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Abstract: The popular General/Property-Casualty Insurance chain ladder method was first expanded to 
include variance calculations by Mack [1]. As new research expands the chain ladder method’s stochastic 
functionality, it is as important as ever to understand the assumptions underlying this fundamental 
approach and evaluate their appropriateness given the data. The purpose of this paper is to introduce more 
statistical rigor to this popular method and help bridge the gap between practice and statistical theory. We 
will expand the regression approach of Murphy[2] so that selected link ratios other than simple or volume 
weighted averages can be seen as optimizing a rigorous statistical model. We will derive formulas for the 
parameter risk and process risk of ultimate losses projected from such selected link ratios. We will discuss 
residual analysis and statistical measures for validating the selected factors. Using data previously analyzed 
in the literature, we will compare stochastic results from the popular application of the Mack formula to 
those based on our model. It is hoped that this paper will provide the actuarial practitioner with a 
statistically rigorous framework with which to measure objectively the appropriateness of the chain ladder 
deterministic and stochastic results, make more informed judgmental selections, and avoid injudicious 
conclusions based on potentially inappropriate assumptions. 
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Introduction 

The Chain Ladder method is the most popular algorithm by which actuarial practitioners 

calculate a central estimate of the unpaid claim liability. Given the need of the actuarial profession to 

provide statistical descriptions, or models, of the loss development process, much research in the 

last two decades has been dedicated to framing this method within a statistical structure. This is the 

reason for the appeal of the stochastic formulas of Dr. Thomas Mack [1], who was the first to 

produce such a statistical model for the case of volume weighted average age-to-age factors (link 

ratios). Murphy [2] considers the chain ladder method as a special case of a more general linear 

regression approach. Zehnwirth [3] refers to this broader class of chain ladder models as the 

“extended link ratio family,” but rejects that family on the grounds of insufficient predictive power 

and favors the “probability trend family” (PTF) instead. Using a Bayesian approach, Verall [4] 

incorporates judgment in a rigorous fashion to tackle the inflexibility of other methods (such as 

Zehnwirth’s PTF). Unfortunately, the difficulty of verifying a priori link ratio distributions and the 

overall complexity of the MCMC (Markov Chain Monte Carlo) algorithm make this method difficult 

to implement in large enterprises. 

The purpose of this paper is to bridge the gap between the stochastic underpinnings of the chain 

ladder method and its implementation in practice, i.e., when link ratios are selected based on 

judgment. We present a general chain ladder model that fulfills two key requirements: 
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1. Its central estimates are consistent1 with chain ladder projections based on judgmentally 

selected factors2, and 

2. Its underlying assumptions and actuarial inputs are testable within a rigorously-defined 

statistical framework.3 

The paper is organized as follows. In Section 1 we propose a flexible yet rigorous model of the 

chain ladder method built around the regression interpretation similar to Murphy [2] that satisfies 

the two requirements above. We call this model the Flexible Factor Model (FFM). In Section 2 we 

present formulas for the mean square error of chain ladder projections based on selected link ratios, 

as long as those selections are “reasonable” (defined below). In Section 3 we demonstrate how our 

model naturally embeds a process for visually and statistically testing the consistency of the actuary’s 

selected link ratios with the development data within the triangle. Section 4 demonstrates these 

concepts with an example. In Section 5 we compare the FFM process, parameter and total risk 

estimates to the Mack [1] versions, showing that the Mack model is a special case of FFM when the 

actuary selects volume weighted link ratios. We also show how common use of “the Mack Method” 

can significantly understate potential variability. Section 6 is a summary that also includes thoughts 

for future research. We conclude with an Appendix of proofs of our major results. 

1. A Chain Ladder Model for Flexibly-Selected Link Ratios 

We start with the usual notation, where the observed cumulative paid losses4 are denoted by the 

set  iIjIiCD ij  11 ,1| . A regression model equivalent to the chain ladder method 

is 

 
2/

,,1
k

kikikikkik CCfC
  (1) 

 .11,1),1,0(~, iIkIiki   (2) 

This model is similar to the model proposed by Mack [1] and Murphy [2], with a more general 

and, as we shall see, more flexible error assumption (1). Assumption (2) is that the set 

 iIkIiik  11 ,1|  of “noise given the Triangle D” is comprised of independent 

                                                 
1 By “consistent” we mean that the model’s estimates will be the same as the estimates produced by the chain ladder’s 
algorithmic steps. 
2 For example, when considering benchmarks in a reserve analysis. 
3 For example, to test, validate, and approve a company’s internal model within the framework of Solvency II; see 
Proposal for a Directive of the European Parliament and of the Council on the taking-up and pursuit of the business of Insurance and 
Reinsurance - Solvency II {SEC(2007) 870} {SEC(2007) 871, Article 43: Risk Management 
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:52007PC0361:EN:NOT 
4 We refer to loss amounts as paid losses for consistency with prior literature. In fact, losses can be either paid or 
incurred amounts; can include or exclude adjustment expense; can even refer to claim counts. In short, the theory 
applies to any chain ladder estimable amount. 
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identical distributed (i.i.d.) normal5 random variables; in particular we 

assume 1)( and 0)( 2

,  kiik EE  . Making explicit the implicit assumption of the error term is 

crucial for providing a data set of residuals for model testing.  

Under assumptions (1), (2) the best linear unbiased estimate of the link ratio, given the set of 

observations D, can be calculated as weighted averages of the observed link ratios: 
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is the accident year i link ratio from age k to age k+1, and the weights are functions of α: 
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The optimal solution of model (1), (2) is specified by the parameters )ˆ,ˆ( f  (the “model 

specification”) where the solution for the values of the s'̂  will be discussed below. (Notational 

remark: The superscript α of w is not an exponent but emphasizes that the weights are a function of 

α.) 

To illustrate, consider the “Distribution Free” chain ladder model introduced in Mack [8]. Mack’s 

model is a special case of model (1), (2) with k=1, k=1,…,I. Mack proved that the weighted 

average link ratio estimators 
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are unbiased with the smallest variance6. Clearly these estimators are consistent with formula (3) with 

α=1 for all k.  

                                                 
5 The normality assumption is made to assure that the Chain Ladder link ratios correspond to ML-estimators. Other 
distributions can be assumed as well, but that might lead to an ML solution other than the least squares solution. 
6 Submission to the 1994 Variability in Reserves Prize Program: “Measuring the Variability of Chain Ladder Reserve 
Estimates,” CAS Forum, 1994, Vol. 1, p. 141. 
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To reiterate, by selecting an α parameter we specify the variance assumption of model (1), (2). We 

shall see that for any “reasonably selected link ratio” (defined below) we can select an appropriate α 

parameter that will yield the selected link ratio as the best linear unbiased chain ladder estimator. 

That is what we mean when we say that by virtue of this simple error term extension, model (1), (2) 

embeds the traditional selected-factor-based chain ladder method in a statistical framework. We refer 

to model (1), (2) as the Flexible Factor Model (FFM). 

We digress momentarily to distinguish between a model and a method. A model is a 

mathematical description of an observation, process or phenomenon, where “best fitted” 

parameters are based on the underlying data characteristics. A method on the other hand is an 

algorithm that produces estimates through a sequence of predetermined steps. Thus a method can 

always be used to calculate some estimates, whereas a model is based on assumptions that should be 

tested before its results are trusted. The traditional Chain Ladder method is consistent with many 

stochastic models that have been built around it, such as the Mack, Murphy, and over-dispersed 

Poisson models. In practice, however, actuaries select link ratios judgmentally because simple or 

volume weighted averages may be inappropriate in certain situations.7 There is no doubt that such 

flexibility makes practical sense, but no matter how experienced an actuary is, the appropriateness of 

his/her judgment is always open to question. Under the model framework of this paper an actuary 

can respond to such challenges with objective, statistical justification.8 We revisit this point in 

Section 3. 

We present now our first major results. 

Theorem 1.1: The “Reasonable” Link Ratio Function 

Consider for a given triangle the corresponding link ratio function as in (3) and denote the set of 

all reasonable link ratios with }|)({LR:)(LR  kk  where kk ii max,min,  and  are the indices of 

},max{ and },min{ ,, kIjCkIjC kjkj   respectively. Then 

1. If )(,  kLRdc , then the whole interval )(],[  kLRdc  

2.    as )(LR ,min kik F  

3.    as )(LR ,max kik F  

4. Every link ratio between the straight average, the weighted average and the link ratios 

corresponding to the minimum },min{ , kIjC kj   and maximum 

                                                 
7 An experienced actuary recognizes, for example, trends in the triangles and adjusts the link ratios manually, perhaps 
influenced by a benchmark pattern. 
8 Furthermore we mention here that the residuals are often used to simulate the distribution of the stochastic reserving 
process through the Bootstrapping approach. The core of the Bootstrapping method is the “independent identically 
distributed” assumption (2). The Bootstrapping results will be wrong if this assumption is violated. 
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},max{ , kIjC kj   of the loss amounts as of the previous maturity (i.e., the 

denominators of these link ratios) is reasonable.  

Theorem 1.2: Existence of Optimal Alphas 

Let 2 ),(LR  Ikh kk  be a set of reasonable link ratios (as defined in Theorem 1.1). 

Then for each k there is at least one   such that kh  is the ML-estimator of (1). We define the 

“optimal alpha” as 

)})LR(|0max{)},LR(|0max(min{:ˆ   kkk hh . 

The condition k≤I-2 is stipulated because for the last development period (k=I-1) a regression 

approach will not work if there is only one observation. Proofs of Theorems 1.1 and 1.2 are in the 

appendix. 

In other words, among all possible α, we take the one with smallest absolute value. If two 

possible α have exactly the same absolute value (i.e., more than one standard deviation FFM 

variance assumption is associated with the same link ratio), we choose the positive one. Thus, k̂  is 

well defined. Furthermore, values can be calculated using a solver9.  

Note that in the usual chain ladder model the standard deviation of the paid development 

process is assumed to be proportional to the square root of cumulative payments as of the beginning 

of the period. But why should this hold for all development years? Theorem 1.2 relaxes the volume-

weighted requirement and shows that even with reasonable, judgmentally selected link ratios there 

exists an underlying statistical model with those selections being the optimal solutions. 

2. Standard Error Formulas for the Flexible Factor Model 

The Flexible Factor Model’s link ratio parameters fk can be estimated using weighted least squares 

regression. Let kf̂  denote those estimators, themselves random variables. Estimates of the 

conditional variance of those estimators, 2222 ˆ)|ˆ(:)ˆ( kkk fDfEf  , and estimates k̂  of the scale 

parameters are standard outputs of regression software. 10 

Formulas for an Individual Accident Year 

Consider an individual accident year (or “origin year”) i as of its current age (or “lag”) k. An 

estimate 1,
ˆ

kiC  of the mean value μi,k+1 of the future loss 1, kiC , given D, can be found by completing 

the square in the chain ladder sense. Assuming the estimates are unbiased, the mean square error of 

                                                 
9 For example the Newton-Algorithm with starting point 0. 
10 The delta operator Δ denotes parameter risk. Excel’s LINEST function refers to the statistics as “se1…the standard 
error of the coefficient” and “sey…the standard error for the y estimate,” respectively. 
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the estimate, which by definition is the expected squared difference between the estimate and its 

target, is the sum of parameter risk and process risk: 
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with 
22  and   denoting the operators for parameter risk and process risk, respectively. Parameter 

risk and process risk can be calculated recursively according to the formulas below. 

Parameter Risk: Variance of the estimate of the mean future value of loss 

For the first period after the current diagonal, 

)ˆ()ˆ( 22

,1,

2

kkiki fCC    

since 
2

,kiC  is a constant. 

For s=2, 3, …,  
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22

11

22
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2

  skiskskiskskskiski CfCffC  . 

Note: The formulas above agree with “the Mack Formula” for α = 0, 1, 2 [7] with the exception 

of the third term (the product of the variances) in the parameter risk formula. 

Process Risk: Variance of the deviation of future value of loss from its mean 

For the first period after the current diagonal, 2

,1,

2 )( kkiki
kCC 

  . For subsequent periods 
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where Ψ is a function of α and of the coefficient of variation κ of the future losses. Estimates of the 

expected values )( 1, skiCE  come from the chain ladder’s “squaring-the-triangle” process. The fk+s-1 

are the selected link ratios, and  1,

2

 skiC  is the process risk as of the previous age. 

Under the assumption that the “noise” εi,k is normally distributed, it is straightforward to show 

that the function Ψ is a polynomial in κ for positive integer (n) values of α:11 

                                                 
11 Expand the Taylor series of f(x)=xn around μ, and use the fact that odd central moments of a normal random variable 

are zero and even central moments are related to σ according to the formula 
n

n

n
n

n
XE )(

)!(2

!
)(

2
2

 . See 

http://en.wikipedia.org/wiki/Normal_distribution#Moments.  

An exact value for Ψ(α,κ) for non-integral positive values of α is difficult to present in closed form because E(Xα) is 
undefined when the probability that X<0 is non-zero (for example, E(√X) is undefined for X<0). For triangles of 
property/casualty losses with small coefficient of variation, reasonable approximations for such real “moments” are 
available using simulation. Details available upon request of the authors. 
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For  > 0 but not an integer, we recommend linearly interpolating (,) between (,) and 

(,)  where denotes the floor function of , which is the largest integer  , while  

denotes the ceiling function of , which is the smallest integer ≥ .12 For negative values of , note 

that such a selection would imply an actuarial assumption that the variability of loss at the end of a 

development period is inversely proportional to the value of loss at the beginning of the period, an 

unusual assumption for General/Property-Casualty insurance. Nevertheless, if the data and the 

selection indicate a negative , we recommend using simulation to calculate (). Such 

simulations could be performed with Excel or another programming language. An example using R 

is provided as Appendix B. For illustration, Figure 5 in Appendix A graphs simulated values of  as 

a function of  for different coefficients of variation. Notice that is a convex function, so linear 

interpolations for positive  will be conservative approximations.  

To calculate the parameter and process risk quantities, we need to estimate Δ2 and Γ2. We follow 

the traditional statistics approach here, replacing all unknown quantities by their corresponding 

estimates.13 

Formulas for All Accident Years Combined 

Recursive variance formulas for all accident years combined become slightly more complicated 

because at each new age an additional accident year is included.  

For ages j = 2, 3, …, let 



I

jIi

jiC
2

,jX  be the sum of the future values of losses for accident 

years that have not yet matured to age j (the most recent accident year is denoted by I). Let 





I

jIi

ij

2

  denote the expected value of Xj and let 



I

jIi

jij CX
2

,
ˆˆ  be its chain ladder estimate. 

Parameter Risk: Variance of the estimate jX̂  

For j=2, only the most recent accident year is included in the total, so the parameter risk of 2X̂ is 

equal to 2

1,1

2

2

2 )ˆ()ˆ( ICfX  . 

For j=3, 4, …,  

)ˆ()ˆ()ˆ()ˆ()()ˆ( 1

2

1
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22

11

22

1,21

2

  jjjjjjjIjj XfXffCX . 

                                                 
12 Our tests have shown that for small κ the FLOOR and CEILING functions yields not significantly different results. 
13 See [6] for a discussion of resampling. 
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Model 
Selection 

SeSelection 

Parameter 
Selection 

Model 
Validation 

Process Risk: Variance of jX  

Under Assumption (2), all accident years are independent; therefore, the process variance of the 

sum of the future values as of a given age is the sum of the process variances: 

)()(
2

,

22 



I

jIi

jij CX . 

As before, the formulas above agree with the “Mack Formula” for α = 0, 1, 2 with the exception 

of the third term (the product of the variances) in the parameter risk formula.  

3. Residuals and Model Selection 

In the traditional world, an actuary’s methods and selections are defended by his/her expertise 

and experience. In a modeling world, mathematical and graphical tools can provide more objective 

ways to defend one’s selections and to communicate one’s conclusions. One of the most important 

diagnostic and validation tools are residuals, which are in general the difference between a data set 

and its “formulaic representation.” For FFM, the formulaic representation of the data is given by the 

model specification )ˆ,ˆ( f  and the corresponding residuals are defined as 

 )ˆ/()ˆ(:)ˆ,ˆ(:
2/ˆ

,1,,
k

kikikkikkiki CCfCfrr
    (5) 

Now, given a set of selected link ratios, how does the actuary confidently defend the resulting 

estimate of the unpaid claim liability? The first step is to demonstrate that the corresponding α 

parameters lead to residuals }{ ,kir  that “look like noise.” This “noise hypothesis” – i.e., the residuals 

are independent and identically distributed normal random variables – can be tested visually (e.g., 

QQ-plots) as well as with “hard” statistics (e.g., Shapiro-Francia-test for normality [5]). If the test 

fails and one chooses to adjust the selections, how does one know if the new set of link ratios are 

“better” than the initial selections? 

The raising and answering of these questions within a reserve analysis is encapsulated by an 

analytical flow which we call the “actuarial validation cycle,” illustrated in Figure 1 below: 

 

 

 

 
Figure 1: Actuarial validation cycle 
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The actuarial validation cycle underscores the idea that models offer proposals to understand the 

data structure.  

Figure 1 illustrates that a failed validation step leads to re-selecting the initial model. Selecting a 

model other than FFM is certainly an option, but that decision and its implications are beyond the 

scope of this paper.  

Assumptions per se can be argued but not tested. Assumptions formed as hypotheses, however, can 

be mathematically tested by their implied residuals. The FFM approach to the traditional chain 

ladder practice of selecting link ratios is one way to test and validate those selections objectively. 

There may be others. To cite George Box, “Essentially, all models are wrong, but some are useful.” 

4. An Example 

We consider the triangle in Table 1 of RAA data quite well analyzed in Mack [1], Zehnwirth [3] 

and elsewhere in the literature. We consider it here within the FFM framework to illustrate possible 

iterations through the actuarial validation cycle of Figure 1.  

Table 1 

5,012 8,269 10,907 11,805 13,539 16,181 18,009 18,608 18,662 18,834 

106 4,285 5,396 10,666 13,782 15,599 15,496 16,169 16,704  

3,410 8,992 13,873 16,141 18,735 22,214 22,863 23,466   

5,655 11,555 15,766 21,266 23,425 26,083 27,067    

1,092 9,565 15,836 22,169 25,955 26,180     

1,513 6,445 11,702 12,935 15,852      

557 4,020 10,946 12,314       

1,351 6,947 13,112        

3,133 5,395         

2,063          

Simple 
Average 

8.206  1.696  1.315  1.183  1.127  1.043  1.034  1.018  1.009  

Weighted 
Average  

2.999  1.624  1.271  1.172  1.113  1.042  1.033  1.017  1.009  

First we declare our goal, which is to find a model that describes our data within a certain level of 

confidence. 

 Model Selection: We start with the FFM chain ladder model, which means that we believe 

cumulative losses behave according to the equation 

2/

,,1
k

kikikikkik CCfC   
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 Parameter Selection: This means that we choose a set of link ratios, then calculate the 

corresponding α, which in turn determines the variance assumption. We start here by selecting 

the simple averages shown above. 

 Model Validation: Now we test the corresponding residuals shown in Table 2. 

Table 2 

-0.5313 -0.7949 -0.7322 -0.5395 0.9132 1.3861 -0.1275 -0.7071 

2.6108 -0.9210 2.0882 1.6351 0.0653 -0.9937 1.0576 0.7071 

-0.4513 -0.3229 -0.4763 -0.3326 0.7867 -0.2809 -0.9301  

-0.4994 -0.6992 0.1083 -1.2187 -0.1807 -0.1115   

0.0448 -0.0850 0.2693 -0.1818 -1.5844    

-0.3198 0.2526 -0.6596 0.6376     

-0.0801 2.1662 -0.5977      

-0.2483 0.4040       

-0.5254        

In the graph below, the residuals appear fairly random. A few of the residuals (the red ones) are 

outliers. 

 

 

 

 

 

 

 

 

 

 

 

Besides the visual diagnostic above, we want to check the “noise hypothesis” with an objective 

statistical test. Here the Shapiro-Francia P-Value is 0.26% which suggests that the assumption of 

normality of the residuals is rejected at the 5.0% confidence level. (When the P-Value is less than 

one’s predetermined confidence level, the null hypothesis – i.e., that the residuals are i.i.d. normal – 

should be rejected.) This means we need to go back to step one.  

 Model (Re-)Selection: Within the scope of this paper we stay within the FFM framework.  

Figure 2: Residuals based on simple average link ratio selections versus 
quantiles of the normal distribution (red line) 
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 Parameter (Re-)Selection: The first few link ratios produce outliers in our first iteration, so we 

might change the first three selected link ratios to volume weighted averages. In our second 

iteration we would select: 

Selection 2.999 1.624 1.271 1.183  1.127  1.043  1.034  1.018  1.009  

alpha 1.000 1.000 1.000 2.000 2.000 2.000 2.000 2.000  

 Model Validation: By comparing Figure 2 and Figure 3, we see that the re-selected link ratios 

lead to residuals that have a much better appearance of being a random sample from a normal 

distribution. The Shapiro-Francia test delivers a P-Value of 12.0%, so given our 5% confidence 

level we would accept this model, the selected parameters, the corresponding liability estimates, 

and the standard errors. 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

5. Comparing Uncertainty Estimates 

In practice today it is not uncommon to find coefficients of variation (CV’s) based on Mack’s 

volume-weighted-average standard error formulas applied to chain ladder projections based on 

selected link ratios that are not volume weighted averages. The resulting uncertainty estimates can be 

suspect due to this fundamental inconsistency. The FFM model eliminates this inconsistency by 

making sure that all reasonably selected link ratios are best linear unbiased estimators for an 

underlying model of the data, and the uncertainty estimates resulting from the FFM formulas are 

consistent with those selections. 

To illustrate this point, Table 3 below compares the standard errors of the Mack and FFM 

models for the RAA triangle (Section 4) when the selected factors are the volume weighted averages. 

Figure 3: Residuals based on the re-selected link ratios versus 
quantiles of the normal distribution 
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Table 3 - Standard Errors based on volume weighted average factors 

 

 

 
 
 
 
 
 
 
 
 
 
 

The total risk CV of the liability for all accident years combined is 51.6%. The similarity of results 

is not surprising since, as we saw in Section 1, Mack’s model is a special case of the FFM.14  

Now, suppose one selected the following link ratios for the RAA data: 

Table 4 – Alternative link ratio selections based on judgment 

1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10 

3.500  1.750  1.275  1.175  1.112  1.040  1.035  1.018  1.009  

The FFM formulas result in a total risk overall CV of the liability for all accident years combined of 

63.8%. To impute the Mack-formula based CV of 51.6% to the estimated liability from these link 

ratios would understate the total risk by about 19% (1-.516/.638). 

6. Conclusion and Further Research  

Given reasonably selected link ratios, we have shown how the Flexible Factor Model  

 reproduces the point estimates of the traditional chain ladder methodology, 

 determines estimates of risk consistent with those point estimates,  

 offers a framework for statistically objective diagnostic and validation tools, and  

 enhances the analytical reserving work flow. 

                                                 
14 As mentioned above, the uncertainty estimators of the two models will agree with the exclusion of the third term (the 
product of the variances) from the parameter risk formulas of the FFM. 

FFM results Mack results

AY

Process 

risk

Parameter 

risk Total risk

Process 

risk

Parameter 

risk Total risk

i=2 150 142 206 150 142 206

i=3 470 410 623 470 410 623

i=4 549 507 747 549 507 747

i=5 1,227 809 1,470 1,227 809 1,469

i=6 1,824 826 2,002 1,824 825 2,002

i=7 2,042 844 2,209 2,042 844 2,209

i=8 4,947 2,058 5,359 4,947 2,057 5,358

i=9 6,035 1,925 6,334 6,035 1,921 6,333

i=10 23,464 7,325 24,581 23,464 7,276 24,566

Total: 24,920 10,193 26,924 24,920 10,153 26,909
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Development of similar results for other deterministic methods – such as Bornhuetter-Ferguson, 

Cape-Cod, and Munich Chain Ladder – seems feasible. Various bootstrapping techniques could be 

conducted on the FFM residuals, emphasizing the role residuals play in assuring meaningful results. 

A Bayesian approach could prove fruitful, where one defines a “prior” for the αk and derives the 

aposteriori distribution for the variance assumption. However, if FFM is too simplistic to model the 

data appropriately, a natural next step would be to introduce an intercept term to the regression 

model as suggested in Murphy [2]. 

 



Flexible Factor Chain Ladder Model: A Stochastic Framework for Reasonable Link Ratio Selections 

Casualty Actuarial Society E-Forum, Summer 2009 14 

Appendix A 

Proof of Theorem 1.1 (Link Ratio Function)  

1. If :LRk  is a differentiable function and in particular continuous, its range is an interval 

in the set of real numbers. 

2. We first note for arbitrary α that 1
1 , 




kn

j kjw


. Without loss of generality we assume 

)(,,,min
kIjCC kjki  . It is now sufficient to prove    as  1,min kiw . This can be 

seen by rewriting the weight 

 )/(// ,,1

2

,

2

,1

2

,

2

,, minminminmin kjki

kn

j kjki

kn

j kjkiki CCCCCCw  









. 

Obviously all min,, ,1)/(
min

ijCC kjki  , thus all terms converge to 0 except for minij  , so 

that we see 



  as )/( 2

,,,1

2

, minmin kikjki

kn

j kj CCCC . 

3. Similar to 2 we can deduce:    as 1,max kiw . 

4. The weighted average and the simple average correspond to )1(LR ),2(LR kk  respectively. 

This, with 1 above, proves the theorem. 

The following example illustrates the function )(LR k  with an example, where 

5.2,, maxmin
 kiki FF . This is a case, where for all link ratios, except for the minimum for 0 , 

there are two different variance assumptions, which lead to the same link ratio. Also the infinitesimal 

behavior of the function is shown in the accompanying graph. 

 

Table 5: Link Ratio Example 

152 380 2.500 

185 449 2.425 

217 537 2.478 

250 550 2.201 

262 655 2.500 

235 466 1.985 

207 411 1.989 

185 372 2.011 

   

Simple Average: =2 2.261 

VW Average: =1 2.258 

 =0 2.243 
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Proof of Theorem 1.2  

Using Theorem 1.1 we observe that the set )}LR(|{   kh  is not empty. Furthermore we 

note that 0)()LR(
1 1

1

,,1

2

,   












kn

j

kn

i kikikjkk CCChh  , which can be solved with an 

appropriate numerical solver algorithm. In particular the Newton-Raphson algorithm can be easily 

employed. If we consider the hk equation described above as a function of , noted as f(), the 

Newton-Raphson algorithm calculates an appropriate  that serves as a root of the equation, i.e. 

f()=0. The approximation of the root is achieved by calculating successive tangents of f() by 

generating the sequence {pn} defined by: 

)(

)(

1

1

1









n

n
nn

pf

pf
pp  (for n   1). 

More than one solution can be produced by the application of the Newton-Rahpson algorithm. 

Consider again the example in Table 5 above where we get two solutions for the link ratio 2.400: -

10.5 and 7.5, thus we set the variance estimation to max(-10.5, 7.5)=7.5. 

Link Ratio Function
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Figure 4: Reasonable link ratios derived from the Link Ratio Function 



Flexible Factor Chain Ladder Model: A Stochastic Framework for Reasonable Link Ratio Selections 

Casualty Actuarial Society E-Forum, Summer 2009 16 

Proof of the Parameter Risk Formulas – single accident year 

For the first period after the current diagonal, kikki CfC ,1,
ˆˆ  , so )ˆ()ˆ( 222

,1,

2

kkiki fCC    

since 
2

,kiC  is a constant. 

For s>1 periods after the current diagonal, 1,1,
ˆˆˆ

  skiskski CfC , so based on the “law of total 

variance”: 

))ˆˆ(())ˆˆ(()ˆ( 1,,1,,,

2

  skiskiskiskiski CCEVarCCVarEC  

= ))ˆ(ˆ())ˆ(ˆ( 11,1

2

1,   skskiskski fECVarfVarCE  

= )ĈVar( )ˆ()ˆ( 11-ski,

2

1,1   skskisk fCEfVar  

=   )ˆ()ˆ()ˆ()ˆ( 1,1

2

11,

2

1,1   skskskiskisk CVarfCECVarfVar  

= )ˆ()ˆ()ˆ()ˆ( 1,

2

1

2

1,

22

11

22

1,   skiskskiskskski CfCff . 

Proof of the Process Risk Formulas – single accident year 

For the first period after the current diagonal, 2

,1, )( kkiki
kCC 

  . For s>1 periods after the 

current diagonal, process risk can be calculated recursively according to the formula:  

 
2

11,1,

22

1,

2 )|()()( 1


 skskiskiskski DCECfC sk 

 

Proof: 

For the first period after its current age (s=1) the process risk for Ci,k+1 comes directly from 

assumption (1): 

 2

,1,

2 )( kkiki
kCC 

   (5) 

because k

kiC


,  is a known constant. 

For s>1 we again rely on the “law of total variance”:  

))(())(()( ,,,

2 DCEVarDCVarEC skiskiski    

= ))(()( 1,1

2

11,
1 DCfEVarDCE skisksk

a

ski
sk

    

= )()( 1,

22

1

2

11,
1

 

skisksk

a

ski CfDCE sk   

As explained in the text we favor approximating )|( 1

1, DCE sk

ski





 in practice with 

  




1

)|( 1,

sk

DCE ski


, where factor Ψ is a function of α and the coefficient of variation κ. 

For estimates of Γ2, we replace all unknown quantities by their best estimates: fk by kf̂ , σk by k̂ , 

etc. Again we note here that 22 ˆ and ˆ
kk f  both depend on k̂ . However we drop the functional 

notation )ˆ(ˆ and )ˆ(ˆ 22

kkkk f   for convenience of presentation. 
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Proof of the Parameter Risk Formulas – all accident years combined 

For j=3, 4,…,  1,211
ˆˆˆ

  jjIjjj CXfX , where I-j+2 is the only accident year that has 

matured as of age j-1. By employing the “law of total variance” mentioned above, we have: 

))ˆˆ(())ˆˆ(()ˆ( 11

2

  jjjjj XXEVarXXVarEX  

= ))ˆ)ˆ(ˆ(())ˆ)ˆ(ˆ(( 11,21111,211   jjjIjjjjjIjj XCXfEVarXCXfVarE  

= ))ˆˆ()ˆ(())ˆˆ()ˆ(( 111,2111

2

1,21   jjjjIjjjjjIj XfECXVarXfVarCXE  

= ))ˆ(())ˆ(()ˆ( 1,211

2

1,211

2

  jjIjjjjIjj CXfVarCXEf  

=   )ˆ()ˆ()ˆ()ˆ( 1

2

11,21

2

11

2

  jjjjijjj XVarfCXEXVarf  

= )ˆ()ˆ()ˆ()ˆ()( 1

2

1

2

1

22

11

22

1,21   jjjjjjjij XfXffCM , 

 

since 1,2  jjIC  is a constant. 

Proof of the Process Risk Formulas – all accident years combined 

The formula for process risk is straightforward since all accident years are assumed to be 

independent and the process variance of the sum of the losses for all accident years is the sum of the 

process variance of each accident year. 

Process Risk Function Ψ based on simulations 

Results of simulations calculating the function   a s a ratio of E(Xα) over (E(X))α  for a 

truncated-normal random variable X are shown in Figure 5 below.  
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Figure 5: Function  based on simulated values 
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Appendix B 

Estimating the Ψ Function in R15 

To approximate  )()(),( XEXEcv  we simulate many normal variates X with coefficient 

of variation cv, and calculate  ))X(()X( meanmean  for our α of interest. Technically, X
α
 is only 

defined on the positive support of X when α is not a whole number, so we employ rejection 
sampling16 to ensure that X consists of positive values only. The R function in Figure 6 creates a 
sample of size 10000 of positive-only pseudo-normal random variates.17 
 

 
 

Unfortunately we cannot simply set μ=1, σ=cv and use the resulting random sample because the 
sample cv may significantly differ from the input cv, especially for large values of the target cv. To 
illustrate, when the target cv is small, say 0.2, 

> set.seed(2009) # so results can be duplicated 

> X<-rnorm.positive(1,0.2) 

> cv<-sd(X)/mean(X) # the sample cv 

[1] 0.2004325 

the sample cv is close to the input σ=cv, but for a larger target such as 0.8 

> set.seed(2009) 

> X<-rnorm.positive(1,0.8) 

> cv<-sd(X)/mean(X) 

[1] 0. 5818142 

the sample cv is far from the input σ=cv. Therefore, for any given target cv we first find a 

(mu,sigma) pair such that the rnorm.positive function builds a sample whose sample cv is 

as close as possible to the target cv. To find that pair, we use R’s optim function. For example, in 
the “R session” below we see that for a target cv of 0.8, a sample of 10000 positive pseudo-normal 
variates X generated from μ = -1.196564 and σ = 4.676847 will have a sample coefficient of 
variation close to that target: 
                                                 
15 R is a statistical computing and graphics software environment widely used for academic and commercial research, 
and supported by a worldwide community. R is available for free at http://www.r-project.org. 
16 For an example of a similar application of rejection sampling, see  
http://www.biostat.wustl.edu/archives/html/s-news/2001-04/msg00033.html 
17 In R, text following the #-sign are comments. 

rnorm.positive <- function(mu,sigma) { 

    sampl <- rnorm(10000,mu,sigma) # simulated normals 

    negative <- sampl<=0  # flag the negative values 

    while (any(negative)) { # resample those cells 

        sampl[negative] <- rnorm(sum(negative),mu,sigma) 

        negative <- sampl<=0 

        } 

    sampl               # the final sample 

    } 

Figure 6: Generate a sample of size 10000 of positive pseudo-normal random variates 



Flexible Factor Chain Ladder Model: A Stochastic Framework for Reasonable Link Ratio Selections 

Casualty Actuarial Society E-Forum, Summer 2009 19 

> set.seed(2009) 

> S<-optim(c(1,.8), # vector of mu, sigma starting values 

       sample.cv.distance, # function to minimize 

       gr=NULL, # no gradient function provided to optim 

       0.8, # desired target cv needed by sample.cv.distance 

       method="BFGS") # quasi-Newton method works well here 

> S$par 

[1] -1.196564  4.676847 

> X.8<-rnorm.positive(-1.196564,4.676847) 

> sd(X.8)/mean(X.8) 

[1] 0.787364 # sample cv is close to 0.8 target 

For those new to R, the above warrants some explanation. optim tries to minimize the function 

sample.cv.distance (Figure 7) by an intelligent search through all possible (μ,σ) pairs 

starting with (1,.8). Each time sample.cv.distance is called, it generates an 

rnorm.positive sample – depending on the musigma vector that optim sends it – and 

returns the distance between the cv of that sample and the target cv (0.8 in the session above). 

When optim decides it has found the minimum possible distance, it returns the (μ,σ) solution 

vector in its $par component, referenced as S$par in the session above. 

We now use our sample X.8 generated in the session above to estimate Ψ(α,cv=0.8) for negative 
values of α. For example,  

> mean(X.8^(-.5))/(mean(X.8))^(-.5) 

[1] 1.309064 

shows that Ψ(-0.5,0.8) is approximately 1.31 and 

> mean(X.8^(-2))/(mean(X.8))^(-2) 

[1] 1682.209 

shows that Ψ(-2,0.8) is a staggering 1682. We could use X.8 to estimate Ψ(α,0.8) for positive α too, 
rather than linearly interpolate between integer values per Section 2. For example, if α=1.5 – for a 
selected ATA between the weighted (α=1) and simple (α=2) averages – the estimate of Ψ(1.5,0.8) is 

> mean(X.8^1.5)/(mean(X.8))^1.5 

[1] 1.128022 

which is less than the linearly interpolated value, 1.32.18 

                                                 
18 From the formula for Ψ(n,κ) in Section 2, Ψ(1,0.8)=1 and Ψ(2,0.8)=1+(0.8)2=1.64. 

sample.cv.distance <- function(musigma, targetcv) { 

    mu <- musigma[1] # mu=1
st
 element of musigma vector 

    sigma <- musigma[2] # sigma=2
nd
 element 

    if (sigma<=0) return(100) # to avoid sigma<=0 solutions 

    y <- rnorm.positive(musigma[1],musigma[2]) # the sample 

    abs(sd(y)/mean(y)-targetcv) # the distance 

    } 

Figure 7: function we want optim to minimize 

(Note: It is possible for optim to try a musigma pair containing a negative value for sigma; 

sample.cv.distance penalizes such out-of-bounds tries by returning a large “distance”.) 
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