
—k
oM i ViZin/ Wi

P =
Zz*—m 7 /wl

and
GM GM] — 1

COV[ kE M ~n—k o,
Zz——m z/wl

forall k,l € {0,1,...,n}.

Proof. The coordinates of the random vector At X "X, satisfy

-1

w—mo-lz e 0 Z—m,k n—k 0. 7 N 1

2 j——
0 cer Wp_gOj, Zn—k,k % m

Moreover, the matrix A’ X7 'A, is diagonal and its diagonal elements satisfy

-1

2
W_mTy, 0 V_m n—k ’U2 1
(U—m Un—k) : . : : - E ? .
B 1 k

0 - w07 U
Because of Corollary 3.2, we have 3™ = (A/Z'A,) A/ 3 X, and hence

GM Z?:fmvi ik/wi

k
Zz— m z/wl

which is the first identity, and we also have var[3“™] = (A, 27'A,)~" and hence

1
GM ~CGM 2
COV[ EooSI ] = Sk o 9% 5k,l
Z’L_ m z /U)Z
which is the second identity. O

In a second step, we compute the Gauss—Markov predictors of the non—observable
incremental losses and the covariances of their prediction errors:

4.3 Lemma (Gauss—Markov prediction of incremental losses). In the
extended additive model, the Gauss—Markov predictors of the non—observable incre-
mental losses satisfy

GM _ GM
Zz‘,k = Uiy
and
GM GM GM 2
cov|Z —Zi, Zi —Zj1| = (vivj var((;] + w; o, 51»7]-) Ok

foralli,j € {—m,....,n} and k,1 € {0,...,n} such that min{i+k,j+I} > n+ 1.
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Proof. Because of Corollary 3.3, we have X$M = A,8°M. Foralli € {—m, ..., n}
and k € {0,...,n} such that i + k > n + 1, this yields

ZGM GM

ik — Uil

which is the first identity.

Corollary 3.3 also provides an identity for var[X$™—X,], but in the present model
the direct computation of the elements of this matrix seems to be more transparent.
Consider i,j € {—m,...,n} and k,l € {0,...,n} such that min{i+k&, j+1} > n+1.
Lemma 4.2 yields

cov[Zip Z3) = covluiGt v Y]

= vy cov[G™, Y]

aM
= v, var[(] Oxy
and we also have
2
COV[Z“C, Zj,l] = w; Uk (57;7]' 5]4’[ .

Since ZFkM and ZleM are linear combinations of observable incremental losses whereas

Z:r and Z;,; are non—observable incremental losses, we have cov[ZEM 7] = 0 =

cov[Z;y, ZM] and hence
cov[kaM—Zi,k, ZJGJM—Z]-,Z] = COV[ZSkM, ZJGM} + cov(Zik, Z;,]
M
= U;vj var[( ] Ok + w; o 0y Ok,

which is the second identity. O

In a third step, we compute the Gauss—Markov predictors of reserves and their mean
squared errors of prediction:

4.4 Theorem (Gauss—Markov prediction of reserves). In the extended
additive model,
(1) the Gauss—Markov predictors of the accident year reserves satisfy

n
GM _ GM
Ri = Y E Ck

k=n—k+1
and
n n
M M E M E : 2
COV[RiG —R“RJG —RJ] = UV; VaI'[ IS ]—i—wz Ok (51'7]‘
k=n—iNj+1 k=n—i+1

for alli,j € {1,...,n}; in particular,

n

E[(RPM=R)) = o} > var(M 4w Y o}
k=n—i+1 k=n—i+1

holds for alli € {1,...,n}.
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(2) the Gauss—Markov predictors of the calendar year reserves satisfy

n

R = 3w

i=c—n

and

COV[R —Ry, R%I;A—R(d)] = Z ViV jo—q) Var[Con. ;] (Z w; o,

i=cVd—n i=c—n

for all c,d € {n+1,...,2n}; in particular,

n

BURS-Ro) = 3 vbwanlc®)+ 3wt

t=c—n t=c—n

holds for all ¢ € {n+1,...,2n}.
(3) the Gauss—Markov predictor of the total reserve satisfies

RM — i( zn: vi) .

k=1 \i=n—k+1

and

s

E[(R°M—-R)?] = ( Z Ui) var| —l—Z( Z >0,§.

k=1 \i=n—k+1 i=n—k+1

Proof. Let us first consider the accident year reserves. We have

and, since Gauss—Markov prediction is linear, we obtain

RiG Vo= Z ZSkM
k=n—i+1
which because of Lemma 4.3 gives the first identity. This yields

RM _ R, = Z (ZEN = Z; )
k=n—i+1
and because of Lemma 4.3 we obtain

cov[RPM =Ry, RSM—R;] = cov| Y (Z5M-Zw). Y. (Z8M-Z)

k=n—i+1 l=n—j+1
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= Z Z cov[Z;3" — Zi, Z —Z;)]

k=n—i+1l=n— ]+1

aM 2
= E E (vzvj var[(] + w; o (51-,]-) Okl
k=n—i+1l=n—j+1
n

= Z (UZ”U]‘ Val'[ ]?M] + w; Uz 6i,j>

k=n—iNnj+1
n n
aM 2
= v E var[C, | 4+ w; E i |9i;
k=n—iNnj+1 k=n—i+1

which is the second identity. Since Gauss—Markov predictors are unbiased, the third
identity follows from the second.
Let us now consider the calendar year reserves. We have

R(c) = Z Zi,c—i

i=c—n
and hence
n
GM GM
R(c) - E Zz c—1i
t=c—n

which because of Lemma 4.3 gives the first identity. This yields

n

R((r;:l)v[ — R = Z (ZzGcMz Zj i)

i=c—n

and because of Lemma 4.3 we obtain

i,c—1 7,d—j

COV[R(C?)V[_R(C% Rgil;A_R(d)] - COV[ Z (ZGM Zlc 1)> (ZGM Zjidfj)

i=c—n j=d—n

= Z Z cov|( ZZGCMl Zie—i), (Z]Gév[] ijdj)]]

i=c—n j—d n

= Z Z <v2v] var[(M] + w; o 51:,3') Oc—id—j

i=c—n j=d—n
n
= E ViVi—|c—d| VaI‘ ch z E W; O cd
i=cVd—n i=c—n

which is the second identity.
Let us finally consider the total reserve. We have

Z Z Zik

k=1 i=k+1
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and, since Gauss—Markov prediction is linear, we obtain
n n
> D> 2
k=1 i=k+1

which because of Lemma 4.3 gives the first identity. This yields

BN-R = S0 (22

k=1 i=k+1

and because of Lemma 4.3 we obtain

E[(R*M-R)}] = var[R°M-R]

n n ]
= var Z Z (ZSkM_Zi,k)
k=1 i=n—k+1 i

n
= Zvar[ Z ZS,{M—Zi,k)
i=n— k+1 J

_ Z Z Z COV[ZEkM_Zi,kaZjG,Ii\/I_Zjvk]

k=1 i=n—k+1 j=n—k+1

= Z Z Z (vm]var M]—{—wiai@’j)

k=1 i=n—k+1 j=n—k+1

n n 2

— 2
= E E v; | var| —|— E E oy,
k=1 \i=n—k+1 = i=n—k+1

which is the second identity. O
In the special case where m = 0 and w; = v; holds for all i € {—m,...,n}, the
Gauss—Markov predictors of incremental losses and reserves are identical with the
predictors used in the traditional additive method of loss reserving. This means that
Gauss—Markov prediction in the extended additive model provides simultaneously an

extension of the additive method and its justification based on a general statistical
principle.

Via Lemma 4.3 and Lemma 4.2, the mean squared errors of prediction depend on
unknown variance parameters which may be estimated as follows:

4.5 Theorem (Estimation of variance parameters). In the extended additive
model with m > 1 and for every k € {0,...,n}, the random variable

~2 GM
o = E k— Ui
k m+n—k Zi G

is an unbiased estimator of oi.
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Proof. Consider i € {—m,...,n—k}. By Lemma 4.2, we have E[v;(‘M] = E[Z; ;]
and thus

E(Zir—vs EM)Z] = var[Z;,—v; ISM]

= var[Z; ] — 2v; cov|Z; , w4 v var[GM]

Recall that

var(Z; ] = wia,z,

Furthermore, using Lemma 4.2 and Lemma 4.3 we obtain

n—k
N i ws
COV[Z@'JC’ ISM] = cov ZM’ Z]—In J Jvk/ J
n—k

Vi /W,
B . (L RV
j=—m h=—m Uh/wh
n—k
Vi/W;
= Z #wi 02 8;

2
j=—m h=—m Uh/wh

1
= Vw5, ©
v
and Lemma 4.2 yields
GM] 1 2
Var[ k ] = W O
he—m Uh/Wh
Therefore, we have
El(Zip—uvi¢e™?] = var[Zig] — 2v; cov[Zig, (M) + vf var[(FM]
1
2 2 2 .2 2
= W; 0 —2’UZ~ n_—O'k“—Ui <k 5, Ok
h:]im UfQL/wh h:]im U}Qz/wh
v?
= |\wi- o |
he—m Ui/ Wh
and hence
n—k n—k
1 1 v?
— E[(Zipg—vi¢i™M)?) = — | wi — =" | ok
P— zZm Wi h:lim Vi /W
= ((m—i—l—l—n—k) - 1) op
= (m+n—k)op
which proves the assertion. O
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In the case m = 0, the assertion of Theorem 4.5 remains valid for k£ € {0,...,n—1}.
To obtain an estimator of o2 also in this case, one may choose a parametric class
{fe | ¢ € C} of real functions (e.g.,the class {fap) : R — R | (a,b) € (0,00)*} with

fap(x) = ae™), determine ¢ € C satisfying

n—1 R 9 n—1 R 9

So(flk)=52) = i > (fulk) - 52)

k=0 “““ =0
and define

G, = fa(n)

If the sequence {67 }reo,..n—1} is decreasing, one might alternatively define 67 :=
~2
O-’I’L—l'

Now estimators of the mean squared errors of prediction can be obtained by replacing
the variance parameters by their estimators in the formulas for the mean squared
errors of prediction.
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5 Gauss—Markov Loss Prediction
in the Extended Panning Model

In the present section, we denote by Fy the o-algebra generated by the family

,,,,,

is defined as follows:

Extended Panning Model: There exist known Fo—measurable random
parameters w; with w; > 0 and i € {—m,...,n} as well as unknown
parameters & € R and o} € (0,00) with k € {0,...,n} such that the
incremental losses satisfy

E]:O[Zi,k] = Zio&k

F 2
cov’® [Zqua ijl] = W; 0y 5@',]’ 5].37[

foralli,j e {-m,...,n} and k,l € {0,...,n}. Moreover, Z;y > 0 holds
foralli e {—m,...,n}.

In the extended Panning model, the initial losses Z; y replace the volume measures
used in the extended additive model. Since the first identity in the extended Panning
model implies

ElZix/Zio] = &

the development year parameter & is assumed to be independent of the accident

year such that the collection of these parameters forms a development pattern; see
Schmidt and Zocher [2009].

The extended Panning model extends the traditional Panning model in which it is
assumed that m = 0 and that w; = 1 holds for all ¢ € {—m, ..., n}; see Panning
[2006] and Schmidt and Zocher [2009]. The reason for considering the extended
Panning model becomes evident from its comparison with the extended additive
model (Section 4) and with the combination of both models (Section 6).

The following results are entirely analogous to those for the extended additive model
and can be obtained by replacing the volume measures v; used in the extended
additive model by the initial losses Z; o and by replacing the first and second order
moments by their Fy—conditional counterparts.

5.1 Theorem. The extended Panning model is an Fo—conditional linear model.

5.2 Lemma (Gauss—Markov estimation of parameters). In the extended
Panning model, the Fy—conditional Gauss—Markov estimators of the coordinates of
the parameter vector satisfy

GM _ E?Z_Em Zi,OZi,k/wi
ko —k
Z?:—m ZZQ,O/wz
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and

1
cov P IEE, 6] =
sz—m 0/
forall k,l € {0,1,...,n}.
5.3 Lemma (Gauss—Markov prediction of incremental losses). In the

extended Panning model, the Fo—conditional Gauss—Markov predictors of the non—
observable incremental losses satisfy

Zsz = 205

and

COV]: [Z Z, ko Z ZjJ] = (Z 3,0 Var [Sk; ] + w; 0,% 5,’7j> 5k,l

foralli,j e {—m,...,n} and k,1 € {0,... ,n} such that min{i+k,j+1} >n+1.

5.4 Theorem (Gauss—Markov prediction of reserves). In the extended
Panning model,

(1) the Fo—conditional Gauss—Markov predictors of the accident year reserves satis-

Jy .
RM = Zig Y, Y
k=n—k+1
and

COV]:O [RZGM—RZ’ RJGM_R]] = Zi,OZj,O Z Var]'-o[ ]?M] “+w; ( Z O'Z) 51,]

k=n—iNnj+1 k=n—i+1

for alli,j € {1,...,n}; in particular,

EP(REM-R,)?] = Z7, Z var 0 [¢5M] + Z o}

k=n—i+1 k=n—i+1

holds for alli € {1,...,n}.
(2) the Fo—conditional Gauss—Markov predictors of the calendar year reserves satis-

fy .
> ZiotN

and

cova[R(Cil)\A—R (©)s RGM—R )]

= Z Zi0Zi—je—ajo var’* [€50_] (Zw% cz) cd

i=cVd—n i=c—n
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for all c,d € {n+1,...,2n}; in particular,

Efo[(R(G —Ry)* Z 2o var’ 0 [¢N] + Z w; o

t=c—n it=c—n

holds for all c € {n+1,...,2n}.
(3) the Fo—conditional Gauss—Markov predictor of the total reserve satisfies

RM Z( Z Zlo>

k=1 \i=n—k+1
and
(R - Ry — ( 3 zm> e ¢ ( 3 wi)a,z
k=1 \i=n—k+1 k=1 \i=n—k+1
In the special case where m = 0 and w; = 1 holds for all i € {—m, ... ,n}, the

Gauss—Markov predictors of incremental losses and reserves are identical with the
predictors used in the traditional Panning method of loss reserving. This means that
Gauss—Markov prediction in the extended Panning model provides simultaneously
an extension of the Panning method and its justification based on a general statistical
principle.

The unknown variance parameters may be estimated as follows:

5.5 Theorem (Estimation of variance parameters). In the extended Panning
model with m > 1 and for every k € {0,...,n}, the random variable

~2 § GM)\2
0, = i
k m n — k Z k— 270516 )

is an JFo-conditionally unbiased estimator of o}.

The final remarks of Section 4 apply to the extended Panning model as well.
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6 Gauss—Markov Loss Prediction
in the Combined Model

Because of the similarity of the extended additive model and the extended Panning
model, it is natural to consider convex combinations of these models. As in the previ-
ous section, we denote by Fy the o—algebra generated by the family {Zi,o}ie{—m,...,n}
of the losses of development year 0. The combined model is defined as follows:

Combined Model: There exist known Fo—measurable random para-
meters v;, w; with vi,w; > 0 and i € {—m, ..., n} as well as unknown
parameters (i, & € R and o} € (0,00) with k € {0,...,n} such that the
incremental losses satisfy

EPZ] = 0iGo+ Ziokk
COV}-0 [Zi,ky ZjJ] = w; O‘,% (Si,j 5k:,l

for all i,j € {—m,...,n} and k,l € {0,...,n}. Moreover, Z;y > 0
holds for all i € {—m,...,n} and v;Z;y # v;Z;o holds for some i,j €
{—m,...,0} withi j.

It is evident that the combined model combines the extended additive model and
the extended Panning model: Formally, putting & := 0 yields the extended additive
model and putting (; := 0 yields the extended Panning model. However, the analysis
of the combined model turns out to be a bit more subtle than the analysis of the
extended additive and Panning models.

Assume that the assumptions of the combined model are fulfilled. Then the Fy—
conditional expectation of the random vector X; of all observable incremental losses
satisfies

[/ Z-mo \] Uy o+ 0 .0 Zmo - 0 0
' ; : : : : . o
Zn0 Uy, 0 -0 | Zno 0 0 :
: Ck
Z ok 0 Vom0 [0 Zomo - 0 :
Ko : = : : : : : : Cn
Zn—kk_ 0 g0 0 o Zp_go -0 0 .
Z 0 .0 S _m |0 .0  Z—mo )
: : : : : : : én
L\ Zon i 0 - 0 <o g 0 .0 o Zoo

such that there exist an Fy—measurable random design matrix A, having full column
rank and a parameter vector 3 satisfying E7°[X,] = A;3. A similar identity holds
for the Fp—conditional expectation of the random vector X, of all non-observable
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incremental losses. Moreover, the Fy—conditional variance of the random vector X
is the same as in the extended additive model and the extended Panning model.

6.1 Theorem. The combined model is an Fo—conditional linear model.

For a concise and transparent presentation of the result for the combined model, we
now introduce some auxiliary random variables. By assumption, we have

0 o
S (WiZig—viZig)* > 0

t=—mj=—m

We may thus define, for k € {0,...,n} and r,s € {0,1,2},

n—k TI7s
Y(T:S) . ZZ——m ZZO/wZ
k T
Zz_—m Z]* m(/U'L 7,0 U] 10) /w w]

and straightforward calculation shows that

Y(Tvs) _ z?—fm :ZSO/wl
k - n n—
(Zz—fm Ui /w2> (Zz_fm Z20/wl) (Zz:fm UiZi,O/wl')z

Note that these random variables are Fyp—measurable.

6.2 Lemma (Gauss—Markov estimation of parameters). In the combined
model, the Fo—conditional Gauss—Markov estimators of the coordinates of the para-
meter vector satisfy

n—=k n—=k
oMy 02 5O Vidik 30 Z ZioZik
k L s koo w;
=—m =—m
n—k
GM Y(2,0) Zz Osz 11) Uz i,k
k = Iy w0,
I=—m i=—m v
as well as
For,GM »~GM7] __ 0,2) 2
cov (¢, (] = Y 0 Ok
For,GM GM7 __ (1,1) 2
cov °[(, ] = A
For¢eGM ~GM7 (2,0) 2
cov[& &) = YT o 0y

and, in particular,

Al (Y] a6
e[ ) (8 ) =[G ) o
k l k

forall k,l € {0,1,...,n}.
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Proof. We have

A/121_11X1 = 'Z— 7777
1 ZioZik
D D
ki=—m ! ke{0,...,n}
and
n—k n—k
1 v? 1 i
dlag(—2 - d18ug<—2 Z Uw O)
Uk - U)Z Uk T i
— i=—m kefo,..., n t=—m ke{0,...,n
A/12111A1 = 07 ${Orm} 1 kg2 o J
d L 1441,0 dla . 2,0
w(FE12) (k52
t=—m ke{0,...,n} t=—m ke{0,...,n}

Therefore, we have

_ U Vv
A/12111A1 = ( VvV W )
with suitable diagonal matrices U, V, W and we also have

(U 0)" = (v —urvvovov ),

Therefore, straightforward calculation yields

diag(Yk(?’j)Ui)ke{o ..... n} —diag(yk(l’;)gi)ke{o ----- n}
—diag(V,"Vodreomy  diag(V V0D ko, m

—
N

(A/121_11A1)_1 = (

We thus obtain

)

n—k n—=k
Vi Zik (1,1) Zi 02k
o
( ’ Wi Wi ke{0,...,n}

(AZHA)TAISX, = T G S
( Z zOsz 11) Z Uzsz>
wW;
i=—m i=—m ke{0,...,n}
and hence
n—=k 0. 7 n—=k 7 7
GM __ (0,2) iLik (1,1) 1,044,k
A DD (D Dl
k707 i
GM (2,0) 20 zk 11) YVisik zk .
A D D T Z =
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Gauss-Markov Loss Prediction in a 1inear Model

The above identity for (A]X'A,)~! also yields

0,2
cov [N G = V" oo,
1,1
cov (M M) =~y o 6y
2,0
cov[gM M) = v 2o,
which completes the proof. O

We can now compute the Gauss—Markov predictors of the non—observable incremen-
tal losses and the covariances of their prediction errors:

6.3 Lemma (Gauss—Markov prediction of incremental losses).  In the
combined model, the Fy—conditional Gauss—Markov predictors of the non—observable
incremental losses satisfy

oM oM oM
Zie = uiCG +Zip&,
and

F GM GM
cov (2 = Zig, Ziy — 2]

— Ui / afo ISM Uj + w; 25.. )
—= ZZ70 var IS'M ZJ}O ’UJZO'k 2,] k’l

foralli,j € {—m,...,n} and k,1 € {0,...,n} such that min{i + k,j +1} > n+ 1;
in particular,

Fof(7GM _ 7 21 __ vi Fo P Ui g2
E(Z5 = Zix)T] = var GM + w; oy,
’ Zz’,O k Zi,O

holds for alli € {—m,...,n} and k € {0,...,n} such that i +k > n+ 1.
Proof. The first identity is evident. Furthermore, Lemma 6.2 yields

cov’0 [kaM, Z]GIM] = cov v M+ Zi oM vy M+ Z5 0 M
) / GM ) / GM
-l 2,) (80) (2,) ()
- ()= [(&) (61 (2)
- () {81 (2 )
Since cov™[Z5M, Z;)] = 0 = cov[Z; 4, Z53M] and

F 2
cov [ ZixZj1] = wioy 00k,
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Gauss-Markov Loss Prediction in a 1inear Model

we obtain

cov’? [ZGM —Zin, 230" = 7]
= cov” [sz,Z M)+ cov’[Z 1 Z;.)

Vi / GM Vs
(( Zio ) var”? {( C’%M )} ( ij,o )5k,l ‘|"U)i0;%(5¢,j> (5k;,l

which is the second identity.

The following result on the Gauss—Markov predictors of reserves and their expected
squared prediction errors is formally identical with the results for the extended

additive model and the extended Panning model:

6.4 Theorem (Gauss—Markov prediction of reserves). In the combined

model,
(1) the Fo—conditional Gauss—Markov predictors of the accident year reserves satis-
Jy . .
RiM = v Z G+ Zig Z &
k=n—k+1 k=n—k+1
and

cov[R{M — R;, RSM — R))
/ n aM
U; (%
= (Z ) < Z Var]‘—o{(claM )])(ZJ )—i—wi( Z
40 k=n—iAnj+1 k 30 k=n—i+1
for alli,j € {1,...,n}; in particular,

E7[(R7™M = R;)’)

() (2l (5) o 5 0

k=n—i+1

holds for alli € {1,...,n}.

(2) the Fo—conditional Gauss—Markov predictors of the calendar year reserves satis-

Jy

m = 3 (e z)

GM
) fYd) U
- ! GM
= E Ui Fo cevd—i Vi—|c—d|
- var w;o_;
’ic\/d—n< Zi,[) > |:< cc\}/l\c;[—z >:| < Zi—|c d|,0 ) ( Z

i=cVd—n
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for all c,d € {n+1,...,2n}; in particular,
E7((RE =R
- ! aM "
_ v; Fo Ccfi V; ' ) |
- l:zc—:n ( Zi,O ) o |:( chfl\;[ ):| ( Zi,() ) + z:zc_:n W0

holds for all ¢ € {n+1,...,2n}.
(3) the Fo—conditional Gauss—Markov predictor of the total reserve satisfies

R = 3 3 (0g® o+ Zio )
k=1 i=n—k+1

and

EP (R~ R;)?]

/ n

n Z i GM Z i n n
- x| (@] E(E )
k=1 E Zio k Zio k=1 k+1

i=n—k+1 i=n—k+1

The proof of Theorem 6.4 is analogous to that of Theorem 4.4 (using Lemma 6.3
instead of Lemma 4.3).

Finally, the unknown variance parameters may be estimated as follows:

6.5 Theorem (Estimation of variance parameters). In the combined model
with m > 2 and for every k € {0,...,n}, the random variable

n—k
1 1

~2
%k m—l—n—k:—liz_;nw»

7

2
(Zi,lc — (v ]?M+Zi,0§]?M)>

is an JFo—conditionally unbiased estimator of o}.

The proof of Theorem 6.5 is analogous to that of Theorem 4.5 (using Lemmas 6.2
and 6.3 instead of Lemmas 4.2 and 4.3).

In the case m = 1, the assertion of Theorem 6.5 remains valid for k& € {0,...,n—1},

and in the case m = 0 it remains valid for k& € {0,...,n—2}. Thus, the final remarks
of Section 4 apply mutatis mutandis to the combined model as well.
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Gauss-Markov Loss Prediction in a 1inear Model

7 Loss Prediction in the Mack Model

For the sake of comparison, the present section provides a brief discussion of the
famous Mack model for the chain—ladder method. In a sense to be made precise
below, the Mack model is related to linear models but it is not a linear model as
such.

For k € {0,...,n}, we denote by Fj, the o—algebra generated by the family

{Sj,l}le{o,.‘.,k},jG{—m,...,n—l}

of all observable cumulative losses up to development year k and, fori € {—m, ... ,n}
and k € {0,...,n}, we denote by F;x the o-algebra generated by the family

{Siihieqo,.. 1

of all cumulative losses of accident year i up to development year k; note that the
definition of Fy is in accordance with that used in Sections 5 and 6. The Mack
model is defined as follows:

Mack Model: The accident years are independent (in the sense that
the family of o—algebras {F; }ic{—m,..n} 5 independent) and, for every
development year k € {1,...,n}, there exist unknown parameters pp € R
and o € (0,00) such that the cumulative losses satisfy

ETie1[Sik] = Six-1em
Val"]:i’k*1 [Sz,k} = Si’]g_l O'z
foralli € {—m, ... ,n}. Moreover, S;) > 0 holds for alli € {—m, ..., n}
and k € {0,...,n—1}.

In the Mack model, the cumulative losses S; replace the incremental losses used
in the models considered before, the cumulative losses S; ;1 replace the volume
measures used in the extended additive model and the initial losses used in the
extended Panning model, and they also replace the accident year parameters w;
used in each of these models. Since the first identity in the Mack model implies

E[Si,k/si,kfl] = @k

the development year parameter ¢, is assumed to be independent of the accident
year and the collection of these parameters forms a development pattern; see Schmidt
and Zocher [2009].

The Mack model is due to Mack [1993] who assumed that m = 0.

Assume that the assumptions of the Mack model are fulfilled. Then we have, for
every k€ {1,...,n},

S—m,k S—m,k—l
B : = : Ok

Sn—k.k Sn—k k-1
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and
EF1S, k] = Snkiiko1 9k
as well as
Sk Smbo1 0
var’ k-1 : = : : or
Sn—k.k 0 oo Spokk—1
and
var’ 1S, ri1k] = Snki1k-107
and we also have
cov' 1[8; 1, Sk = 0

for all 3,7 € {—m, ..., n—k-+1} such that ¢ # j; see Schmidt and Schnaus [1996].
We thus obtain the following result:

7.1 Theorem. For every development year k € {1,...,n}, the Mack model
provides an Fj_1—conditional linear model for the family {S;k}ic{—m,..n—kt+1}-

Because of Theorem 7.1, the Mack model may be called a sequential linear model.

Let us first consider Gauss—Markov estimation of the parameter in the conditional
linear models provided by the Mack model:

7.2 Lemma (Gauss—Markov estimation of parameters). In the Mack model
and for every development year k € {1,... ,n}, the Fj,_1—conditional Gauss—Markov
estimator of the parameter i satisfies

—k
E T =k o
S Sk
and ]
fkfl[ GM _ 2
var op] = ——— o0 .
S Sike

The linear models for the families {.S;x}ic{—m,..n—k+1} cannot be extended to the
families {S; 1 }ic{—m....n} since the cumulative losses S; 1 with i € {n—k+2,...,n}
are non—observable and hence cannot be part of the design matrix of a conditional
linear model (in which the design matrix is assumed to be observable); therefore,
Gauss—Markov prediction is possible only for the non—observable cumulative losses
Sp—k+1, of the first non-observable calendar year n+1:
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Gauss-Markov Loss Prediction in a 1inear Model

7.3 Lemma (Gauss—Markov prediction of cumulative losses). In the Mack
model and for every development year k € {1,...,n}, the Fy_1—conditional Gauss—
Markov predictor of the cumulative loss Sy _p+1k satisfies

GM GM
Sn—k+1,k = Sn—k+1,/c—190 .

At this point, let us recall that, for every k € {1,...,n}, the chain-ladder factor
@S is defined as

n—k
CL Zi:—m Si,k
Pk : n—=k
Zi:—m Sivk_ 1

and that, for all 4,k € {0,...,n} such that i + k > n, the chain-ladder predictor of
the cumulative loss S; ; (which is non-observable for i+k > n+1) is defined as

k
CL .__ CL
Sk = Sina ] i

l=n—i+1
(such that ST ; = Sin—). Thus, Lemmas 7.2 and 7.3 assert that
et = it
and
GM CL
Sn—k:—',—l,k: = Sn—k+1,k

holds for all & € {1,...,n}. Since Gauss—Markov predictors are unbiased, the
previous identity yields

E[Si—Sik] = 0

7

and hence
E[(SS]?—SZ,]C)Z] = VELI‘[SE;?-SI',]C]

for all i,k € {1,...,n} such that i + k = n + 1, and it can be shown that these
identities are also true for all 7,k € {1,...,n} such that i + k > n + 2.

Following Mack [1993], however, one should consider the F,—conditional mean
squared error of prediction

2
EZ (S-S = var[SSE = Siul+(EZ*[SGE - Six])

instead of the unconditional mean squared error of prediction E[(S{}—S;x)?]. Since

k
E™[SG] = Sins [] o™

l=n—i+1

k
EP[Sir] = Sin H ©i

l=n—i+1
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we have

l=n—i+1 l=n—i+1

k k
Ef”[sf;?—si,k] = Si,n—i( H o — H @z)

which shows that the chain-ladder predictors fail to be F,,—conditionally unbiased.
Thus, the bias does not vanish in the identity for the F,—conditional mean squared
error of prediction, which is most unfortunate since obviously plug—in estimators
cannot be used to estimate the bias. By contrast, Mack [1993] has shown that the
Fn—conditional variance of the prediction error satisfies

k -1 k
varf”[Sf,f—Si,k] = Sini Z ( H Soh>0'12<H @i)

I=n—i+1 \h=n—i+1 h=Il+1

(which provides the identity

var’[S; k] = Sin_i Z ( 1:[ <Ph>012<H 90%)

l=n—i+1 \h=n—i+1 h=Il+1

needed in Theorem 7.4 below). In conclusion, estimation of the bias causes a serious
difficulty in the estimation of the J,,—conditional mean squared error of prediction
of the chain—ladder predictor of a non—observable cumulative loss.

These observations also apply to the chain—ladder predictors of non—observable in-
cremental losses which are defined as

CL ._ @qCL CL
Zi,k = Si,k _Si,k—l

and, in particular, to the chain—ladder predictors of reserves which are defined as

n

CL .__ CL
R = E Zik
k=n—i+1
n
CL .__ CL
R(c) T § Zz',c—z'
i=c—n
n n
CL . _ CL
R = g E Zi .
k=1 i=n—k+1

This can be seen from the following result:

7.4 Theorem (Chain—ladder prediction of reserves). In the Mack model,
(1) the chain—ladder predictors of the accident year reserves satisfy

Ef"[RiCL—Rz’] = Si,n—i( ﬁ SOSL— ﬁ 90k>

k=n—i+1 k=n—i+1
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and
n 2
E]:n[(RzCL_Rz)Q] = ( i,n— z( H QD H @,Ig)) +varf"[5i7n]
k=n—i+1 k=n—i+1
as well as
COV}-n [RZCL—R“REJL—RJ] = Varf"[Siﬁn] (52'7]‘

(2) the chain—ladder predictors of the calendar year reserves satisfy
E" R} = Ro)]
n c—i—1 c—i—1
Z Sin—i (( H SOSL> (ot —1) - ( H @k) (@ci—1)>
i=c—n k=n—i+1 k=n—i+1

and

E™[(R(Y —R)?]

(£ el (3 o)

n c—i—1
+ Z (Varf” [Sic—ic1] (Pe—i—1)* + Sips < H 90k> Ufi)

i=c—n k=n—i+1
(3) the chain-ladder predictor of the total reserve satisfies
E]:n RCL R Z Sz n— z( H @%L _ H @k)
k=n—i+1 k=n—i+1
and

B (R R)? (Zsm( [T« I w)) 3 s

k=n—i+1 k=n—i+1

A proof of Theorem 7.4 will be given in the Appendix.

Theorem 7.4 provides explicit formulas for the F,,—conditional mean squared errors of
prediction, but the use of plug—in estimators in these formulas is not recommendable
since it would result in wiping out a part of the F,—conditional mean squared errors
of prediction.

7.5 Theorem (Estimation of variance parameters). In the Mack model with
m > 1 and for every k € {1,...,n}, the random variable

~2 CL\2
o) = k= Sik—10
K m—l—n—k: Sm 1 S ’ b))
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is an Fy_1—conditionally unbiased estimator of os.

As noted before, the use of plug—in estimators for the parameters of the development
pattern in the formulas provided by Theorem 7.4 is not recommendable. Mack [1993]
proposed the estimators

EF (RS~ R,)?]

- 1 1 o2
= (S o
’ Z Sh k SSI? QOk

k=n—i+1 h—fm
n n ~92
_ (SCL) 1 Uk + (SCL)2 1 oy
- in § : S, . CL in § : SCL ,CL
k=n—i+1 Zh——m hk Tk k=n—it1 ~Hk k

for the F,,—conditional mean squared errors of prediction of the accident year reserves
and

E7 (R~ Ry

n n ~2

ZZSCL GCL Z 1 Z SCL Z 1 Ok
iwn~jin CL ‘oCL CL

i=1 j=1 k=n—iAj+1 Zh— m Onk Pk i=1 k=n—i+1 Sik Pr

for the F,,—conditional mean squared error of prediction of the total reserve. The
construction of each of these estimators involves certain approximations.

Apparently, no estimators have been proposed in the literature for the conditional
mean squared errors of prediction of the calendar year reserves.
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8 Remarks

In the Panning model and in the combined model, it would be sufficient to assume
Zio > 0 only for i € {1,...,n}, but then the formulas for predictors and mean
squared errors of prediction have would have to be modified as to avoid divisions by
Zero.

The accident year parameters w; may e. g.,be chosen as follows:

—  In the extended additive model, one may choose w; := 1 (corresponding to the
traditional Panning model) or w; := v; (traditional additive model) or, more
generally, w; :== a + fv; with o, 8 € [0,1] and a + = 1.

—  In the extended Panning model, one may choose w; := 1 (traditional Panning
model) or w; := v; (corresponding to the traditional additive model) or w; :=
Zi;o (in analogy with the traditional additive model) or, more generally, w; :=
a+ Ov; +vZ;p with o, 3,7 € [0,1] and o + 4+ v = 1.

— In the combined model, one may choose w; := 1 (corresponding to the tra-
ditional Panning model) or w; := v; (corresponding to the traditional additive
model) or w; := Z; o or, more generally, w; := a+ fv;+vZ; o with a, 5, € [0, 1]
and a+3+v=1

The combined model uses volume measures and initial losses as regressors and thus
provides an example for a broad class of general linear models combining different
sources of information on the accident years. As there are several possible choices
for the volume measure, like the number of contracts, the premium income, market
statistics or even information on a similar portfolio of risks, one might want to use
some of them simultaneously; also, as for example in excess—of-loss reinsurance, one
might want to use several volume measures but avoid initial losses. In both cases,
it is straightforward to construct appropriate modifications of the combined model
and the analysis of the resulting models would follow the lines of Section 6.

For the additive method and the Panning method, the principle of Gauss-Markov

prediction in an appropriate linear model shows that, under certain assumptions on

the first and second order moments of the incremental losses,

—  the predictors used in these methods are unbiased and minimize the mean
squared error of prediction, and

—  the mean squared errors of prediction can be estimated by the simple use of
plug—in estimators for the unknown variance parameters.

In addition, the systematic use of Gauss—Markov prediction in a linear model leads

to variations and combinations of these methods; see Section 9 below for nine such

methods using the available information in a slightly different way. The analysis of

results from different but similar methods may be useful to study the sensitivity of

result with respect to model variations and to analyze the impact of loss develop-

ment data and volume measures; see also Schmidt and Zocher [2009] for a similar

discussion of another family of models and methods.

Unfortunately, the situation is not that comfortable for the chain-ladder method.
While the Mack model was certainly a breakthrough in stochastic modelling for the
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chain-ladder method and provides a partial justification of that method, it seems
that in this model

the question of whether or not the chain—ladder predictors minimize the mean
squared error of prediction cannot be settled and that

the construction of estimators of the mean squared errors of prediction presents
a serious problem and seems to require certain delicate approximations.

This is due to the sequential character of the Mack model, which provides a linear
model for every development year but not for the entire loss development.
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9 A Numerical Example

In the present section we illustrate the results of this paper by a numerical example.
In the example, we consider a portfolio of auto liability and use the incremental
losses provided by Braun [2004], truncated at development year 9, and the volume
measures proposed by Merz and Wiithrich [2009]. These data are presented in
Table 1.

For each of the additive model, the Panning model and the combined model we
consider the three cases in which the accident year parameters of the variances are
chosen as w; = 1, w; = v;,and w; = Z;, respectively, and we also consider the
Mack model in which the corresponding parameters are the cumulative losses S; j—1.
The Gauss—Markov estimators of the parameters (; (additive model and combined
model), & (Panning model and combined model), and ¢, (Mack model) are displayed
in Tables 2-5.

In the combined model, the signs of the Gauss—Markov estimators given Table 4
show that the volume measures and the initial losses have an opposite effect on
the Gauss—Markov predictors of reserves; see Theorem 6.4. The Gauss—Markov
predictors of the reserves of accident years 1-9, the total reserves and the reserves
of calendar years 10-18 are displayed in Table 6.

The standard error of prediction is defined as the square root of the mean squared
error of prediction and measures uncertainty in the monetary unit. The estimated
standard errors of prediction are displayed in Table 7.

As an alternative measure of uncertainty, one could also consider the coefficient of
variation which is defined as the ratio between the standard error of prediction and
the predictor and is dimension—free. The coefficients of variation are displayed in
Table 8.

Of course, the choice of a stochastic model should not be driven by the numerical
results which it produces. Nevertheless, model selection should perhaps proceed in
steps, starting with the choice of a plausible class of models (like the class of general
linear models) and subsequently shrinking this class to only a few models or even
a single one. In this process a comparative analysis of a family of similar models
could help to obtain some insight into some of the characteristics of these models.

For the example considered here, we make the following observations:

—  The choice of regressors (volume measures in the additive model, initial losses
in the Panning model, and both of them in the combined model) may affect the
predictors and the standard errors of prediction. For example, for the Panning
model, the predictors of the total reserves are smaller and the standard errors
of calendar year 10 are larger than for the additive model and the combined
model.
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—  The choice of the accident year parameters may affect the predictors and the
standard errors of prediction. For example, for w; = 1, the total reserves are
larger and the standard errors are smaller than for w; = v; and w; = Z, .

—  For the Mack model, the predictors are in the range of those obtained for the
other models but the standard errors are larger.

Such considerations combined with actuarial judgement could help to determine

estimates of reserves and estimates of standard errors of prediction for the portfolio

under consideration.

Nevertheless, such an analysis for a particular portfolio cannot justify a general
preference for a particular stochastic model.
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Appendix

Here we present a proof of Theorem 7.4:
Proof. We have RiCL — R, = SZC,I; — S, and hence
E]:n [RZCL _Rz] — E]:n [SCL_SZ n]
k=n—i+1 k=n—i+1

Since the accident years are independent, we also have

covf”[RiCL—Ri,RfL—Rj] = cov” [SCL Sm,S]CT% Sinl

= cov”’ "[Sin, Sinl

= V&I']:n [SZJI] 5i,j

In particular, we have

2
EP(B =R = var™ (R~ R + (B[R~ R))

n 2
= ]:n[SZn +Szzn z( H ()0 H 9076) .

k=n—i+1 k=n—i+1

This proves (1).
We have

n

R% — Ry = 3 ((SE,=8E 1) = (Sicmi—Sicoi-1))

= Zn: (St i—Sici) — z": (St i1 = Sic—i1)
and hence
E™ Ry =R
3 S S0 Y ERSE Se)
n c—1i c—1 n c—1—1 c—i—1
= Z Si,n—i( H SOSL— H @k) - Z Si,n—i—l( H SOSL— H S%)
it=c—n k=n—i+1 k=n—i+1 i=c—n k=n—i+1 k=n—i+1
n c—i—1 c—i—1
= > Si,n—z(( I1 SOISL) (peki—=1) — ( I1 @k) (SOc—z'—l)).
it=c—n k=n—i+1 k=n—i+1

Since the accident years are independent, we also have

arf"[R(CCI)J—R(C)] = var’" [ z”: ((SSCLZ—SZCCLZ 1) — <Sz’,c—i_si,c—i—1>>]

i=c—n
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= var’" [ i (57;70_1—51,0—@—1>]

i=c—n

- E VaI‘ zc 7 Si,c—i—l]

i=c—n

as well as

c—i—1
ar’ " [Sic—i—Sic—iz1] = var’" [Sic—i1] (Pe—i— 245, n—i ( <Pk> O._
k= 1

n—i+
and hence

n

c—i—1
rf”[R%—R(C)] = Z (Varf”[si,c—z‘—l] (Pemi—1)% + S z( H @k)d )

1=c—n k=n—1+1

In particular, we have

E7*[(Ri; —Ro)’]
2
= var’® [R%—R(c)] + <EF” [R%_R(c)])

n

c—i—1
- Z (Varf"[sz‘,c—z‘—ﬂ (@c—i—1)2+5m—i< H %) 0?4)

i=c—n

+<Z Si,n—i(( H @SL)(SDS}i—l)—( H ¢k>(§0c—i—1))> .

This proves (2).
We have RV — R =" (RY™—R;) and hence
E7"[R“-R] = Y E™"[R{"—R|]

i=1

= Zsznz< H SOgL— H <Pk>
i=1

k=n—i+1 k=n—i+1

From (1) we obtain

var’"[R" — R] = Z var’" [R" — R;]

1=1

= i varf" [SZ,TZ] .
=1

In particular, we have

EP (R =R)?) = var[R°“~R] + (E7 [RCL—R])2

n n n n 2
_ zvarwsw(m—i( Mo« 11 )) |
=1 =1

k=n—i+1 k=n—i+1
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This proves (3).
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