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Abstract

In actuaral literature, researchers suggested various statistical procedures to estimate the parameters in
claim count or frequency model. In particular, the Poisson regression model, which is also known as
the Generalized Linear Model (GLM) with Poisson error structure, has been widely used in the recent
years. However, it is also recognized that the count or frequency data 1n insurance practice often
display overdispersion, i.e., a situation where the variance of the response variable exceeds the mean.
Inappropriate imposition of the Poisson may underestimate the standard errors and overstate the
significance of the regression parameters, and consequently, giving misleading inference about the
regression parameters. This paper suggests the Negative Binomial and Generalized Poisson regression
models as alternatives for handling overdispersion. If the Negative Binomial and Generalized Poisson
regression models are fitted by the maximum likelihood method, the models are considered to be
convenient and practical; they handle overdispersion, they allow the likelihood ratio and other
standard maximum likelihood tests to be implemented, they have good properties, and they permit
the fitting procedure to be carried out by using the Iterative Weighted Least Squares (IWLS)
regression similar to those of the Poisson. In this paper, two types of regression model will be
discussed and applied; multiplicative and additive. The multiplicative and additive regression models
for Poisson, Negative Binomial and Generalized Poisson will be fitted, tested and compared on three
different sets of claim frequency data; Malaysian private motor third party property damage data, ship
damage incident data from McCullagh and Nelder, and data from Bailey and Simon on Canadian
private automobile liability.

Keywords: Overdispersion; Negative Binomial, Generalized Poisson; Multiplicauve; Additive;
Maximum likelihood.

1. INTRODUCTION

In property and liability insurance, the determination of premium rates must fulfill four
basic principles generally agreed among the actuaries; to calculate “fait” premium rates
wheteby high risk insureds should pay higher premium and vice versa, to provide sufficient
funds for paying expected losses and expenses, to maintain adequate margin for adverse
deviation, and to produce a reasonable return to the insurer. The process of establishing
“fair” premium rates for insuring uncertain events requires estimates which were made of
two important elements; the probabilities associated with the occurrence of such event, ie.,
the frequency, and the magnitude of such event, i.e., the severity. The frequency and severity

estimates wete usually calculated through the use of past experience for groups of similar

103



Handling Overdispersion with Negative Binomial and
Generalized Poisson Regression Models

risk characteristics. The process of grouping risks with similar risk characteristics to establish
“fair” premium rates in an insurance system is also known as risk classification. In this paper,
risk classification will be applied to estimate claim frequency rate which is equivalent to the

claim count per exposure unit.

In the last forty years, researchers suggested various statistical procedures to estimate the
parameters in risk classification model. For example, Bailey and Simon [1] suggested the
minimum chi-squares, Bailey [2] devised the zero bias, Jung [3] produced a heuristic method
for minimum modified chi-squares, Ajne [4] proposed the method of moments also for
minimum modified chi-squares, Chamberlain [5] used the weighted least squates, &Zoutts [6)
produced the method of orthogonal weighted least squates with logit transformation,
Harrington [7] suggested the maximum likelihood procedure for models with functional
form, and Brown [8] proposed the bias and likelihood functions for minimum bias and

maximum likelihood models.

In the recent actuarial literature, research on the estimation methods for risk
classification model is still continuing and developing. For example, Mildenhall [9] merged
the models which were introduced by Bailey and Simon, i.e., the minimum bias models, with
the Generalized Linear Models (GLMs), ie., the maximum likelihood models. Besides
providing strong statistical justifications for the minimum bias models which were originally
based on a non-parametric approach, his effort also allowed a vatiety of parametric models
to be chosen from. Later, Feldblum and Brosius [10] summarized the minimum bias
procedure and provided intuition for several bias functions, which include zero bias, least
squares, minimum chi-squares and maximum likelihood, for practicing actuary. Anderson ef
al. [11] provided foundation for GLMs statistical theory also for practicing actuary. Their
study provided practical insights and realistic output for the analysis of GLMs. Fu and Wu
[12] developed the models of Bailey and Simon by following the same approach which was
created by Bailey and Simon, i.e., the non-parametric approach. As a result, their research
offers a wide range of non-parametric models to be created and applied. Ismail and Jemain
{13] found a match point that merged the available parametric and non-parametric models,
Le., minimum bias and maximum likelihood models, by rewriting the models in a more
generalized form. They solved the parameters by using weighted equation, regression

approach and Taylor series approximation.

Besides statistical procedures, research on multiplicative and additive models has also
been carried out. Among the pioneer studies, Bailey and Simon [1] compared the systematic
bias of multiplicative and additive models and found that the multiplicative model

ovetestimates the high risk classes. Their result was later agreed by Jung [3] and Ajne [4] who
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also found that the estimates for multplicative model are positively biased. Bailey [2]
compared the mulaplicative and addiave models by producing two statistical criteria, namely,
the minimum chi-squares and average absolute difference. In addition, he also suggested the
multiplicative model for percents classes and additive model for cents classes. Freifelder [14]
predicted the pattern of over and under estimation for muldplicative and additve models if
true models were misspecified, Jee [15] compared the predictive accuracy of multiplicative
and additive models, Brown [8] discussed and summarized the additive and multiplicative
models which were derived from the maximum likelihood and minimum bias approaches,
Holler ¢f a/. [16] compared the initial values sensitivity of multiplicative and additive models,
Mildenhall [9] identified the Generalized Linear Models for identity and log link functions
with the additive and multiplicative models which were discussed in Brown [8], and Ismail
and Jemain [13] discussed and compared the parameter estimates and goodness-of-fit of the

additive and multiplicative regression models.

In insurance pracice, the Poisson regression model, which is also known as the
Generalized Linear Model with Poisson etror structure, has been widely used for modeling
claim count or frequency data in the recent years. For example, Aitkin ez a/ [17] and
Renshaw [18] each respectively fit the Poisson model to two different sets of U.K. motor
claim count data. For insurance practitioners, the Poisson regression model has been
considered as pracdcal and convenient; besides allowing the statistical inference and
hypothesis tests to be determined by statistical theories, the model also permits the fitting
procedute to be carried out easily by using any statistical package containing a routine for the

Iterative Weighted Least Squares (IWLS) regression.

However, at the same time it is also recognized that the count or frequency data in
insurance practice often display overdispetsion or extra-Poisson variation, a situation where
the variance of the response variable exceeds the mean. Inappropriate imposition of the
Poisson may underestimate the standard errors and overstate the significance of the
regression parameters, and consequently, giving misleading inference about the regression

parameters.

Based on the actuarial literature, the Poisson quasi likelthood model has been suggested
to accommodate overdispersion in claim count or frequency data. For example, McCullagh
and Nelder [19], using the data provided by Lloyd’s Register of Shipping, applied the quasi
likelihood model for damage incidents caused to the forward secton of cargo-carrying
vessels, to allow for possible inter-ship variability in accident proneness. The same quasi
likelihood model was also fitted to the count data of U.K. own damage motor claims by

Brockman and Wright [20], to take into account the possibility of within-cell heterogeneity.
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For insurance practitioners, the most likely reason for using Poisson quasi likelithood is that
the model can still be fitted without knowing the exact probability funcdon of the response
variable, as long as the mean is specified to be equivalent to the mean of Poisson, and the
variance can be written as a multplicative constant of the mean. To account for
overdispersion, the Poisson quasi likelihood produces parameter estimates equivalent to the

Poisson, and standard etrors larger than those of the Poisson.

On the contrary, the maximum likelihood approach suggested in this paper differs from
the quasi likelihood approach such that it requires the complete probability of the tesponse
variable, thus, allowing the likelihood ratio and other standard maximum likelihood tests to
be implemented. With this objective in mind, this paper suggests the Negative Binomial and
Generalized Poisson regression models for handling overdispersion. If the Negative
Binomial and Generalized Poisson were fitted by the maximum likelihood method, the
models may also be considered as convenient and practical; they allow the likelihood ratio
and other standard maximum likelihood tests to be implemented, they have good properties,
they permit the ficting procedure to be catried out by using Iterative Weighted Least Squares
(IWLS) regression similar to those of the Poisson, and last but not least, they handle
overdispersion. In this paper, two types of regression models will be discussed and applied;
multiplicative and additive models. Specifically, the multiplicative and additive regression
models for Poisson, Negative Binomial and Generalized Poisson will be fitted, tested and
compared on three different sets of claim frequency data; Malaysian private motor third
party propetty damage data, ship damage incident data from McCullagh and Nelder {19], and

data from Bailey and Simon [1] on Canadian private automobile liability.

2. MULTIPLICATIVE REGRESSION MODELS

2.1Poisson
Let Y, be the random variable for claim count in the 7th class, i =1,2,...,n, where n
denotes the number of rating classes. If ¥, follows a Poisson distribution, the probability

density function s,

_exp(=4)4,"

y!

Pr(Y, =y,) y, =01,.. .1)

1

with mean and variance, E(Y;) =Var(Y,) = 4,. -
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To incorporate covariates and to ensure non-negativity, the mean or the fitted value is
assumed to be multiplicative, i.e., E(Y, [x,)=4, =¢, exp(x;rﬂ) , where e; denotes a measure
of exposure, X; a pX1 vector of explanatory variables, and B a pX1 vector of regression

parameters .

If B is esimated by the maximum likelihood method, the likelihood equations are,

aal'(ﬁlj) — z’:(y' — ﬂi )xij = 0, j = 1,2,..., p. (22)

Since Eq.(2.2) is also equal to the weighted least squares, the maximum likelihood estimates,

ﬁ , may be solved by using the Iterative Weighted Least Squares (IWLS) regression.

2.2Negative Binomial I

Under the Poisson, the mean, /1,. , is assumed to be constant or homogeneous within the
classes. Howeve'r, by defining a specific distribution for 4,, heterogeneity within the classes
is now allowed. For example, by assuming 4, to be 2 Gamma with mean E(4,) =g, and
variance Var(4,)= ,uf v, ' and Y|4 to be a Poisson with conditional mean
E(Y,|A)=A4,, it can be shown that the marginal distribution of ¥, follows a Negative

Binomial distribution with probability density function,

Ty, +v,) vi Y Y
.= = Y =y . . .= ! ! ! ! .
Pr(Y, = y,) = [Pr(Y, = v, | 4) f (4)dA, F(.V,+1)F(V;)(V;+/1ij [W‘*ﬂ;) . 23)

where the mean is E(Y,) = 4, and the variance is Var(Y,) = g, + u'v"".

Different parameterization can generate different types of Negative Binomial
distributions. For example, by letting v, = a™, Y, follows a Negative Binomial distribution
with mean E(Y;) = g, and varnance Var(Y,) = ¢;(1+ai;), where a denotes the dispersion
parameter (see Lawless [21]; Cameron and Trivedi [22]).

If a equals zero, the mean and variance will be equal, E(Y,)=Var(Y,), resulting the
distributon to be a Poisson. If a >0, the variance will exceed the mean, Var(Y,) > E(Y,),
and the distribution allows for overdispersion as well. In this paper, the distribution will be

called as Negative Binomial I.
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If it is assumed that the mean or the fitted value is multplicative, ie,
E(Y, |x)=4 =e¢, exp(x?l}), the likelihood for Negative Binomial I regression model may

be written as,

vy,
(B, a) = Z{Z log(1+ ar)} -y, log(a) —log(y,") +
{ r=l

i

(2.4)
y; loglap;) - (y; + a™)log(l+ ap;).

Thetefore, the maximum likelihood estimates, (ﬁ,d) , may be obtained by maximizing

£(B,a) with respect to B and a. The related equations are,

o4(B,a) (y; = #:)x, .
B, = rram TP 2
and,
04(B,a) _ """( J i (tau,
S _Z{Z e leel+au) Cdran) =0. 2.6)

The maximum likelthood estimates, (ﬁ,ﬁ), may be solved simultaneously, and the
procedure involves sequential iterations. In the first sequence, by using an initial value of a,
ap,, {(P,a) is maximized with respect to B, producing B,,. The related equation is
Eq.(2.5) which is also equivalent to the weighted least squares. Therefore, with a slight
modification, this task can be performed by using the IWLS regression similar to those of
the Poisson. In the second sequence, by holding B fixed at §,,,, £(B,a) is maximized with
respect to a, producing a,,. The related equation is Eq.(2.6), and the task can be cartied
out by using the Newton-Raphson iteration. By iterating and cycling between holding a
fixed and holding P fixed, the maximum likelihood estimates, (ﬁ,&), will be obtained.

Further explanation on the fitting procedure will be discussed in Section 4.

An easier approach to estimate a is by using the moment estimation suggested by

Breslow [23], L.e., by equating the Pearson chi-squares statistic with the degrees of freedom,

(yl‘_/u,)z
A 2.7
2outramy " @D
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where n denotes the number of rating classes and p the number of regression parameters.
The sequential iteration procedure similar to the one mentioned above can also be used, this

time producing maximum likelihood estimates of B and moment estimate of a, (B,a).

In this paper, when a is estimated by the maximum likelihood, the model will be called
as Negative Binomial I (MLE). Likewise, when a is estimated by the method of moment,

the model will be called as Negative Binomial I (moment).

2.3Negative Binomial II

By letting v, = g1,a”", another type of Negative Binomial disttibution is produced, this
time with mean E(Y;)= g, and variance Var(Y,)= 4, (1+a) (see Nelder and Lee [24];
Cameron and Trivedi [22] ). If a equals zero, the mean and variance will be equal, resulting
the distribution to be a Poisson. If a >0, the variance will exceed the mean and the
distribution allows for overdispersion as well. In this papet, the distribution will be called as

Negative Binomuial II.

If it is assumed that the mean or the fitted value is multiplicative, ie,
EY, |x)=u =¢ exp(xﬂi) , the likelihood for Negative Binomial II regression model may

be written as,

2B, a) =Y. log([(y, +p,a™)) ~log(T(,a™)) - log(y,1) ~
i (2.8)

a log(ay—(y, + gaH)log+a™).

Therefore, the maximum likelihood estimates, (ﬁ,&) , may be obtained by maximizing

£(B,a) with respect to B and a. The related equations are,

(B, a)
op;

¥yl
=> ux,a’ {Z(,uia" +r)" —log(l+ a)} =0, j=12,.,p, (2.9)
i r=0

and

y,-1 _
___ag(ali’“)=—Z/I,—a"2{§(yia“+r)“—log(1+a)}+ : Z’%}Tﬂ):fo' (210)

However, the maximum likelihood estimates, P, are numerically difficult to be solved

because the related equation, Eq.(2.9), is not equal to the weighted least squares. As an

Casualty Actuarial Society Forum, Winter 2007 109



Handling Overdispersion with Negative Binomial and
Generalized Poisson Regression Models

alternative, since the Negative Binomial I has a constant variance-mean ratio, the method of

weighted least squares is suggested, i.e., by equating,

Y, —H, %_Z(yi“/‘i)xij -0

- =12, p, 211
~Var(Y,) 9B, 4 I+a J P @11

to produce the least squares estimates, .

It is shown that in the presence of a modest amount of overdispersion, the least squares
estimates were highly efficient for the estimation of a moment parameter of an exponential
family distribution (Cox [25]). Since Eq.(2.11) is also equivalent to the likelihood equation of
the Poisson, ie., Eq.(2.2), the same IWLS regression which is used for the Poisson can be
applied to estimate the least squares estimates, ﬁ . As a result, the least squares estimates are
also equal to the maximum likelihood estimates of Poisson, but the standard errors are equal

or larger than the Poisson because they are multiplied by v1+a where a 20.

For simplicity, a is suggested to be estimated by the method of moment, ie., by

equating the Pearson chi-squares statistic with the degrees of freedom,
Y.
ZMzn—p, @.12)

which involves a straightforward calculation and produces a moment estimate, @ .

In this paper, the estimates which were produced by the multiplicative regression models
of Negative Binomial I (MLE), Negative Binomial I (moment) and Negative Binomial II will
be denoted respectively by (ﬁ,é) s (ﬁ,ﬁ) and (ﬁ,ﬁ) .

2.4Generalized Poisson I

The advantage of using the Generalized Poisson distribution is that it can be fitted for
both overdispersion, Var(Y;) > E(Y,), as well as underdispersion, Var(Y,) < E(Y,). In this
paper, two different types of Generalized Poisson will be discussed; each will be referred to
as Generalized Poisson I and Genetalized Poisson II. For Generalized Poisson I

distribution, the probability density function is (Wang and Famoye [26]),

Y gt 1+ay,
Pr(y = y ) =| | (ra)™ S aAra) ) o ey
1+ay, y,! 1+ay,

i
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with mean E(Y,) = 4, and variance Var(Y,) = 4, (1+au,)*:

The Generalized Poisson I is a natural extension of the Poisson. If a equals zero, the
Generalized Poisson I teduces to the Poisson, resulting E(Y,)=Var(Y;). If a>0, the
variance is larger than the mean, Var(Y;) > E(Y,), and the distribution represents count data
with overdispetsion. If a <0, the variance is smaller than the mean, Var(Y,) < E(Y), so

that now the distribution represents count data with underdispersion.

If it is assumed that the mean or the fitted value is multiplicative, ie.,
E(Y, |x)=u, =e, exp(xiTB), the likelihood for Generalized Poisson I regtression model

may be written as,

_/1,.(1+ay,)

é(B,a)=Zy,-log( £ ]+(y,-—l)log(l+ayf) —log(y;h. (214

1+ ay,

i i

Therefore, the maximum likelihood estimates, (ﬁ,d) , may be obtained by maximizing

£(B,a) with respect to B and a . The related equations are,

UBa) Uil o 1y, (215)

o, ~ (I+ay,)’
and,

aé(B,a)zz_ Yili +yi(y,_1)_#i(yi_1ui)=
da ~ l+ay, l+ay, (1+au,)?

2.16)

The sequential iteration procedure similar to the Negative Binomial I regression model may
also be implemented to obtain the maximum likelihood estimates, (B,4) . For the sequential
iteration, the IWLS regression can be applied because Eq.(2.15) is also equal to the weighted

least squares.

An easier approach to estimate g is by using the moment estimation, i.e., by equating

the Pearson chi-squates statistic with the degrees of freedom,
2

(y, )
Z —

=n-p, 2.17
T L+ ap;)? g @10

producing (ﬁ, d).
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In this paper, when a is estimated by the maximum likelihood, the model will be called
as Generalized Poisson I (MLE). Likewise, when a is estimated by the method of moment,

the model will be called as Generalized Poisson I (moment).

2.5Generalized Poisson II

For Generalized Poisson II, the probability density function may be written in the form
of (Consul and Famoye [27]),

a4 -y expl=a” (@ +(@=1y,)) _
a W , ¥, =01.. L@18)
0, v, >m,a<l

Pr(Y, = y,) = Hi (g +(a=-Dy)"

where a2 max(—‘z-,l—%‘—), and m the largest positive integer for which g, +m(a—1)>0
when a <. For this distribution, the mean is equal to E(Y;) = #,, whereas the variance is

equivalent to Var(Y,) = azlu, .

The Generalized Poisson 1I 1s also a natural extension of the Poisson. If a equals one,
the Generalized Poisson II reduces to the Poisson. If a > |, the variance is larger than the
mean and the distribution represents count data with overdispersion. If $<a <1 and
M; > 2, the variance is smaller than the mean so that now the distribution represents count

data with underdispersion.

If it is assumed that the mean or the fitted value is muldplicanve, ie,
EY, |x,)=u, =¢ exp(xiTB), the likelihood for Generalized Poisson II regression model

may be written as,
£(B.a) =Y log(u,)+(y, -~ Dlog(y, +(a—1)y,) -
i (2.19)
v, log(a)y—a™ (i, +(@a=1)v,) —log(y,!).

Thetefore, the maximum likelihood estimates, (B,d), may be obtained by maximizing

£(B,a) with respect to B and a. The related equations are,

al(p’a) - -1 Yi -1 :
otB,a) e —2 T e =12, 2.20
3B, Z{” T -y, }u’x” ! 8 @20

and,
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Jl(B,a) - y(y, =1
da —~u +(a-1y,

—ya’ (g, -ypa’=0. 221)

However, the maximum likelthood estimates, ﬁ, are numerically difficult to be solved
because the related equation, Eq.(2.20), is not equal to the weighted least squares. Since the
Generalized Poisson II has a constant variance-mean ratio, the method of weighted least

squares is suggested as an alternative, i.e., by equating,

(y: = )%
Z___

2
i a

=0, j=12,..,p, (2.22)

to produce the least squares estimates, B . The same Poisson IWLS regression may be used
to estimate B because Eq.(2.22} is also equivalent to the Poisson likelihood equation, i.e.,
Eq.(2.2). As a result, the least squares estimates are also equal to the maximum likelihood
estimates of Poisson. Howevet, the standard errors could be equal, larger or smaller than the

Poisson because they are multiplied by @ where a 21 or £ <a<].

Fot simplicity, a is suggested to be estimated by the method of moment, ie., by

equating the Peatson chi-squares statistic with the degrees of freedom,

— 2
Z(Yi Z:u,) =n-p, 2.23)
P au

involving a straightforward calculation and producing a moment estimate, @ .

In this papet, the estimates which were produced by the regression models of
Generalized Poisson I (MLE), Generalized Poisson I {moment) and Genetralized Poisson 11
will be denoted respectively by (ﬁ,&) s (ﬁ,ﬁ) and (B,fi) .

To summarize the multiplicative regression models which were discussed in this section,

Table 1 shows the methods and equations for solving the estimates of B and a.
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Table 1. Methods and equations for solving f and a in muldplicative regression models

Models Estimation of f# Estimation of a

Method Equation Method Equation
Poisson Maximum = - -

y, —H:)x; =0

Likelihood Zi:(" A%
NBIQILE) Maximum zwzo AMaximum .

Likelihood 1+ay, Likelihood +a 2 log(l+ap;)~

Z rzzl(l+ar) B+ ap)
vo+a |
(I+au,)

NBI(moment)  Maximum z i mHidxy =¢ Moment z Gi-#)’ —(n-p)=0

Likelihood - 1+ay; <\ ;1 +ap,) p)=
NBII Weighted Oi=#i)x) _ Moment O =)’

Leasgt z I+a =0 Z Lok ~(n-p)=0

|y (1+a)

Squares ‘
GPIQILE) Maximum (y; =4, )xy =g Maximum yilt, oy (x, =D

Likelihood ™ (1+au,)’ Likelihood Z lvay " l+ay,

H, (i —H) =0
(l+a‘u,-)2

o ) TR
GPI(moment)  Maximum Z i —H =0 Moment Z{ML}_(" -p)=0

Likelthood ~ (I+au;)’ |10+ ap;)?
2
GPII Weighted (Vi =#)%, _ Moment OB | =0
Least Z al =0 Z,: ua’ n=n
Squates '
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3. GOODNESS-OF-FIT TESTS

In this section, several goodness-of-fit measures will be briefly discussed, including the
Pearson chi-squates, deviance, likelihood ratio test, Akaike Information Criteria (AIC) and
Bayesian Schwartz Criteria (BSC). Since these measures ate already familiar to those who
used the Generalized Linear Model with Poisson etror structure for claim count or
frequency analysis, the same measures may also be implemented to the regression models of

Negative Binomial and Generalized Poisson as well.

3.1Pearson chi-squares

Two of the most frequently used measures for goodness-of-fit in the Generalized Linear
Models are the Pearson chi-squares and the deviance. The Pearson chi-squares statistic is

equivalent to,

(y,—u)}
Z‘ Var(Y,) oD

Fot an adequate model, the statistic has an asymptotic chi-squares distribution with n— p
degrees of freedom, where n denotes the number of rating classes and p the number of

parameters .

3.2Deviance

The deviance is equal to,

D =2(4(y;y) - £(my)), (3.2

where £(u;y) and £(y;y) are the model’s log likelthood evaluated respectively under p and
y. For an adequate model, D also has an asymptotic chi-squares distribution with n— p
degrees of freedom. Therefore, if the values for both Pearson chi-squares and D are close

to the degrees of freedom, the model may be considered as adequate.

The deviance could also be used to compare between two nested models, one of which
is a simplified version of the other. Let D, and df, be the deviance and degrees of freedom
for such model, and D, and df, be the same values by fitting a simplified version of the
model. The chi-squares statistic is equal to (D, — D, ) /(df, — df,) and it should be compared
to a chi-squares distribution with df, —df, degrees of freedom.

Casualty Actuarial Society Forum, Winter 2007 115



Handling Overdispersion with Negative Binomial and
Generalized Poisson Regression Models

3.3Likelihood tatio

The advantage of using the maximum lkelihood method is that the likelihood ratio test
may be employed to assess the adequacy of the Negative Binomial I (MLE) or the
Generalized Poisson I (MLE) over the Poisson because both Negative Binomial I (MLE)
and Genetalized Poisson 1 (MLE) will reduce to the Poisson when the dispersion parameter,

a, equals zero.

For testing Poisson against Negative Binomial I (MLE), the hypothesis may be stated as
H,:a=0 against H, :a > 0. The likelihood ratio statistic is,

T=2(¢,-¢,), 3.3)

where £, and £ are the model’s log likelihood under the respective hypothesis. T has an
asymptotic distribution of probability mass of one-half at zero and one-half-chi-squares
distribution with one degtees of freedom (see Lawless [21]; Cameron and Trivedi [22]).
Thetefore, to test the null hypothesis at the significance level of ¢, the critical value of chi-

squares distribution with significance level 2 is used, i.e., reject H if T > Z(21—2a,|)'

For testing Poisson against Generalized Poisson I (MLE), the hypothesis may be stated
as Hy:a=0 against H,:a#0. The likelihood ratio is also equal to Eq.(3.3) and under
null hypothesis, 7 has an asymptotic chi-squares distribution with one degrees of freedom

(see Wang and Famoye [26]).

3.4AIC and BIC

When several maximum likelihood models are available, one can compare the
petformance of alternative models based on several likelihood measures which have been
proposed in the statistical literature. Two of the most regularly used measures are the Akaike
Information Criteria (AIC) and the Bayesian Schwartz Information Criteria (BIC). The AIC
is defined as (Akaike [28]),

AIC=-20+2p, (3.4)

where £ denotes the log likelihood evaluated under p and p the number of parameters.

For this measure, the smaller the AIC, the better the model is.
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The BIC is defined as (Schwartz [29]),
BIC =-2¢+ plog(n), (3.5

where ¢ denotes the log likelihood evaluated under g, p the number of parameters and n

the number of rating classes. For this measure, the smaller the BIC, the better the model is.

4. FITTING PROCEDURE

As mentioned previously, the estimates of B and a for Negative Binomial I (MLE),
Negative Binomial I (moment), Generalized Poisson I (MLE) and Generalized Poisson I
(moment), may be solved simultaneously and the fitting procedure involves sequental
iterations. The sequential iteratons involve two steps of maximization in each sequence;
maximizing #(B,a) with respect to B by holding a fixed, and maximizing ¢(f,a) with
respect to a by holding B fixed.

4.1 Maximizing /(B,a) with respect to B

By using the Newton-Rahpson iteration and the method of Scoting, the iterative

equation in the standard form of IWLS regression may be written as,

-1
B, =B, +I(r-1;zw1p @1

the
information matrix containing negative expectation of the second derivatives of log
likelihood evaluated at B,,_,, and z
likelthood evaluated at ﬂ(,_“.

where B,,, and B, denote the vectors for f in the rth and r-1th iteration, I,

1, the vector containing first derivatives of log

For an easier demonstration, an example for Poisson’s IWLS regression will be shown
and the notation for Poisson mean, 4, will be replaced by ;. The first derivatives of
Poisson log likelihood, which is shown by Eq.(2.2), can also be written as,

z=X"Wk, (4.2)

where X denotes the matrix of explanatory variables, W the diagonal weight matrix whose

7th diagonal element is,
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=1, (43)

and K the vector whose /th row is equal to,

(4.4)

The negative expectation of the second derivatives of Poisson log likelihood may be

derived and it is equivalent to,

9*¢(B) o
(aﬂ ap, J Z'u'xu X, J8=12,..,p. 4.5)

Therefore, the information matrix, I, which contains negative expectation of the second

derivatives of log likelihood, may be written as,
I=X"WX, (4.6)

where the /th diagonal element of the weight matrix is also equal to Eq.(4.3).

Finally, the iterative equation shown by Eq.(4.1) may be rewritten as,
p(I‘) = B(r—l) + (XTW(I'—UX)_I (XTw(r—l)k(V—l) ) : (47)

It can be shown that with a slight modification in the weight matrix, the same iterative
equation, i.e., Eq.(4.7), can also be used to obtain the maximum likelihood estimates, B, for

Negative Binomial I and Generalized Poisson I as well.

The related equations for the first derivatives of log likelihood for Negative Binomial T
and Generalized Poisson I are shown by Eq.(2.5) and Eq.(2.15). Both equations may also be
written as Eq.(4.2), where the /th row of vector K is also the same as Eq.(4.4). However, the

z#th diagonal element of the weight matrix is,

NBI - ﬂi
I+au,’

4.8)

for Negative Binomial I and,
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GPI Iui

oo Hi 4.9
o (+au)?’ 62)

for Generalized Poisson 1.

The negative expectation of the second derivatives of log likelihood for Negative

Binomial I and Generalized Poisson I may be derived, and the respective equations are,

32((13 a) HiX, X .
—E| d = 4 ) ,s=12,...,p, 410
[aﬂ,aﬂx 2 ra, PO o
and,
%¢(P,a) HX X .
—-FE = s s=12,...,p. 4.11
[M,aﬂx 2ivagy P (1D

Thetefore, the information matrix may also be written as Eq.(4.6), where the 7th diagonal
element of the weight matrix for Negative Binomial I and Generalized Poisson I are

respectively equal to Eq.(4.8) and Eq.(4.9).

The same iterative equation for the Poisson may also be used for Negative Binomial IT
and Generalized Poisson II because the weighted least squares equations, i.e., Eq.(2.11) and

Eq.(2.22), are equivalent to the likelihood equatons of the Poisson, i.e., Eq.(2.2).

The matrices and vectors for solving B in multiplicative regression models are

summarized in Table 2.
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Table 2. Matrices and vectors for solving f§ in multiplicative regression models

Models

Matrices and vectors for B, =B,_, +I(—,I_”z(,_” . where
T
Toay =X "W)X,
T
zy =X "W ki,
s-th element of matax I =i E| G
Js-th elementof matrix I =i, =-E| ——— |,
! aﬂ]aﬂv
FI4
J-th row of vector z = ;=0
a,B,.
Poisson/ matrix [ Po= x. = I=XTWX
iy s Z/I -
GPIL »
weight matrix W Wi =4,
_ (¥ =) _ T
vector z ] ‘Z/“ U, *y z=X"Wk
vector k k=2 —H;
, =L
H;
NBIMLE)/  matrix i =Y x> I=XTWX
NBI(moment) = 1+au,
U,
weight matrix W wi =m'
!
vector Z Z = Hi  (yi—H) x; - 2=XTWk
~ltay; W,
vector k k. JiTHi
i
Hi
GPIMLE)  marrix I i =Z_L_2 xpx, - 1=XTWX
GPI(moment) T (+au;) ’
. JGPI ___ﬁ_'_
weight matrix W Wi = (+au)’
vector z c = Hi (yi=4,) . — z=XTWk
i 2 ]
T (I+au;) Hi
vector k k, YiTH
Hi
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4.2Maximizing /(B,a) with respect to a

The maximization of #(B,a) with respect to a can be carried out by applying one-

dimensional Newton-Raphson iteration,

)
=%y T ’
’ ’ fag.,)

Q

(4.12)

where f' denotes the first derivatives of functon f and f" the second derivatives of
function f. The respective f' for Negative Binomial I (MLE), Negative Binomial I
(moment), Generalized Poisson 1 (MLE) and Generalized Poisson I (moment) are Eq.(2.0),
Eq.(2.7), Eq.(2.16) and Eq.(2.17).

The f" equations for Negative Binomial I (MLE), Negative Binomial I (moment),
Generalized Poisson 1 (MLE) and Generalized Poisson (moment) may be derived, and the

respective equations are,

¥, - 2 -2 -1y ,,2
Z{—Z( ! )—2a‘3log(1+ay,)+f'a #o ita )”"}, (@.13)

i o\l+ar +ay; (I+ay,)

2
_Z(yi_)ui) , (4.14)

Z ,V,v,Ll,-Z y' =D 2/1,'2()’,‘ —4;)

4.15
~(+au ) (I+ay)> (+ay) 15

and,

(y, ~4)
22 oy (4.16)

The process of finding the moment estimate, @, for Negative Binomial II and
Generalized Poisson II does not involve any iteration. The moment estimate can be

obtained directly from Eq.(2.12) and Eq.(2.23).

The equations for solving @ in multplicative regression models are summarized in Table
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Table 3. Equations for solving a .

Fiagn)
Models Equations for a(,) =a,_j, ~————
=G T @)
v (v, +a
NBI(MLE (a 2 0a(1 ERLA IRl
OMLE)  f@ Z{;(Hm]m ogll+au)—= }
¥l 2 -2 i -Iy,,2
"(a) - T | —2a7 log(l 2474y, Oita H
f Z{ ;(l+ar) @ logl +aﬂ')+l a,u, (I+au;)
NBI(moment) , (}’, _
f(a 7 (l+a/1, -p)
(v =)’
f@ Z (+ay;)?
NBII Straightforward _ ~o (¥, = 4;)°
calculation a—z u;(n=p) -1
yHi i gy i)
GPIGILE) f@ Z,:{ I+au; v 1+ay,; (1+ap)? }

2 2

vl v =0 26 (i -p)
" +

fra) Z(Ha/t,) (+ay)*  (+ay,)

G =#)?
GPI , —(n—p)
(moment) £ (q) Z,: 1, (1+ay, ) L
f(a)
Z 1+ a,u,
GPII Straightforward
calculation a= Z O~

H; (n p)
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4.3 Restrictions on Generalized Poisson I

The iterative programming for Generalized Poisson I distribution should also allows for
restrictions on a because the probability density function, Eq.(2.13), indicates that the value
of a must satisfy both 1+ag; >0 and 1+ ay, > 0. Therefote, after obtaining estimate of
a in each iteration, the program should check that when a <0 (underdispersion), a must
also fulfilled the condition for both 1+ag; >0 and 1+ ay, > 0.

R
max( 4, )

. A similar check is

In other words, for condition 1+ ay; >0, the program should checks if a > — is

true. If this condition is not true, a new estimate for a is set as ——mm

. . . . |

then implemented for l+ay >0. Finally, if both conditions of a>-7-=5 and
R T i i in(——L— - —L__

@ >~ ate not true, a new estimate for a 1s set as min( e ey o)

4.4Variance-covariance matrix for p

The vatiance-covatiance matrix, Var(B), for Negatve Binomial I and Generalized
Poisson 1 regression models is also equal ‘to the variance-covariance matrix of Poisson

regression model, i.e.,
Var(B) = (X"WX)™". 4.17)
However, the ith diagonal element of the weight matrix differs for each model, i.e., it is equal

to Eq.(4.3) for Poisson, Eq.(4.8) for Negative Binomial I and Eq.(4.9) for Generalized

Poisson 1.

The variance-covariance matrix for Negative Binomial II and Generalized Poisson II 1s

multiplied by a constant and they are equal to,
Var() = 1+ a)X"WX)™", (4.18)
for Negative Binomial IT and,
Var(B) = a>(X"WX)™, (4.19)

for Generalized Poisson II, where the /th diagonal element of the weight matrix is equal to

the Poisson weight matrix, i.e., Eq.(4.3).
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Examples of S-PLUS programming for Negative Binomial I (moment) and Generalized
Poisson I (moment) are given in Appendix A and Appendix B. Similar programming can
also be used for all of the multiplicative regression models which were discussed in this
paper. Each programming is differentiated only by four distinguishable elements:

® Types of iteration.

The sequential iterations are required for Negative Binomial I and Generalized
Poisson I. For Poisson, Negative Binomial II and Generalized Poisson II, the
standard iterations are adequate.

¢  Weight matrix.

The weight matrix for Negative Binomial II and Generalized Poisson II is equal to
the Poisson. Each of Negative Binomial I and Generalized Poisson I has its own
weight matrix.

¢ Equation for estimating a.

Each of Negative Binomial I (MLE), Negative Binomial I (moment), Generalized
Poisson I (MLE) and Generalized Poisson I (moment) has its own equation for
estimating a.

¢ Restriction on a.

The restriction on a is required only in Generalized Poisson 1.

5. EXAMPLES

5.1 Malaysian data

In this paper, the data for private car Third Party Property Damage (TPPD) claim
frequencies from an insurance company in Malaysia will be considered. Specifically, the
TPPD claim covers the legal liability for third party property loss or damage caused by or
arising out of the use of an insured motor vehicle. The data, which was based on 170,000
private car policies for a three-year period of 1998-2000, was supplied by the Genetal
Insurance Association of Malaysia (PIAM). The exposure was expressed in terms of a car-
year unit and the incurred claims consist of claims which were already paid as well as
outstanding. Table 4 shows the rating factors and ratng classes for the exposures and
incurred claims, and altogether, there were 2X2x3x4X5 =240 cross-classified rating
classes of claim frequencies to be estimated. The complete data, which contains the

exposures, claim counts, rating factors and rating classes, is shown in Appendix C.
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Table 4. Rating factors and rating classes for Malaysian data

Rating factors

Rating classes

Coverage type

Vehicle make

Vehicle use and driver’s gender

Vehicle vear

Location

Comprehensive
Non-comprehensive

Local
Foreign

Private-male
Private-female
Business

0-1 year
2-3 year
4-5 year
6+ year

Central
North

East

South

East Malaysia

count data.

Table 5. Analysis of deviance for Poisson

Model deviance df Adeviance Adf 12 p-value
Null 2202 232 - - - -

+ Coverage type 1924 231 278 1 278 0.00
+ Use-gender 997 229 927 2 464 0.00
+ Vehicle year 522 226 475 3 158 0.00
+ Vehicle location 369 222 153 4 38 0.00
+ Vehicle make 358 221 1 1 11 0.00
+ Vehicle make*vehicle year 255 218 103 3 34 0.00

Casualty Actuarial Society Forum, Winter 2007

The claim counts were first fitted to the Poisson multiplicative regression model. The
fitting involves only 233 data points because seven of the rating classes have zero exposures.
Several models were fitted by including different rating factors; first the main effects only,
then the main effects plus each of the paired interaction factors. By using the deviance and
degrees of freedom, the chi-squares statistics were calculated and compared to choose the

best model. Table 5 gives the results of fitting several Poisson regression models to the
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Based on the deviance analysis, the best model indicates that all of the main effects are
significant and one of the paired interaction factors, i.e., vehicle make and vehicle year, is
also significant. Therefore, it is suggested that the rating factors for both vehicle make and
vehicle year are combined to take into account the interaction between these two rating
factors. The number of rating factors is now reduced from five to four. Table 6 shows the

parameter estimates for the four-factor model.

Table 6. Parameter estimates for Poisson four-factor model

Parameter estimate _ std.error p-value
B, Intercept -2.37 0.04 0.00
B, Non-comprehensive -0.68 0.07 0.00
py Female -0.51 0.03 0.00
ﬁ4 Business -6.04 1.00 0.00
fs  Local, 2-3 year -0.48 0.04 0.00
B¢ Local, 4-5 year -0.82 0.05 0.00
B;  Local, 6+ year -1.06 0.05 0.00
Ps Foreign, 0-1 year -0.59 0.07 0.00
Py Foreign, 2-3 year -0.68 0.05 0.00
B0 Foreign, 4.5 year -0.77 0.06 0.00
ﬂ“ Foreign, 6+ year -0.84 0.05 0.00
B2 North -0.22 0.03 0.00
B3 East -0.43 0.06 0.00
B4 South -0.01 0.04 0.78
Bis  East Malaysia -0.50 0.06 0.00
Df 218.00

Pearson 12 404.67

Deviance 254.60

Log L -387.98

The p-value for B, (South) is equivalent to 0.78, and this value indicates that the
parameter estimate is not significant. Therefore, the location for South is suggested to be
combined with Central (Intercept) because both locations have almost similar risks. Table 7

shows the parameter estimates for the four-factor-combined-location model.
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Table 7. Parameter estimates for Poisson four-factor-combined-location model

Generalized Poisson Regression Models

Parameter estimate  std.error  p-value
p, Intercept -2.37 0.03 0.00
f» Non-comprehensive -0.68 0.07 0.00
f; Female -0.51 0.03 0.00
S, Business -6.04 1.00 0.00
pBs Local, 2-3 year -0.48 0.04 0.00
B¢ Local, 4-5 year -0.82 0.05 - 0.00
ﬂ7 Local, 6+ vear -1.06 0.05 0.00
Pz Foreign, 0-1 year -0.59 0.07 0.00
By Foreign, 2-3 vear -0.68 0.05 0.00
IBI(P Foreign, 4-5 year -0.77 0.06 0.00
B, Foreign, 6+ year -0.84 0.05 0.00
B2 North -0.22 0.03 0.00
B, East -0.42 0.06 0.00
Bis East Malaysia -0.50 0.06 0.00
Df 219.00

Pearson ;(2 404.47

Deviance 254.67

Log L -388.02

The result shows that all of the parameter estimates are significant. As a conclusion,

based on the deviance analysis and parameter estimates, the best model is provided by the

four-factor-combined-location model if the claim counts were fitted to the Poisson.

If the same four-factor-combined-location model was fitted to the muldplicative

regression models of Negative Binomial and Generalized Poisson, the parameter estimates

and standard etrors may be compared. The comparisons are shown in Table 8 and Table 10.
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Table 8. Poisson vs. Negative Binomial

Parameters Poisson Negative Binomial [ Negative Binomial | Negative Binomial 11
(MLE) (moment)
est. std. »- est. std. P est. std. )2 est, std. )2
error value error value error_ value crror value
a - - - 002 - - 015 - - 08 - -
B Intercept -237 003 000 -236 007 000 -237 015 000 -237 005 000

B Non-comp -0.68 007 000 -073 009 000 -079 013 000 -0.68 009 000

B Female -0.51 003 000 -054 005 000 -057 009 000 -0.51 0.04  0.00
B Business -6.04 1.00  0.00 -6.05 1.00 000 -6.06 1.00 000 -604 136  0.00
Ps Local,2-3 -0.48 004 000 -0.51 0.09 000 -0.49 018 001 -048 006 000
B Laocal 4-5 -0.82 005 000 -0.87 0.09 0.00 -0.87 019 000 -0.82 007 0.00
B, Local,6+ -1.06 005 0.00 -1.04 0.09 000 -098 018 000 -1.06 007 0.00

:68 Foreign,0-1 -059 007 0.00 -0.62 010 000 -0.63 020 000 -059 009 000
By Foreign,2-3  -068 005 000 -0.69 009 000 -0.65 019 000 -068 007 000
Bio Foreign4-5  -0.77  0.06 000 -0.76 010 000 -0.76 019 000 -077 008 000
B Foreign,6+ -0.84 005 000 -0.81 009 000 -076 018 000 -084 007 000

B2 North -022 003 000 -0.16 006 000 -012 0.11 028 -022 004 000
Bis East -042 006 000 -043 0.08 000 -046 013 000 -042 008 000
Bia EastM’sia -0.50 006 000 -0.51 0.08 000 -0.49 013 000 -050 008 000

Df 219.00 218.00 218.00 218.00
Pearson 12 404.47 293.71 219.00 -
Deviance 254,67 155.99 90.72 -
Log L -388.02 -368.72 -391.64 -

Table 8 shows the comparison between Poisson and Negative Binomial multiplicative
regression models. The regression parameters for all models give similar estimates. The
Negative Binomial T (MLE) and Negative Binomial I give similar inferences about the
tegression parameters, ie., their standard errors are slightly larger than the Poisson’s.
However, the Negative Binomial I (moment) gives a relatively large values for the standard

errors and hence, resulted in an insignificant regression parameter for 3, .

The deviance for Poisson regtession model is relatively larger than the degrees of
freedom, i.e., 1.16 times larger, and thus, indicating possible existence of overdispersion. To
test for overdispersion, the likelihood ratio test of Poisson against Negative Binomial 1

(MLE) is implemented. The likelihood ratio statistic of T = 38.6 is significant, implying that

128 Casualty Actuarial Society Forum, Winter 2007



Handling Overdispersion with Negative Binomial and
Generalized Poisson Regression Models

the Negative Binomial [ (MLE) is a better model. Further comparison can be made by using
the results of likelihood ratio, AIC and BIC as shown in Table 9. Based on the likelihood
ratio, AIC and BIC, the Negative Binomial I (MLE) is better than the Poisson.

Table 9. Likelihood ratio, AIC and BIC

Test/Criteria Poisson Negative Binomial I (MLE)
" Likelihood ratio - 38.6

AIC 804.0 767.4

BIC 809.2 773.0

Table 10 shows the comparison between Poisson and Generalized Poisson multplicative
regression models. Both Negative Binomial II and Genetalized Poisson II give equal values
for parameter estimates and standard errors. However, this result is to be expected because

both regression models were fitted by using the same procedute.

The comparison between Poisson and Generalized Poisson also shows that the
regression parameters for all models give similar estimates. The Generalized Poisson I
(MLE) and Generalized Poisson II give similar inferences about the regression parameters.
The Generalized Poisson I (moment) gives a relatively latge values for the standard errors

and this resulted in an insignificant regression parameter for f3,,.

Based on the likelihood ratio test of Poisson against Generalized Poisson I (MLE), the
likelihood ratio statistic of T =37.7 is significant. Therefore, the Generalized Poisson

(MLE) is also a better model compared to the Poisson.

Table 11 gives further comparison between Poisson and Generalized Poisson I (MLE).
The compatison, which was based on the likelihood ratio, AIC and BIC, indicates that the

Generalized Poisson I (MLE) is also a better model compared to the Poisson.
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Table 10. Poisson vs. Generalized Poisson

Paramecters Potsson Generalized Potsson I Generalized Potsson | Genenalized Poisson
(MLL) (moment) 1l
est. std. - est std, 7 est. std. p est, std. »-
crror  value crror valuce crror value crror value
a - - - 0007 - - 0035 - - 1339 - -
ﬂl Intercept -2.37 0.03 0.00 -235 0.07 0.00 -237 0.16 0.00 -2.37 0.05 0.00
Non-com -0.68 0.07 0.00 -0.74 0.09 0.00 -0.80 0.13 000 -0.68 0.09 000
y P
B Female -0.51 0.03 000 -055 0.05 0.00 -0.59 0.09 0.00 -051 0.04 0.00
Bs Business -6.04 1.00 0.00 -6.06 1.00 0.00 -6.08 1.00 0.00 -6.04 1.36 0.00
ﬂS Local 2-3 -0.48 0.04 0.00 -052 0.09 000 -049 0.20 001 -0.48 0.06 0.00
Bs Local 4-5 -0.82 0.05 0.00 -0.89 0.09 000 -0.88 0.19 000 -0.82 0.07 0.00
ﬂ7 Local 6+ -1.06 0.05 000 -1.05 0.09 0.00 -094 0.19 0.00 -1.06 0.07 0.00
ﬁs Foreign,0-1 -0.59 0.07 0.00 -0.63 0.10 0.00 -0.63 0.19 0.00 -0.59 0.09 000
ﬂg Foreign,2-3 -0.68 0.05 0.00 -0.71 0.10 0.00 -0.64 0.19 0.00 -0.68 0.07 0.00
ﬂIO Foreign4-5 -0.77 0.06 0.00 -0.77 0.10 000 -075 0.19 0.00 -0.77 0.08 0.00
)Bl \ Foreign,6+ -0.84 0.05 0.00 -0.81 0.09 0.00 -0.74 0.18 000 -0.84 0.07 0.00
ﬁl 2 North -0.22 0.03 000 -0.14 0.06 0.00 -0.09 0.12 046 -0.22 0.04 0.00
ﬂl} East -0.42 0.06 000 -043 0.08 000 -045 013 0.00 -042 0.08 0.00
ﬂM FastM’sia -0.50 0.06 000 -0.51 0.08 0.00 -0.51 012 000 -0.50 0.08 0.00
Df 219.00 218.00 218.00 218.00
Pearson 72 404.47 29472 219.00 -
Deviance 254.67 159.21 98.52 -
Log L -388.02 -369.19 -392.92 -
Table 11. Likelihood ratio, AIC and BIC
Test/Criteria Poisson Generalized Poisson I (MLE)
Likelihood ratio - 37.7
AlIC 804.0 766.4
BIC 809.2 773.9

The deviance analysis should also be implemented to both Negative Binomial I (MLE)

and Generalized Poisson I (MLE) multplicative regression models because the aim of our

analysis is to obtain the simplest model that reasonably explains the variation in the data.
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Following the same procedure as the Poisson, several Negative Binomial I (MLE) and
Generalized Poisson I (MLE) regression models were fitted by including different rating
factors; first the main effects only, then the main effects plus each of the paired interaction
factors. By using the deviance and degrees of freedom, the chi-squares statistics were
calculated and compared to choose the best model. Table 12 and Table 13 give the results of
fitting several Negative Binomial I (MLE) and Generalized Poisson 1 (MLE) multiplicative

regression models to the count data.

Table 12. Analysis of deviance for Negative Binomial I (MLE)

Model deviance df Adeviance Adf 7 2 p-value
Null 207 231 - - - -

+ Use-gender 166 229 41.63 2 20.82 0.00
+ Covarage type 149 228 16.54 1 16.54 0.00

Table 13. Analysis of deviance for Generalized Poisson 1 (MLE)

Model deviance df Adeviance Adf 2,2 p-value
Null 262 231 - - - R

+ Use-gender 180 229 81.90 2 40.95 0.00
+ Covarage type 159 228 20.73 i 20.73 0.00

Based on the deviance analysis, the best model indicates that only two of the rating
factors, ie., coverage type and use-gender, ate significant and none of the paired interaction
factor is significant. The parameter estimates for the two-factor models are shown in Table

14.

The two-factor models give significant parameter estimates. As a conclusion, based on
the deviance analysis and parameter estimates, the best model for Negative Binomial I
(MLE) and Generalized Poisson I (MLE) regression models is provided by the two-factor

model.
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Table 14. Parameter estimates for Negative Binomial I (MLE) and
Generalized Poisson 1 (MLE)

Parameter Negative Binomial I (MLE) Generalized Poisson I (MLE)

estimate  std.error  p-value  estimate  std.error  p-value
a 0.16 - - 0.04 - -
B Intercept -3.15 0.06 0.00 -3.17 0.07 0.00
f; Non-comprehensive -0.94 0.12 0.00 -0.92 0.12 0.00
p3  Female -0.55 0.09 0.00 -0.55 0.09 0.00
f4 Business -6.02 1.00 0.00 -6.01 1.00 0.00
Df 228.00 228.00
Pearson 17 259.53 275.51
Deviance 149.12 158.91
Log L -423.69 -425.97

Based on the comparison between Poisson, Negative Binomial and Generalized Poisson
multiplicative regression models, several remarks can be made:

¢ The Poisson, Negative Binomial and Generalized Poisson regression models give
similar parameter estimates.

® The Negative Binomial and Generalized Poisson regression models give larger values
for standard errors. Therefore, it is shown that in the presence of overdispersion, the
Poisson overstates the significance of the regression parametets.

® The best regression model for Poisson indicates that all rating factors and one paired
interaction factor are significant. However, the best regression model for Negative
Binomial T (MLE) and Generalized Poisson I (MLE) indicates that only two rating
factors are significant. Therefore, it is shown that in the presence of overdispersion,

the Poisson overstates the significance of the rating factors.

5.2Ship damage data

The ship damage incidents data of McCullagh and Nelder [19] was based on the damage
incidents caused to the forward section of cargo-carrying vessels. The data provides
information on the number and exposure for ship damage incidents, where the exposure was

expressed in terms of aggregate number of month service. The risk of ship damage incidents
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was associated with three rating factors; ship type, year of construction and period of
operation. The fitting procedure only involves thirty-four data points because six of the
rating classes have zero exposures. The data, which was provided by Lloyd’s Register of
Shipping, can also be accessed from the Internet by using the following website address,

http:/ /sunsite.univie.ac.at/statlib /datasets /ships.

Since the same data was analyzed in some detail by both McCullagh and Nelder [19] and
Lawless [21], the related remarks and discussions from their studies will be reported here.
McCullagh and Nelder detected that there was some inter-ship variability in accident-
proneness which could lead to overdispersion. For these reasons, McCullagh and Nelder

assumed that,

Var(¥,) = a,,
where,
z (y; _,U.')Z
a=_ H, ’
n—p

ie., a is equal to the Pearson chi-squares divided by the degtees of freedom.

By using the fitting procedure which is similar to the Poisson IWLS regression, the
McCullagh and Nelder’s model was fitted to the main effects data. The parameter estimates
for the model ate equal to the Poisson, but the standard errors are equal or larger than the

Poisson because they are multiplied by Ja where a20.

The same main effects data was also fitted to the multplicative regression models of
Negative Binomial I (MLE) and Negative Binomial I (moment) by Lawless [21]. However,
the Negative Binomial I (MLE) produced a =0, and this result is equivalent to fitting the

data to the Poisson multiplicative regression model.

To confirm Lawless’s result, we also run the S-PLUS programming for Negative
Binomial I (MLE) to the ship data. We found that the parameter estimates for the ship data
did not converge and therefore concluded that the data is better to be fitted by the Poisson.
Table 15 shows the comparison between Poisson, Negatve Binomial and McCullagh and

Nelder multiplicative tegression models.
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Table 15. Poisson, Negative Binomial and McCullagh and Nelder regression models

Parameters Poisson/Negative Negative Binomial 1 Negative Binomial 11/
Binomial [ (MLE) (moment) McCullagh and Nclder
est. std. pvalue est. std. p-value cst. std. p-value
crror error crror
a - - 0.15 - - 0.69/ - -
1.69
it Intercept -6.41 022 0.00 -6.45 0.41 0.00 -6.41 0.28 0.00

-054 018 0.00 -0.50 0.30 0.10
By Ship type C -0.69 033 0.04 -0.56 0.41 0.18 -0.69 0.43 0.11
B4 Ship type’D -0.08 029 0.79 -0.11 0.41 0.79 -0.08 0.38 0.84
Bs  Shiptype B 033 024 0.17 0.46 0.35 0.19 0.33 0.31 0.29

Ship type B -0.54 0.23 0.02
2 p typ

fs  Const’n 65-69 070  0.15 0.00 0.72 0.35 0.04 0.70 0.19 0.00
f;  Constn70-74 082 017 0.00 09 0.34 0.01 0.82 0.22 0.00
Pz Constn75-79 045 023 0.05 0.46 042 0.27 0.45 0.30 0.13

Py Opern75-79 038 012 0.00 0.34 0.23 0.14 0.38 0.15 0.01
Df 25.00 24.00 24.00

Pearson 2’2 42.28 25.00 -

Deviance 38.70 25.01 -

Log L -68.28 -72.83 -

The parameter estimates and standard etrots for both Negative Binomial II and
McCullagh and Nelder are equal because the models were fitted by using the same

procedure.

McCullagh and Nelder [19] found that the main effects model fits the data well, i.e., all
of the main effects are significant and none of the paired interaction factor is significant.
According to McCullagh and Nelder, if the Poisson regression model was fitted, there was
an inconclusive evidence of an interaction between ship type and year of construction.

However, this evidence vanished completely if the data is fitted by the overdispersion model.

Lawless [21] reported that the regression models for both McCullagh and Nelder and
Negative Binomial I (moment) fit the data well. According to Lawless, both models gave the
same estimates for the regression parameters and similar inferences about the regression
effects. Lawless also remarked that even though there was no strong evidence of
overdispersion under the Negative Binomal I (moment) or McCullagh and Nelder regression

models, the method for fitting the models has a strong influence on the standard errors. In
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particular, the Poisson and Negative Binomial I (moment) respectively produced the smallest
and largest standard errors, whereas the McCullagh and Nelder’s were somewhere in
between. In addition, the effects of ship type are not significant under the Negative Binomial
I (moment), whereas they are under the Poisson and to a lesser extent under the McCullagh
and Nelder.

If the same main effects data was fitted to the multiplicative regression models of
Generalized Poisson, the parameter estimates and standard errors may also be compared.

The comparisons are shown in Table 16.

Table 16. Poisson vs. Generalized Poisson

Parameters Potsson/Generalized Generalized Poisson | Generalized Poisson 11
Poisson I (MLE) (moment)
est. std. p-value est. std. p-value est. std. p-value
crror error error

a 0.00 - - 006 - - 1.30 - -
B Intercept -6.41 0.22 0.00 -646 045 0.00 -6.41 028 0.00
B> Ship type B -0.54 0.18 000 -049 033 0.14 -0.54 023 0.02
Bs Ship type C -0.69 0.33 0.04 -056 041 0.17 -0.69 043 0.11
B Ship type D -0.08 0.29 079 011 041 0.80 -0.08  0.38 0.84
Bs Ship type 14 0.33 0.24 017 049 036 0.17 033 031 0.29
B Const’'n 65-69 0.70 0.15 000 073 041 0.07 070 019 0.00
B, Const’'n 70-74 0.82 0.17 000 094 039 0.02 082 022 0.00
Bs Const’n 75-79 0.45 0.23 0.05 046 046 0.31 045 030 013
B Oper'n 75-79 0.38 0.12 0.00 034 02 0.19 038 0.15 0.01
Df 25.00 24.00 24.00
Pearson IZ 42.28 25.00 -
Deviance 3870 25.29 -
Log L -68.28 -74.22 -

The parameter estimates and standard errors for Generalized Poisson II, Negative
Binomial 1T and McCullagh and Nelder are equal because the regression models were fitted

by using the same procedure.

Similar to the Negative Binomial I (MLE), the Generalized Poisson I (MLE) also does

not give converged values for its parameter estimates. Therefore, it will be assumed that the
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Generalized Poisson I (MLE) produces a =0 and this is also equivalent to fitting the data

to the Poisson.

All models give similar estimates for the regression parameters. The Poisson and
Genetalized Poisson I (moment) respectively produced the smallest and largest standard
errors, whereas the Generalized Poisson II’s were somewhere in between. The effects of
ship type are also not significant under the Generalized Poisson I (moment), whereas they

are under the Poisson and to a lesser extent under the Generalized Poisson II.

5.3Canadian data

The Canadian private automobile liability insurance data from Bailey and Simon [1]
provides information on the number of claims incurred and exposures, where the exposure
was expressed in terms of numbet of earned car years. The data was classified into two
rating factors, merit rating and class rating. Altogether, there were twenty cross-classified
rating classes of claim frequencies to be estimated. The data can also be accessed from the
Internet by using the following website address, http://www.casactorg/
library /astin/vollnod/ 192.pdf.

Table 17 and Table 18 show the comparison between Poisson, Negative Binomial and

Generalized Poisson multiplicative regression models for the main effects data.

The Negative Binomial IT and Generalized Poisson II give equal values for parameter
estimates and standard errors. The regression parameters for all models give similar
estimates. The smallest standard errors are given by the Poisson, the largest are by the
Negative Binomial II and Generalized Poisson II, whereas the standard errors for Negative
Binomial I (MLE), Negative Binomial I (moment), Generalized Poisson I (MLE) and

Generalized Poisson I (moment) lie somewhere in between.

The likelihood ratio test for Poisson against Negative Binomial I (MLE) produces
likelihood ratio statistic of T =514.94. The likelihood ratio is very significant, indicating
that the Negative Binomial I (MLE) is a better model compared to the Poisson.

The likelihood ratio test for Poisson against Generalized Poisson I (MLE) also produces
a very significant likelihood ratio statistic, T = 525.44 . Therefore, the Generalized Poisson 1

(MLE) is also a better model compared to the Poisson.
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Table 17. Poisson vs. Negative Binomial

Parameters Poisson Negative Binomial 1 Negative Binomial I Negative Binomial 11
(MLE) (moment)
est. std. P est. std. I est. std. > est. std. P
error  value error value crror  value crror  value
a - - 0.001 - - 0.002 - - 4715 - -
B Intercept =253 0.00 0.00 -2.45 0.02 0.00 -2.45 0.03 0.00 -2.53 0.01 0.00
i Class 2 0.30 0.01 0.00 0.24 0.03 0.00 0.24 0.03 0.00 0.30 0.05 0.00
B Class 3 0.47 0.01 0.00 0.43 0.03 0.00 0.43 0.03 0.00 0.47 0.03 0.00
B Class 4 0.53 0.01 0.00 0.46 0.03 0.00 0.46 0.03 0.00 0.53 0.04 0.00
lBS Class 5 022 0.01 0.00 0.14 0.03 0.00 0.14 0.04 0.00 0.22 0.07 0.00
Bs Merit X 027 001 000 022 003 000 022 003 000 027 005 000
Merit .36 .01 . .2 . . .2 . . . .04 .
Merit Y 0.36 0.0 0.00 0.27 0.03 0.00 0.27 0.03 0.00 0.36 0.0 0.00
5 Merit B 0.49 0.00 0.00 0.41 0.02 000 041 0.03 0.00 0.49 0.03 0.00
Df 1200 11.00 11.00 11.00
Pearson 72 577.83 1756 12.00 -
Deviance 579.52 17.67 12.08 -
Yog L -394.96 137.49 A138.11 ;
Table 18. Poisson vs. Generalized Poisson
Parameters Potsson Generalized Poisson I Generalized Poisson | Generalized Poisson
(MLE) (moment) i1
est. std. - ost. std. »- est. std. - est. std. -
error  value crror  value crror  value error  value
a - - 00002 - - 00002 - - 6.94 - -
i Intercept -2.53 0.00 000 241 0.03 000 -2.41 0.03 0.00 -253 0.01 0.00
B Class 2 0.30 0.01 0.00 0.22 0.03 0.00 0.22 0.03 0.00 0.30 0.05 0.00
B Class 3 0.47 0.01 0.00 0.42 0.02 0.00 0.42 0.03 0.00 0.47 0.03 0.00
B Class 4 0.52 0.01 0.00 0.43 0.02 0.00 0.43 0.03 0.00 0.53 0.04 0.00
Bs Class 5 0.2z 0.01 0.00 0.12 0.03 0.00 0.12 0.03 0.00 0.22 007 0.00
B Ment X 0.27 001 0.00 0.20 0.02 0.00 0.20 0.02 0.00 0.27 0.05 0.00
B Merit Y 0.3¢ 0.01 0.00 0.24 0.02 0.00 0.24 0.02 0.00 0.36 0.04 0.00
5 Ment B 0.49 0.00 0.00 0.38 0.02 0.00 0.38 0.38 0.00 0.49 0.03 000
Df 12.00 11.00 11.00 11.00
Pearson 12 577.83 15.04 12.00 -
Deviance 579.52 15.31 12.20 -
log L -394.96 -132.24 -132.46 -
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Table 19 gives further comparison between Poisson, Negative Binomial 1 (MLE) and
Generalized Poisson I (MLE). The comparison, which was based on the likelihood ratio,
AIC and BIC, indicates that the Negative Binomial I (MLE) and Generalized Poisson 1
(MLE) are better models compared to the Poisson.

Table 19. Likelihood ratio, AIC and BIC

Test/Criteria Poisson Negative Binomual Generalized

I (MLE) Poisson I MLE)
Likelihood ratio - 514.94 525.44
AIC 805.92 292.98 282.48
BIC 800.33 286.69 276.19

6. ADDITIVE REGRESSION MODELS

In this section, the estimation procedure for the additive regression models will be
briefly discussed. However, a slightly different approach is taken to compute the regression

parameters.

6.1Poisson

Let r;, y; and e, denote the claim frequency rate, claim count and exposure for the sth

class so that the obsetved frequency rate is equal to,

r=2t. 6.1)

If the random variable for claim count, Y;, follows a Poisson disttibution, the probability

density function can be wtitten as,

F0) = g0y = 2R NI &

),

where the mean and variance for the «claim count is equal to

E(Y,)=Var(Y,)=¢,E(R) =e,f,.
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For Poisson regression model, the likelihood equations are equal to,

oUP) _eln=f) ¥, '
- i\ il Ve O, = 1,2,..., . 6.3
a/3,- Z f. aﬂj ! ’ ( )

If the Poisson follows an additive model, the mean or the fitted value for frequency rate

can be written as,

ER)=f,=x/B, (6.4)
so that,
I _
%" x,. ©6.5)

Therefore, the first derivatives of log likelihood for Poisson are,

x5 (r, = fe.x,

= =0, j=12,..p, (6.6)
B, T
and the negative expectation of the second derivatives of log likelihood are,
3%P) | e
-F =—Ltx.x,, L 5,s=12,..,p. 6.7
[ B8, ) 1 J P ©7

The information matrix, I, which contains negative expectation of the second

derivatives of log likelihood, may be written as,
I=X"WX, (6.8)

where X denotes the matrix of explanatory variables, and W the diagonal weight matrix

whose 7th diagonal element is equal to,
wf=—. (6.9)

The fitst derivatives of log likelihood, i.e., EqQ.(6.6), can be written as,

z=X"Wk, (6.10)
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where W is the diagonal weight matrix whose ith diagonal element is also equivalent to

Eq.(6.9), and Kk the vector whose 7th row is equal to,

k,=r—f. 6.11)

6.2Negative Binomial I

If the mean or the fitted value for frequency rate is assumed to follow an additive

regression model, the first derivatives of log likelihood for Negative Binomial I are,

3(B,a) _ 3 (r,—f)ex,

=0, j=12,.p, 6.12)
9B, ~ fi(l+ae, f)
and the negative expectation of the second derivatives of log likelihood are,
_g 2. S X%, Js=12..p. (6.13)
aﬁjaﬂ.\ f(“'ae f)

Therefore, the information matrix, I, may also be written as Eq.(6.8). However, the 7th

diagonal element of the weight matrix, W, is equal to,

L S— (6.14)
l f,(l+aelfi)

The first derivatives of log likelihood, i.e., Eq.(6.12), can also be written as Eq.(6.10) whete
k is the vector whose /#th row is equal to Eq.(6.11). However, the /ith diagonal element of
the weight matrix, W, is equal to Eq.(6.14).

6.3Negative Binomial II
The maximum likelihood estimates, ﬁ, for Negative Binomial II additive regression
model are numerically difficult to be solved from the likelihood equations. However, the

regression parameters are easler to be approximated by using the least squares equations,

e(n—fi) af (r, = fex, .
= =1.2,.. ,
2 v f(+a) 9f, Z fil+a) O J=ldep. ©6.15)

because the distribution of Negative Binomial IT has a constant variance-mean rado. Since

Eq.(6.15) is also equal to the lkelihood equations of the Poisson, i.e., Eq.(6.6), the least
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squares estimates, B, are also equivalent to the Poisson maximum likelihood estimates.
However, the standard errors are equal or larger than the Poisson because they are

multiplied by v1+a where a 20.

6.4 Generalized Poisson I

If the mean or the fitted value for frequency rate is assumed to follow an additive

regression model, the first detivatives of log likelihood for Generalized Poisson I are,

8€(B,a) —_—Z (r, _f,')e,'x,'j
B, = f.(1+ae, f)*’

J=12,..p, (6.16)

and the negative expectation of the second derivatives of log likelihood are,

9%4(B,a) .. |
- F = i X, L J 8= ]’2’.”’ . 6.17
( aﬂ;aﬁr fi(l'f‘ae,_f,)z xeL\ 7.8 p ( )

Therefore, the information matrix, I, may also be written as Eq.(6.8). However, the jth

diagonal element of the weight matrix, W, is equal to,

Gel €;
= 6.18
" fi(+ae,f)? 18

The first derivatives of log likelihood, ie., Eq.(6.16), can be written as Eq.(6.10),

where k is the vector whose ith row is equal to Eq.(6.11). However, the 7th diagonal
element of the weight matrix, W , is equivalent to Eq.(6.18).

6.5Generalized Poisson II

The maximum likelihood estimates, B, for Generalized Poisson II additive regression
model are also numerically difficult to be solved from the likelihood equations. However, by

using the least squares equations,

(r,—fex,
—L ¥ -, j=12,..,p. 6.19
Z 7 p (6.19)
the regression parameters are easier to be calculated because the distribution of Generalized
Poisson II also has a constant variance-mean ratio. Since Eq.(6.19) is equal to the likelihood

equations of the Poisson, i.e., Eq.(6.6), the the least squares estimates, B, are also equivalent
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to the Poisson maximum likelihood estimates. Howevet, the standard errors are equal, larger

ot smaller than the Poisson because they are multiplied by a where a>1 or $<a<1.

The methods and equations for solving B in additive regression models are summarized

in Table 20. The matrices and vectors for solving B in additive regtession models are

summarized in Table 21. An example of S-PLUS programming for the additive regression

model of Negative Binomial I (moment) is given in Appendix D.

Table 20. Methods and equations for solving B in additive regression models

Models Estimation of
Method Equation
(= Feix;
Poisson Maximum Likelihood Z -—'———fl_# =0
(ri ~ £, )e.x;
Negative Binomial [ Maximum Likelihood Z-—I———#- =
~ fi(l+ae; f;)
(r, — f e:x;
Negative Binomial II Weighted Least Squares Z —_— =0
-~ (1+a)f,
(i~ f)eix;
Generalized Poisson 1 Maximum Likelihood Z ;—U? =0
7 fi(l+ae f;)

Generalized Poisson I1

z (r; —fi)eixij _

Weighted Least Squares 3 =
i af
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Table 21. Matrices and vectors for solving B in additive regression models

Matrices and vectors for B, =8, + I(-,l_l)z(,_” , where
_.ywT
Loy =X"W, )X,

T
Zoy =X We ke,

Models 3%
js-th element of matrix 1= ij.‘ = _E{W] ,
J K}
Jth row of vector 2=z, =.;;L.
J
Poisson/ ' e, .
NBII/ matrix [ i =27x,,.x,.,, S 1=XTWX
GPII T Ji
wh =4
weight matrix W ' f;
e;
vector Z z; =Z.—fl.—(ri_fi)xi/ S z=XTwk
vector k ki=r—f
, e; T
=) ——————x, x;; —» [=X"WX
NBI matrix [ # Zfi(]+aeifi) yXis
weight matrix W ¥ =f(|—8i—f—;
(1 +ae, f;
i 2; =) —————(ri—f)x;, —»z2=X"Wk
vector Z j ,' fi(l"’aeifi)( fidx;
vector k ki=ri—f;
GPI matrix [ i = Z——_ei—zxuxn S I1=XTWX
— fil+ae; f)
—_— SO &
weight matrix W i fi(l+ae f,)2
vector e, T
;=) 5 (hi-fi)x; > z=X Wk
. = sy '
vector Ko=r—f
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6.6 Examples

Following the same examples as the multiplicative regression models, the additive
regression models were also fitted on three different sets of claim frequency data; Malaysian
data, ship damage incident data, and Canadian data. Unfortunately, the Malaysian data did
not give converged parameter solutions for any of the Poisson, Negative Binomial and
Generalized Poisson regression models. However, the parameter solutions are obtainable for
both ship damage incident data and Canadian data. Table 22 shows the comparison between
Poisson, Negative Binomial and Generalized Poisson additive regression models for the ship

damage incident data.

Table 22. Poisson, Negative Binomial and Generalized Poisson for ship data

Parameters Poisson/NBI(MLE)/ NBI{moment) GPl(moment) NBII/GPII
GPI(MLE)
est. std. p- est. std. V. est. std. I est. std. Vo
(x10% error  value error  value error  value error  value
(x10% (X109 (x10% (X103 (x109 (X109 (x10%)
a 0.00 - - 13373 - - 5294 - - 599.25/ - -
1264.61

B Intercept 2.60 072 0.00 219 1.04 003 216 1.05  0.04 2.60 091  0.00
B, ShiptypeB -1.73 071 001 -1.33 1.01 019  -1.30 1.02 020 -1.73 090  0.05
By Shiptype € -1.89 086 003  -152 112 017 152 111 017 -1.89 1.09 008
By Shiptype D -0.79 110 047  -1.05 132 043 -113 128 038 -0.79 139 057
Bs  Shiptype B 1.87 130 015 272 191 015 2.87 192 013 1.87 1.64 025
B  Cons. 65-69 1.05 024 0.00 087 056 012 078 063 022 1.05 031 000
B, Cons. 70-74 1.58 038  0.00 215 076  0.00 233 084 001 1.58 047 0.0
B Cons. 7579 0.69 055 022 0.77 094 042 076 098  0.44 0.69 070 033
By Oper. 75-79 0.79 024  0.00 079 052 013 0.81 058 016 0.79 031 0.01
Df 25.00 24.00 24.00 24.00
Pearson g2 39.98 25.00 25.00 -
Deviance 38.44 25.65 26.12 -
Log L -68.15 -72.44 -73.48 -

After running the S-PLUS programming for Negative Binomial I (MLE) and
Generalized Poisson 1 (MLE) to the ship data, we found that the models did not give
converged parameter solutions and concluded that the data is better to be fitted by the
Poisson. Since the Poisson is a special case of the Negative Binomial I (MLE) and

Generalized Poisson I (MLE), the result of fitting the Poisson is also equivalent to the result
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of fitting the Negative Binomial I (MLE) or Generalized Poisson I (MLE) which produces
a=0.

The parameter estimates and standard errors for Negative Binomial II and Generalized

Poisson II are equal because both models were fitted by using the same procedure.

The smallest staridard errors are given by the Poisson, the largest are by the Negatve
Binomial I (moment) and Generalized Poisson I (moment), whereas the standard errors for

Negative Bino;rﬂal II and Generalized Poisson Il are somewhere in between.

Table 23 shows the comparison between Poisson, Negative Binomial and Generalized

Poisson additive regression models for the Canadian data.

The parameter estimates and standard errors for Negative Binomial II and Generalized

Poisson II are equal because both models were fitted by using the same procedure.

The smallest standard errors are given by the Poisson, the largest are by the Negative
Binomial I (moment) and Generalized Poisson I (moment), wheteas the standard errors for
Negative Binomial 1 (MLE), Generalized Poisson I (MLE), Negative Binomial II and

Generalized Poisson [1 are somewhere in between.
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Table 23. Poisson, Negative Binomial and Generalized Poisson for Canadian data

Parameters Potsson NBI(ML.L) NBI(moment)
ost. std.  p-value est. std. p-value ost. std. p-value
error error error
(X103 (x10%) (X109 (x109) (X109 (X103
a - - - 0.06 - - 0.12 - -
B Intercept 7.88 0.02 0.00 7.98 0.17 0.00 8.00 022 0.00
By, Class2 313 0.09 0.00 299 0.25 0.00 299 0.32 0.00
By Class3 5.24 0.07 0.00 5.66 0.27 0.00 5.70 0.35 0.00
By Class4 6.53 0.08 0.00 6.36 0.28 0.00 6.34 0.36 0.00
fs  Classs 217 012 0.00 1.88 0.26 0.00 1.81 0.32 0.00
B MentX 276 0.08 0.00 274 0.24 0.00 272 0.30 0.00
By MentY 3.86 0.08 0.00 3.55 0.24 0.00 3.50 0.31 0.00
Sz MentB 5.88 0.06 0.00 5.63 0.25 0.00 5.59 0.32 0.00
Df 12.00 11.00 11.00
Pearson 2 95.93 19.19 12.00
Deviance 96.07 19.36 1210
LogL -153.24 -132.31 -133.24
Parameters GPI{MLE) GPI(moment) NBII/GPII
est. std.  p-value st std. p-value est. std. p-value
error error error
(X103 (x109) (X109 (x103) (105 (X103
a 0.02 - - 0.02 - - 699.38/ - -
28273
B Intercept 824 0.28 0.00 829 035 0.00 7.88 0.05 0.00
B, Class2 284 0.30 0.00 284 0.35 0.00 3.13 024 0.00
By Class3 5.84 0.31 0.00 5.90 0.38 0.00 5.24 0.19 0.00
fy  Class4 6.21 0.31 0.00 6.19 0.38 0.00 6.53 0.23 0.00
fs  Class5 1.72 0.31 0.00 1.64 0.36 0.00 2.17 033 0.00
P MeritX 255 027 0.00 251 0.32 0.00 2.76 0.23 0.00
By MerntY 3.28 027 0.00 3.19 0.32 0.00 3.86 022 0.00
B MeritB 5.37 0.28 0.00 5.28 0.33 0.00 5.88 0.18 0.00
Df 11.00 11.00 11.00
Pearson z? 17.08 12.00 -
Deviance 17.51 1234 -
Log L -132.12 -132.61 -
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7. CONCLUSIONS

This paper proposed the Negative Binomial and Generalized Poisson regression models
as alternatives for handling overdispersion. Specifically, four types of distributions, ie.,
Negative Binomial I, Negauve Binomial II, Generalized Poisson I and Generalized Poisson
11, and two types of regression models, i.e., multiplicative and additive, were discussed. Since
the likelihood equations for the multiplicative and additive regression models of the
Negative Binomial I and Generalized Poisson I are equal to the weighted least squares, the
fitting procedure can be carried out easily by using the Iterative Weighted Least Squares
(IWLS) regression.

The estimation of the dispersion patameter, a, can be implemented by using either the
maximum likelihood raethod or the method of moment. In this paper, the models where a
is estimated by the maximum likelihood method are denoted by Negative Binomial I (MLE)
and Generalized Poisson 1 (MLE). Similarly, the Negative Binomial I (moment) and
Generalized Poisson I (moment) represent the models where a is estimated by the method

of moment.

The maximum likelihood estimates for Negative Binomial IT and Generalized Poisson II
are numerically difficult to be solved because their likelihood equations are not equal to the
weighted least squares. As an alternative, the method of least squates is suggested because

both Negative Binomial IT and Generalized Poisson II have constant variance-mean ratios.

Table 1 and Table 20 summarize the methods and equations for solving
B I J=12,..., p, in muldplicative and additive regression models. The matrices and vectors
for solving P in multiplicative and additive regression models are summarized in Table 2

and Table 21. Finally, Table 3 summatizes the equations for solving a .

This paper also briefly discussed several goodness-of-fit measures which were already
familiar to those who used Generalized Linear Model with Poisson error structure for claim
count or frequency analysis. The measures, which are also applicable to the Negative
Binomial as well as the Generalized Poisson regression models, are the Pearson chi-squares,
deviance, likelthood ratio test, Akaike Information Criteria (AIC) and Bayesian Schwartz

Information Criteria (BIC).

In this paper, the multiplicative and additive regression models of the Poisson, Negative
Binomial and Generalized Poisson were fitted, tested and compared on three different sets
of claim frequency data; Malaysian private motor third party property damage data, ship
damage incident data from McCullagh and Nelder [19], and data from Bailey and Simon [1]
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on Canadian private automobile liability. Unfortunately, none of the additive regression

models give converged parameter solutions for the Malaysian data.

This paper shows that even though the Poisson, the Negative Binomial and the
Generalized Poisson produce similar estimate for the regression parameters, the standard
errors for the Negative Binomial and the Generalized Poisson are larger than the Poisson.
Therefore, the Poisson overstates the significance of the regression parameters in the
presence of overdispersion. An example can be seen from the results of fitting the Poisson,
the Negative Binomial and the Generalized Poisson to the ship damage data. The effects of
ship type are not significant under the NBI-moment or the GPI-moment, whereas they are
under the Poisson, and to a lesser extent under the McCullagh and Nelder or the NBII or
the GPIL.

This paper also shows that in the presence of overdispersion, the Poisson overstates the
significance of the rating factors. An example can be seen from the results of implementing
the deviance analysis to the Malaysian data. The best regression model for the Poisson
indicates that all rating factors and one paired interaction factor are significant. However, the
best regression model for NBI-MLE and GPI-MLE indicates that only two rating factors are
significant. Another example can be seen from the ship damage data. According to
McCullagh and Nelder [19], there was an evidence of interaction between ship type and year
of construction if the Poisson 'regression was fitted. However, the evidence vanished

completely if the data is fitted by the overdispersion model.

In addition, this paper shows that the maximum likelihood approach has several
advantages compared to the quasi likelihood approach, which was suggested in the actuarial
literature, to accommodate overdispersion in claim count or frequency data. Besides having
good properties, the maximum likelihood approach allows the likelihood ratio and other

standard maximum likelihood tests to be implemented.

The Negative Binomial and the Generalized Poisson models are not that difficult to be
understood. Even though the probability density function for both Negative Binomial and
Generalized Poisson involve mathematically complex formulas, the mean and variance for
both models are conceptually simpler to be interpreted. The mean for both Negative
Binomial and Generalized Poisson models are equal to the Poisson. The variance of the
Negative Binomial is equal or larger than the Poisson, and this allows the Negative Binomial
model to handle overdispersion. The vatiance of the Generalized Poisson is equal, larger or
smaller than the Poisson, and this allows the Generalized Poisson to handle either

overdispersion or underdispersion.
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The Negative Binomial and Generalized Poisson are also not that difficult to be fitted.
The fitting procedure can be carried out by using the Iterative Weighted Least Squares
regression which was used in the Poisson fitting procedure. The only difference is that the
Negative Binomial and the Generalized Poisson has their own weight matrix, and the
iteration procedure for calculating the dispersion parameter, a, has to be added in the fitting

procedure.
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Appendix A: S-PLUS programming for Negative Binomial I (moment) multiplicative

regression model

NB.moment <- function(data)

{

# To idenafy matrix X, vector count and vector exposure from the data
X <- as.matrix(data[, -(1:2)])
count <- as.vector(data], 1])
exposure <- as.vector(datal, 2])

# To set initial values for a and beta
new.a <- ¢(0.001)
new.beta <- rep(c(0.001), dimX){2])

# To start iterations
for (1in 1:50)

{

# To start the first sequence

a <-new.a

beta <- new.beta

miul <- exposure*exp(as.vector(X%*%beta))
\4 <- diag(miul/(1+a*miul))

Linverse  <- solve(t(X)%*%W%*%X)

k <- (count-miul)/miul
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z <- t(X) % %W %* %k
new.beta <-as.vectot(betatLinverse%o*%z)
new.miul <- exposure*exp(as.vector(X%*%mnew.beta))
# To start the second sequence
G <- sum((count-new.miul)"2/(new.miul*(1+a*new.miul)))-
(dim(X[1]-dim(X)[2)
G.prime  <- -(sum((count-new.miul)"2/(1+a*new.miul)"2))
new.a <-a-G/G.prime
}
# To calculate the variance and standard error
varians <- as.vector(diag(l.inverse))
std.error  <- sqrt(varians)
# To list the programming output
list (a=new.a, beta=new.beta, std.error=std.error, df=dim(X)[1]-dim(X)[2]-1)

Appendix B: S-PLUS programming for Generalized Poisson I (moment)

multiplicative regression model

GP.moment <- function(data)

{

# To identify matrix X, vector count and vector exposure from the data
X <- as.matrix(data[, -(1:2)])
count <- as.vector(datal, 1])
exposure  <- as.vector(data[, 2])

# To set initial values for a and beta
new.a <-¢(0.001)
new.beta  <- rep(c(0.001), dim(X)[2])

# To start iterations
for (i in 1:50)

{

# To statt the first sequence

a <-new.a
beta <- new.beta
miul <- exposure*exp(as.vector(X%*%beta))
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W <- diag(miul/(1+a*miul)"2)
Linverse  <- solve(t(X)%*%W%*%X)
k <~ (count-miul)/miul
z <= t(N)%o*%W%* %ok

new.beta <- as.vector(beta+Linverse%*%oz)
new.miul <- exposure*exp(as.vector(NX%*%new.beta))
# To start the second sequence
G <- sum((count-new.miul)"2/(new.miul*(1 +a*new.miul)"2))-
(dim(X)[1]-dim(X)[2)
G.ptime  <- -(sum(2*(count-new.miul)“2/(1+a*new.miul)"3))
new.a <-a-G/G.ptime
# To set restrictions for a
if (new.a<0)*(new.a<=-1/max(count)))
new.a <- -1/(max(count)+1)
else
if ((new.a<0)*(new.a<=-1/max(new.miul)))
new.a <- -1/(max(new.miul)+1)
else
if (new.a<0)*(new.a<=-1/max{count))*
(new.a<=-1/max(new.miul)))
new.a <- min(-1/(max(count)+1),-1/(max{(new.miul)+1))
else
new.a <- new.a
}
# To calculate the variance and standard error
varians <- as.vector(diag(Linverse))
std.error <- sqrt(varians)
# To list the programming output
list(a=new.a, beta=new.beta, std.error=std.error, dAf=dimX)[1]-dim(X)[2]-1)
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Appendix C: Malaysian data

Rating factors Exposures Claim counts
Coverage type Vehicle make Use-gender Vehicle year Location

Comprehensive Local Private-male 0-1 year Central 4243 381

North 2567 146

Fast 598 44

South 128t 161

Fast Malaysa 219 8

2-3 year Central 6926 422

North 4896 203

Hast 1123 41

South 2865 164

Fast Malaysia 679 19

4-5 vear Central 6286 276

North 4125 145

Fast 1152 29

South 2675 115

Fast Malaysia o0 17

6+ year Central 6905 223

North 5784 150

Kast 2156 39

South 3310 89

East Malaysia 1406 33

Private-female 0-1 year Central 2025 165

North 1635 55

East 301 12

South 608 23

Fast Malaysia 126 6

2-3 year Central 3661 147

North 2619 72

Fast 527 12

South 1192 39

[{ast Malaysia 359 8

4-5 year Central 2939 56

North 1927 36

East 439 7

South 959 23

Fast Malaysia 376 2

6+ year Central 2215 51

North 1989 38

Fast 581 5

South 937 23

East Malaysia 589 9

Business 0-1 year Central 290 0

North 66 0

Fast 24 Q0

South 52 0

Fast Malaysia 6 0

2-3 year Central 572 3}

North 148 0

Fast 40 0

South N 0

liast Malaysia 17 0

4-5 year Central 487 0

North 100 Q

Fast 40 4]

South 59 0
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6+ year

Foreign Privare-male 0-1 year

2-3 year

45 year

G+ year

Private-female 0-1 vear

2-3 year

4-5 year

6+ year

Business O-1 year

2-3 year

4-5 vear

East Malaysia

Central
North

Fast

South

East Malaysia

Central
North

Hast

South

Fast Malaysia

Central
North

Hast

South

Iast Malaysia

Central
North

fast

South

East Malaysia

Central
North

East

South

Fast Malaysia

Central
North

East

South

IZast Malaysia

Central
North

Last

South

Fast Malaysia

Central
North

Fast

South

Iiast Malaysia

Central
North

East

South

Iast Malaysia

Central
North

East

South

Fiast Malaysia

Central
North

st

South

Fast Malaysia

Central
North
Fast

22
468
93
33
7
25

1674
847
an
740
518

3913
1930
618
1768
833

4002
1777
534
1653
840

6891
4409
1345
2735
2108

1222
632
209
452
345

2111
1068
283
857
493

1699
793
188
637
367

1922
1376
336
710
792

457
135
70
86
01

1134
315
113
284
205

1030
252
0

202
85
21

65

23

157
85
15
73
2

245

151
44

13
64

29
1

17

41

13
10

39
15

16
11

47
35
10
0
0
0
o
0
0
0
0

QO

[
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South 208 0

East Malaysia 221 0

6+ year Central 1075 0
North 297 0

Fast 78 4]

South 231 1]

Fast Malaysia 282 (t

Non- Local Povate-male (-1 year Central 8 0
comprehensive North 14 0
East 5 0

South 8 0

Fast Malaysia 3 0

2-3 year Central 34 3
North 65 0

Fast 26 0

South 51 1

tast Malaysia 21 0

4-5 year Central ! 1
North 180 5

Fast 47 0

South 48 1

East Malaysta 39 0

6+ year Central 349 9
North 496 5

Fast 143 2

South 233 4

Fast Malaysa 141 2

Pavate-female -1 year Central 2 0
North 6 0

Fast 6 0

South 3 0

Iast Malaysia 3 [t}

2-3 year Central 12 0
North 23 1

East 22 0

South 14 0

East Malaysia 21 0

4-5 year Central 36 0
North 66 1

Fast 19 0

South 13 0

Fast Malaysia 29 0

G+ year Central 133 1
North 213 0

Fast 50 0

South 55 0

Liast Malaysia 85 1

Business 0-1 year Central 1 0
North 2 0

Hast 4] 0

South 0 0

Fast Malaysia 0 0

2-3 year Central 1 0
North 5 0

Fast 1 0

South 1 0

Iiast Malaysia 1 il

45 year Central 18 0
North ] (]
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tast 1 0

South 1 0

Fast Malaysia Y] 0

6+ year Central 57 [
North 27 0

ast 1 Q

South 133 0

East Malaysia 3 0

Foreign Private-male O-1 year Central 4 0
North 1 i}

Fast 2 0

South S [

Fast Malaysia 8 0

2-3 year Central 41 [t}
North 54 3

Kast 7 0

South 30 2

Fast Malaysia 25 0

4-5 year Central 68 0
North 132 3

Fast 20 0

South 55 0

Fast Malaysia 48 3

6+ year Central 3164 49
North 3674 71

Fast 920 6

South 2067 56

Fast Malaysia 1985 22

Privace-female (-1 year Central 2 (
North 8 0

liast 1 0

South N 3 0

East Malaysia 6 0

2-3 vear Centeal 10 0
North 47 0

Fast Q 0

South 12 0

Fast Malaysia 26 0

45 year Central 29 0
North 66 0

Fast 2 0

South 14 0

Fast Malaysia 25 [

6+ year Central 875 14
North 177 15

liast 190 2

South 411 4

Iiast Malaysia 555 3

Business 0-1 year Central 1 0
North 1 0

Kast 0 0

South 2 0

Fast Malaysia 2 0

2-3 year Central 4 0
North 6 0

East 0 0

South 5 0

Hasc Malaysia 14 0

4-5 year Central 17 0
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North 14 0

liast 4 1]

South 7 1]

liast Malaysia 20 1]

G+ year Central 157 0

North 141 0

Fast 2 0

South 89 ]

East Malaysia 152 0

Total 170,749 5,728

Appendix D: S-PLUS programming for Negative Binomial I (moment) additive

regression model

NBmoment.add <- function(data)
{
# To identify matrix X, vector count, vector exposure and vector frequency from the data
X <- as.matrix(data[,-(1:2)])
count <- as.vector(datal,1})
exposure <- as.vector(data[,2])
rate <- count/exposure
# To set initial values for a and beta
new.beta <- rep(c(0.001), dim(X)[2])
new.a <- ¢(0.001)
# To statt iterations
for (11in 1:50)
{
# To start the first sequence
beta <- new.beta
a <- new.a
fitted <- as.vector(X%*%beta)
W <- diag(exposure/(fitted*(1+a*exposure*fitted)))
Linverse <- solve(t(X)%*%W%*%X)
k <- rate-fitted
z <- t(X)%*%W%* %ok
new.beta <- as.vector(beta+Linverse%*%z)

new.fitted <- as.vector(N%*%new.beta)
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# To start the second sequence

G <-  sum((exposure*(rate-new.fitted)"2) / (new.fitted*(1 +a*exposure*new.fitted)))-
(dim()[1]-dim()[2])
G.prime <- -sum({exposutre”2*(rate-new.fitted)"2)/(1 +a*exposure*new.fitted)"2)

new.a <- 2-G/G.prime

}

# To calculate the variance and standard error
varians <- as.vector(diag(l.inverse))

std.etror <- sqrt(varians)

}

# To list the programming output
list(a=new.a, beta=new.beta, std.etror=std.etror, df=dim(X)[1}-dim(X)[2]-1)
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