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Abstract

This paper explores the use of robust location estimators such as Average-
Excluding-High-And-Low and Huber’s M-estimators in loss reserving. Stan-
dard order statistics results are used to investigate the finite-sample proper-
ties of Average-Excluding-High-And-Low for positively skewed distributions
including bias and efficiency, based on the criterion of mean squared error.
The paper concludes that Averages-Excluding-High-And-Low, although bi-
ased with respect to the population mean for positively skewed distributions,
is more efficient than the sample average in small samples. The paper also
shows that the use of Huber’s M-estimators can enhance the consistency in
loss development factor selections by identifying the implied risk preference.

Keywords: Robust Estimators; Order Statistics; Averages-Excluding-High-
And-Low; Huber’s M-Estimators; Loss Reserving.

1 Introduction

In practice, actuarial data are usually plagued by two problems: heterogeneity and
small sample sizes. Heterogeneity refers to the fact that the underlying exposures
consist of policies with vastly different statistical properties, either within a rating
period or between different periods. For example, losses from separate policies may
follow different probability distributions, or follow the same type of distribution
but with different parameters. Actuaries try hard to adjust the data by using
trend factors, rate change history, and other cross-section and time series factors.
After these adjustments, in many instances, doubts may still linger as to whether
more adjustments are needed to make the data homogeneous.

∗Thanks are due to David Homer for discussion, and to Elizabeth Smith of the CAS for
editorial review. The usual disclaimer applies.
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Heterogeneity, which usually renders the data from older years obsolete, may
exacerbate the problem of small sample sizes. A typical example is that the insurer
changes its underwriting focus and the current policy mix becomes drastically dif-
ferent from those just a few years before. As a result, when it comes to estimating
loss development factors or loss ratios, one rarely can have more than a dozen qual-
ity data points. That poses difficult problems in parameter estimation, confidence
interval calculation, and hypothesis testing.

A recent paper by Blumsohn and Laufer [2] describes in great detail such dilem-
mas faced by casualty actuaries. The authors asked a group of actuaries to select
loss development factors for an umbrella incurred loss triangle. The methods used
by the participants were tabulated and the resulting estimated reserves compared.
They found that, due largely to the instability of the loss development, the num-
ber of approaches and the selected factors varied widely. They concluded that
(1) actuaries should keep an open mind and to approach unstable triangles from
a variety of perspectives, and (2) if the selected factors or the fitted model differ
significantly from the sample average, one must be sure there is a good reason for
the discrepancy.

Blumsohn and Laufer also noted that the majority of the participants were
using a variety of averaging methods such as loss weighted averages and Average-
Excluding-High-And-Low (ĀxHL), which calculates the sample average after dis-
carding the sample maximum and sample minimum. Notice that these methods
are equivalent to either down-weighting or rejecting outliers. In the case of ĀxHL,
the sample maximum and minimum are automatically identified as outliers and
excluded. ĀxHL is widely used by practicing actuaries in the estimation of loss
development factors and loss ratios despite the potential downward bias pointed
out by Wu [12], who argues that if the data exhibit a long-tailed property as
they do in most of the insurance loss distributions, the use of ĀxHL would lead to
downward bias when compared to the sample average.

Wu’s argument seems to be consistent with most of the current actuarial
methodologies, which focus mainly on estimating the population means of the
underlying distributions, with a clear preference for unbiased estimators. Nat-
urally, the most frequent choice is the sample average due to its simplicity and
unbiasedness. However, from a modern robust statistics point of view, the sample
average is probably the worst estimator for the population mean. The sample
average is not robust in the sense that it takes only one outlier to make the sam-
ple average arbitrarily large or small. Thus it is not difficult to understand why
Averages-Excluding-High-And-Low are popular with actuaries since in many in-
stances (particularly when the sample sizes are small), the necessity of eliminating
extreme outliers seems to outweigh the consequences of possible downward bias.
But, is ĀxHL just a convenient escape route for actuaries when facing selection
dilemmas? Or are there instances where one can justifiably select ĀxHL over un-
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biased estimators such as the sample average?
Robust statistics studies the construction of statistical methods and estimators

that can produce reliable parameter estimates and that are less sensitive to sample
outliers (see Maronna et al. [10]). The idea of robust statistics also stems from
the fact that the underlying distribution may not always be correctly specified
and the existence of outliers may be the result of contaminated data. In these
circumstances, robust estimators can often perform better and are more efficient
in terms of variance or mean squared error than, say, the sample average.

This paper tries to argue that in the case of small samples and skewed dis-
tributions the use of robust estimators is even more valuable and can help the
analyst make difficult selections. The goal here is to rationalize the use of ĀxHL
and Huber’s M-estimator in loss reserving by providing evidence from the statis-
tics literature on theoretical grounds, and constructing examples to show its rel-
ative efficiency in the context of small samples and skewed distributions. The
main reasons of using Huber’s M-estimator are its relative simplicity and ease of
calculation. In addition, the analyst’s selection of the critical value in Huber’s
M-estimator may also reveal his or her risk preference in identifying outliers.

Section 2 explores the implications of small sample sizes, while the standard
results from order statistics are used in Section 3 to investigate the finite-sample
properties of ĀxHL. The means and variances of ĀxHL are calculated and compared
with those of the sample average for four positively skewed distributions, namely
exponential, Weibull, lognormal, and Pareto. It shows by example that the mean
squared error of ĀxHL can be smaller than that of the sample average for positively
skewed distributions, and thus more efficient than the sample average despite its
downward bias with respect to the population mean. Section 4 discusses the
general properties of Huber’s M-estimator and its use in loss development factor
selections. Section 5 uses the incurred loss triangle from Blumsohn and Laufer
[2] to illustrate the merit of ĀxHL and Huber’s M-estimator when volatility is the
main issue. Section 6 provides a summary of the publicly available softwares in
Excel and R that calculate Huber’s M-estimators. The concluding remarks are in
Section 7.

2 Outliers and Small Samples

Since the sample average can be significantly altered by outliers, the positive
skewness of the underlying distribution can exacerbate the outlier problem as
outliers may be coming further from the right tail. In the case of small samples,
the potential influence of outliers on the sample average is even greater than those
in large samples as the weight of each observation is larger. One might think
that the impact of the outliers from both tails of the distribution on the sample
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average may cancel out each other. This may be true for symmetric distributions
in a relatively large sample. But most of the actuarial applications considered
here involve small samples that presumably are drawn from positively skewed,
heavy-tailed distributions with non-negative support, such as lognormal or Pareto
distributions. Thus outliers from the right tail, if present in the sample, tend to
be larger and their effect on the sample average more significant.

Table 1 shows the probability, by sample size, of having at least one outlier from
the right tail of an independent sample when outliers are defined as data points
greater than either the 95th percentile or the 90th percentile of the underlying
distribution.1 Given the measurable chance for outliers in small samples, the
sample average may not be a reliable estimator for the population mean if the
underlying distribution is heavy-tailed.

Table 1 : Probability of At Least One Outlier
from the Right Tail in A Sample of Size n

Sample Size n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
Outlier defined as
≥ 95th percentile 22.6% 26.5% 30.2% 33.7% 37.0% 40.1%
Outlier defined as
≥ 90th percentile 41.0% 46.9% 52.2% 57.0% 61.3% 65.1%

There are other problems associated with small samples from skewed distribu-
tions. For example, Fleming [5] warns that the sample average of a small sample
from a positively skewed distribution is most likely smaller than the population
mean. In other words, the skewness of the parent distribution can be carried over
to the sampling distribution of X̄. The statistics literature provided an elegant
explanation of this phenomenon nearly 70 years ago through the Berry-Esseen the-
orem, 2 3 which says that the largest difference between the sampling distribution
function of X̄ and the standard normal distribution (its limiting distribution) is
bounded by a ratio of the skewness of the underlying distribution to the square
root of the sample size. In short, it simply means that the larger the skewness, the
slower the speed of convergence to normality. Thus in order to achieve a certain
level of sampling precision, the sample average may require a considerably large

1The probability is (1− (0.95)n) or (1− (0.90)n).
2David Homer pointed out this fact to me.
3Formally, let X1, ..., Xn be i.i.d. with E(X1) = µ, V ar(X1) = σ2, and β3 = E(|X1 − µ|3) <

∞. Then there exists a constant C, independent of n or the distribution of the Xi, such that

sup
X

∣∣∣∣P (
X̄ − µ
σ/
√
n
≤ x)− Φ(x)

∣∣∣∣ ≤ Cβ3/σ
3

√
n

,

where β3/σ
3 is the skewness and C ≤ 0.7655.
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sample size to compensate for the skewness of the parent distribution. This issue
is of a different nature from the outlier problem. The solution seems to either get
a larger sample or use certain transformation methods to get around the skewness
problem. From a robust statistics point of view, the outlier problem exists in sam-
ples of all sizes. For small samples, however, the choice of the estimator (either
robust or non-robust) may have a more significant impact on the final results.

The following graph shows the simulated results for the sampling distributions
of X̄ from a lognormal parent distribution (mean = 1.649, sd = 2.161, or µ = 0 ,
σ = 1) with different sample sizes (n=10, 7, and 5). Notice the gradual increase
in skewness (thicker tail) when the sample size decreases from 10 to 5.

Graph 1 : Sampling Distributions of X̄ (n = 10, 7, and 5)

3 ĀxHL: A Robust Estimator

Trimmed means, which are considered robust estimators for location parameters,
calculate the sample average after discarding a fixed number or a fixed percentage
of the observations from both ends of an ordered sample. Trimmed means are less
sensitive to outliers compared to the sample average X̄. Trimmed means come in
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many varieties, and their statistical properties as well as asymptotic behavior are
studied extensively in the statistics literature (see Maronna et al. [10] and Wilcox
[11]). The use of Average-Excluding-High-And-Low ĀxHL in actuarial practice is a
classical example of trimmed means. It is obvious that ĀxHL is just a special case
of trimmed means, where only the sample maximum and minimum are discarded.

3.1 Finite-Sample Statistics of ĀxHL

In this section we calculate the finite-sample mean and variance of ĀxHL while the
asymptotic properties of ĀxHL are explored in Section 3.3. Let (X1, . . . , Xn) be
a sample of n independent and identically distributed random variables. Denote
the cumulative distribution function (cdf) F (x) and probability density function
(pdf) f(x) with mean µ and variance σ2 (subject to existence).

LetX(i) be the ith order statistic of (X1, . . . , Xn). ThusX(1) = min(X1, . . . , Xn),
X(n) = max(X1, . . . , Xn), and X(1) ≤ . . . ≤ X(i) ≤ . . . ≤ X(n) for 1 ≤ i ≤ n.
Average-Excluding-High-And-Low ĀxHL is defined as

ĀxHL =

∑n
i=1Xi −X(1) −X(n)

n− 2
.

The mean and the variance of ĀxHL when the sample size is n are

E(ĀxHL) =
nµ− E(X(1))− E(X(n))

n− 2
(1)

and

V ar(ĀxHL) = V ar

{∑n−1
i=2 X(i)

n− 2

}
=

∑n−1
i=2

∑n−1
j=2 Cov(X(i), X(j))

(n− 2)2
, (2)

respectively. Note that although all observations are i.i.d., the order statistics (i.e.,
X(i)) of an independent sample are correlated with one another.

3.2 Bias and Relative Efficiency of ĀxHL

Next, define Bias of ĀxHL with respect to the population mean µ as

Bias(ĀxHL;µ) =
E(ĀxHL)− µ

µ
=

2µ− E(X(1))− E(X(n))

(n− 2)µ
.

It can be shown that 2µ = (E(X(1)) + E(X(n))) for symmetric distributions and
2µ < (E(X(1)) +E(X(n))) for positively skewed distributions. For the latter case,
it implies Bias(ĀxHL) < 0.
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Define MSE with respect to the population mean µ as

MSE(ĀxHL;µ) = V ar(ĀxHL) +
{
Bias(ĀxHL;µ) ∗ µ

}2

= V ar(ĀxHL) +

{
2µ− E(X(1))− E(X(n))

(n− 2)

}2

and the relative efficiency between X̄ and ĀxHL with respect to the population
mean µ as

REff (X̄, ĀxHL;µ) =
MSE(X̄;µ)

MSE(ĀxHL;µ)
=

V ar(X̄)

V ar(ĀxHL) +
{

2µ−E(X(1))−E(X(n))

(n−2)

}2 .

Bias is a common way to quantify the distance between an estimator and a pa-
rameter while MSE is a widely accepted measure of accuracy for estimators with
respect to a parameter. Traditionally, the efficiency measure is a ratio between
the Cramér-Rao lower bound and the variance of an unbiased estimator. Here,
however, REff (X̄, ĀxHL;µ) is narrowly defined to compare the MSEs of the sam-
ple average X̄ and ĀxHL. Note that if the underlying distribution is skewed, ĀxHL
is always biased with respect to the population mean. As such, MSE may be a
more appropriate measure in comparing X̄ and ĀxHL as it penalizes the estimator
for its deviation from the parameter µ.

In the appendix, the mean, variance, Bias, MSE, Asym, and REff of ĀxHL
from five distributions are calculated for sample sizes from five to ten as shown
in Table 2. The distributions range from symmetric (standard normal), light-
tailed (exponential) to positively skewed and heavy-tailed (lognormal, Pareto)
distribution. The selections of the parameter values are subjective as the goals
are to illustrate the influence of sample size on E(ĀxHL) and V ar(ĀxHL) and to
contrast their differences with E(X̄) and V ar(X̄), respectively.

Table 2 : Means, Variances, Coefficients of Variation
and Skewness of Selected Distributions

Distribution Mean Variance Coeff. Vari. Skewness
Standard Normal 0 1 N.A. 0

Exponential (θ = 1) 1 1 100% 2
Pareto (θ = 1, α = 4) 1.333 0.222 35% 7.071

LogNormal (µ = 0, σ2 = 1) 1.649 4.671 131% 6.185
Weibull (θ=1, τ=0.5) 2 20 224% 6.618

Overlaying on Graph 1, Graph 2 shows the simulated results for the sampling
distributions of ĀxHL from a lognormal parent distribution with sample sizes of 10,
7, and 5. Note the differences in skewness (thicker tail) and standard deviation
between the corresponding distributions of X̄ and ĀxHL with the same sample
size.
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Graph 2 : Sampling Distributions of X̄ and ĀxHL (n = 10, 7, and 5)

As indicated earlier, ĀxHL are biased downward in positively skewed distribu-
tions. The degree of the bias depends on the shape parameter and the sample size.
The larger the sample size, the smaller the bias. Table 3 summarizes the results
from the calculations using order statistics in the appendix. Note that ĀxHL are
unbiased if the underlying distribution is symmetric.

Table 3 : Bias(ĀxHL;µ) by Sample Size n
Sample Size n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

Standard Normal 0 % 0% 0% 0% 0% 0%
Exponential (θ = 1) -16% -15% -15% -14% -13% -13%

Pareto (θ = 1, α = 4) -6% -6% -6% -6%
LogNormal (µ = 0, σ2 = 1) -23% -23% -22% -21% -20% -20%

Weibull (θ=1, τ=0.5) -46% -44% -43% -41% -40% -38%

While ĀxHL is biased with respect to the population mean for positively skewed
distributions, they are more efficient than the sample average in terms of mean
squared error. The efficiency advantage is consistent across the sample sizes as
shown in Table 4, which summarizes the results from the appendix. Note that
given a normal distribution, the sample average is universally more efficient than
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ĀxHL regardless of the sample size. For an exponential distribution, ĀxHL is
almost as efficient as the sample average. However, for the Pareto, LogNormal,
and Weibull distributions, ĀxHL are much more efficient than X̄.

Table 4 : REff(X̄, ĀxHL;µ) by Sample Size n
Sample Size n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

Standard Normal 88% 91% 92% 93% 94% 95%
Exponential (θ = 1) 97% 97% 97% 97% 97% 97%

Pareto (θ = 1, α = 4) 151% 148% 145% 142%
LogNormal (µ = 0, σ2 = 1) 159% 159% 159% 159% 159% 159%

Weibull (θ=1, τ=0.5) 185% 185% 185% 185% 185% 185%

3.3 Asymptotic Properties of ĀxHL

The asymptotic properties of trimmed means depend on the nature of trimming in
relation to the sample size n. If the number of the trimmed observations is fixed,
the trimming is considered light , such as ĀxHL. All other cases are considered
either intermediate or heavy trimming, where the number of the trimmed obser-
vations may be infinite as n goes to infinity. For example a 25% trimmed mean
is calculated by trimming 25% of the observations from both ends of the ordered
sample regardless of the sample size.

Light Trimming - Note that the value of ĀxHL approaches X̄ as n becomes
large. Kesten [8] also shows that the convergence in distribution of lightly trimmed
means and sample average are equivalent. In other words, both ĀxHL and the
sample average are asymptotically normal with the same normalizing factors (i.e.,
the asymptotic mean and standard deviation). Thus the asymptotic mean of
ĀxHL is the population mean µ and it is in this sense that ĀxHL is asymptotically
unbiased. However, as shown in Section 3.2 and the appendix, depending on
the type of the distribution, the finite-sample properties of ĀxHL and the sample
average can be very different.

Heavy Trimming - In the case of heavy trimming, where a fixed percentage
of the sample points are trimmed from both ends of the ordered sample, Csörgő
et al. [3] have shown that a normalized trimmed mean so defined converges in
distribution to a standard normal random variable, and the asymptotic mean is
the expected value of a truncated parent distribution with the upper and lower
truncation points at the same fixed percentiles as in the sample. For example,
if a trimmed mean is obtained by trimming 20% of the sample from both ends,
the support of the truncated distribution is from the 20th percentile to the 80th
percentile of the parent distribution.

Wu [12] indicates that ĀxHL would underestimate the population mean of a
positively skewed distribution. He first defines the asymptotic means of ĀxHL ([12]

On Small Samples and the Use of Robust Estimators in Loss Reserving

Casualty Actuarial Society E-Forum, Fall 2010 9



p. 717, Exhibit 1) as

Asym(ĀxHL) =
1

1− 2/n

∫ F−1(1− 1
n

)

F−1( 1
n

)

xf(x)dx, (3)

which4 is equivalent to the asymptotic mean for heavily trimmed means when
the trimming percentage is fixed at 1/n. For example, if the sample size is five,
Asym(ĀxHL) is the expected value of a truncated parent distribution with the
upper and lower truncation points at the 80th and 20th percentiles of the parent
distribution, respectively. As such, F−1(1 − 1

n
) = F−1(0.8), F−1( 1

n
) = F−1(0.2),

and

Asym(ĀxHL) =
1

1− 2/5

∫ F−1(0.8)

F−1(0.2)

xf(x)dx.

The magnitude of the truncation is based on the size of the sample. As a result,
Asym(ĀxHL) can be different when the sample size varies. Wu [12] then estimates
the bias of ĀxHL by comparing Asym(ĀxHL) with the population mean, and argues
that the sampling bias can be corrected by using a ratio of the population mean
and Asym(ĀxHL).

Wu’s approach to the problem raises two issues. First, we know through the
statistics literature (e.g., Kesten [8]), when the trimming is light, such as ĀxHL,
the asymptotic mean is the same as the underlying population mean regardless
of the sample size. Second, although ĀxHL and X̄ have the same asymptotic
mean, the finite-sample expected values for ĀxHL can be very different, depending
on the sample size. The sample sizes under consideration in actuarial practice
are usually quite small. Despite the fact that the exact distribution of ĀxHL is
often intractable, the means, variances, and covariances of ĀxHL for small samples
can often be derived explicitly or numerically approximated. Therefore, it is not
necessary to use the asymptotic mean to calculate the theoretical bias in small
samples since doing so would actually overstate the size of the bias.

Table 5 : Bias(Asym(ĀxHL);µ) by Sample Size n
Sample Size n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

Standard Normal 0 % 0% 0% 0% 0% 0%
Exponential (θ = 1) -24% -22% -21% -19% -18% -17%

Pareto (θ = 1, α = 4) -11% -10% -10% -10%
LogNormal (µ = 0, σ2 = 1) -33% -31% -29% -27% -26% -25%

Weibull (θ=1, τ=0.5) -64% -60% -57% -54% -52% -50%

4Since we are only interested in continuous distributions, F−1(u) here is assumed to be
uniquely determined for each u in [0, 1].
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The appendix compares the estimated bias resulting from using Asym(ĀxHL) in-
stead of E(ĀxHL) for the five distributions. Table 5 summarizes the results by
sample size and indicates that the overstatement exists across the sample sizes
of five to ten and can be as much as 50% for some positively skewed distributions,
compared to Bias(ĀxHL;µ) in Table 3.

One may also argue on philosophical grounds that the correction, for either
small or large samples, is not necessary. That is, from a robust statistics point of
view, the examination and treatment of outliers are of fundamental importance5

while the unbiasedness with respect to the population mean is never an objective
nor a concern. In general, the goal of robust location estimators is to measure
the central tendency of the distribution, not the population mean. Thus the
question is not whether the outliers should be eliminated or not, but how to lessen
their impact if outliers exert undue influence on the estimation.

Unbiasedness seems to have been fully embraced in the casualty literature as
the most important property for an estimator, but in practice unbiased estimators,
such as the sample average are rarely used as selections. Instead, it is always
some type of modified average depending on the circumstance, the data, and
the analyst. Moving away from the “first moment only” mentality can help us
achieve a shorter confidence interval and gain efficiency in terms of mean squared
error, which considers both the first and second moments. Here it should be
emphasized that we are not advocating abandoning the sample average as an
estimator. Rather, we suggest that efficient robust estimators should always be
considered along with other unbiased estimators.

4 Huber’s M-Estimators

To calculate ĀxHL, automatically trimmed are the sample maximum and sample
minimum, which may or may not be outliers relative to the rest of the sample.
Thus it makes sense if the trimming can be limited to the outliers identified during
the calculating process. Huber’s M-estimator does exactly that. The theory of
Huber (See Huber and Ronchetti [7]) is to solve the following problem given n
i.i.d. observations (x1, . . . , xn):

min
t

(
n∑
i=1

ξ(xi − t))

5The usual benchmarks for robustness measurement are breakdown point and influence func-
tion (see Maronna et al. [10]).
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with ξ a suitable function. Or equivalently,
∑n

i=1 Ψ(xi − t) = 0 where Ψ is the
derivative of ξ. Specifically, Huber’s Ψ is defined as follows:

Ψ(x) =


K if x > K,

x if |x| ≤ K,

−K if x < −K,

where K > 0 is a factor selected by the analyst. In practice, the following form of
Ψ is used:

n∑
i=1

Ψ(
xi − t
τ

) = 0 (4)

where τ is a scale measure added to ensure that the resulting solution t = M is
scale equivariant. The intuition here is that instead of trimming a fixed number
or percentage of observations, only those observations with the adjusted values
of (x −M)/τ outside the range of [−K,K] are replaced by either (M − τK) or
(M + τK). Note that the presumed outliers are not trimmed but replaced.

Graph 3 : Sampling Distributions of X̄, ĀxHL, and Huber’s
M-Estimators (n=10)
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If K = ∞,
∑n

i=1(Ψ(xi − t)) =
∑n

i=1(xi − t) = 0 and the solution to the op-
timization is the sample average X̄. And if K = 0, the sample median is the
solution. If K is between 0 and infinity, no closed-form solutions exist and a nu-
merical approximation using the Newton-Raphson algorithm is usually employed
to derive the solution. Note that when K is between 0 and infinity, the solution is
not necessarily between the median and X̄ due to the non-linearity of the problem.

The finite-sample properties of Huber’s M-estimator can be obtained through
simulation. Graph 3 shows the simulation results for the sampling distributions
of X̄, ĀxHL, and Huber’s M-estimators with K = 1.0 and 2.0 from a lognormal
parent distribution when the sample size is 10. The distribution of ĀxHL is almost
indistinguishable from that of Huber’s M-estimators with K = 2.0 while X̄ has a
thicker tail and a larger standard deviation than the two robust estimators. Note
that Huber’s M-estimator with K = 1.0 has a smaller standard deviation but a
larger bias than Huber’s M-estimator with K = 2.0.

In theory, the selection of the K value is to balance between efficiency (asymp-
totic variance at the normal distribution) and robustness (resistance against out-
liers from heavy-tailed distributions). For example, compared with Huber’s M-
estimator with K = 1.0, Huber’s M-estimator with K = 2.0 has a lower asymp-
totic variance at the normal distribution. Huber’s M-estimator with K = 1.0, on
the other hand, is more robust in terms of guarding against the impact of outliers.

Using the standard normal approximation may provide another perspective on
what the K value implies in the calculation of Huber’s M-estimator. Given 1.64 is
the 95th percentile of the standard normal distribution, a range of [-1.64, 1.64] for
the adjusted value (x− t)/τ may be interpreted as covering 90% of the underlying
distribution.6 With a higher K value, the range for admissible observations is
getting larger and thus fewer observations are classified as outliers. If we define
risk as the influence of outliers on the measure of the distribution center, then the
selection of the K value may have an added benefit in reflecting the risk preference
of the analyst. In other words, the more risk averse the analyst is, the lower the
K value may be selected.

5 An LDF Example Using Robust Estimators

In this section, we illustrate the calculation of ĀxHL and Huber’s M-estimators
using the data from Blumsohn and Laufer [2]. For completeness, the age-to-age
development factors of the incurred loss triangle from Blumsohn and Laufer [2] (p.
22) are reproduced in Table 6 below along with the medians, ĀxHL, and means of
the respective age-to-age factors.7

6No references can be found for this interpretation, which may be regarded as speculative.
7Here we assume that the age-to-age factors in each column are i.i.d.
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Table 6: Age-to-Age Loss Development Factors

Year 2-1 3-2 4-3 5-4 6-5 7-6 8-7 9-8 10-9 11-10 12-11
1991 1.68 2.31 1.47 1.22 1.14 0.97 1.05 0.97 1.04 1.01 0.99
1992 6.54 1.26 1.62 1.57 0.87 1.11 1.03 1.01 0.99 0.99
1993 1.75 2.78 1.32 1.24 1.08 1.01 0.98 0.99 1.01
1994 3.88 1.83 0.86 0.96 1.20 1.01 1.05 1.01
1995 2.69 1.81 0.91 1.19 1.00 1.57 1.00
1996 1.11 1.42 1.12 1.14 1.23 1.01
1997 1.98 1.41 0.96 1.17 1.02
1998 3.91 1.10 1.53 1.02
1999 1.45 0.97 1.44
2000 1.44 1.13
2001 1.23

Med. 1.75 1.41 1.32 1.18 1.08 1.01 1.03 1.00 1.01 1.00 0.99
ĀxHL 2.23 1.53 1.25 1.16 1.09 1.03 1.03 1.00 1.01 1.00 0.99
Avg 2.52 1.60 1.25 1.19 1.08 1.11 1.02 0.99 1.01 1.00 0.99

Table 7: Implied Loss Reserves and
M-Estimates of LDF for Various K Values

Implied
K Prob Reserve 2-1 3-2 4-3 5-4 6-5 7-6 8-7 9-8 10-9

0.06 5% 22,017k 1.75 1.41 1.32 1.18 1.08 1.01 1.03 1.00 1.01
0.13 10% 22,089k 1.76 1.41 1.32 1.18 1.08 1.01 1.03 1.00 1.01
0.25 20% 22,382k 1.80 1.41 1.32 1.18 1.08 1.01 1.03 1.00 1.01
0.39 30% 22,741k 1.80 1.43 1.32 1.18 1.08 1.02 1.03 1.00 1.01
0.52 40% 22,673k 1.82 1.46 1.30 1.18 1.08 1.02 1.03 1.00 1.01
0.67 50% 22,854k 1.87 1.48 1.28 1.18 1.08 1.02 1.03 1.00 1.01
0.84 60% 23,415k 1.92 1.49 1.27 1.18 1.09 1.02 1.03 1.00 1.01
1.04 70% 23,503k 1.97 1.51 1.25 1.18 1.09 1.02 1.02 1.00 1.01
1.15 75% 23,650k 2.00 1.52 1.25 1.17 1.09 1.03 1.02 1.00 1.01
1.28 80% 23,758k 2.04 1.54 1.25 1.17 1.09 1.03 1.02 1.00 1.01
1.64 90% 24,227k 2.14 1.57 1.25 1.17 1.08 1.03 1.02 1.00 1.01
1.96 95% 24,908k 2.23 1.59 1.25 1.16 1.08 1.04 1.02 0.99 1.01
2.58 99% 25,799k 2.31 1.60 1.25 1.16 1.08 1.04 1.02 0.99 1.01

Med. 22,017k 1.75 1.41 1.32 1.18 1.08 1.01 1.03 1.00 1.01
ĀxHL 25,502k 2.23 1.53 1.25 1.16 1.09 1.03 1.03 1.00 1.01
Avg 33,349k 2.52 1.60 1.25 1.19 1.08 1.11 1.02 0.99 1.01
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Using the data from Table 6, Table 7 shows the resulting estimated loss reserves
with various K values in Huber’s M-estimators. For each K value, the implied
loss reserve is calculated by assuming that the same K value is used for each of the
columns in the age-to-age factor selection. The K value ranges from 0.06 to 2.58,
which correspond to the 5% and 99% pseudo-probability ranges, respectively (i.e.,
as if approximated by a standard normal distribution). Using a K value of 0.06
implies that the analyst classifies any observation x as an outlier if its adjusted
value (x−M)/τ is outside the range of [-0.06, 0.06].

In the example, at the 5% pseudo-probability level, all observations are deemed
outliers and the Huber’s M-estimate is the sample median for all ages. With
higher K values, the M-estimates change gradually from the sample median to
the sample average. Finally at the 99% pseudo-probability level, only a handful of
observations are deemed outliers and the Huber’s M-estimate is the sample average
for most of the age-to-age factors. The range of the implied reserves is between
22.0 million and 25.8 million, corresponding to K=0.06 and K=2.58, respectively.

Table 8 below shows the data points in the 2-1 age-to-age factors that are
deemed outliers for various K values in the calculation of Huber’s M-estimates.
At K = 0.06, all points are outliers except 1.75, which happens to be the sample
median. As K becomes larger, fewer data points are declared outliers. At K =
2.58, the only outlier is 6.54.

Table 8: Implied Outliers For 2-1 Age-To-Age Factors By K Value

K Out1 Out2 Out3 Out4 Out5 Out6 Out7 Out8 Out9 Out10
0.06 6.54 3.91 3.88 2.69 1.98 1.68 1.45 1.44 1.23 1.11
0.13 6.54 3.91 3.88 2.69 1.98 1.45 1.44 1.23 1.11
0.25 6.54 3.91 3.88 2.69 1.45 1.44 1.23 1.11
0.39 6.54 3.91 3.88 2.69 1.45 1.44 1.23 1.11
0.52 6.54 3.91 3.88 2.69 1.23 1.11
0.67 6.54 3.91 3.88 2.69 1.23 1.11
0.84 6.54 3.91 3.88 2.69 1.23 1.11
1.04 6.54 3.91 3.88 1.11
1.28 6.54 3.91 3.88
1.64 6.54 3.91 3.88
1.96 6.54 3.91 3.88
2.58 6.54

A few comments on the age-to-age selection methods may be in order:

• One potential flaw or inconsistency of ĀxHL when applied to the setting of
age-to-age factor calculation is that ĀxHL trims a different percentage of
data for each of the columns. For example, for the 2-1 factor, two out of
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11 observations or 18.2% of the data are trimmed while for the 8-7 factors,
40% of the data (two out of five) are trimmed. The inconsistency stems
from the fact that ĀxHL trims less percentage of the data when the data are
more volatile (e.g., the 2-1 factors) and more percentage of the data when
the data are relatively stable (e.g., the 8-7 factors). As indicated in Section
3.2, the finite-sample properties of ĀxHL are dependent on the sample size
and can be very different between trimming 18.2% and 40% of the data. On
the other hand, using Huber’s M-estimators and selecting ”appropriate” K
values by age may avoid this problem and maintain some level of consistency
in the age-to-age factor calculation.

• The loss reserve estimates based on the M-estimates are in the middle-to-
lower range of the reserves estimated by the participants in the Blumsohn
and Laufer study. The primary reason is that many participants downweight
or ignore the negative development in the age-to-age factor selection. For the
earlier development ages, their age-to-age factor selections seem to largely
fall within the range of the M-estimates with the K values between 0.06 and
2.58, except for the age 7-6 factors, where 1.566 is a prominent outlier and
causes a great deal of variations in the participants’ selection.

• One interesting observation regarding the age-to-age factor selections by the
participants of the Blumsohn and Laufer study is that the implied K values
across ages are not consistent. For example, one may select 1.75 for the 2-1
factor with an implied K value of 0.06 while selecting 1.60 for the 3-2 factor
with an implied K value of 2.58 (see Table 7). This lack of consistency in
terms of the K value may be due to the fact that different averaging methods
were used for different ages in selections while the statistical implications of
the methods are not obvious.

• When Huber’s M-estimator is used with a specific K value, the confidence
interval for the loss reserves can be obtained by bootstrapping individual
age-to-age factors. One potential problem of this approach is that the τ
value can easily become zero in equation (4) for the bootstrap samples when
the sample size is small. Note that Huber’s M-estimator is not well-defined
when τ = 0.

6 Software Implementation

Software in Excel VBA -

• Written by this author and included in the appendix are two Excel/VBA
functions (HuberM and MADN) for calculating Huber’s M-estimators. To
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implement the functions, copy the code for both functions into a Visual
Basic module of the desired Excel file. The first required input for HuberM
is a numeric range/vector while the second required input is the selected K
value. Note that HuberM is not well-defined when τ from Equation (4) is
zero. When this occurs, Excel will exhibit a warning message.

• The Royal Society of Chemistry has made available an Excel Add-in for
Huber’s M-estimator, RobStat.xla.8 All the installation instructions are in
the ReadMe.txt file, as well as in the full help system. The Add-in has two
Excel functions, A15 MEAN and H15 MEAN, which calculate two types of
Huber’s M-estimators. The difference is that the former uses a fixed MADN
for τ from Equation (4) in the iteration process while the latter continues to
update the τ in each iteration.

Despite the Add-in’s strength in error handling and help system, this au-
thor was not able to reconcile the calculation results from A15 MEAN (or
H15 MEAN) with the results from any R-based functions including huberM
in the R package and mest in Wilcox’s collection.

• The function TRIMMEAN(array,α%) supplied by Excel calculates the α%
trimmed mean for the array specified in the first argument of the function.
For example, the 20% trimmed mean TRIMMEAN(array,20%) for a sample
size five is the same as ĀxHL.

Software in R -

• Two R packages (“robust” and “robustbase”) are available on the R web-
site to calculate a variety of robust estimators. The function huberM in “ro-
bustbase” calculates Huber’s M-estimator, which requires a numeric vector
and a K value as inputs.

• Wilcox [11] maintains a significant collection of R functions in robust statis-
tics.9 mest is the function that calculates Huber’s M-estimator.

• Interested readers can also find other collections of related R or S-Plus
functions in http://www.statistik.tuwien.ac.at/rsr/index.html.

8http://www.rsc.org/Membership/Networking/InterestGroups/Analytical/AMC/Software
/RobustStatistics.asp

9http://www-rcf.usc.edu/ rwilcox/
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7 Conclusion

Modern robust statistics has made it well-known that outliers can have unbounded
influence on classical estimators such as the sample average, resulting in: (1)
inaccurate parameter estimates/inference, (2) large standard errors, and (3) wide
confidence intervals.

The purpose of this paper is to provide some theoretical facts and examples
regarding average-excluding-high-and-low and more broadly, some robust estima-
tors, which may not have been given proper credit in our literature. We have
shown by example that ĀxHL is more efficient than the sample average. It also
shows that using Huber’s M-estimators with selected K values may have some
more benefit than using ĀxHL.

Although these two estimators only represent a tiny portion of the large number
of robust estimators in the statistics literature, one of the major advantages of
ĀxHL and Huber’s M-estimators is that they can be easily implemented through
simple software (see Section 6). The famed Princeton Study on robust estimators
(see Andrews et al. [1]) also shows that (1) some trimmed means (similar to ĀxHL)
and Huber’s M-estimators behave rather well under many scenarios in comparison
with other robust estimators, and (2) no single robust estimator is more efficient
for all distributions.

John Tukey, an early pioneer of the modern robust statistics, once said “ust
which robust/resistant methods you use is not important – what is important is
that you use some.” It is this author’s belief that the use of ĀxHL and Huber’s
M-estimators may be beneficial to actuaries in tackling the day-to-day selection
problems.
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Appendix

A.0 Basic Formulas in Order Statistics

Let (X1, . . . , Xn) be a sample of n independent and identically distributed random
variables. Denote the cumulative distribution function (cdf) F (x) and probability
density function (pdf) f(x) with mean µ and variance σ2 (subject to existence).

LetX(i) be the ith order statistic of (X1, . . . , Xn). ThusX(1) = min(X1, . . . , Xn),
X(n) = max(X1, . . . , Xn), and X(1) ≤ . . . ≤ X(i) ≤ . . . ≤ X(n) for 1 ≤ i ≤ n. If
F (x) is absolutely continuous, the expected value and the variance of X(i), and
the expected value of X(i) and X(j) for 1 ≤ i < j ≤ n can be expressed as (see
David and Nagaraja [4])

E(X(i)) =

(
n

i

)∫ ∞
−∞

xf(x)[F (x)]i−1[1− F (x)]n−idx

V ar(X(i)) =

(
n

i

)∫ ∞
−∞

x2f(x)[F (x)]i−1[1− F (x)]n−idx− [E(X(i))]
2

and

E(X(i), X(j)) = Cov(X(i), X(j)) + E(X(i))E(X(j))

=
n!

(i− 1)!(j − i− 1)!(n− j)!
×∫ ∞

−∞

∫ y

−∞
xyf(x)f(y)[F (x)]i−1[F (y)− F (x)]j−i−1[1− F (y)]n−jdxdy,

respectively.

The closed-form solutions to E(X(i)), V ar(X(i)), and Cov(X(i), X(j)) can be de-
rived explicitly for the exponential, Weibull, and Pareto distributions. For the log-
normal distribution, numerical approximation is needed to calculate these statis-
tics. In the order statistics literature, extensive studies (see David and Nagraja
[4]) were performed in the 1950s and 1960s on the calculations of the moments of
order statistics for various distributions by sample size. Harter and Balakrishnan
[6] have summarized and tabulated the numerical results of those studies in their
1996 Handbook.

In this section, we calculate and tabulate the numerical values of the means and
variances of ĀxHL for the standard normal distribution and four distributions with
nonnegative supports, namely the exponential, lognormal, Pareto and Weibull
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distributions.10 In other words, We assume the underlying distribution is known
and there is no model misspecification or data contamination. We then employ
these results to calculate the exact values of the bias and the relative efficiency of
the sample average and ĀxHL for the sample sizes between five and ten. Although
ĀxHL may be significantly downward biased for a positively skewed distribution,
MSE(ĀxHL) usually is smaller than MSE(X̄), which is just V ar(X̄) = σ2/n.
That is, even considering the penalty for bias, the average distance as defined by
MSE between ĀxHL and µ may still be shorter than that between X̄ and µ.

A.1 The Standard Normal Distribution

Since the standard normal is symmetric, ĀxHL is unbiased. Note that X̄ is more
efficient than ĀxHL as V ar(X̄) ≤ V ar(ĀxHL) for all sample sizes. In fact, the
standard normal distribution has the rare property that X̄ is more efficient than
most robust location estimators.

Table A.1 : Efficiency of ĀxHL for Standard Normal
Sample Size n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

E(X̄) 0 0 0 0 0 0
E(ĀxHL) 0 0 0 0 0 0

Bias(ĀxHL;µ) 0% 0% 0% 0% 0% 0%
Asym(ĀxHL) 0 0 0 0 0 0

Bias(Asym(ĀxHL);µ) 0% 0% 0% 0% 0% 0%
V ar(X̄) 0.20000 0.16667 0.14286 0.12500 0.11111 0.10000

V ar(ĀxHL) 0.22706 0.18403 0.15494 0.13387 0.11790 0.10535
MSE(ĀxHL;µ) 0.22706 0.18403 0.15494 0.13387 0.11790 0.10535

REff (X̄, ĀxHL;µ) 88% 91% 92% 93% 94% 95%

A.2 The Exponential Distribution

The pdf and cdf of the exponential distribution with scale parameter θ are

f(x; θ) =
1

θ
e−x/θ, x ≥ 0, θ > 0,

F (x; θ) = 1− e−x/θ,
respectively. Given that the rth moment of X is E(xr) = θrr!, the exponential
distribution has a fixed skewness of 2, independent of θ as shown below

Skewness(x) =
E(x3)− 3θE(x2) + 2θ3

θ3
= 2.

10The distribution forms and the corresponding statistics are based on Klugman et al. [9].
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The closed-form solutions exist for the mean and variance of X(i), which are

E(X(i); θ) = θ

i∑
j=1

1

n− j + 1
,

and

V ar(X(i); θ) = θ2

i∑
j=1

1

(n− j + 1)2
,

respectively. For i < j, the covariance of X(i) and X(j) is the same as V ar(X(i); θ).
For a sample of five,

Bias(ĀxHL) =
5θ − θ(1 + 1

2
+ 1

3
+ 1

4
+ 1

5
)− θ(1

5
)

(5− 2)θ
− 1 = −16.1%.

Given the fixed skewness of the exponential distribution, it is not surprising that
Bias(ĀxHL) is dependent on the sample size n only and independent of the pa-
rameter θ.

The calculation of Asym(ĀxHL) depends on the sample size n and θ.

Asym(ĀxHL) =
θ

1− 2/n

{
Γ(2;−ln(

1

n
))− Γ(2;−ln(1− 1

n
))

}
where Γ(., .) is the incomplete Gamma function. The following table shows the
statistics for the exponential distribution with θ = 1. Note that E(x) = 1 and
V (x) = 1 when θ = 1. As expected, when the sample size gets larger the bias is
getting smaller. On the other hand, ĀxHL is almost as efficient as X̄ for sample
sizes 5 to 10.

Table A.2 : Bias and Efficiency of ĀxHL for Exponential (θ=1)
Sample Size n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

E(X̄) 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
E(ĀxHL) 0.83889 0.84584 0.85286 0.85952 0.86570 0.87138

Bias(ĀxHL;µ) -16.1% -15.4% -14.7% -14.0% -13.4% -12.9%
Asym(ĀxHL) 0.76085 0.77970 0.79547 0.80914 0.82076 0.83058

Bias(Asym(ĀxHL);µ) -23.9% -22.0% -20.5% -19.1% -17.9% -16.9%
V ar(X̄) 0.20000 0.16667 0.14286 0.12500 0.11111 0.10000

V ar(ĀxHL) 0.17966 0.14634 0.12407 0.10801 0.09585 0.08628
MSE(ĀxHL;µ) 0.20562 0.17011 0.14572 0.12775 0.11389 0.10282

REff (X̄, ĀxHL;µ) 97% 97% 97% 97% 97% 97%
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A.3 The Pareto Distribution

The pdf and cdf of the Pareto distribution with scale parameter θ and shape
parameter α are

f(x) =
αθα

xα+1
, F (x) = 1− (

θ

x
)α, x ≥ θ, α > 0,

respectively. The mean, variance, and skewness are

E(x) =
αθ

α− 1
, V ar(x) =

θ2α

(α− 2)(α− 1)2
,

and

Skewness(x) =
2(1 + α)

α− 3

√
α− 2

α
,

respectively. The calculation of Asym(ĀxHL) depends on the sample size n,

Asym(ĀxHL) =
1

(1− 2/n)

αθ

(α− 1)

{
(1− 1

n
)1−1/α − (

1

n
)1−1/α

}
.

Using Tables C13.1 and C13.2 in Harter and Balakrishnan [6] and Eqs. (1)-
(2) in Section 3.1, the means and variances of ĀxHL with the underlying Pareto
(α = 4, θ = 1) are shown in the following table. Note that E(x) = 1.33333,
V ar(x) = 0.22225, and Skewness(x) = 7.07106 for the Pareto distribution with
α = 4 and θ = 1.

Table A.3 : Bias and Efficiency of ĀxHL for Pareto (θ=1, α=4)
Sample Size n = 5 n = 6 n = 7 n = 8

E(X̄) 1.33334 1.33332 1.33333 1.33333
E(ĀxHL) 1.24920 1.25220 1.25530 1.25823

Bias(ĀxHL;µ) -6.3% -6.1% -5.9% -5.6%
Asym(ĀxHL) 1.18859 1.19496 1.20037 1.20502

Bias(Asym(ĀxHL);µ) -10.9% -10.4% -10.0% -9.6%
V ar(X̄) 0.04445 0.03703 0.03174 0.02777

V ar(ĀxHL) 0.02234 0.01839 0.01578 0.01391
MSE(ĀxHL;µ) 0.02942 0.02497 0.02187 0.01954

REff (X̄, ĀxHL;µ) 151% 148% 145% 142%
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A.4 The LogNormal Distribution

The pdf of the standard lognormal distribution with location parameter11 µ and
shape parameter σ2 is

f(x) =
1√

2πσx
e−(ln(x)−µ)2/2σ2

0 < x <∞.

The mean, variance, and skewness are

E(x) = eµ+σ2/2, V ar(x) = (eσ
2 − 1)e2µ+σ2

,

and
Skewness(x) = (eσ

2

+ 2)
√
eσ2 − 1,

respectively.

No closed-form solutions exist for the cdf. So numerical approximation has
to be performed for the means and variance of X̄, ĀxHL. The calculation of
Asym(ĀxHL) depends on the sample size n, µ, and σ2.

Asym(ĀxHL) =
eµ+σ2/2

1− 2/n

{
θ(θ−1(1− 1

n
)− σ)− θ(θ−1(

1

n
)− σ)

}
,

where θ() is the cdf of the standard normal distribution. Using Tables C6.1
and C6.2 in Harter and Balakrishnan [6] and Eqs. (1)-(2) in Section 3.1, the
means and variances of ĀxHL with the underlying lognormal (µ = 0, σ = 1) are
shown in the following table. Note that E(x) = 1.64872, V ar(x) = 4.67075, and
Skewness(x) = 6.1849 for the lognormal distribution with µ=0 and σ2=1.

Table A.4 : Bias and Efficiency of ĀxHL for LogNormal (µ=0, σ2=1)
Sample Size n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

E(X̄) 1.64872 1.64872 1.64873 1.64872 1.64872 1.64872
E(ĀxHL) 1.26269 1.27623 1.29000 1.30314 1.31542 1.32679

Bias(ĀxHL;µ) -23.4% -22.6% -21.8% -21.0% -20.2% -19.5%
Asym(ĀxHL) 1.11100 1.14365 1.17164 1.19585 1.21702 1.23571

Bias(Asym(ĀxHL);µ) -32.6% -30.6% -28.9% -27.5% -26.2% -25.1%
V ar(X̄) 0.93415 0.77846 0.66725 0.58385 0.51898 0.46708

V ar(ĀxHL) 0.43857 0.36178 0.31139 0.27534 0.24803 0.22646
MSE(ĀxHL;µ) 0.58759 0.50053 0.44008 0.39477 0.35912 0.33011

REff (X̄, ĀxHL;µ) 159% 159% 159% 159% 159% 159%

11This is not the same µ as in Bias(ĀxHL;µ)
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A.5 The Weibull Distribution

The pdf and cdf of the two-parameter Weibull distribution with scale parameter
θ and shape parameter τ are

f(x; θ, τ) =
τ

θ

{x
θ

}τ−1

e−(x/θ)τ x ≥ 0, θ > 0, τ > 0

and
F (x; θ, τ) = 1− e−(x/θ)τ ,

respectively. The mean, variance, and Skewness are

E(x) = θΓ(1 +
1

τ
), V ar(x) = θ2Γ(1 +

2

τ
)− (θΓ(1 +

1

τ
))2,

and

Skewness(x) =
Γ(1 + 3

τ
)− 3Γ(1 + 2

τ
)Γ(1 + 1

τ
) + 2[Γ(1 + 1

τ
)]3

[Γ(1 + 2
τ
)− [Γ(1 + 1

τ
)]2]3/2

,

respectively.
Various closed-form solutions exist for the means and variances for X(i) (see

Harter and Balakrishnan [6]). The calculation of Asym(ĀxHL) depends on the
sample size n and parameters θ and τ ,

Asym(ĀxHL) =
θΓ(1 + 1

τ
)

1− 2/n

{
Γ(1 +

1

τ
; [
F−1(1− 1

n
)

θ
]τ )− Γ(1 +

1

τ
; [
F−1( 1

n
)

θ
]τ )

}
=
θΓ(1 + 1

τ
)

1− 2/n

{
Γ(1 +

1

τ
;−ln(

1

n
))− Γ(1 +

1

τ
;−ln(1− 1

n
))

}
.

Note that E(x) = 2, V ar(x) = 20, and Skewness(x) = 6.618 for the Weibull
distribution with τ = 0.5 and θ = 1. Using Tables C3.1 and C3.2 in Harter and
Balakrishnan [6] and Eqs. (1)-(2) in Section 3.1, the means and variances of ĀxHL
with the underlying Weibull distribution (θ=1,τ=0.5) are shown in the following
table.

Table A.5 : Bias and Efficiency of ĀxHL for Weibull (θ=1, τ=0.5)
Sample Size n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

E(X̄) 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
E(ĀxHL) 1.08093 1.11264 1.14489 1.17576 1.20464 1.23142

Bias(ĀxHL;µ) -46.0% -44.4% -42.8% -41.2% -39.8% -38.4%
Asym(ĀxHL) 0.72468 0.79828 0.86211 0.91824 0.96747 1.01078

Bias(Asym(ĀxHL);µ) -63.8% -60.1% -56.9% -54.1% -51.6% -49.5%
V ar(X̄) 4.00000 3.33333 2.85714 2.50000 2.22222 2.00000

V ar(ĀxHL) 1.31714 1.09927 0.96081 0.86327 0.78969 0.73149
MSE(ĀxHL;µ) 2.16184 1.88668 1.69202 1.54263 1.42229 1.32221

REff (X̄, ĀxHL;µ) 185% 185% 185% 185% 185% 185%
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A.6 Excel VBA Functions for Huber’s M-Estimator

Function HuberM(x As Range, KValue As Double) As Double

Dim vRange1 As Variant

Dim dTemp, dHuberSum, dTempHuberM, dMADN As Double

Dim h, i, j, iRowCount, iColumnCount, iHuberCount As Integer

iRowCount = x.Rows.Count

iColumnCount = x.Columns.Count

vRange1 = x.Cells.Value

dMADN = MADN(x)

dTempHuberM = WorksheetFunction.Median(x)

dTemp = 0

For h = 1 To 20 ’20 is arbitrary

dHuberSum = 0

iHuberCount = 0

For i = 1 To iRowCount

For j = 1 To iColumnCount

dTemp = (vRange1(i, j) - dTempHuberM) / dMADN

If Abs(dTemp) < KValue Then

dHuberSum = dHuberSum + dTemp

iHuberCount = iHuberCount + 1

ElseIf dTemp > KValue Then

dHuberSum = dHuberSum + KValue

Else

dHuberSum = dHuberSum - KValue

End If

Next j

Next i

If iHuberCount = 0 Then

dTemp = dTempHuberM

Else

dTemp = dTempHuberM + dMADN * dHuberSum / iHuberCount

End If

If Abs(dTemp - dTempHuberM) < 0.0001 Then

HuberM = dTemp

Exit Function

Else

dTempHuberM = dTemp

End If

Next h

End Function

On Small Samples and the Use of Robust Estimators in Loss Reserving

Casualty Actuarial Society E-Forum, Fall 2010 25



Function MADN(x As Range) As Double

Dim vRange1 As Variant

Dim dMedian As Double

Dim i, j, iRowCount, iColumnCount As Integer

iRowCount = x.Rows.Count

iColumnCount = x.Columns.Count

vRange1 = x.Cells.Value

dMedian = WorksheetFunction.Median(x)

For i = 1 To iRowCount

For j = 1 To iColumnCount

vRange1(i, j) = Abs(vRange1(i, j) - dMedian)

Next j

Next i

MADN = WorksheetFunction.Median(vRange1) / 0.6745

End Function
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