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Abstract 
In actuarial hteramre, researchers suggested various statistical procedures to estimate the parameters in 
claim count or frequency model. In particular, the Poisson regression model, which is also known as 
the Generahzed Linear Model (GLM) with Poisson error structure, has been x~adely used in the recent 
years. However, it is also recognized that the count or frequency data m insurance practice often 
display overdispersion, i.e., a situation where the variance of the response variable exceeds the mean. 
Inappropriate imposition of the Poisson may underestimate the standard errors and overstate the 
sigruficance of the regression parameters, and consequently, giving misleading inference about the 
regression parameters. This paper suggests the Negative Binomial and Generalized Poisson regression 
models as ahemafives for handling overdispersion. If the Negative Binomial and Generahzed Poisson 
regression models are fitted by the maximum likelihood method, the models are considered to be 
convenient and practical; they handle overdispersion, they allow the likelihood ratio and other 
standard maximum likelihood tests to be implemented, they have good properties, and they permit 
the fitting procedure to be carried out by using the herative Weighted I_,east Squares OWLS) 
regression similar to those of the Poisson. In this paper, two types of regression model will be 
discussed and applied; multiplicative and additive. The multiplicative and additive regression models 
for Poisson, Negative Binomial and Generalized Poisson will be fitted, tested and compared on three 
different sets of claim frequency data; Malaysian private motor third part T property' damage data, ship 
damage incident data from McCuUagh and Nelder, and data from Bailey and Simon on Canadian 
private automobile liabili~,. 

Keywords: Overdispersion; Negative Binomial; Generalized Poisson; Mttltiphcauve; Additive; 
Maximum likelihood. 

1. I N T R O D U C T I O N  

In proper ty  and liability insurance,  the  de terminat ion  o f  p r e m i u m  rates m u s t  fulfill four  

basic principles generally agreed a m o n g  the actuaries; to calculate "fair" p r e m i u m  rates 

whereby  h igh risk insureds  should  pay higher  p r e m i u m  and vice versa, to provide sufficient  

funds  for paying expected losses and  expenses ,  to mainta in  adequate  margin  for adverse 

deviation,  and  to p roduce  a reasonable  re turn to the insurer.  The  process  o f  establ ishing 

"fair" p r e m i u m  rates for insur ing uncer ta in  events  requires es t imates  which  were made  o f  

two impor tan t  e lements ;  the probabilities associated with the occur rence  o f  such  event,  i.e., 

the frequency,  and  the magni tude  o f  such  event,  i.e., the  severity. The  frequency and  severity 

es t imates  were usually calculated th rough  the use  o f  past  experience for g roups  o f  shnilar 
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risk characteristics. The process of grouping risks with similar risk characteristics to establish 

"fair" premium rates in an insurance system is also known as risk classification. In this paper, 

risk classification will be applied to estimate claim frequency rate which is equivalent to the 

claim count per exposure unit. 

In the last forty years, researchers suggested various statistical procedures to estimate the 

parameters in risk classification model. For example, Bailey and Simon [1] suggested the 

minimum chi-squares, Bailey [2] devised the zero bias, Jung [3] produced a heuristic method 

for minimum modified chi-squares, Ajne [4] proposed the method of moments also for 

minimum modified chi-squares, Chamberlain [5] used the weighted least squares, Coutts [6] 

produced the method of orthogonal weighted least squares with logit transformation, 

Harrington [7] suggested the maximum likelihood procedure for models with functional 

form, and Brown [8] proposed the bias and likelihood functions for minimum bias and 

maximum likelihood models. 

In the recent actuarial literature, research on the estimation methods for risk 

classification model is still continuing and developing. For example, MildenhaU [9] merged 

the models which were introduced by Bailey and Simon, i.e., the minimum bias models, with 

the Generalized Linear Models (GLMs), i.e., the maximum likelihood models. Besides 

providing strong statistical justifications for the minimum bias models which were originally 

based on a non-parametric approach, his effort also allowed a variety- of parametric models 

to be chosen from. Later, Feldblum and Brosius [10] summarized the minimum bias 

procedure and provided intuition for several bias functions, which include zero bias, least 

squares, minimum chi-squares and maximum likelihood, for practicing actuat T. Anderson et 

a/. [11] provided foundation for GLMs statistical theory also for practicing actual T. Their 

study provided practical insights and realistic output for the analysis of GLMs. Fu and Wu 

[12] developed the models of Bailey and Simon by following the same approach which was 

created by Bailey and Simon, i.e., the non-parametric approach. As a result, their research 

offers a wide range of non-parametric models to be created and applied. Ismail and Jemain 

[13] found a match point that merged the available parametric and non-parametric models, 

i.e., minimum bias and maximum likelihood models, by rewriting the models in a more 

generalized form. They solved the parameters by using weighted equation, regression 

approach and Taylor series approximation. 

Besides statistical procedures, research on multiplicative and additive models has also 

been carried out. Among the pioneer studies, Bailey and Simon [11 compared the systematic 

bias of multiplicative and additive models and found that the multiplicative model 

overestimates the high risk classes. Their result was later agreed byJung [31 and Ajne [4] who 
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also found that the estimates for multiplicative model are positively biased. Bailey [2] 

compared the multiplicative and additive models by producing two statistical criteria, namely, 

the minimum chi-squares and average absolute difference. In addition, he also suggested the 

multiplicative model for percents classes and additive model for cents classes. Freifelder [14] 

predicted the pattern of over and under estimation for multiplicative and additive models if 

true models were misspecified, Jee [15] compared the predictive accuracy of multiplicative 

and additive models, Brown [8] discussed and summarized the additive and multiplicative 

models which were derived from the maximum likelihood and minimum bias approaches, 

Holler et al. [16] compared the initial values sensitivity of multiplicative and additive models, 

Mildenhall [9] identified the Generalized Linear Models for identity and log link functions 

with the additive and multiplicative models which were discussed in Brown [8], and Ismail 

and Jemain [13] discussed and compared the parameter estimates and goodness-of-fit of the 

additive and multiplicative regression models. 

In insurance practice, the Poisson regression model, which is also known as the 

Generalized Linear Model with Poisson error structure, has been widely used for modeling 

claim count or frequency data in the recent years. For example, Aitkin el al. [17] and 

Renshaw [18] each respectively fit the Poisson model to two different sets of U.K. motor 

claim count data. For insurance practitioners, the Poisson regression model has been 

considered as practical and convenient; besides allowing the statistical inference and 

h),pothesis tests to be determined by statistical theories, the model also permits the fitting 

procedure to be carried out easily by using any statistical package containing a routine for the 

Iterative Weighted Least Squares (IWLS) regression. 

However, at the same time it is also recognized that the count or frequency data in 

insurance practice often display overdispersion or extra-Poisson variation, a situation where 

the variance of the response variable exceeds the mean. Inappropriate imposition of the 

Poisson may underestimate the standard errors and overstate the significance of the 

regression parameters, and consequently, giving misleading inference about the regression 

parameters. 

Based on the actuarial literature, the Poisson quasi likelihood model has been suggested 

to accommodate overdispersion in claim count or frequency data. For example, McCullagh 

and Nelder [191, using the data provided by Lloyd's Register of Shipping, applied the quasi 

likelihood model for damage incidents caused to the forward section of cargo-car~-ing 

vessels, to allow for possible inter-ship variability, in accident proneness. The same quasi 

likelihood model was also fitted to the count data of U.K. own damage motor claims by 

Brockman and Wright [20], to take into account the possibility of within-cell heterogeneity-. 
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For insurance practitioners, the most likely reason for using Poisson quasi likelihood is that 

the model can still be fitted without knowing the exact probability function of the response 

variable, as long as the mean is specified to be equivalent to the mean of Poisson, and the 

variance can be written as a multiplicative constant of the mean. To account for 

overdispersion, the Poisson quasi likelihood produces parameter estimates equivalent to the 

Poisson, and standard errors larger than those of the Poisson. 

On the contrat3,, the maximum likelihood approach suggested in this paper differs from 

the quasi likelihood approach such that it requires the complete probability" of the response 

variable, thus, allowing the likelihood ratio and other standard maximum likelihood tests to 

be implemented. With this objective in mind, this paper suggests the Negative Binomial and 

Generalized Poisson regression models for handling overdispersion. If the Negative 

Binomial and Generalized Poisson were fitted by the maximum likelihood method, the 

models may also be considered as convenient and practical; they allow the likelihood ratio 

and other standard maximum likelihood tests to be implemented, they have good properties, 

they permit the fitting procedure to be carried out by using Iterative Weighted Least Squares 

OWLS) regression similar to those of the Poisson, and last but not least, they handle 

overdispersion. In this paper, two types of regression models will be discussed and applied; 

multiplicative and additive models. Specifically, the multiplicative and additive regression 

models for Poisson, Negative Binomial and Generalized Poisson will be fitted, tested and 

compared on three different sets of claim frequency data; Malaysian private motor third 

party property damage data, ship damage incident data from McCullagh and Nelder [19], and 

data from Bailey and Simon [1] on Canadian private automobile liability. 

2. MULTIPLICATIVE REGRESSION MODELS 

2.1Poisson 

Let Y,. be the random variable for claim count in the ith class, i = 1,2 ..... n ,  where n 

denotes the number of rating classes. If Y, follows a Poisson distribution, the probability. 

density function is, 

exp(-2 i ) , t  x' 
Pr(Y, = y , ) -  y, = 0,1 .... (2.1) 

Y,! 

with mean and variance, E ( Y  i ) = V a r ( Y ,  ) = ,t, . 
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To incorporate covariates and to ensure non-negativity, the mean or the fitted value is 

assumed to be multiplicative, i.e., E(Y, I x~ ) = 2~ = e~ exp(xlV~), where e, denotes a measure 

o f  exposure, x i a p x 1 vector o f  explanatory variables, and [~ a p x 1 vector of  regression 

parameters. 

If  ~ is estimated by the maximum likelihood method,  the likelihood equations are, 

3g([~) _ ~ (y,  _ 2 , ) x  0 = 0, j = 1,2 ..... p .  (2.2) 

Since Eq.(2.2) is also equal to the weighted least squares, the maximum likelihood estimates, 

~ ,  may be solved by using the Iterative Weighted Least Squares OWLS) regression. 

2.2Negative B i n o m i a l  I 

Under  the Poisson, the mean, 2 i ,  is assumed to be constant or homogeneous  within the 

classes. However,  by defining a specific distribution for 2i ,  heterogeneity within the classes 

is now allowed. For  example, by assuming 2 i to be a Gamma with mean E ( 2  i) = 11i and 

variance Var(2i)=11~v7 ~, and Y,.12i to be a Poisson with conditional mean 

E(Y, IAi)= &, it can be shown that the marginal distribution o f  Y~ follows a Negative 

Binomial distribution with probability density function, 

F(Yi + vi) vi ' 11i ~' 
= = = , (2.3) Pr(Y~ y , ) =  IPr(Y, v, IAi)f(a,)d& F(y,  +l)F(v,)~,v ,  +11~) k ,v ,+11,)  

where the mean is E(Y i ) = 11, and the variance is Var(Y,.) = 11i + 1112 v7 I. 

Different parameterization can generate different types o f  Negative Binomial 

distributions. For example, by letting v i = a -I , Y/ follows a Negative Binomial distribution 

with mean E(Y  i ) = 11i and variance Var(Y i) = 11i (I + a11 i) , where a denotes the dispersion 

parameter (see Lawless [211; Cameron and Trivedi [22]). 

I f  a equals zero, the mean and variance will be equal, E (Y , )=  Var(Yi) ,  resulting the 

distribution to be a Poisson. If  a > 0 ,  the variance will exceed the mean, Var(Y i) > E(Y  i) ,  

and the distribution allows for overdispersion as well. In this paper, the distribution will be 

called as Negative Binomial I. 
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If it is assumed that the mean or the fitted value is multiplicative, i.e., 

E(Yi I xi ) =/2, "r = e, exp(x i I~), the likelihood for Negative Binomial I regression model may 

be written as, 

log(a) - log(y, !) + 

Yi log(a///) - ( y /+  a- '  ) log(1 + all i ). 

(2.4) 

Therefore, the maximum likelihood estimates, (~,h),  may be obtained by maximizing 

g(Jl,a) with respect to ~ and a .  The related equations are, 

and, 

c)g(~,a) z ( Y i - f l , ) x , j  =0,  j = l , 2  ..... p ,  (2.5) 
c)flj - i ] + a/-ti 

ag(p,a) ~,-' r + a -2 log(1 + a/.l i) (Yi + a-~)/-t _ O. (2.6) 
( l + a / 2 )  

The maximum likelihood estimates, (]],fi), may be solved simultaneously, and the 

procedure involves sequential iterations. In the first sequence, by using an initial value of a ,  

aim, g(~J,a) is maximized with respect to I], producing II0). The related equation is 

Eq.(2.5) which is also equivalent to the weighted least squares. Therefore, with a slight 

modification, this task can be performed by using the IWLS regression similar to those of 

the Poisson. In the second sequence, by holding l] fLxed at ~ , ) ,  ~(l~,a) is maximized with 

respect to a ,  producing am. The related equation is Eq.(2.6), and the task can be carried 

out by using the Newton-Raphson iteration. By iterating and cycling between holding a 

fixed and holding ~ fLxed, the maximum likelihood estimates, (~,~), will be obtained. 

Further explanation on the fitting procedure will be discussed in Section 4. 

An easier approach to estimate a is by using the moment estimation suggested by 

Breslow [23], i.e., by equating the Pearson chi-squares statistic with the degrees of freedom, 

~ (Yi n-- p ,  (2.7) 
i ~ ~ 2 

i 

/./i (1 + a,u ) 
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where n denotes the number of rating classes and p the number of  regression parameters. 

The sequential iteration procedure similar to the one mentioned above can also be used, this 

time producing maximum likelihood estimates of  13 and moment estimate of  a ,  (~,~) .  

In this paper, when a is estimated by the maximum likelihood, the model will be called 

as Negative Binomial I (MLE). Likewise, when a is estimated by the method of  moment, 

the model will be called as Negative Binomial I (moment). 

2.3 Negative Binomial II 

By letting v i = ilia -j , another type of  Negative Binomial distribution is produced, this 

time with mean E(Y i) =/2i and variance Var(Y,) = /2  (1 + a) (see Nelder and Lee [24]; 

Cameron and Trivedi [22] ). If a equals zero, the mean and variance will be equal, resulting 

the distribution to be a Poisson. If a > 0 ,  the variance will exceed the mean and the 

distribution allows for overdispersion as well. In this paper, the distribution will be called as 

Negative Binomial II. 

If  it is assumed that the mean or the fitted value is multiplicative, i.e., 

E(Y, ] x~) =/2, = e, exp(x~l~), the t ~ e ~ o o d  for Negative Binomial II regression model may 

be written as, 

g(ll, a) = ~ log(F(y, +/2,a q )) - Iog(F(/2ia-I )) _ log(yi !) - 
i 

/.li a-I log(a) - (Yi + ili a -i ) log(l + a -1 ). 

(2.8) 

Therefore, the maximum likelihood estimates, (~ ,a) ,  may be obtained by maximizing 

g(l~,a) with respect to l] and a .  The related equations are, 

ag([I,a) _ "-' } 
aft, ~ i / 2 i x o a - l { ~ = o ( / 2 i a - ' + r ) - ' - l o g ( l + a ) = O ,  j = l , 2  ..... p ,  (2.9) 

and, 

ae(~, a) ~ I~v'-I + r)q - log( l + a ) } ~ i  y i - / 2 i  = 0 .  (2.10) aa = -  /2ia-2[~=o (/2ia-I + .  ( l + a ) a  

However, the maximum likelihood estimates, ~, are numerically difficult to be solved 

because the related equation, Eq.(2.9), is not equal to the weighted least squares. As an 
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alternative, since the Negative Binomial II has a constant variance-mean ratio, the method of 

weighted least squares is suggested, i.e., by equating, 

a/a, (Y, - ll,)x o ~ y - / t ,  j = l , 2  ..... p ,  (2.11) 
Var(Y,.)afl ,-__ ~2 l + a  

~ 0~ 

to produce the least squares estimates, ~ .  

It is shown that in the presence of a modest amount of overdispersion, the least squares 

estimates were highly efficient for the estimation of a moment parameter of an exponential 

family distribution (Cox [25]). Since Eq.(2.11) is also equivalent to the likelihood equation of 

the Poisson, i.e., Eq.(2.2), the same IWLS regression which is used for the Poisson can be 

applied to estimate the least squares estimates, ~.  As a result, the least squares estimates are 

also equal to the maximum likelihood estimates of Poisson, but the standard errors are equal 

or larger than the Poisson because they are multiplied by lx/]-~a where a _> 0. 

For simplicity, a is suggested to be estimated by the method of moment, i.e., by 

equating the Pearson chi-squares statistic with the degrees of  freedom, 

~ ( Y i - ' U i ) ~ - - n - p ,  (gAg) 
(1 + a)/.ti 

which involves a straightforward calculation and produces a moment estimate, 8 .  

In this paper, the estimates which were produced by the multiplicative regression models 

of Negative Binomial I (MLE), Negative Binomial I (moment) and Negative Binomial II will 

be denoted respectively by (~,~),  (~,8) and (~ ,8 ) .  

2.4Generalized Poisson I 

The advantage of using the Generalized Poisson distribution is that it can be fitted for 

both overdispersion, Var(Y~) > E(Y, ), as well as underdispersion, Var(Y~) < E(Y~). In this 

paper, two different types of Generalized Poisson will be discussed; each will be referred to 

as Generalized Poisson I and Generalized Poisson II. For Generalized Poisson I 

distribution, the probability density function is (Wang and Famoye [26]), 

= ' ( /./, (_1 + ay,) ] 
( ,u i ] "  ( l+ay , )S ' -~exp[  l + a / t ,  ) '  y ' = O ' I  ..... Pr(Y~ = y,) [ l+al l , )  y~! (2.13) 
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with mean E(Y, ) = / / ,  and variance Var(Y i ) = t ,  (1 + aft, )2 : 

The Generalized Poisson I is a natural extension of the Poisson. If a equals zero, the 

Generalized Poisson I reduces to the Poisson, resulting E(Y/)= Var(Yi). If a > 0 ,  the 

variance is larger than the mean, Var(Y,.) > E(Y i ), and the distribution represents count data 

with overdispersion. If a < 0, the variance is smaller than the mean, Var(Y,)< E(Y,), so 

that now the distribution represents count data with underdispersion. 

If it is assumed that the mean or the fitted value is multiplicative, i.e., 

E(Y, [ x l ) =  fl, = e, exp(x[l~), the likelihood for Generalized Poisson I regression model 

may be written as, 

log( lti ]+(yi-l)log(l+ayi) 
g(~'a)=~ yi ~.l+a/di j 

/.t~ (1 + ay,) 
1 + a/.li 

log(y,!) .  (2.14) 

Therefore, the maximum likelihood estimates, (~,~) ,  may be obtained by maximizing 

£(IJ, a)  with respect to ~ and a .  The related equations are, 

and, 

igg([i,a)aft, - ~  (Y'- /di)xiJ  = 0 , ( l + a g , )  2 j = l , 2  ..... p ,  (2.15) 

ag(fJ, a) yil.li yi (y, -1) /li (yi -,tt i) 
l + a y ,  (1 + a , t / i )  2 

=0. (2.16) 

The sequential iteration procedure similar to the Negative Binomial I regression model may 

also be implemented to obtain the maximum likelihood estimates, (~, a ) .  For the sequential 

iteration, the IWLS regression can be applied because Eq.(2.15) is also equal to the weighted 

least squares. 

An easier approach to estimate a is by using the moment estimation, i.e., by equating 

the Pearson chi-squares statistic with the degrees of freedom, 

,~. (Y ' - I ' l l )2  (2.17) 
l l 7 ~  , - n - p ,  

producing (~, a ) .  
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In this paper, when a is estimated by the maximum likelihood, the model  will be called 

as Generalized Poisson I (MLE). Likewise, when a is estimated by the method of  moment ,  

the model  will be called as Generalized Poisson I (moment). 

2.5 Generalized Poisson II 

For Generalized Poisson II, the probability density function may be written in the form 

of  (Consul and Famoye [27]), 

= [ j r  i (/1 i + (a  - l ) y  i )~"-' a -y' e x p ( - a - I  (iti + (a - l)y, )) 
Pr(Y i Yi) Y,! 

0, 

, y ,  = 0 ,1  .... 

Yi > m , a < l  

, ( 2 . 1 8 )  

where a > m a x ( { , 1 - - ~ ) ,  and m the largest positive integer for which It ,  + m ( a -  1)> 0 

when a < 1. For this distribution, the mean is equal to E ( Y  i ) = I t , ,  whereas the variance is 

equivalent to V a r ( Y  i ) = a2 i t i  . 

The Generalized Poisson II is also a natural extension of  the Poisson. I f  a equals one, 

the Generalized Poisson II reduces to the Poisson. If  a > I,  the variance is larger than the 

mean and the distribution represents count data with overdispersion. If  -~ < a <1 and 

Iti > 2,  the variance is smaller than the mean so that now the distribution represents count 

data with underdispersion. 

I f  it is assumed that the mean or the fitted value is multiplicative, i.e., 

E(Y~ ] x ~ ) = i t ,  = e~ exp(x~V[I), the likelihood for Generalized Poisson II regression model  

may be written as, 

g([i, a) = ~ log(it~ ) + (y, - 1) Iog(/t~ + (a - l)y~) - 
i (2.19) 

y~ l o g ( a } -  a- l ( i t ,  + ( a - l ) y , ) - I o g ( y i ! ) .  

Therefore,  the maximum likelihood estimates, (~ , a ) ,  may be obtained by maximizing 

g(i~,a) with respect to [~ and a .  The related equations are, 

Off ,  - = It,  + It~ ) y [  I t~x o, j = 1,2 ..... p ,  (2.20) 

and, 
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Og([~,a) _ ~ yi(y__~--l) y,a-' + ( / 2 - y , ) a  -2 = 0 .  (2.21) 
Oa /2, + ( a -  1)y, 

However, the maximum likelihood estimates, ~, are numerically difficult to be solved 

because the related equation, Eq.(2.20), is not equal to the weighted least squares. Since the 

Generalized Poisson II has a constant variance-mean ratio, the method of weighted least 

squares is suggested as an alternative, i.e., by equating, 

(Yi -/2~ ) xo 
E a 2 - 0 ,  j = l , 2  ..... p ,  (2.22) 

i 

to produce the least squares estimates, ~.  The same Poisson IWLS regression may be used 

to estimate ~ because Eq.(2.22) is also equivalent to the Poisson likelihood equation, i.e., 

Eq.(2.2). As a result, the least squares estimates are also equal to the maximum likelihood 

estimates of Poisson. However, the standard errors could be equal, larger or smaller than the 

Poisson because they are multiplied by a where a _> 1 or  ½ < a < 1. 

For simplicity, a is suggested to be estimated by the method of moment, i.e., by 

equating the Pearson chi-squares statistic with the degrees of freedom, 

•(Yi = n -  p ,  (2.23) 
/2i )~ 

. a2/2i 

involving a straightforward calculation and producing a moment estimate, eT. 

In this paper, the estimates which were produced by the regression models of 

Generalized Poisson I (NILE), Generalized Poisson I (moment) and Generalized Poisson II 

will be denoted respectively by (~,~),  (~,a)  and (~,a ') .  

To summarize the multiplicative regression models which were discussed in this section, 

Table 1 shows the methods and equations for solving the estimates of I] and a .  
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Table 1. Methods  and equations for solving ~ and a in multiplicative regression models  

Models Estimation of fl Estimation of a 
Method Equation Method Equation 

Poisson Maximum Z (y' -/'ti )"cO = 0 
Likelihood i 

NBI(MLE) Ma:dmum ~ (.Y~ - fli )x~j  Maximum 
Likelihood ~ I ' ~a~  = 0 Likelihood 

NBI(moment) Maximum ~" (Yi -lti)xij 0 Moment 
Likelihood ~ 1 + alli 

NBII Weighted E (Yi -,l'li )Xq - 0 Moment 
Least I + a 

i 
Squares 

GPI(~LLE) Maximum ~" (Yi - U, ) x i )  Maximum 
Likelihood ~ (l+afl ,)2 =0  Likelihood 

GPI(moment) 

GPII 

Maximum ~ (Yi -/ ' / '  )xo Moment 
Likehhood ~i (l+afli) 2 - 0  

Weighted ~? (Yi - I  l,)x~j 0 Moment 
Least ~ a 2 
Squares 

~ / ~ ( ~ r  ]+ a-2 log(I + a/~;)- 
, [ ~ l + a r ;  

(Y' +a-~)/4 } =0  
(1+ a/~,) 

~ . [ ( y , - l ' , )  ~ ]  , , 

L ~ J -  - p3 = °  

t-,--~7o~, + l+a:,, 

/4 (h -/1, )l 
~ 7~,-7 3 =° 

[ , u i ( l  + afli  ) 2 
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3. GOODNESS-OF-FIT TESTS 

In this section, several goodness-of-fit measures will be briefly discussed, including the 

Pearson chi-squares, deviance, likelihood ratio test, Akaike Information Criteria (AIC) and 

Bayesian Schwartz Criteria (BSC). Since these measures are already familiar to those who 

used the Generalized Linear Model with Poisson error structure for claim count or 

frequency analysis, the same measures may also be implemented to the regression models of  

Negative Binomial and Generalized Poisson as well. 

3.1 Pearson chi-squares 
Two of the most frequently used measures for goodness-of-fit in the Generalized Linear 

Models are the Pearson chi-squares and the deviance. The Pearson chi-squares statistic is 

equivalent to, 

~i ( y  , _ / / / ) 2  ' ( 3 . 1 )  

For an adequate model, the statistic has an asymptotic chi-squares distribution with n - p 

degrees of freedom, where n denotes the number of rating classes and p the number of  

parameters. 

3.2Deviance 

The deviance is equal to, 

D =  2 ( £ ( y ; y ) - g ( p ; y ) ) ,  (3.2) 

where g(la;y) and g(y;y) are the model's log likelihood evaluated respectively under p and 

y.  For an adequate model, D also has an asymptotic chi-squares distribution with n - p 

degrees of freedom. Therefore, if the values for both Pearson chi-squares and D are close 

to the degrees of  freedom, the model may be considered as adequate. 

The deviance could also be used to compare between two nested models, one of  which 

is a simplified version of  the other. Let D l and dfl be the deviance and degrees of  freedom 

for such model, and D 2 and df2 be the same values by fitting a simplified version of  the 

model. The chi-squares statistic is equal to (D 2 - D I ) / (df2  - dfl ) and it should be compared 

to a chi-squares distribution with df2 - dfl degrees of  freedom. 
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3.3Likelihood ratio 

The advantage of  using the maximum likelihood method is that the likelihood ratio test 

may be employed to assess the adequacy of  the Negative Binomial I (MLE) or the 

Generalized Poisson I (MLE) over the Poisson because both Negative Binomial I (MLE) 

and Generalized Poisson I (NILE) will reduce to the Poisson when the dispersion parameter, 

a ,  equals zero. 

For testing Poisson against Negative Binomial I (MLE), the hypothesis may be stated as 

H 0 : a = 0 against H 1 : a > 0.  The likelihood ratio statistic is, 

T = 2(g I - g0),  (3.3) 

where gl and go are the model's log likelihood under the respective hypothesis. T has an 

asymptotic distribution of probability mass of  one-half at zero and one-half-chi-squares 

distribution with one degrees of freedom (see Lawless [21]; Cameron and Trivedi [22]). 

Therefore, to test the null hypothesis at the significance level of C~, the critical value of  chi- 

squares distribution with significance level 2o~ is used, i.e., reject H o if T > 2"~-2,~.1~. 

For testing Poisson against Generalized Poisson I ~ L E ) ,  the hypothesis may be stated 

as H 0 : a = 0 against H t : a ¢: 0.  The likelihood ratio is also equal to Eq.(3.3) and under 

null hypothesis, T has an asymptotic chi-squares distribution with one degrees of  freedom 

(see Wang and Famoye [26]). 

3.4AIC and BIC 

When several maximum likelihood models are available, one can compare the 

performance of alternative models based on several likelihood measures which have been 

proposed in the statistical literature. Two of the most regularly used measures are the Akaike 

Information Criteria (AIC) and the Bayesian Schwartz Information Criteria (BIC). The AIC 

is defined as (Akaike [28]), 

AIC = - 2g  + 2 p ,  (3.4) 

where g denotes the log likelihood evaluated under p and p the number  of parameters. 

For this measure, the smaller the AIC, the better the model is. 
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The BIC is defined as (Schwartz [29]), 

B I C  = -2t? + p Log(n), (3.5) 

where ~ denotes the log likelihood evaluated under ~, p the number of parameters and n 

the number of rating classes. For this measure, the smaller the BIC, the better the model is. 

4. F I T T I N G  P R O C E D U R E  

As mentioned previously, the estimates of ~ and a for Negative Binomial I (MLE), 

Negative Binomial I (moment), Generalized Poisson I (NILE) and Generalized Poisson I 

(moment), may be solved simultaneously and the fitting procedure involves sequential 

iterations. The sequential iterations involve two steps of maximization in each sequence; 

maximizing ~(~,a) with respect to ]i by holding a fixed, and maximizing g(~,a) with 

respect to a by holding ~ fLxed. 

4 . 1 M a x i m i z i n g  g(J~,a) w i t h  r e s p e c t  to 

By using the Newton-Rahpson iteration and the method of Scoring, the iterative 

equation in the standard form of IWLS regression may be written as, 

~,r) = ~<r-II + I(-)-llZ~r-l,, (4.1) 

where ~(r) and ]~r-l) denote the vectors for ~ in the rth and r-lth iteration, l(,_i~ the 

information matrLx containing negative expectation of the second derivatives of log 

likelihood evaluated at I](,_~, and z~,_, the vector containing first derivatives of log 

likelihood evaluated at ]~l,-ij. 

For an easier demonstration, an example for Poisson's I\VLS regression will be shown 

and the notation for Poisson mean, fl~i, will be replaced by //i. The first derivatives of 

Poisson log likelihood, which is shown by Eq.(2.2), can also be written as, 

z = x ' r w k ,  (4.2) 

where X denotes the matrix of explanatory, variables, W the diagonal weight matrix whose 

/th diagonal element is, 
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P 
Wi ~ ]~i ' (4.3) 

and k the vector whose/th row is equal to, 

k = y' - f l '  (4.4) 
/ai 

The negative expectation of the second derivatives of Poisson log likelihood may be 

derived and it is equivalent to, 

- E (  a2g([I) ) =  ~t . t ,  xox, ~, j , s  1,2 ..... 
" : P (4.5) 

Therefore, the information matrix, I ,  which contains negative expectation of the second 

derivatives of log likelihood, may be written as, 

I : x T w x ,  (4.6) 

where the/th diagonal element of the weight matrix is also equal to Eq.(4.3). 

Finally, the iterative equation shown by Eq.(4.1) may be rewritten as, 

V k [~(r, --~ [~(r-l) +(xTW(r-DX) - I (x  W(r-D (r-I))" (4.7) 

It can be shown that with a slight modification in the weight matrLx, the same iterative 

equation, i.e., Eq.(4.7), can also be used to obtain the maximum likelihood estimates, ~, for 

Negative Binomial I and Generalized Poisson I as well. 

The related equations for the ftrst derivatives of log likelihood for Negative Binomial I 

and Generalized Poisson I are shown by Eq.(2.5) and Eq.(2.15). Both equations may also be 

written as Eq.(4.2), where the/th row of vector k is also the same as Eq.(4.4). However, the 

/th diagonal element of the weight matrix is, 

NBI ~l  i w i = (4.8) 
l + aJl i ' 

for Negative Binomial I and, 
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GPI /J i  
W i (1 + a/.t i )2 , (4.9) 

for Generalized Poisson I. 

The negative expectation of the second derivatives of log likelihood for Negative 

Binomial I and Generalized Poisson I may be derived, and the respective equations are, 

_ E( O2 g([J,a) ] = - -  ,u~ x,jx~ 
[, aft, aft., ) ~i'i+-~fl,' j , s = l , 2  ..... p ,  

(4.10) 

and, 

E(a2e(fJ,a).]= /-t, xoX~s 
afl, afls ) ~i (]+~fli)2, j , s = l , 2  ..... p .  

(4.11) 

Therefore, the information matrLx may also be written as Eq.(4.6), where the /th diagonal 

element of the weight matrLx for Negative Binomial I and Generalized Poisson I are 

respectively equal to Eq.(4.8) and Eq.(4.9). 

The same iterative equation for the Poisson may also be used for Negative Binomial II 

and Generalized Poisson II because the weighted least squares equations, i.e., Eq.(2.11) and 

Eq.(2.22), are equivalent to the likelihood equations of the Poisson, i.e., Eq.(2.2). 

The matrices and vectors for solving ~ in multiplicative regression models are 

summarized in Table 2. 
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Table  2. Matrices and  vec tors  for  solving ~ m multiplicative regress ion  mo d e l s  

Models Matrices and vectors for I$(r) = I~(r-I) + I(-~-l)z(r-I), where 

I(r_l) = xTW(r_l)X , 

Z(r_l) : xTW(r_l)k(r_l) 

js-th element of matrix I = ij~ = ~ ~fl j~fls  ) '  

De 
j-th row of vector z = zj = ~fl---7 ' 

Poisson/ 
NBII/  
GPII 

matrix I i) s = Z ~lixijxi ' ._.) I = x T w x  

weight matrix W w~ =//~ 

vector z z j = Z / . 1 `  (Yi -~li.._____~) xt j __) z = X T W k  
]'li 

vector k ki = Y, - / ' l i  

gi  

NBI~ILE)/  
NBI(moment) 

matrix I i j ~ = E l + ~ f l  xijX,s ---> I = x T w x  

//i 
weight matrix W wi m~t = 

1 + aft, 

vector z Zj = ' ~  'l'li (Y i - - ]d i )x i  j _._> z = X T W k  
,-y . 1 + aid i /1 i 

vector k ki = Y i - f l i  
bti 

GPI~ILE)/  
GPI(moment) 

matrix I ij., = ~f~ #i  XrXi ~ ~ I = x T w x  
~TN (1 + a/li) 2 J 

weight matrix W w/GPt = '//~ 
(1 + a/di) 2 

vector z Zj = E  /di ( Y i - f l , )  
( l+a/dl)  2 /di X0 ---> z = x T w R  

vector k k~ - Y i - / 6  
,ui 
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4 . 2 M a x i m i z i n g  ~?(l~, a )  w i t h  r e s p e c t  to  a 

The maximization of e(l~,a) with respect to a can be carried out by applying one- 

dimensional Newton-Raphson iteration, 

f'(a(r_l)) 
(4.12) a(r) =a(r-l' f,,(a(r_l))' 

where f '  denotes the first derivatives of function f and f "  the second derivatives of 

function f .  The respective f '  for Negative Binomial I (MLE), Negative Binomial I 

(moment), Generalized Poisson 1 (NILE) and Generalized Poisson I (moment) are Eq.(2.6), 

Eq.(2.7), Eq.(2.16) and Eq.(2.17). 

The f "  equations for Negative Binomial I (MLE), Negative Binomial I (moment), 

Generalized Poisson 1 (MLE) and Generalized Poisson (moment) may be derived, and the 

respective equations are, 

1 + a/as (1 + a/~ i ) 

_~i (Yi-]di  )2 
(1 + a / d i )  ~ ' ( 4 .14 )  

and, 

X (1 + aft, )2 

y ] (y ,  - 1) 2fl~ (y, - / d i )  
(l+aYi) ~ ÷ (l+a/.li)3 , (4.15) 

~x'-'(Y, -/ 'ti) 2 
- z2"~ - + - - ~ u  )3 ' ( 4 . 16 )  

i (1 a/ l  i 

The process of finding the moment estimate, ~ ,  for Negative Binomial II and 

Generalized Poisson II does not involve an,,- iteration. The moment estimate can be 

obtained directly from Eq.(2.12) and Eq.(2.23). 

The equations for solving a in multiplicative regression models are summarized in Table 

3. 
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Table 3, Equations for solving a .  

Models Equations for a(r ) = air_l) f'(al,_i )) 
f"(acr_l)) 

NBI~ILE) if(a) 

if(a) 

~.,-* (Y' +aq )/'ti I Z I E (  r--f--I+a-21og(l+a/t ) 
, [,:ot, i +ar )  71+-~-S~,.) J 

I y,-I( r ]2 3 2a-2lli O'i+a-i)/A2i } 
~ .  [ -  =~oLl-~ar) - 2 a - I o g ( l + a / l i ) + - - 4  I + a/a', (l+ a/tl) 

NBI(moment) 
if(a) 

f"(a) 

~ i  (y ;_//i)2 
. ].li(l+aldi) 

_ ~i (Yi -,lli )2 
. (l+a/li) 2 

(n-p) 

NBII Straightforward a ~'~ (Yi _/. / i)2 
calculation = *.Ta 7 ( n T p )  

GPI~ILE) '~"I- Y"Ui + yi(yi-I)  /'li(Y'-lti) t 
if(a) ~ [  i+afl i l+ay i ( l+au , )  2 

) 

yilt_.._.._~ y~i(Yi-I).~ 2/-//2 (yi -/-/, ) 
if(a) ,zT., (1 + a//i) 2 (l+ayi)2 (l+a//,)3 

GPI(moment) 
f'(a) 

f"(a) 

~i (Y' -Iti)2 

- 2 ~ "  (Yi - ~ i ) 2  

(1 + a f l i )  3 

(n-p) 

GPII Straightforward f 2 /~ -~ (Yi - II, ) calculation a =  , _  
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4.3 Restrictions on Generalized Poisson I 

The  iterative p rog ramming  for Genera l ized Poisson I dis t r ibut ion should also allows for 

restrictions on  a because the probabil i ty density function,  Eq.(2.13), indicates that  the value 

o f  a mus t  satisfy b o t h  1 + all i > 0 and l + ay i > 0.  Therefore ,  after obta in ing estimate o f  

a in each iteration, the p rogram should  check that  w h e n  a < 0 (underdispersion),  a mus t  

also fulfilled the condi t ion  for bo th  I + all i > 0 and 1 + ay i > O. 

In o ther  words,  for condi t ion  1 + a / 2  i > 0 ,  the p rogram should  checks if  a > _ 1 is . max(#, ) 

I A similar check is true. I f  this condi t ion  is no t  true, a new est imate for a is set as max(a, ~+~ " 

then implemented  for l+ay ,  > 0.  Finally, if  bo th  condi t ions  o f  a > -  1 _  and max{//j ) 

1 a > - ~  are no t  true, a new estimate for a is set as min(- r~x6,,' ,+, ' ~xG,~ ~)" 

4.4Variance-covariance matrix for 

The  variance-covariance matrLx, Var(~) ,  for Negat ive Binomial  I and Genera l ized 

Poisson I regression models  is also equal t o  the variance-covariance matrix of  Poisson 

regression model ,  i.e., 

Var(~) = ( x T w x )  - '  . (4.17) 

However ,  t h e / t h  diagonal e lement  o f  the weight  matr ix differs for each model ,  i.e., it is equal 

to Eq.(4.3) for Poisson,  Eq.(4.8) for Negat ive Binomial  I and Eq.(4.9) for General ized 

Poisson  I. 

The  variance-covariance matrix for Negat ive Binomial  II and Genera l ized Poisson II is 

multiplied by a cons tan t  and they are equal to, 

Var(~) = (1 + a ) ( x T w x )  - '  , (4.18) 

for Negat ive Binomial  II and, 

Var(~) = a 2 ( x T w x )  - I  , (4.19) 

for Genera l ized Poisson II, where  t h e / t h  diagonal e lement  o f  the weight  matrix is equal to 

the Poisson weight  matrix, i.e., Eq.(4.3). 
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Examples of S-PLUS programming for Negative Binomial I (moment) and Generalized 

Poisson I (moment) are given in Appendix A and Appendix B. Similar programming can 

also be used for all of the multiplicative regression models which were discussed in this 

paper. Each programming is differentiated only by four distinguishable elements: 

• Types of iteration. 

The sequential iterations are required for Negative Binomial I and Generalized 

Poisson I. For Poisson, Negative Binomial II and Generalized Poisson II, the 

standard iterations are adequate. 

• Weight matrLx. 

The weight matrLx for Negative Binomial II and Generalized Poisson II is equal to 

the Poisson. Each of Negative Binomial I and Generalized Poisson I has its own 

weight mat~x. 

• Equation for estimating a.  

Each of Negative Binomial I (MLE), Negative Binomial I (moment), Generalized 

Poisson I (MLE) and Generalized Poisson I (moment) has its own equation for 

estimating a.  

• Restriction on a .  

The restriction on a is required only in Generalized Poisson I. 

5. E X A M P L E S  

5.1 M a l a y s i a n  d a t a  

In this paper, the data for private car Third Party Property Damage (TPPD) claim 

frequencies from an insurance company in Malaysia will be considered. Specifically, the 

TPPD claim covers the legal liability for third party property loss or damage caused by or 

arising out of the use of an insured motor vehicle. The data, which was based on 170,000 

private car policies for a three-year period of 1998-2000, was supplied by the General 

Insurance Association of Malaysia (PIAM). The exposure was expressed in terms of a car- 

year unit and the incurred claims consist of claims which were already paid as well as 

outstanding. Table 4 shows the rating factors and rating classes for the exposures and 

incurred claims, and altogether, there were 2 × 2 × 3 x 4 x 5 = 240 cross-classified rating 

classes of claim frequencies to be estimated. The complete data, which contains the 

exposures, claim counts, rating factors and rating classes, is shown in Appendix C. 
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Table 4. Rating factors and rating classes for Malaysian data 

Rating factors Rating classes 

Coverage ~'pe Comprehensive 
Non-comprehensive 

Vehicle make Local 
Foreign 

Vehicle use and driver's gender 

Vehicle year 

Location 

Private-male 
Private-female 
Business 

0-1 year 
2-3 year 
4-5 year 
6+ year 

Central 
North 
East 
South 
East Malaysia 

The  claim counts were first fitted to the Poisson multiplicative regression model.  The 

fitting involves only 233 data points  because seven o f  the rating classes have zero exposures.  

Several models  were fitted by including different rating factors; first the main effects only, 

then the main effects plus each o f  the paired interaction factors. By using the deviance and 

degrees o f  freedom, the chi-squares statistics were calculated and compared  to choose  the 

best  model .  Table 5 gives the results o f  fitting several Poisson regression models  to the 

count  data. 

Table 5. Analysis o f  deviance for Poisson 

Model deviance df Adeviance Adf 2,2 p-value 

Null 2202 232 
+ Coverage type 1924 231 278 1 278 0.00 
+ Use-gender 997 229 927 2 464 0.00 
+ Vehicle year 522 226 475 3 158 0.00 
+ Vehicle location 369 222 153 4 38 0.00 
+ Vehicle make 358 221 11 1 11 0.00 
+ Vehicle make*vehicle year 255 218 103 3 34 0.00 
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Based on the deviance analysis, the best  model  indicates that all o f  the main effects are 

significant and one o f  the paired interaction factors, i.e., vehicle make and vehicle year, is 

also significant. Therefore,  it is suggested that the rating factors for both  vehicle make and 

vehicle year are combined  to take into account the interaction between these two rating 

factors. The number  o f  rating factors is now reduced from five to four. Table 6 shows the 

parameter  estimates for the four-factor model.  

Table 6. Parameter  estimates for Poisson four-factor model  

Parameter estimate std.error ?-value 

fll Intercept -2.37 0.04 0.00 

f12 Non-comprehensive -0.68 0.07 0.00 

f13 Female -0.51 0.03 0.00 

f14 Business -6.04 1.00 0.00 

,65 Local, 2-3 year -0.48 0.04 0.00 

f16 Local, 4-5 year -0.82 0.05 0.00 

flv Local, 6+ year -1.06 0.05 0.00 
,88 Foreign, 0-1 year -0.59 0.07 0.00 

/39 Foreign, 2-3 year -0.68 0.05 0.00 

/310 Foreign, 4-5 year -0.77 0.06 0.00 

/311 Foreign, 6+ year -0.84 0.05 0.00 

/312 North -0.22 0.03 0.00 

/3]3 East -0.43 0.06 0.00 

/314 South -0.01 0.04 0.78 

/315 East Malaysia -0.50 0.06 0.00 

Df 218.00 
Pearson 2 "2 404.67 

Deviance 254.60 
Log L -387.98 

The p-value for ill4 (South) is equivalent to 0.78, and this value indicates that the 

parameter estimate is not  significant. Therefore,  the location for South is suggested to be 

combined  with Central (Intercept) because both  locations have almost similar risks. Table 7 

shows the parameter estimates for the four-factor-combined-locat ion model.  
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Table 7. Parameter  estimates for Poisson four-factor-combined-locat ion model  

Parameter estimate std.error p-value 

fll Intercept -2.37 

f12 Non-comprehensive -0.68 

0.03 0.00 

0.07 0.00 

f13 Female -0.51 0.03 0.00 

f14 Business -6.04 1.00 0.00 

f15 Local, 2-3 year -0.48 0.04 0.00 

f16 Local, 4-5 year -0.82 0.05. 0.00 

f17 Local, 6+ year -1.06 0.05 0.00 

/38 Foreign, 0-1 year -0.59 0.07 0.00 

f19 Foreign, 2-3 year -0.68 0.05 0.00 

fllo Foreign, 4-5 year -0.77 0.06 0.00 

fill Foreign, 6+ year -0.84 0.05 0.00 

ill2 North -0.22 0.03 0.00 

ill3 East -0.42 0.06 0.00 

ill4 East Malaysia -0.50 0.06 0.00 

Df 219.00 
Pearson 2 ̀2 404.47 

Deviance 254.67 
Log L -388.02 

The result shows that all o f  the parameter  estimates are significant. As a conclusion, 

based on the deviance analysis and parameter  estimates, the best  model  is provided by the 

four-factor-combined-locat ion model  if the claim counts were fitted to the Poisson. 

I f  the same four-factor-combined-locat ion model  was fitted to the muldplicative 

regression models  o f  Negative Binomial and Generalized Poisson,  the parameter  estimates 

and standard errors may be compared.  The comparisons are shown in Table 8 and Table 10. 
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T a b l e  8. P o i s s o n  vs. N e g a t i v e  B i n o m i a l  

Parameters Poisson Negatwe Binomial 1 Negative Binomial I Negative Binomial 1I 
(Nil ,17,) ( . . . . . .  t) 

est. std. p- est. std. p- est. std. p- est. std. p- 
error value error value error value error value 

a 0.02 0.15 0.85 

fll Intercept -2.37 0.03 0.00 -2.36 0.07 0.00 -2.37 0.15 0.00 -2.37 0.05 0.00 

• 32 Non-comp -0.68 0.07 0.00 -0.73 0.09 0.00 -0.79 0.13 0.00 -0.68 0.09 0.00 

f13 Female 

f14 Business 

-0.51 0.03 0.00 -0.54 0.05 0.00 -0.57 0.09 0.00 -0.51 0.04 0.00 

-6.04 1.00 0.00 -6.05 1.00 0.00 -6.06 1.00 0.00 -6.04 1.36 0.00 

f15 1,ocal2-3 -0.48 0.04 0.00 -0.51 0.09 0.00 -0.49 0.18 0.01 -0.48 0.06 0.00 

fl6 Local,4-5 -0.82 0.05 0.00 -0.87 0.09 0.00 -0.87 0.19 0.00 -0.82 0.07 0.00 

f17 l,ocal,6+ -1.06 0.05 0.00 -1.04 0.09 0,00 -0.98 0.18 0.00 -1.06 0.07 0.00 

f18 Foreign,0-1 -0.59 0.07 0.00 -0.62 0.10 0.00 -0.63 0.20 0.00 -0.59 0.09 0.00 

f19 Foreign,2-3 -0.68 0.05 0.00 -0.69 0.09 0.00 -0.65 0.19 0.00 -0.68 0.07 0.00 

ill0 Foreign,4-5 -0.77 0.06 0.00 -0.76 0.10 0.00 -0.76 0.19 0.00 -0.77 0.08 0.00 

fill Foreign,6+ -0.84 0.05 0.00 -0.81 0.09 0.00 -0,76 0.18 0.00 -0.84 0.07 0.00 

ill2 North -0.22 0.03 0.00 -0.16 0.06 0.00 -0.12 0.11 0.28 -0.22 0.04 000 

ill3 Fast -0.42 0.06 0.00 -0.43 0.08 0.00 -0.46 0.13 0.00 -0.42 0.08 0.00 

ilia EastM'sia -0.50 0.06 0.00 -0.51 0.08 0.00 -0.49 0.13 0.00 -0.50 0.08 0.00 

Df 219.00 218.00 218.00 
Z2 404.47 293.71 219.00 Pearson 

Deviance 254,67 155.99 90.72 
Log L -388.02 -368.72 -391.64 

218.00 

T a b l e  8 s h o w s  the  c o m p a r i s o n  b e t w e e n  P o i s s o n  a n d  N e g a t i v e  B i n o m i a l  mu l t i p l i c a t i ve  

r eg re s s ion  mode l s .  T h e  r e g r e s s i o n  p a r a m e t e r s  for  all  m o d e l s  g ive  s imi la r  e s t ima tes .  T h e  

N e g a t i v e  B i n o m i a l  I (MLE)  a n d  N e g a t i v e  B i n o m i a l  I I  g ive  s imi la r  i n f e r ences  a b o u t  the  

r e g r e s s i o n  pa r ame te r s ,  i.e., t he i r  s t a n d a r d  e r ro rs  are s l ight ly  l a rger  t h a n  the  P o i s s o n ' s .  

H o w e v e r ,  the  N e g a t i v e  B i n o m i a l  I ( m o m e n t )  g ives  a re la t ive ly  large  va lues  for the  s t a n d a r d  

e r rors  a n d  hence ,  r e su l t ed  in  an  in s ign i f i can t  r eg re s s ion  p a r a m e t e r  for  fl12. 

T h e  d e v i a n c e  for  P o i s s o n  r eg re s s ion  m o d e l  is re la t ive ly  la rger  t h a n  the  deg ree s  o f  

f r e e d o m ,  i.e., 1.16 t imes  larger ,  and  thus ,  i n d i c a t i n g  p o s s i b l e  ex i s t ence  o f  o v e r d i s p e r s i o n .  T o  

tes t  for  o v e r d i s p e r s i o n ,  the  l i k e l i h o o d  ra t io  tes t  o f  P o i s s o n  aga ins t  N e g a t i v e  B i n o m i a l  I 

(MLE)  is i m p l e m e n t e d .  T h e  l i k e l i h o o d  ra t io  s ta t is t ic  o f  T = 38 .6  is s ign i f icant ,  i m p l y i n g  tha t  
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the Negative Binomial I (biLE) is a better model. Further comparison can be made by using 

the results of  likelihood ratio, AIC and BIC as shown in Table 9. Based on the likelihood 

ratio, AIC and BIC, the Negative Binomial I (b{LE) is better than the Poisson. 

Table 9. Likelihood ratio, AIC and BIC 

Test/Criteria Poisson Neffative BinomialI~[LE) 

Likehhood ratio 38.6 
AIC 804.0 767.4 
BIC 809.2 773.0 

Table 10 shows the comparison between Poisson and Generalized Poisson multiplicative 

regression models. Both Negative Binomial II and Generalized Poisson II give equal values 

for parameter estimates and standard errors. However, this result is to be expected because 

both regression models were fitted by using the same procedure. 

The comparison between Poisson and Generalized Poisson also shows that the 

regression parameters for all models give similar estimates. The Generalized Poisson I 

(NILE) and Generalized Poisson II give similar inferences about the regression parameters. 

The Generalized Poisson I (moment) gives a relatively large values for the standard errors 

and this resulted in an insignificant regression parameter for ill2' 

Based on the likelihood ratio test of  Poisson against Generalized Poisson I (baLE), the 

likelihood ratio statistic of  T = 37.7 is significant. Therefore, the Generalized Poisson 

(MLE) is also a better model compared to the Poisson. 

Table 11 gives further comparison between Poisson and Generalized Poisson I (NILE). 

The comparison, which was based on the likelihood ratio, AIC and BIC, indicates that the 

Generalized Poisson I (NILE) is also a better model compared to the Poisson. 
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T a b l e  10. P o i s s on  vs.  G e n e r a h z e d  P o i s s o n  

Parameters Po~sson Gcncralized Poisson 1 Gcncralizcd Poisson 1 Generalized P~isson 
(MLE) (m . . . . .  0 I1 

est. std. p- est std. p- est. std. p- est. std. p- 
error value crmr value crmr value error value 

a 0.(107 0 035 1.359 

fll Intercept -2.37 0.03 0.00 -2.35 0.07 0.00 -2.37 0.16 0.00 -2.37 0.05 0.00 

f12 Non-comp -0.68 0.07 0.00 -0.74 0.09 0.00 -0.80 0.13 0.00 0.68 0.09 0 00 

f13 Female -0.51 0.03 0.00 -0 55 0.05 0.00 -0.59 0.09 0.00 -0.51 0.04 0.00 

f14 Business -6.04 1.00 0.00 -6.06 1.00 0.00 -6.08 1.00 0.00 -6.04 1.36 0.00 

f15 1,ocal,2-3 -0.48 0.04 0.00 -0.52 0.09 0.00 -0.49 0.20 0.01 -0.48 0.06 0.00 

,36 1,ocal,4-5 -0.82 0.05 0.00 -0.89 0.09 0.00 -0.88 0.19 0.00 -0.82 0.07 0.00 

f17 I,ocal,6+ -1.06 0.05 0.00 -1.05 0.09 0.00 -0.94 0.19 0.00 -1.06 0.07 0.00 

f18 Foreign,0-1 -0.59 0.07 0.00 -0.63 0.10 0.00 -0.63 0.19 0.00 -0.59 0.09 000 

f19 Foreign,2-3 -0.68 0.05 0.00 -0.71 0.10 0.00 -0.64 0.19 0.00 -0.68 0.07 0.00 

ill0 Foreign,4-5 -0.77 0.06 0.00 -0.77 0.10 0.00 -0.75 0.19 0.00 -0.77 0.08 0.00 

fill Foreign,6+ -0.84 0.05 0.00 -0.81 0.09 0.00 -0.74 0.18 0.00 -0.84 0.07 0.00 

1~12 North -0.22 0.03 0.00 -0.14 0.06 0.00 -0.09 0.12 0.46 -0.22 0.04 0.00 

ill3 East -0.42 0.06 0.00 -0.43 0.08 0.00 -0.45 0.13 0.00 -0.42 0.08 0.00 

ill4 EastM'sia -0.50 0.06 0.00 -0.51 0.08 0.00' -0.51 0.12 0.00 -0.50 0.08 0.00 

Df 219.00 218.00 218.00 
Z2 404.47 294.72 219.00 Pearson 

Deviance 254.67 159.21 98.52 
Log L -388.02 -369.19 -392.92 

218.00 

T a b l e  11. L i k e l i h o o d  ratio,  A I C  an d  BIC  

Test/Criteria Poisson GeneraEzed Poisson I(MLE) 

L~e~hood ratio 37.7 
AIC 804.0 766.4 
BIC 809.2 773.9 

T h e  d e v i a n c e  analysis s h o u l d  also be  i m p l e m e n t e d  to b o t h  N e g a t i v e  B i n o m i a l  I ( M L E )  

and  G e n e r a l i z e d  Po i s son  I ( M L E )  mul t ip l i ca t ive  r eg res s ion  m o d e l s  b e c a u s e  the  a im  o f  o u r  

analysis is to o b t a i n  the  s imples t  m o d e l  tha t  r e a s o n a b l y  explains  the  va r i a t i on  in the  data.  
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Following the same procedure as the Poisson, several Negative Binomial I (MLE) and 

Generalized Poisson I (NILE) regression models were fitted by including different rating 

factors; ftrst the mafia effects only, then the main effects plus each of  the paired interaction 

factors. By using the deviance and degrees of freedom, the chi-squares statistics were 

calculated and compared to choose the best model. Table 12 and Table 13 give the results of  

fitting several Negative Binomial I (MLE) and Generalized Poisson I (MLE) multiplicative 

regression models to the count data. 

Table 12. Analysis of  deviance for Negative Binomial I (MLE) 

Model dexfiance df Adeviance Adf 2.2 p-value 

Null 207 231 
+ Use-gender 166 229 41.63 2 20.82 0.00 
+ Covarage type 149 228 16.54 1 16.54 0.00 

Table "l 3. Analysis of  deviance for Generalized Poisson I (NILE) 

Model deviance df Adeviance Adf 2.2 p-value 

Null 262 231 
+ Use-gender 180 229 81.90 2 40.95 0.00 
+ Covarage tTpe 159 228 20.73 1 20.73 0.00 

Based on the deviance analysis, the best model indicates that only two of the rating 

factors, i.e., coverage type and use-gender, are significant and none of  the paired interaction 

factor is significant. The parameter estimates for the two-factor models are shown in Table 

14. 

The two-factor models give significant parameter estimates. As a conclusion, based on 

the deviance analysis and parameter estimates, the best model for Negative Binomial I 

(MLE) and Generalized Poisson I (MLE) regression models is provided by the two-factor 

model. 
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Table 14. Parameter estimates for Negative Binomial I (MLE) and 

Generalized Poisson I (MLE) 

Parameter Negative Binomial I (MLE) Generalized Poisson I (~LLE) 
estimate std.error p-value estimate std.error p-value 

a 0.16 0.04 

fll Intercept -3.15 0.06 0.00 -3.17 0.07 0.00 

f12 Non-comprehensive -0.94 0.12 0.00 -0.92 0.12 0.00 

,33 Female -0.55 0.09 0.00 -0.55 0.09 0.00 
/34 Business -6.02 1.00 0.00 -6.01 t.00 0.00 

Df 228.00 228.00 
Pearson Z 2 259.53 275.51 
Deviance 149.12 158.91 
Log L -423.69 -425.97 

Based on the comparison between Poisson, Negative Binomial and Generalized Poisson 

multiplicative regression models, several remarks can be made: 

• The Poisson, Negative Binomial and Generalized Poisson regression models give 

similar parameter estimates. 

• The Negative Binomial and Generalized Poisson regression models give larger values 

for standard errors. Therefore, it is shown that in the presence of overdispersion, the 

Poisson overstates the significance of  the regression parameters. 

• The best regression model for Poisson indicates that all rating factors and one paired 

interaction factor are significant. However, the best regression model for Negative 

Binomial I (biLE) and Generalized Poisson I (NILE) indicates that only two rating 

factors are significant. Therefore, it is shown that in the presence of  overdispersion, 

the Poisson overstates the significance of the rating factors. 

5.2Ship damage data 
The ship damage incidents data of McCullagh and Nelder [19] was based on the damage 

incidents caused to the forward section of cargo-carn4ng vessels. The data provides 

information on the number  and exposure for ship damage incidents, where the exposure was 

expressed in terms of aggregate number of  month senrice. The risk of ship damage incidents 
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was associated with three rating factors; ship type, year of construction and period of 

operation. The fitting procedure only involves thirty-four data points because six of the 

rating classes have zero exposures. The data, which was provided by Lloyd's Register of 

Shipping, can also be accessed from the Intemet by using the following website address, 

http://sunsite.univie.ac.at/statlJb/datasets/ships. 

Since the same data was analyzed in some detail by both McCullagh and Nelder [19] and 

Lawless [21], the related remarks and discussions from their studies will be reported here. 

McCnllagh and Nelder detected that there was some inter-ship variabilit T in accident- 

proneness which could lead to overdispersion. For these reasons, McCullagh and Nelder 

assumed that, 

Var(Y,. ) = alli , 

where, 

Z (Yi --/di) 2 

i ,I.1 a - -  

n - p  

i.e., a is equal to the Pearson chi-squares divided by the degrees of freedom. 

By using the fitting procedure which is similar to the Poisson IWLS regression, the 

McCuUagh and Nelder's model was fitted to the main effects data. The parameter estimates 

for the model are equal to the Poisson, but the standard errors are equal or larger than the 

Poisson because they are multiplied by ~ a  where a >_ 0. 

The same main effects data was also fitted to the multiplicative regression models of 

Negative Binomial I ~ILE) and Negative Binomial I (moment) by Lawless [211. However, 

the Negative Binomial I (NILE) produced a = 0 ,  and this result is equivalent to fitting the 

data to the Poisson multiplicative regression model. 

To confirm Lawless's result, we also run the S-PLUS programming for Negative 

Binomial I (NILE) to the ship data. We found that the parameter estimates for the ship data 

did not converge and therefore concluded that the data is better to be fitted by the Poisson. 

Table 15 shows the comparison between Poisson, Negative Binomial and McCuUagh and 

Nelder multiplicative regression models. 
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Table 15. Poisson, Negative Binomial and McCullagh and Nelder regression models 

Parameters l'oisson/Negativc Negauve Binomial 1 Negativc Binomial 1I/ 
Binomial 1 (NII,IL) (moment) McCullagh and Ncldcr 

est. std. p-value est. std. p-value est. std. p-value 
error error error 

a 0.15 0.69/ 
1.69 

fll Intercept -6.41 0.22 0.00 -6.45 0.41 0.00 -6.41 0.28 0.00 

f12 Ship type 13 -0.54 0.18 0.00 -0.50 0.30 0.10 -0.54 0.23 0.02 

f13 Ship type C -0.69 0.33 0.04 -0.56 0.41 0.18 -0.69 0.43 0.11 

f14 Ship t3'pe'D -0.08 0.29 0.79 -0.11 0.41 0.79 -0.08 0.38 0.84 

f15 Ship type E 0.33 024 0.17 0.46 0.35 0.19 0.33 0.31 0.29 

f16 Const'n 65-69 0.70 0.15 0.00 0.72 0.35 0.04 0.70 0.19 0.00 

f17 Const'n 70-74 0.82 0.17 0.00 0.91 0.34 0.01 0.82 0.22 0.00 

f18 Const'n 75-79 0.45 0.23 0.05 0.46 042 0.27 0.45 0.30 0.13 

f19 Opcr'n 75-79 0.38 0 12 0.00 0.34 0.23 0.14 0.38 0.15 0.01 

Df  25.00 24.00 

Pearson 2 .2 42.28 25.00 

Dev*ance 38.70 25.01 
Log L -68.28 -72.83 

24.00 

The parameter estimates and standard errors for both Negative Binomial II and 

McCullagh and Nelder are equal because the models were fitted by using the same 

procedure. 

McCuUagh and Nelder [19] found that the main effects model fits the data well, i.e., all 

of  the main effects are significant and none of  the paired interaction factor is significant. 

According to McCullagh and Nelder, if the Poisson regression model was fitted, there was 

an inconclusive evidence of  an interaction between ship type and year of  construction. 

However, this evidence vanished completely if  the data is fitted by the overdispersion model. 

Lawless [21] reported that the regression models for both McCullagh and Nelder and 

Negative Binomial I (moment) fit the data well. According to Lawless, both models gave the 

same estimates for the regression parameters and similar inferences about the regression 

effects. Lawless also remarked that even though there was no strong evidence of  

overdispersion under the Negative Binomal I (moment) or McCullagh and Nelder regression 

models, the method for fitting the models has a strong influence on the standard errors. In 
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particular,  the P o i s s o n  and  Negat ive  Binomial  I ( m o m e n t )  respect ively p r o d u c e d  the  smal les t  

and largest s t andard  er rors ,  whereas  the McCul lagh  and  Ne lde r ' s  were  s o m e w h e r e  in 

be tween .  In  addit ion,  the  effects o f  ship  type are n o t  significant u n d e r  the Negat ive  Binomia l  

I ( m o m e n t ) ,  whereas  they are u n d e r  the  P o i s s o n  and  to a lesser ex ten t  u n d e r  the McCul lagh  

and  Nelder .  

I f  the  same  main  effects data was  fitted to the multiplicative regress ion  mo d e l s  o f  

Genera l ized  Poisson., the p a r a m e t e r  es t imates  and  s tandard  er rors  may  also be  c o m p a r e d .  

T h e  c o m p a r i s o n s  are s h o w n  in Table  16. 

Table  16. P o i s s o n  vs. Genera l i zed  P o i s so n  

l'arametcrs l'oisson/Gcncralizcd Generalized Poisson I Generalized Poisson II 
l'oi .....  l (Ml,l') ( . . . . . . . .  t) 

est. s td.  p-value est. std. p-value est. std. p-value 
error error error 

a 0,00 0.06 1.30 

fll Intercept -6.41 0.22 0.00 -6.46 0.45 0.00 -6.41 0.28 0.00 

f12 Ship ripe B -0.54 0.18 0.00 -0 49 0.33 0.14 -0.54 0.23 0.02 

f13 Ship ffpe C -0.69 0.33 0.04 -0.56 0.41 0.17 -0.69 0.43 0.11 

f14 Ship ffpc D -0.08 0.29 0.79 -0.11 0.41 0.80 -0.08 0.38 0.84 

f15 Ship Dfpc I:, 0.33 0.24 0.17 0.49 0.36 0.t7 0.33 0.31 0.29 

,36 Const'n 65-69 0.70 0.15 0.00 0.73 0.41 0.07 0.70 0.19 0.00 

f17 Const'n 70-74 0.82 0.17 0.00 0.94 0.39 0.02 0.82 0.22 0.00 

,38 Const'n 75-79 ' 0.45 0.23 0.05 0.46 0.46 0.31 0.45 0.30 0.13 

,39 Opcr'n 75-79 0.38 0.12 0.00 0.34 026 0.19 0.38 0.15 0.01 

Df 25.00 24,00 
2,2 42.28 25,00 Pearson 

Deviance 38.70 25,29 
l,og L -68.28 -74,22 

24.00 

T h e  pa rame te r  es t imates  and s tandard  er rors  for  Genera l ized  P o i s s o n  II ,  Nega t ive  

Binomia l  II  and  McCul lagh  and  Ne lde r  are equal  because  the regress ion  mo d e l s  were  fitted 

by us ing  the  same  procedure .  

Similar to the  Negat ive  Binomia l  I (b iLE) ,  the Genera l ized  P o i s so n  I (b iLE)  also does  

n o t  give c o n v e r g e d  values for  its p a r a m e t e r  est imates.  The re fo re ,  it will be  a s s u m e d  that  the  
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Generahzed Poisson I (NILE) produces a = 0 and this is also equivalent to fitting the data 

to the Poisson. 

All models give similar estimates for the regression parameters. The Poisson and 

Generahzed Poisson I (moment) respectively produced the smallest and largest standard 

errors, whereas the Generalized Poisson II's were somewhere in between. The effects of 

ship type are also not significant under the Generalized Poisson I (moment), whereas they 

are under the Poisson and to a lesser extent under the Generahzed Poisson II. 

5.3 Canadian data 

The Canadian private automobile liability insurance data from Bailey and Simon [1] 

provides information on the number of  claims incurred and exposures, where the exposure 

was expressed in terms of number of  earned car years. The data was classified into two 

rating factors, merit rating and class rating. Altogether, there were twenty cross-classified 

rating classes of claim frequencies to be estimated. The data can also be accessed from the 

Intemet by using the following website address, http://www.casact.org/ 

librat3/astin/roll no4/192.pdf. 

Table 17 and Table 18 show the comparison between Poisson, Negative Binomial and 

Generahzed Poisson multiplicative regression models for the main effects data. 

The Negative Binomial II and Generalized Poisson II give equal values for parameter 

estimates and standard errors. The regression parameters for all models give similar 

estimates. The smallest standard errors are given by the Poisson, the largest are by the 

Negative Binomial II and GeneraLized Poisson II, whereas the standard errors for Negative 

Binomial I (MLE), Negative Binomial I (moment), Generalized Poisson I (biLE) and 

Generalized Poisson I (moment) lie somewhere in between. 

The likelihood ratio test for Poisson against Negative Binomial I (biLE) produces 

likelihood ratio statistic of T = 514.94. The likelihood ratio is very significant, indicating 

that the Negative Binomial I (NILE) is a better model compared to the Poisson. 

The likelihood ratio test for Poisson against Generalized Poisson I (biLE) also produces 

a very significant likelihood ratio statistic, T = 525.44. Therefore, the Generalized Poisson I 

(NILE) is also a better model compared to the Poisson. 
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Table 17. Poisson vs. Negative Binomial 

Parameters Poisson Negative Bmomial I Negative Binomial 1 Negative Binomial 11 
(MI.E) ( . . . . .  

est. std. p- est. std. p- est. std. p- est. std. p- 
error value error value error value error value 

a 0.001 0.002 47.15 

Intercept -2.53 0.00 0.00 -2.45 0.02 0.00 -2.45 0.03 0.00 -2.53 0.01 0.00 

,32 Class 2 

f13 Class 3 

f14 Class 4 

f15 Class 5 

0.30 0.01 0.00 0.24 0.03 0.00 0.24 0.03 0.00 0.30 0.05 0.00 

0.4 -7 0.01 0.00 0.43 0.03 0.00 0.43 0.03 0.00 0.47 0.03 0.00 

0.53 0.01 0.00 0.46 0.03 0.00 0.46 0.03 0.00 0.53 0.04 0.00 

0.22 0.01 0.00 0.14 0.03 0.00 0.14 0.04 0.00 0.22 0.07 0.00 

,36 Merit X 

,67 Merit Y 

f18 Merit B 

0.27 0.01 0.00 0.22 0.03 0.00 0.22 0.03 0.00 0.27 0.05 0.00 

0.36 0.01 0.00 0.27 0.03 0.00 0.27 0.03 0.00 0.36 0.04 0.00 

0.49 0.00 0.00 0.41 0.02 0 O0 0.41 0.03 0.00 0.49 0.03 0.00 

Df 12 00 11.00 11.00 
Z2 577.83 17.56 12.00 Pearson 

Deviance 579.52 17.67 12.08 
l,og L -394.96 -137.49 -138.ll 

11.00 

T a b l e  18. P o i s s o n  vs .  G e n e r a l i z e d  P o i s s o n  

Parameters Poisson Generahzed Poisson I Generalized Poisson 1 Generalized Poisson 
(,Vl ,l 9 ( . . . . .  t) 11 

est. std. p- est. std. p- est. std. p- est. std. p- 
error value error value error value error value 

a 0.CX)02 0.0002 6.94 

Intercept -2.52, 0.00 0.00 -2.41 0.03 0.00 -2.41 0.03 0.00 -2.53 0.01 0.00 

,32 Class 2 

fl'3 (;lass 3 

f14 Class 4 

,35 (;lass 5 

• 86 Mertt X 

~7 Merit Y 

/~ Mcnt B 

0.30 0.01 0.00 0.22 0.03 0.00 0.22 0.03 0.00 0.30 0.05 0.00 

0.47 0.01 0.00 0.42 0.02 0.00 0.42 0.03 0.00 0.47 0.03 0.00 

0.52, 0.01 0.00 0.43 0.02 0.00 0.43 0.03 0.00 0.33 0.04 0.00 

0.22 0.01 0.00 0.12 0.03 0.00 0.12 0.03 0.00 0.22 007 0.00 

0.27 0 01 0.00 0.20 0.02 0.00 0.20 0.02 0.00 0.27 0.05 0.00 

0.36 0.01 0.00 0.24 0.02 0.00 0.24 0.02 0.00 0.36 0.04 0.00 

0.49 0.00 0.00 0.38 0.02 0.00 0.38 0.38 0.00 0.49 0.03 0 00 

l ) f  12.00 11.00 11.00 
Z2 577.83 15.04 12.00 Pearson 

I)cviance 579.52 15.31 12.20 
I,og L -394.96 -132.24 -132A6 

11.00 
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Table 19 gives further comparison between Poisson, Negative Binomial I 0VILE) and 

Generalized Poisson I ~{LE). The comparison, which was based on the likelihood ratio, 

AIC and BIC, indicates that the Negative Binomial I (MLE) and Generalized Poisson I 

(MLE) are better models compared to the Poisson. 

Table 19. Likelihood ratio, AIC and BIC 

Test/Criteria Poisson Negative Binomial Generalized 
I (MLE) Poisson I ~ILE) 

Likehhood rano 514.94 525.44 
AIC 805.92 292.98 282.48 
BIC 800.33 286.69 276.19 

6. ADDITIVE REGRESSION MODELS 

In this section, the estimation procedure for the additive regression models will be 

briefly discussed. However, a slightly different approach is taken to compute the regression 

parameters. 

6.1 Poisson 

Let ~, Yi and e, denote the claim frequency rate, claim count and exposure for t he / th  

class so that the observed frequency rate is equal to, 

Yi 
= - - .  (6.1) 

e i 

If the random variable for claim count, Yi, follows a Poisson distribution, the probability 

density function can be written as, 

e x p ( - e i f  / )(e,f, )~'~' 
f (y ,  ) = g(r .)  = , (6.2) 

(eiri)! 

where the mean and variance for the claim count is equal to 

E(Y, ) = Var(Y~) = eiE(R , ) =e i f  i . 
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For Poisson regression model, the likelihood equations are equal to, 

Og(D) _ ~ e, ( r  i - f~ )  Of, = 0 ,  j = 1,2 ..... p .  (6.3) 

aflj ~ f, aflj 

If the Poisson follows an additive model, the mean or the fitted value for frequency rate 

can be written as, 

E(R~) = f, = xlV~, (6.4) 

so that, 

- -  = (6.5) apj x,j. 

Therefore, the first derivatives of log likelihood for Poisson are, 

ag(~) _ ~/(ri - f~)e,x,~ = 0, j = 1,2,...p, (6.6) 

aft, • fi  

and the negative expectation of the second derivatives of log likelihood are, 

E(a2g(P)/ ei 
- tO~iOfl~)=-~xoxi , ,  , j , s  = 1,2 ..... p .  (6.V) 

The information matrix, I ,  which contains negative expectation of the second 

derivatives of log likelihood, may be written as, 

I = x T w x ,  (6.8) 

where X denotes the matrix of explanatory variables, and W the diagonal weight matrLx 

whose/th diagonal element is equal to, 

w[ = e, .  (6.9) 
f, 

The fn~st derivatives of log likelihood, i.e., Eq.(6.6), can be written as, 

Z = X V W k ,  (6.10)  
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where W is the diagonal weight matrix whose /th diagonal element is also equivalent to 

Eq.(6.9), and k the vector whose/th row is equal to, 

k; =r, - f .  (6.11) 

6.2Negative Binomial I 

If the mean or the fitted value for frequency rate is assumed to follow an additive 

regression model, the first derivatives of log likelihood for Negative Binomial I are, 

~g(~3,a) _ ,~  (r - f,)e;x,j = O, j = 1,2,...p, (6.12) 
~7" f ; ( l+aei f ; )  

and the negative expectation of the second derivatives of  log likelihood are, 

E(~2g(l~,a)]= ei 
f,(l+ae, L)x,,x .... j , s  = 1,2 ..... p .  (6.13) 

~ fl sb fi, ) 
Therefore, the information matrix, I ,  may also be written as Eq.(6.8). However, the/ th 

diagonal element of  the weight matrix, W,  is equal to, 

w y '  - e, (6.14) 
f , ( l+ae,  f i )  

The first derivatives of  log likelihood, i.e., Eq.(6.12), can also be written as Eq.(6.10) where 

k is the vector whose/ th row is equal to Eq.(6.11). However, the/ th  diagonal element of 

the weight matrLx, W ,  is equal to Eq.(6.14). 

6.3Negative Binomial II 

The maximum likelihood estimates, ~, for Negative Binomial II additive regression 

model are numerically difficult to be solved from the likelihood equations. However, the 

regression parameters are easier to be approximated by using the least squares equations, 

ei (r i -  f i )  ~fi ( r , -  fi)eix,j - 0 ,  
j = 1,2 ..... p ,  (6.15) 

because the distribution of  Negative Binomial II has a constant variance-mean ratio. Since 

Eq.(6.15) is also equal to the likelihood equations of the Poisson, i.e., Eq.(6.6), the least 
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squares estimates, ~ ,  are also equivalent to the Poisson maximum likelihood estimates. 

However, the standard errors are equal or larger than the Poisson because they are 

multiplied by x/] + a 'where a > 0. 

6.4 Generalized Poisson I 

If the mean or the fitted value for frequency rate is assumed to follow an additive 

regression model, the fitst derivatives of log likelihood for Generalized Poisson I are, 

ag(~, a) (ri - fi  )eixo 
- ~ .  ~ 1 ~  2 , j = 1,2,...p, (6.16) aflj 

and the negative expectation of the second derivatives of log likelihood are, 

_E(a2g ( ~ ,a ) ) =  ei 
[ bfljOfl, ) f~( l+ae i f , )2  xoxi~, , j , s = l , 2  ..... p .  (6.17) 

Therefore, the information matrix, I ,  may also be written as Eq.(6.8). However, the/th 

diagonal element of the weight matrix, W ,  is equal to, 

W, Gt PI - -  ei  

f i ( l+aei f i )2  . (6.18) 

The first derivatives of log likelihood, i.e., Eq.(6.16), can be written as Eq.(6.10), 

where k is the vector whose /th row is equal to Eq.(6.11). However, the /th diagonal 

element of the weight matrix, W ,  is equivalent to Eq.(6.18). 

6.5 Generalized Poisson II 

The maximum likelihood estimates, I], for Generalized Poisson II additive regression 

model are also numerically difficult to be solved from the likelihood equations. However, by 

using the least squares equations, 

•(r j = l , 2  ..... p .  (6.19) 
~ f ~ ) ~ i X ~  

~ 0~ 
. a2fi 

the regression parameters are easier to be calculated because the distribution of Generalized 

Poisson II also has a constant variance-mean ratio. Since Eq.(6.19) is equal to the likelihood 

equations of the Poisson, i.e., Eq.(6.6), the the least squares estimates, ~ ,  are also equivalent 
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to the Poisson maximum likelihood estimates. However, the standard errors are equal, larger 

or smaller than the Poisson because they are multiplied by a where a _> 1 or -~ < a < 1. 

The methods and equations for solving I] in additive regression models are summarized 

in Table 20. The matrices and vectors for solving I~ in additive regression models are 

summarized in Table 21. An example of S-PLUS programming for the additive regression 

model of Negative Binomial I (moment) is given in Appendix D. 

Table 20. Methods and equations for solving l] in additive regression models 

Models Estimation of f l  

Method Equation 

Poisson 

Negative Binomial I 

Negative Binomial II 

Generalized Poisson I 

Generalized Poisson II 

Maximttm Likelihood 

Maximum Likelihood 

Weighted Least Squares 

Maximum Likelihood 

Weighted Least Squares 

E (ri - f i )e ix i j  = 0  

, f,  

~i (ri -- fi)eixij =0 
• f i ( l+ae i f i )  

~i (ri - f i)eixo = 0  

• ( l+a ) f ,  

(ri - fi )eixij 
i f i ( l+aei f i )2  0 

~i (ri - fi)eixij =0 
. a2fi  
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Table 21. Matrices and vectors for solving ~ in additive regression models 

Models 

Matrices and vectors for 1~(¢) = I~(r-I) + I(-1-1)Z(r-l), where 

I(r_l) =: xTW(r_DX,  

Z (r-I) := xTW(r-l~ k (r-I) 

js-th element of matrix I = i  j., - [ ~ ) ,  

~e 
j - th row of vector z = zj  = - - .  

Poisson/ 
NBII /  
GPII 

I = x T w x  matrLx ! tj, = ~_a~--xijXis 
Ji 

= e...L 
weight matrix W w7 f i  

ei 
vector :z z j  = ~'~-'7-(ril..a - f i )x i j  ---4 z = X T W k  

i Ji 
vector Ik ki = ri - f i  

NBI matrix I 

weight matrix W 

vector z 

vector Ik 

• e ,  
tj.~ = - -  X~ X. • f i ( l + a e i f i )  ~ ,~ ~ I = X r W X  

wNBI ei 

f i ( l + a e i f i )  

z j =  . f i ( l ~ a e i f i )  ( r i - f i ) x q  ~ z = X T w k  

k~ =r~ -f~ 

GPI ~ 1  ei matrix [ ij.~ = f i ( l + a e i f i ) 2  x,~x,., ~ I : X T W X  

wGPI ei 
weight matrix W f i ( l + a e ,  f , )  2 

~ e, (ri _ f i ) x i  j --~ z = x - r w  k vector z z j = f i ( l + a e i f i ) 2  

vector Ik 
ki = ri - f i  
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6.6Examples 

FoLlowing the same examples as the multiplicative regression models, the additive 

regression models were also fitted on three different sets o f  claim frequency data; Malaysian 

data, ship damage incident data, and Canadian data. Unfortunately, the Malaysian data did 

not give converged parameter solutions for any of  the Poisson, Negative Binomml and 

Generalized Poisson regression models. However,  the parameter solutions are obtainable for 

both  ship damage incident data and Canadian data. Table 22 shows the comparison between 

Poisson, Negative Binomial and Generalized Poisson additive regression models for the ship 

damage incident data. 

Table 22. Poisson, Negative Binomial and Generalized Poisson for ship data 

Pararncters Poisson/N BI(MI A:,) /  N B l ( m o m e n t )  GPl(moment) NBII/GP[1 
GPI(MLE) 

est. std. p- est. std. p- est. std. p- est. std. p- 
(xl0 3) error value error value error value error value 

(xlO~) (xlO 3) (xlO 3) (xlO') (XlO') (xlO') (XlO~) 

a 0.00 133.73 52.94 599.25/ 
1264.61 

/~ Intcrcept 2.60 0.72 0.00 2.19 1.04 0.03 2.16 1.05 0.04 2.60 0.91 0.00 

f12 Ship t3'pc B -1.73 0.71 0.01 -1,33 1.01 0.19 -1.30 1.02 0.20 -l.73 0.90 0.05 

f13 Ship t3'pc C -1.89 0.86 0.03 -1.52 1.12 0.17 -1.52 1.11 0.17 -1.89 1.09 0.08 

f14 Ship t3'pe 1) -0.79 1.10 0.47 -1.05 1.32 0.43 -1.13 1.28 0.38 -0.79 1.39 0.57 

f15 Ship type IL 1.87 1.30 0.15 2.72 1.91 0.15 2.87 1.92 0.13 1.87 1.64 0.25 

//6 Cons. 65-69 1.05 0.24 0.00 087 0.56 0.12 0.78 0.63 0.22 1.05 0.31 0.00 

f17 Cons. 70-74 1.58 0.38 0.00 2.15 0.76 0.00 2.33 0.84 0.01 1.58 0.47 0.00 

f18 Cons. 75-79 0.69 0.55 0.22 0.77 0.94 0.42 0.76 0.98 0.44 0.69 0 70 0.33 

189 Opcr. 75-79 0.79 0.24 0.00 0.79 0.52 0.13 0.81 0.58 0.16 0.79 0.31 0.01 

Df 25.00 24.00 24.00 
Z 2 39.98 25.00 25.00 Pearson 

Deviance 38.44 25.65 26.12 
Log L -68.15 -72.44 -73.48 

24.00 

After running the S-PLUS programming for Negative Binomial I (NILE) and 

Generalized Poisson I (NILE) to the ship data, we found that the models did not  give 

converged parameter solutions and concluded that the data is better to be fitted by the 

Poisson. Since the Poisson is a special case of  the Negative Binomial I (NILE) and 

Generalized Poisson I (MLE), the result o f  fitting the Poisson is also equivalent to the result 
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of fitting the Negative Binomial I (MLE) or Generalized Poisson I (NILE) which produces 

a = 0 .  

The parameter estimates and standard errors for Negative Binomial II and Generalized 

Poisson II are equal because both models were fitted by using the same procedure. 

The smallest standard errors are give n by the Poisson, the largest are by the Negative 

Binomial I (moment) and Generalized Poisson I (moment), whereas the standard errors for 

Negative Binomial II and Generalized Poisson II are somewhere in between. 

Table 23 shows the comparison between Poisson, Negative Binomial and Generalized 

Poisson additive regression models for the Canadian data. 

The parameter estimates and standard errors for Negative Binomial II and Generalized 

Poisson II are equal because both models were fitted by using the same procedure. 

The smallest standard errors are given by the Poisson, the largest are by the Negative 

Binomial I (moment) and Generalized Poisson I (moment), whereas the standard errors for 

Negative Binomial I (MLE), Generalized Poisson I (MLE), Negative Binomial II and 

Generalized Poisson II are somewhere in between. 
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T a b l e  23 .  P o i s s o n ,  N e g a t i v e  B i n o m i a l  a n d  G e n e r a l i z e d  P o i s s o n  f o r  C a n a d i a n  d a t a  

Pa . . . .  ters P,,i . . . . .  NBI(MI.E) NBI( . . . . . .  t) 
est. std. p-value est. std. p-value est. std. p-value 

error error error 
(xlO 2) (XlO 2) 0<10 2) 0<10 2) 0<102) (xlO a) 

a 0.06 0.12 

]~ Intercept 7.88 0.02 0.00 7.98 0.17 0.00 8.00 0.22 0.00 

f12 Class 2 3.13 0.09 0.00 2.99 0,25 0.00 2.99 0.32 0.00 

f13 Class 3 5.24 0.07 0.00 5.66 0.27 0.00 5.70 0.35 0.00 

f14 Class 4 6.53 0.08 0.00 6.36 0.28 0.00 6.34 0.36 0.00 

f15 ('lass 5 2.17 0.12 0.00 1.88 0.26 0.00 1.81 0.32 0.00 

f16 Merit X 2.76 0.08 0.00 2.74 0.24 0.00 2.72 0.30 0.00 

f17 Merit Y 3.86 0.08 0.00 3.55 0.24 0.00 3.50 0.31 0.00 

fl'8 Merit B 5.88 0.06 0.00 5.63 0.25 0.00 5.59 0.32 0.00 

Df 12.00 11.00 11.00 
2,2 95.93 19.19 12.00 Pearson 

Deviance 96.07 19.36 12.10 
Log L -153.24 -132.31 -133.24 

Parameters GPI(MH:;) GPI( . . . . .  t) N B I I / G H I  
est. std. p-value est. std. p-value est. std. p-value 

error error error 
(Xl02) (xl02) (xl02) (Xl02) (xl02) (Xl0 z) 

a 0.02 0.02 699.38/ 
282.73 

1~ Intercept 8.24 0.28 0.00 8.29 0.35 0.00 7.88 0.05 0.00 

f12 Class 2 2.84 0.30 0.00 2.84 0.35 0.00 3.13 0 24 0.00 

f13 Class 3 5.84 0.31 0.00 8.90 0.38 0.00 5.24 0.19 0.00 

~4 (]lass 4 6.21 0.31 0.00 6.19 0.38 0.00 6.53 0.23 0.00 

f15 Class 5 1.72 0.31 0.00 1.64 0.36 0.00 2.17 0.33 0.00 

f16 Merit X 2.55 0.27 0.00 2 51 0.32 0.00 2.76 0.23 0.00 

f17 Mcrit Y 3.28 0.27 0.00 3.19 0.32 0,00 3.86 0.22 0.00 

f18 Merit B 5.37 0.28 0.00 5.28 0.33 0.00 5.88 0.18 0.00 

Df 11.00 11.00 
2,2 17.08 12.00 Pearson 

1)eviancc 17.51 12 34 
Log L -132.12 -132.61 

11.00 
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7. CONCLUSIONS 

This paper proposed the Negative Binomial and Generalized Poisson regression models 

as alternatives for h~ndling overdispersion. Specifically, four types of distributions, i.e., 

Negative Binomial I, ]Negative Binomial II, Generalized Poisson I and Generalized Poisson 

II, and two types of regression models, i.e., multiplicadve and additive, were discussed. Since 

the likelihood equations for the multiplJcative and additive regression models of the 

Negative Binomial I and Generalized Poisson I are equal to the weighted least squares, the 

fitting procedure can be carried out easily by using the Iterative Weighted Least Squares 

(IWLS) regression. 

The estimation of the dispersion parameter, a ,  can be implemented by using either the 

maximum likelihood raethod or the method of moment. In this paper, the models where a 

is estimated by the maximum likelihood method are denoted by Negative Binomial I (MLE) 

and Generalized Poisson I (MLE). Similarly, the Negative Binomial I (moment) and 

Generalized Poisson I (moment) represent the models where a is estimated by the method 

of moment. 

The maximum likelihood estimates for Negative Binomial II and Generalized Poisson II 

are numerically difficult to be solved because their likelihood equations are not equal to the 

weighted least squares. As an alternative, the method of least squares is suggested because 

both Negative Binomial II and Generalized Poisson II have constant variance-mean ratios. 

Table 1 and Table 20 summarize the methods and equations for solving 

flj ,  j = 1,2 ..... p ,  in multiplicative and additive regression models. The matrices and vectors 

for solving l] in multiplicative and additive regression models are summarized in Table 2 

and Table 21. Finally, "Fable 3 summarizes the equations for solving a.  

This paper also briefly discussed several goodness-of-fit measures which were already 

familiar to those who used Generalized Linear Model with Poisson error structure for claim 

count or frequency analysis. The measures, which are also applicable to the Negative 

Binomial as well as the Generalized Poisson regression models, are the Pearson chi-squares, 

deviance, likelihood ratio test, Akaike Information Criteria (AIC) and Bayesian Schwartz 

Information Criteria (BIC). 

In this paper, the multiplicative and additive regression models of the Poisson, Negative 

Binomial and Generalized Poisson were fitted, tested and compared on three different sets 

of claim frequency data; Malaysian private motor third part 3 , property damage data, ship 

damage incident data from McCullagh and Nelder [19], and data from Bailey and Simon [1] 
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on Canadian private automobile liability. Unfortunately, none of  the additive regression 

models give converged parameter solutions for the Malaysian data. 

This paper shows that even though the Poisson, the Negative Binomial and the 

Generalized Poisson produce similar estimate for the regression parameters, the standard 

errors for the Negative Binomial and the Generalized Poisson are larger than the Poisson. 

Therefore, the Poisson overstates the significance of the regression parameters in the 

presence of  overdispersion. An example can be seen from the results of fitting the Poisson, 

the Negadve Binomial and the Generalized Poisson to the ship damage data. The effects of 

ship type are not significant under the NBI-moment or the GPI-moment, whereas they are 

under the Poisson, and to a lesser extent under the McCullagh and Nelder or the NBII or 

the GPII. 

This paper also shows that in the presence of  overdispersion, the Poisson overstates the 

significance of  the rating factors. An example can be seen from the results of implementing 

the deviance analysis to the Malaysian data. The best regression model for the Poisson 

indicates that all rating factors and one paired interaction factor are significant. However, the 

best regression model for NBI-MLE and GPI-MLE indicates that only two rating factors are 

significant. Another example can be seen from the ship damage data. According to 

McCullagh and Nelder [19], there was an evidence of  interaction between ship type and. year 

of construction if the Poissonregression was fitted. However, the evidence vanished 

completely if the data is fitted by the overdispersion model. 

In addition, this paper shows that the maximum likelihood approach has several 

advantages compared to the quasi likelihood approach, which was suggested in the actuarial 

literature, to accommodate overdispersion in claim count or frequency data. Besides having 

good properties, the maximum likelihood approach allows the likelihood ratio and other 

standard maximum likelihood tests to be implemented. 

The Negative Binomial and the Generalized Poisson models are not that difficult to be 

understood. Even though the probability density function for both Negative Binomial and 

Generalized Poisson involve mathematically complex formulas, the mean and variance for 

both models are conceptually simpler to be interpreted. The mean for both Negative 

Binomial and Generalized Poisson models are equal to the Poisson. The variance of  the 

Negative Binomial is equal or larger than the Poisson, and this allows the Negative Binomial 

model to handle overdispersion. The variance of  the Generalized Poisson is equal, larger or 

smaller than the Poisson, and this allows the Generalized Poisson to handle either 

overdispersion or underdispersion. 
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The  Negat ive Binomial  and General ized Poisson are also no t  that  difficult to be fitted. 

The  fitting procedure  can be carried out  by using the Iterative Weighted  Least  Squares 

regression which  was used in the Poisson fitting procedure.  The  only difference is that  the 

Negat ive Binomial  and the Genera l ized Poisson has their  own  weight  matrix,  and  the 

i teration procedure  for calculating the dispersion parameter ,  a ,  has to be added in the fitting 

procedure.  
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A p p e n d i x  A: S - P L U S  p r o g r a m m i n g  for  N e g a t i v e  B i n o m i a l  I ( m o m e n t )  m u l t i p l i c a t i v e  

regression m o d e l  

N B . m o m e n t  < -  function(data)  

{ 
# To  identify, matrix X, vector  count  and vector  exposure f rom the data 

X <-  as.matrLx(data[, -(1:2)]) 

count  < -  as.vector(data[, 1]) 

exposure  < -  as.vector(data[, 2]) 

# To  set initial values for a and beta 

new.a <-  c(0.00l)  

new.beta < -  rep(c(0.001), dim(X)[2]) 

# To  start i terations 

for (i in 1:50) 

{ 
# To  start the first sequence 

a <-  new.a 

beta <-  new.beta 

miul <-  exposure*exp(as .vector(X%*%beta))  

W <-  d iag(miul / (1+ a*miul)) 

I . inverse <-  so lve ( t (X)%*%W%*%X)  

k <-  (count -miu l ) /miu l  
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G.prime 

new.a 

} 

z <- t(X)%*%W%*%k 

new.beta <- as.vector(beta+I.inverse%*%z) 

new.miul <- exposure*exp(as.vector(X%*%new.beta)) 

# To start the second sequence 

G <- sum((count-new.miul)"2/(new.miul*(1 +a*new.miul)))- 

(dim(X3 [l]-dim(X9 [2]) 
<- -(sum((count-new.miul)"2/(1 +a*new.rniul)"2)) 

<- a-G/G.prime 

# To calculate the variance and standard error 

varians <- as.vector (diag(I.inverse)) 

std.error <- sqrt(varians) 

# To list the programming output 

list (a=new.a, beta=new.beta, std.error=std.error, df=dim(X)[1]-dim(X)[2]-l) 

} 

Appendix B: S-PLUS programming  for General ized Poisson 

multiplicative regression model  

GP.moment <- function(data) 

{ 
# To identify matrLx X, vector count and vector exposure from the data 

X <- as.matrix(data[, -(1:2)]) 

count <- as.vector(data[, 1]) 

exposure <- as.vector(data[, 2]) 

# To set initial values for a and beta 

new.a <- c(0.001) 

new.beta <- rep(c(0.001), dim(X)[2]) 

# To start iterations 

for (i in 1:50) 

{ 
# To start the ftrst sequence 

a <- new.a 

beta <- new.beta 

miul <- exposure*exp(as.vector(X%*%beta)) 

I (moment)  
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W <- diag(miul/(l+a*miul)"2) 

I.inverse <- solve(t(X)%*%W%*%X) 

k <- (count-miul)/miul 

z <- t(X)%*%W%*%k 

new.beta <- as.vectorCoeta+I.inverse%*%z ) 

new.miul <- exposure*exp(as.vector(X%*%new.beta)) 

# To start the second sequence 

G <- sum((count-new.miul)^2/(new.miul*(1 +a*new.miul)"2))- 

(dim(X) Ill-dim (X) [2]) 

G.prime <- -(sum(2*(count-new.miul)^2/(1 + a*new.miul)"3)) 

new.a <- a-G/G.prime 

# To set restrictions for a 

if ((new.a<0)* (new.a< =- 1/max(count))) 

new.a <-- l / (max(count)+l )  

else 

if ((new.a<0)*(new.a< =-1/max(new.miul))) 

new.a <- -1/(max(new.miul)+ 1) 

else 

if ((new.a<0)* (new.a< =-1/max(count))* 

(new.a< =-1/max(new.miul))) 

new.a <- min(- 1 / (max(count)+ 1),-1/(max(new.mini) + 1)) 

else 

new.a <- new.a 

} 
# To calculate the variance and standard error 

varians <- as.vector(diag(I.inverse)) 

std.error <- sqrt(varians) 

# To list the programming output 

list(a=new.a, beta=new.beta, std.error=std.error, df=dim(X)[1]-dim(X)[2]-l) 

} 
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Appendix C: Malaysian data 

Rating filctors 
Coverage t,vpe 

Comprehenstvc 

Vehicle make Use-gender 

I ,oca] Pnvat e-male 

Vehicle year l,ocation 

0-1 year 

2-3 year 

Exposures Claim counts 

4-5 year 

6+ year 

Prlvate- female O-I year 

2-3 year 

4-5 year 

6+ year 

Busmcss I)-1 year 

2-3 year 

4-5 year 

Central 4243 381 
North 2567 146 
East 598 44 
South 1281 161 
East Malaysia 219 8 

Central 6926 422 
North 4896 21)3 
East 1123 41 
South 2865 164 
East Malaysia 679 19 

Central 6286 276 
North 419-5 145 
East 1152 29 
South 2675 115 
East Malaysia 7110 17 

Central 69115 223 
North 5784 150 
East 2156 39 
South 3310 89 
East Malaysia 1406 33 

Central 2025 165 
North 1635 55 
East 3111 12 
South 6118 23 
Hast Malaysia 126 6 

Central 3661 147 
North 2619 72 
I';ast 527 12 
South 1192 39 
East Malaysia 359 8 

Central 2939 56 
North 1927 36 
East 439 7 
South 959 23 
East Malaysm 376 2 

Central 2215 51 
North 1989 38 
East 581 5 
South 937 23 
East Malaysia 589 9 

Central 290 0 
North 66 {I 
I':ast 24 tl 
South 52 11 
East Malaysia 6 11 

Central 572 11 
North 148 0 
East 40 0 
South 91 l) 
I '~ t  Malaysm 17 0 

Central 487 /1 
North IIRI 0 
Vast 40 O 
South 59 I} 
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Foreign Private-male 

6+ year 

(I-1 year 

2-3 vcar 

4-5 year 

6+ year 

Pnvate- female /I-1 year 

2-3 year 

4-5 year 

6+ year 

Busmess 0-I year 

2-3 year 

4-5 year 

East Malaysia 22 i) 

Central 468 (11 
North 93 
East 33 0 
South 77 0 
East Malaysta 25 0 

Central 1674 94 
North 847 47 
East 377 21 
South 740 38 
I,'.as t Malaysia 518 6 

Central 3913 202 
North 1930 85 
Vast 618 21 
South 1768 65 
East Malaysia 833 23 

Central 41102 157 
North 1777 85 
East 534 15 
South 1653 73 
East Malaysm 8413 24 

Central 6891 245 
North 4409 151 
East 1345 44 
South 2735 113 
least blalaysia 2108 64 

Central 1222 29 
North 632 11 
East 209 2 
South 452 17 
East blalaysia 345 6 

Central 2111 46 
North 1068 41 
East 283 5 
South 857 13 
East Malaysia 493 10 

Central 1699 39 
North 793 15 
East 188 0 
South 637 16 
East Malaysia 367 11 

Central 1922 47 
North 1376 35 
East 336 6 
South 710 9 
East Malaysia 792 10 

Central 457 II 
North 135 0 
East 711 0 
South 86 0 
East Malaysta 101 0 

Central I 134 0 
North 315 0 
l'~ast I 13 0 
South 284 0 
East Malaysia 205 II 

Central 1030 0 
North 252 0 
East 711 (I 
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Non-  
compreht:nstve 

I,ocal 

South -'2118 (I 
East Malaysia 221 11 

6+  ','ear Central 11175 II 
North  297 (I 
East 78 t) 
South 231 t) 
East Malaysm 282 11 

Pnvate-malc t)-I year Central 8 (I 
North  14 11 
East 5 11 
South 8 0 
East Malaysia 3 (I 

2-3 year Central 34 3 
North  65 0 

East 26 (1 ~ 
South 51 
East Malaysia 21 11 

4-5 year Central 71 1 
North  1811 5 
East 47 11 
South 48 1 
East Malaysia 39 (I 

6+ year Central 349 9 
North  496 5 
Vast 143 2 
South 233 4 
F.ast Malaysia 141 2 

Private- female t)-I year Ccntral 2 (I 
North  6 II 
East 6 tl 
South 3 {I 
Fast Malaysta 3 (1 

2-3 }'car Central 12 0 
Nor th  23 / 

East 22 0 
South 14 11 
East Malaysta 21 0 

4-5 )'ear Central 36 0 
Nor th  66 1 
I",ast 19 0 
South 13 0 

East Malaysia 29 i) 

6+ year Central 133 1 
Nor th  213 t) 
Fast 511 t) 
South 55 t) 
East Malaysia 85 1 

Business 0-1 year Central I (I 
Nor th  2 (I 
East g) o 
South 0 q) 
East Malaysta 0 0 

2-3 year Central I 0 
North 5 0 
Vast I ~1 
South 1 (I 
I :as t Malays:a 1 (I 

4-5 yt:ar ( 'cnt  ral 18 ( 
Nor th  8 (I 
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Fordgn 

Fast 1 
South 1 
East Malaysia 11 

6+ year Central 57 
North 27 
Fast 1 
South 133 
East Malaysia 3 

Private-male 1}-1 year Central 4 
North 11 
East 2 
South 5 
I",ast Malaysia 8 

2-3 year Central 41 
North 54 
East 7 
South 30 
Vast Malaysia 25 

4-5 year Central 68 
North 132 
East ~ 
South 55 
East Malaysia 48 

6+ year Ccntral 3164 
North 3674 
East 9211 
South ~167 
Hast Malaysia 1985 

Pro'ate- female 0-1 year Central 2 
North 8 
East 1 
South 3 
East Malaysia 6 

2-3 year Central 10 
North 47 
East 0 
South 12 
East Malaysia 26 

4-5 year Central -2 <) 
North 66 
East 2 
South 14 
East Malaysia 25 

6+ year Central 875 
North 1177 
East 190 
South 411 
I';ast Malaysia 555 

Business (I-1 year Ccntral 1 
North 1 
East 0 
South 2 
Fast Malaysm 2 

2-3 year Central 4 
North 6 
Hast I) 
South 5 
East Malaysia 14 

4-5 year Central 17 

o 
o 
o 

0 
(I 
( I  

0 
11 

I I  

ID 

0 
o 

() 

3 
0 
2 
0 

0 
3 
(I 

0 
3 

49 
71 

6 
56 
22 

(} 

o 
11 
( I  

0 

0 
0 
( I  

o 
0 

o 
o 
o 
o 
0 

14 
15 
2 
6 
3 

0 
0 
o 
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0 
o 
o 
o 
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o 

Casualty Actuarial Society Forum, Winter 2007 155 



Handling Overdispersion with Negative Binomial and 
Generalized Poisson Regression Models 

6+ )'car 

North 14 t) 
East 4 I) 
South 7 ~) 
East Malaysia 2) I) 

Central 157 t) 
North 141 I) 
East 22 I) 
South 89 0 
East Malaysia 152 0 

Total 170,749 5,728 

Appendix D: S-PLUS programming  for Negat ive  Binomial  I (moment)  additive 

regression mode l  

NBmoment.add <- function(data) 

{ 
# To identify matrLx X, vector count, vector exposure and vector frequency from the data 

X <- as.matrix(data[,-(1:2)]) 

count <- as.vector(data[,1]) 

exposure <- as.vector(data[,2]) 

rate <- count/exposure 

# To set initial values for a and beta 

new.beta <- rep(c(0.001), dim(X)[2]) 

new.a <- c(0.001) 

# To start iterations 

for (i in 1:50) 

{ 
# To start the first sequence 

beta <- new.beta 

a ~ -  n e w . a  

fitted <- as.vector(X%*%beta) 

W <- diag(exposure/(fitted*(1 +a'exposure*fitted))) 

I.inverse <- solve(t(X)%*%W%*%X) 

k <- rate-fitted 

z <- t(X)%*%W%*%k 

new.beta <- as.vectorCoeta+I.inverse%*%z ) 

new.fitted <- as.vector(X%*%new.beta) 
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# To  start the  second  sequence  

G <-  sum((exposure*(ra te-new.f i t ted)^2) / (new.f i t ted*( l+a*exposure*new.f i t ted) ) ) -  

(dim(X3 [1]-dim(X) [21) 

G .p r ime  <-  - sum((exposure"2*(ra te -new.f i t ted)"2) / (1  +a ' exposure*new. f i t t ed ) "2 )  

new.a <-  a - G / G . p r i m e  

} 
# To  calculate the variance and  s tandard  error 

varians <-  as.vector(diag(I.inverse)) 

s t&error  <-  sqrt(varians) 

} 
# To  list the  p r o g r a m m i n g  ou tpu t  

l is t (a=new.a,  beta----new.beta, s td .error=std .error ,  d f -d im(X) [ l l -d im(X) [2 ] - l )  

} 
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