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Refining Reserve Runoff  Ranges 
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Abstract  

Reserve runoff ranges are often wider than they need to be. This paper applies some practical tools used by 
regression modelers to find ways to reduce the ranges. Four approaches are explored: finding better-fitting 
models; getting rid of insignificant parameters; using exposure information; and considering whether some 
part of the triangle should be ignored. 
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1. INTRODUCTION 

Techniques that can reduce the runoff variance and reserve ranges are outlined and illustrated 

through three examples of fitting models to development triangles. Two basic paradigms for 

development models are used: 

[1] Future development is a proportion of losses emerged to date, plus a random error. 

[1] Future development is a proportion of the as yet unknown ultimate, plus a random error. 

The chain ladder method is the paragon of the first paradigm, and the Bornhuetter-Ferguson 

(BF) method is an early example of the second. Multiplicative effects models, where the mean of 

each cell is a product of a row and column parameter, are also of the second type, as the row 

parameters can be scaled to be expected ultimate.  

The factors estimated for both model types can be distorted if there are diagonal (calendar-year) 

influences in the data. It is possible to identify and take into account such influences in either of the 

modeling paradigms. This is investigated in all of the examples. 

Exposure information, if available, can also improve the model fit and reduce the variance and 

ranges. Also there are situations where the common models fit better to a portion of the triangle 

than to the whole triangle, and this is explored as well. 

The first example is a triangle whose development pattern is much better explained as a factor 

times ultimate than a factor times already emerged, but the multiplicative effects model has so many 

parameters that the estimated variance and runoff ranges are higher than for the chain ladder, 

despite the better fit, due to greater parameter uncertainty. Ways to maintain a good fit while 



Refining Reserve Runoff  Ranges 

CAS E-Forum August 2007 www.casact.org 2 

eliminating insignificant parameters are explored, and lead to a lower variance. These are somewhat 

ad hoc methods out of the regression modelers’ tool bag.  Their application is more of an art than a 

science but they can produce better models in many cases. The multiplicative effects model can 

easily handle calendar-year influences by including row, column, and diagonal factors. 

The second example is one in which development factors appear to provide a reasonable fit to 

the data, at least at the early lags. The chain ladder is often presented in a regression context, where 

factors are calculated using some form of regression on the previous cumulative losses. That gives a 

separate variance for each factor. It is possible to include diagonal effects in the chain ladder, but the 

factors have to be computed in a single overall regression. This can get into problems with 

heteroscedasticity, where a single variance is assumed for each cell but latter lags in fact have lower 

variances. This does not usually affect the parameter estimates very much, but it does distort the 

estimated runoff variance. A heteroscedasticity adjustment is introduced and applied to this case. 

Further use of parameter-reduction techniques are also illustrated. 

The third example is of a triangle that exhibits a good deal of change in development patterns 

over time, and ways to test for that are explored. It also has exposure information available, and 

using that improves the model. Parameter reduction by fitting a distribution to the emergence lag 

pattern is applied to this triangle as well. 

Section 2 reviews some details of the two modeling paradigms and provides a common notation 

to discuss them. Section 3 addresses how to compare fits of alternative models. Sections 4, 5, and 6 

are the three examples. Section 7 concludes. Standard assumptions, discussed in each case, are used 

for the distributions of the error terms, but other distributions could be used. These are beyond the 

scope of this paper, but should not be ignored in application. 

2. BACKGROUND ON DEVELOPMENT TRIANGLE MODELS 

Mack (1993) [13] presents statistical assumptions and criteria under which the chain-ladder 

estimate is optimal, and shows how to calculate the implied variance. Mack’s assumptions are 

intuitive from the viewpoint of what actuaries might imagine development factors are doing. 

Basically they postulate that the incremental losses at a given lag are a factor times the previous 

cumulative, plus a random innovation.  

Having a model like Mack’s allows for testing how well the chain-ladder assumptions apply to 
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specific triangles1. Which model works best for a given data set is an empirical matter, but when the 

chain-ladder assumptions fail it is often because incremental losses are not fit well as a factor times 

previous cumulative. Then the losses at each lag might be modeled as a fraction of the yet-unknown 

ultimate losses. This is an element of the Bornheutter-Ferguson approach, so all such models can be 

regarded as formalized versions of BF. Typically these take the form of multiplicative fixed-effects 

models (MFE), where each cell’s expected loss is a product of row and column (and perhaps 

diagonal) factors. 

2.1 Variants of Chain Ladder 
Murphy (1994) [16] gives several versions of the chain ladder in a regression setting. Losses at 

one age are expressed as a factor times the cumulative losses at a previous age plus a random error, 

plus possibly a constant term. For each age the variance of the random error could be constant, or it 

could be proportional to the level of the previous cumulative losses, or to the square of the previous 

cumulative. Murphy shows that for the model with no additive term and a constant variance, 

standard regression theory gives the estimator Σxy/Σx2, where y represents the current losses and x 

the previous. He calls this the LSM model, for least-squares multiplicative. Using transformed 

regressions Murphy shows that the factor estimators when the variance is proportional to losses or 

losses squared are Σy/Σx and average(y/x), respectively. Σy/Σx is typical in actuarial applications and 

is the same estimator as Mack’s. It is the regression estimator for a no-constant regression of y/x½  

on x½ that converts the constant variance to a variance proportional to x. Unfortunately it is difficult 

to tell which behavior of the variance best holds for a single column, so judgment is often needed. 

2.2 Multiplicative Fixed Effects Models 
These models express the losses in a cell in a triangle as a product of a row constant and a 

column constant, which are the fixed effects plus a random innovation. Some notation is needed to 

discuss this. 

The n+1 columns of a triangle are numbered 0, 1, … n and denoted by the subscript d. The rows 

are also numbered from 0 and denoted by w. The last observation in each row of a full triangle will 

then have w+d=n. The cumulative losses in cell w,d are denoted cw,d and the incrementals by qw,d. 

For the MFE model, E[qw,d] is Uwgd, where Uw and gd  are the row and column parameters, 
                                                 

1 See for example Mack (1994) [14], Venter (1998) [21], Barnett and Zehnwirth (2000) [3]. 
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respectively. Note that increasing each g by the same factor and dividing each U by that factor does 

not change the mean for any cell. To have specificity, it is often convenient to have the g’s sum to 1. 

Then Uw can be interpreted as the ultimate loss for year w and gd the fraction that are at lag d.  

Assuming that the distribution around the cell mean is lognormal, each cell’s observation is log 

[qw,d] =log Uw+ log gd + εw,d, which is a linear model with a normal error term, and so estimable by 

regression. This was already studied by Kremer (1982) [9]. On the other hand, if the distribution is 

normal, so qw,d = Uwgd + εw,d, the model is non-linear. Mack (1991) [12] linked this model of 

development triangles to MFE models in classification ratemaking, such as those in Bailey (1963) [1], 

Bailey-Simon (1960) [2], etc. These models can be estimated by a generalization of fixed-point 

iteration called Jacobi iteration, using ∑∑
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is just the result of alternatively treating the g’s and the U’s as known constants, so the model 

temporarily becomes a simple factor model in the other parameter. 

2.3 Poisson – Constant Severity Distribution 
A convenient starting point for multiplicative fixed-effects models is to assume the error terms 

follow the Poisson – constant severity (PCS) distribution. This is the aggregate loss distribution 

consisting of a Poisson frequency and a constant severity. In this context that assumes all claims or 

payments in all cells are the same size, call it b. This of course is rarely the case, but the model has 

some advantages. First, it is a distribution of aggregate claims, which most triangles consist of. 

However its historical appeal is that an PCS model estimated by MLE gives the same reserve 

estimate as the chain ladder. 

In the pure Poisson case, the agreement of methods was shown by Hachemeister and Stanard 

(1975) [6] although that finding was not published formally until Kremer (1985) [10] in German 

(translated into Russian as well) and Mack (1991) [12] in English. Renshaw and Verrall (1998) [17] 

extend this to the over-dispersed Poisson, which in generalized linear model terminology is defined 

as any member of the exponential family whose variance is proportional to its mean. However the 

only distribution meeting this criterion is the PCS. A good presentation is Clark (2003) [4], who in 

addition uses a parameterized distribution for the payout pattern. None of the cited papers compare 

the MFE – PCS variance to the chain ladder’s, however. 

Giving the same answer as the chain ladder is not a particularly useful criterion for evaluating 
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models, but it starts from a familiar base. Thus the error terms will be assumed approximately PCS 

distributed for MFE models here.  

For the PCS model, a cell with frequency λ has mean bλ and variance b2λ. For the MFE 

implementation then bλw,d = Uwgd. This model is applied here to incremental losses, so that the 

observation qw,d/b is Poisson with mean Uwgd/b. The loglikelihood function2 can be shown to be:  
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derivatives, the MLE estimates can be expressed as: ∑∑
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, , which do not depend on b. Technically, the Poisson probabilities are zero 

unless qw,d is an integral multiple of b. However Mack (2002) [15], chapter 1.3.7, shows that there is a 

continuous analogue of the Poisson that can be scaled by b and gives estimates close to the PCS. 

When the PCS is applied in a continuous setting it can be thought of as using this distribution. For 

more details see Venter (2007) [22]. 

The MLE formulas can be solved by iteration, starting with some values then solving alternatively 

for the g’s and U’s until the results converge. If then the g’s do not sum to 1, just divide each by their 

sum and multiply each U by the same sum. Starting at the upper right corner of the triangle and 

working back can show that these estimates correspond to the chain-ladder calculation. Essentially 

the U’s are the last diagonal grossed up to ultimate by the development factors and the g’s are the 

factors converted to a distribution of ultimate. The fitted incrementals are then the g’s applied to the 

U’s, and can be calculated by using the development factors to back cumulatives down from the last 

diagonal. 

From the chain-ladder viewpoint these use future information to predict the past, but this is not 

the chain-ladder paradigm. Sometimes incremental losses are better fit as a fraction of ultimate 

(MFE model) than as a factor times previous cumulative (chain-ladder model). The drawback is that 
                                                 

2 Note that this requires not fitting just one Poisson distribution but (n/2 +1)(n+1) of them, defined by 2n+1 row-

column parameters plus b. But MLE applies to fitting multiple distributions with the same parameters. This is noted in 

the Loss Models textbook [8], for instance. 
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there are more parameters needed for MFE. The chain ladder models each column conditionally on 

the previous column and does not estimate the first column of the triangle. It requires the 

calculation of n factors. The PCS model does estimate the first column but uses 2n+1 parameters. 

Comparing the fits of the two models is thus awkward. Perhaps comparing the estimated variances 

is the best way to do this. The process variances can be thought of as measuring the accuracy of the 

models, and the parameter variance is the parameter penalty. 

Clark (2003) [4] discusses calculating the MFE – PCS variance. First an estimate of b is needed. 

Since the variance of each cell is b times its mean, he suggests estimating b by: 
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This is a kind of moment matching, but it is not clear how good an estimate of b this might be. 

The estimated variance of each projected incremental cell is the cell’s mean times this b, and so the 

reserve variance is the reserve times b. This is the process variance, assuming all the parameters are 

known. Since in fact they are estimated, another element of reserve variance is the parameter 

variance. Clark suggests estimating this by the delta method. The delta method (see Loss Models) 

starts with the usual covariance matrix of the parameters, calculated as the inverse of the MLE 

information matrix (matrix of 2nd derivatives of the negative loglikelihood wrt the parameters). The 

delta method calculates the parameter variance of a function of the parameters by the covariance 

matrix left and right multiplied by the vector of the derivatives of the function wrt the parameters. 

In this case the function of the parameters is the reserve.  For the PCS model, the 2nd derivatives of 

the loglikelihood function wrt the parameters are: 
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The derivative of the reserve wrt gd is Σw>n-dUw and wrt Uw is Σd>n-wgd. But with gn set to 1–Σd<ngd, 

these have to be adjusted. First 0
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2.4 Adding in Calendar-Year Effects 
Diagonal effects can be a result of accelerated or stalled claim department activity in a calendar 

year. Such a departure would often be made up for in a later year or years, so more than one 

diagonal can be affected. A similar pattern can arise from inflation operating on calendar years. 

Inflation operating on accident year is in the factor approach, as each year gets its own level. But 

there can appear to be inflation by accident year that is actually generated by calendar year. If that 

inflation varies by year, high and low residuals can show up by diagonal. Large differences in 

residuals among diagonals would suggest that either calendar-year inflation or claim department 

variation is operating. In many cases there are diagonal effects in triangles, and modeling them can 

provide better fits. Not accounting for such effects when they are present can lead to misestimating 

row and column parameters. 

Taylor (1977) [18], following Verbeek (1972) [23], discusses a method for estimating calendar-

year effects, which he calls the separation method. For some decades after that, models of calendar-

year effects were informally called separation models, even when they did not use that technique. 

In the lognormal MFE model given by qw,d = Uwgdhw+d(1+ηw,d), taking logs gives log qw,d = log Uw + 

log gd + log hw+d + εw,d, which is a linear multiple regression model.  

Barnett and Zehnwirth (2000) [3] set up a model framework of this type, but in a way that 

facilitates parameter reduction. They denote log Uw by αw and express log gd = ∑
=

d

k
k

1

γ  and log hw+d = 

∑
+

=

dw

t
t
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ι . This makes γd = log[gd/gd-1], for instance. Thus it makes sense to call γ a trend. If the g’s are 

trending upwards or downwards by a power curve for several columns, the same γ can be used for 

those columns, reducing the number of parameters in the model. Similarly the ι’s are trends over 

calendar years and may be constant for a few years, reducing the number of diagonal parameters. 

3. COMPARING MODELS 

This paper’s goal is finding ways to increase the accuracy and reduce the variance and ranges of 

reserve estimates. A lower predictive variance is suggestive but not absolutely definitive for having 
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the best model. Calculating variances can also be tedious. Thus, when searching for models, 

variances are calculated only for a few models and comparison of fits are based on other criteria 

from information theory. The original information criterion, Akaike’s information criterion, or AIC, 

can be interpreted as imposing a penalty of 1 to the maximized loglikelihood for each parameter in 

the model. This is often regarded as too low a penalty, however. The Hannan-Quinn information 

criterion (HQIC) has a per-parameter penalty of the log of the log of the number of observations N. 

For instance for a 10×10 triangle with 55 observations, this gives a penalty of 1.388 for each 

parameter. The Schwartz-Bayesian information criterion penalty is higher, at the log of the square 

root of N, which is per-parameter penalty of 2 for 55 observations. This may be a bit high, however. 

An alternative is the small sample AIC, denoted by AICc. Its per-parameter penalty with p 

parameters is N/[N – p – 1], which increases with the number of parameters. The penalty is a bit 

less than that of the HQIC when there are not too many parameters, but is higher with over-

parameterized models. A typical standard for what is a small sample is anything less than 40 times 

the number of parameters, so would include most loss-development triangles. 

Here the AICc is favored but the HQIC also used. The formal criteria are actually double what are 

stated above, but dividing by 2 is convenient in that it directly penalizes the loglikelihood. Since the 

MFE – PCS loglikelihood increases with b, as does the variance, worse fitting models with a higher 

variance can have a higher loglikelihood. Thus, comparing likelihoods across PCS models requires 

fixing a value of b and using it for different models. The choice of b affects the scale of the 

loglikelihood and, thus, the meaning of the parameter penalties. Therefore, these can only be 

regarded as general guidelines and not strict cutoffs for this model. 

 4. EXAMPLE 1 

In this example the MFE – PCS model is fit to a triangle that has often been used as an example 

and for which the Mack estimates are known. This is first fit by the MFE – PCS model, then some 

diagonal parameters are added in, and then ways to reduce the number of parameters used are 

explored. The starting point in Table 1 is the incremental development triangle for years 1972 - 81 

from Taylor and Ashe (1983) [20] that has been used by Mack, Clark, and many other authors. The 

first column is estimated ultimate counts. 

Often dividing the losses by exposure information like counts produces a more stable triangle, 

but preliminary analysis suggests that in this case it does not. The source of the data has not been 
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identified, but it is consistent with excess losses with an increasing retention, which with inflation 

can make the losses more stable than average claim size. Exposure information is not useful in every 

case, and will not be used here, but is included for reference. 

Table 1 – Taylor Ashe triangle with ultimate claim counts (#) 

# Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 Lg 9 

40 357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948

37 352,118 884,021 933,894 1,183,289 445,745 320,996 527,804 266,172 425,046

35 290,507 1,001,799  926,219 1,016,654 750,816 146,923 495,992 280,405 

41 310,608 1,108,250  776,189 1,562,400 272,482 352,053 206,286  

30 443,160   693,190  991,983  769,488 504,851 470,639  

33 396,132 937,085 847,498 805,037 705,960  

32 440,832 847,631 1,131,398 1,063,269  

43 359,480 1,061,648 1,443,370  

17 376,686 986,608   

22 344,014    

Mack’s methods lead to a reserve estimate of 18,681,000 to the end of the triangle and a 

prediction standard error of 2,447,000. The MFE – PCS model calculated as outlined above gives 

the same reserve estimate but a prediction standard error of 2,827,000. The difference is due to the 

combination of a much better fit from the MFE – PCS model, with an almost 50% reduction in 

process standard deviation, and a parameter standard deviation greater by almost 70% due to the 

greater number of parameters.  
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Figure 1 
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Figure 2 

Delay 1 Incremental Losses

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

0 100,000 200,000 300,000 400,000 500,000
Delay 0 Losses

 

To illustrate the difference in fits, Figures 1 and 2 graph the delay 1 incremental losses as a 

function of the delay 0 losses and as a function of the estimated ultimate losses. A factor times 

ultimate losses looks like a much better explanation of the incremental losses than does a factor 

times losses at 0. 

There are of course assumptions that need to be verified for either model. For instance in MFE 

all of the observations are assumed independent, while for Mack at least the rows should be 

independent. Both assumptions are violated when there are strong calendar-year (diagonal) effects, 
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as in this triangle.  

Table 2 shows the residuals by diagonal for the MFE – PCS model. Diagonals 2, 3, 4, 6, and 7 are 

all suspicious, with 7 being the most problematic. A related issue is correlation of residuals among 

columns. This can be a result of diagonal effects that have not been modeled. Table 3 shows the 

correlation of the MFE – PCS residuals from one column to the next for the first four columns. All 

the correlations are negative and two are quite significant.  

Table 2 

 

 

 

 

 

                                                

Table 3 

 

                                           

4.1 Incorporating Diagonal Effects 
Factors can be put into the model for diagonal effects. Denoting the factor for the jth diagonal as 

hj, then the cell expected loss is not given by bλw,d = Uwgd, but by bλw,d = Uwgdhw+d. Still assuming that 

the λ’s are Poisson means, the likelihood function is: 
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These converge a bit slowly, but 50 or so iterations often suffice. This can be done in a spreadsheet 

without programming any functions. Again the g’s can be made to sum to 1, and so represent a 

Diagonal  Average Residual Fraction Positive 
0                      87,787 1 of 1 
1                      35,158 1 of 2 
2                     (76,176) 0 of 3 
3                     (74,853) 1 of 4 
4                    100,127 4 of 5 
5                     (26,379) 2 of 6 
6                    103,695 5 of 7 
7                   (115,163) 1 of 8 
8                     (17,945) 3 of 9 
9                      38,442 6 of 10 

Columns 0-1 1-2 2-3 3-4
Correlation -21.5% -89.5% -48.9% -85.4%
Significance 0.289 0.001 0.133 0.015
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payout pattern, but with the calendar-year factors the U’s are then no longer the ultimate losses. 

Using this method, two models with calendar-year effects were fit to the Taylor-Ashe data, 

adding diagonal parameters for the 7th diagonal, and for the 6th and 7th. The other h’s in the iteration 

were kept at 1. To compare the loglikelihoods, b was fixed at 37,183.5. This is the estimated value 

for another MFE – PCS model, discussed below. With this value, the maximum loglikelihood values 

for zero, one, and two diagonal factors are: 

 -149.11, -145.92, -145.03. 

With 55 observations, the HQIC penalty for an additional parameter is 1.388. According to this, 

the model with both diagonals is better than the one with no diagonal parameters, but not as good 

as the one with only the 7th diagonal. The AICc strongly penalizes having so many parameters (up to 

21) with only 55 observations, and charges the first diagonal parameter 2.5 and the second 2.65. This 

makes no diagonal parameters better than two but worse than one. The factors for the 6th and (in 

both models) 7th diagonal are 1.136 and 0.809. 

Including these parameters corrects for potential random errors in the row and column 

parameter estimates from ignoring diagonal effects. The chain ladder and original PCS reserves were 

18,681,000. Adding one diagonal parameter increases this to 19,468,000 and having them both 

increases it further to 19,754,000. Thus it appears that the original reserve estimates were low. 

4.2 Reducing the Number of Parameters 
Regression modelers use various techniques to get rid of insignificant parameters without hurting 

the fit. Parameters that are not significantly different from 0 or 1 are sometimes defaulted to those 

values. Also parameters that are not significantly different from each other can be set equal. Also, 

when changes are systematic, a parameter for a year or delay could be set to the average of the 

parameters before and after it. More generally, several parameters in a row could be expressed as a 

linear or geometric trend, which can reduce the number of parameters further. Reducing the 

parameters in these ways can eliminate distinctions that are not supported by the data. This can be 

done for row, column, or diagonal parameters. For instance, up to random effects, the upward and 

downward diagonal deviations could be indistinguishable. This could hold for many of the late small 

lag factors and some accident-year mean levels as well. 

Several of these methods were tried for the Taylor-Ashe data. A fairly extreme example gets the 

MFE model down to just six parameters without significantly degrading the fit. In this model, 
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accident year 0 is low so gets its own parameter U0. Accident year 7 is high and also gets its own 

parameter U7. All the other years get the same parameter Ua, except year 6 which is a transition and 

gets the average of Ua and U7. Thus there are three accident year parameters.  

The fraction paid is divided into high and low payment years with parameters ga and gb. Delay 0 is 

a low year as payments start slowly. Delays 1, 2, and 3 are the higher payment lags and all get gb. 

Delays 5, 6, 7, and 8 are low getting ga, but delay 4 is a transition and gets the average of ga and gb. 

Finally delay 9 gets the rest, i.e., 1 – 5.5ga – 3.5gb. This leaves only two delay parameters. Three of the 

diagonals were specified as high or low diagonals, getting factors 1+c or 1–c. The 7th diagonal is low 

and the 4th and 6th are high. Thus only one diagonal parameter c is used.  

This model uses the techniques of setting parameters equal if they are not significantly different 

and putting other parameters on trend lines – in this case averages – of other parameters. The 

loglikelihood for this six-parameter model is -146.66. This is not as good as the twenty-parameter 

model above, with a loglikelihood of -145.92, but it gets an HQIC penalty that is less by 19.4 and an 

AICc penalty that is lower by 25.5. These clearly overwhelm the difference in loglikelihood of 0.74. 

The resulting parameters and their standard errors are: 

 

Parameter      U0       U 7      U a       ga       gb        c 
Estimate 3,810,000 7,113,775 5,151,180 0.0678751 0.1739580 0.1985333
StdError 372,849 698,091 220,508 0.0034311 0.0056414 0.0568957
Table 4 

Estimating the parameters was done by an add-in spreadsheet optimizer on the loglikelihood. 

Most of the build-in spreadsheet optimizers have trouble estimating this many parameters. The 

parameter variances came from the information matrix. The 2nd derivatives of the unconstrained 

loglikelihood wrt Uw and gd do not change with the inclusion of diagonal parameters. The other 2nd 

partials are: 
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The derivatives of the loglikelihood wrt Ua, ga, gb, and c, use the chain rule on the sum of the 

derivatives of the loglikelihood wrt the parameters above. However Ua and U7 are now not 

independent, as they go into estimation of some of the same cells, and similarly for ga and gb. The 
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correlations of adjacent residuals improve a good deal with the diagonal parameters, as shown in 

Table 5. This is still somewhat problematic, however, as the correlations are all negative and some 

are weakly significant. These correlations are still there after accounting for diagonal effects, so 

might indicate some degree of actual serial correlation in accident year payments. Perhaps ARIMA 

models could have a role in this modeling. The logic is that high development in one year would be 

followed by low development the next, which is possible. But forcing the column factors to sum to 

one would induce some degree of negative correlation across columns, so the extent of this would 

have to be established before any firm conclusions about auto-correlated development could be 

made. 

Table 5 

Columns 0-1 1-2 2-3 3-4
Correlation -0.9% -58.1% -50.7% -74.1%
Significance 0.491 0.066 0.123 0.046
Table 6 

Model Original 19 Parameter 6 Parameter 
Parameter Variance 7,009,527,908,811 1,103,569,529,544
Process Variance  982,638,439,386 718,924,545,072
Total Variance 7,992,166,348,198 1,822,494,074,616
Parameter Std Dev 2,647,551 1,050,509
Process Std Dev 991,281 847,894
Standard Deviation 2,827,042 1,349,998
The reserve estimate from this model is 19,334,000, which is quite close to that of the twenty-

parameter model. The prediction standard error (with b = 37,183.5) is down to 1,350,000, compared 

to 2,827,000 for the full MFE – PCS and 2,447,000 for the chain ladder. The better fit from 

including calendar-year effects and the reduced number of parameters has decreased the standard 

error appreciably. The breakdown of the variance into parameter and process is in Table 6. There is 

a decrease in the process standard deviation of 15%, probably coming from recognizing the diagonal 

effects, and a 60% reduction in the parameter standard deviation in going from 19 to 6 parameters, 

for a total decrease in the prediction standard error of over 50%. 

4.3 Testing the Variance Assumption 
In the PCS model the variance of each cell is b times its mean. If the variance is proportional to a 

higher power of the mean, then the PCS standardized residuals (residuals divided by modeled 

standard deviation) would tend to be larger in absolute value for the cells with the larger means. A 

plot of standardized residuals vs. fitted values would be a way to show this. These are graphed in 
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Figure 3 for the six-parameter model. This effect does not appear. However, the positive residuals 

have more extreme values than do the negative residuals, which could be indicative of a more highly 

skewed model.  

There is a possible analogue to the PP-plot as well. A PP-plot for a probability distribution fitted 

to data compares the empirical cumulative probability to the fitted cumulative probability at each 

sample point. Here there are 55 Poisson distributions, each of which has a sample of 1, namely 

qw,d/b. The typical empirical probability for the pth observation out of a sample of N is p/(N+1), so 

this would be ½ for each of our 55 observations. But you could start with the fitted probability at 

each point, rank these 55 fitted values from 1 to N and then assign the empirical probability = 

rank/(N+1) to each. This gives something like a PP-plot, and is shown in Figure 4 for the six-

parameter model. 

The fit is not too bad, but is better below the median than above. Above there are more 

observations below most of the probability levels than the Poissons would predict, as shown by the 

empirical probabilities being higher than the Poisson probabilities. That is a bit surprising, in that 

usually you would expect observed data to have more large observations than the Poisson. Probably 

overall this graph is supportive of the distributional assumption, but Figures 3 and 4 both weakly 

suggest a lighter tail than the Poisson.  

Figure 3 
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4.4 Example 1 Conclusions 
The MFE – PCS model with one parameter for each row and column matches the chain-ladder 

reserve calculation but can have very different fitted values in the triangle. It has more parameters so 

a better fit would be expected, but the variance calculation reflects the parameter uncertainty, so the 

chain ladder can easily give a lower variance. The fit and assumptions of both models can be 

strained by calendar-year effects, but these can be modeled with their own parameters in either 

model. As in this example, it should usually be possible to reduce the number of parameters in the 

models through the use of trends, combination of similar parameters, etc. The MFE models also 

allow for eliminating some accident year parameters, which can be reduced even to a single 

parameter in the Cape Cod case. In the example here, three levels sufficed for 10 years. Other 

possible models, including MFE with different distributional assumptions, have not been considered 

and may give better fits to this data. Negative correlations between adjacent columns might also be 

real, and these could be modeled by time-series techniques. Taylor (2000) [19] and de Jong (2006) [5] 

explore time-series modeling for development triangles. In summary, getting a better fit by 

recognizing calendar-year effects and then reducing the number of parameters in the model can 

decrease the both the process and parameter variances of the reserve estimate. The MFE paradigm 

is appealing when incremental losses are not well explained as a factor times previous cumulative. 

Figure 4 
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5. EXAMPLE 2 

For those who like development factors, it is possible to do many of the steps of Example 1 in a 

factor setting. Calendar-year effects can be modeled, and parameter-reduction techniques can be 

applied. These can lead to better-fitting models with fewer parameters. Such ideas are illustrated in 

this example, using a triangle of long-haul trucking liability losses.  

Table 7 Long-Haul Trucking Development Triangle and Murphy LSM Factors  

Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 Lag 9 Lag 10 Lag 11
11,305 30,210 47,683 57,904 61,235 63,907 64,599 65,744 66,488 66,599 66,640 66,652
8,828 22,781 34,286 41,954 44,897 45,981 46,670 46,849 47,864 48,090 48,105 48,721
8,271 23,595 32,968 44,684 50,318 52,940 53,791 54,172 54,188 54,216 54,775
7,888 19,830 31,629 38,444 43,287 46,032 47,411 47,677 48,486 48,498 
8,529 23,835 35,778 45,238 51,336 53,574 54,067 54,203 54,214  

10,459 27,331 39,999 49,198 52,723 53,750 54,674 55,864  
8,178 20,205 32,354 38,592 43,223 44,142 44,577  

10,364 27,878 40,943 53,394 59,559 60,940  
11,855 32,505 55,758 64,933 75,244  
17,133 45,893 66,077 78,951  
19,373 50,464 75,584   
18,433 47,564    
20,640     

Factors 2.640 1.5132 1.2220 1.1102 1.0359 1.0149 1.0108 1.0093 1.0017 1.0035 1.0045

The data is for 1984 to 1995. Recall that the LSM model calculates each factor by a least-squares 

regression. For this data the factors provide a believable representation of the development process 

for the first five lags. The actual and fitted incremental losses at these lags are graphed as a function 

of the previous cumulative losses in Figure 5. Some of the deviations from the lines are fairly 

substantial, but the factors do seem to capture the general pattern of development. This is not to say 

that factors give the best model for this data – in fact no other models were tested. The goal is just 

to show how to apply the methods above to factor models. 
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Figure 5 
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5.1 Multiple Regression Format 
To add in diagonal elements, these regressions can be converted to a single multiple regression, 

and dummy variables added in for the diagonals. Table 8 shows part of the design matrix for such a 

regression. The incremental losses at lags 1 to 5 (partial) are strung out into the first column, then 

the subsequent columns are the cumulative losses at lags 0 to 4 that are to predict the next 

incremental losses. 

The last column is a dummy variable that picks out the incremental losses that are on the 4th 

diagonal, which are highlighted. Before looking at diagonals, a standard normal-residual regression 

routine provided the output in Table 9 on the 11 development factors estimated by a single no-

constant multiple regression. 
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Table 8 

 Incremental L0 L1 L2 L3 L4 D4 
18,904 11,305 - - - - - 
13,953 8,828 - - - - - 
15,324 8,271 - - - - - 
11,942 7,888 - - - - 1 
15,306 8,529 - - - - - 
16,873 10,459 - - - - - 
12,027 8,178 - - - - - 
17,515 10,364 - - - - - 
20,650 11,855 - - - - - 
28,759 17,133 - - - - - 
31,091 19,373 - - - - - 
29,131 18,433 - - - - - 
17,474 - 30,210 - - - - 
11,505 - 22,781 - - - - 
9,373 - 23,595 - - - 1 

11,799 - 19,830 - - - - 
11,943 - 23,835 - - - - 
12,668 - 27,331 - - - - 
12,150 - 20,205 - - - - 
13,065 - 27,878 - - - - 
23,253 - 32,505 - - - - 
20,184 - 45,893 - - - - 
25,120 - 50,464 - - - - 
10,221 - - 47,683 - - - 
7,668 - - 34,286 - - 1 

11,716 - - 32,968 - - - 
6,815 - - 31,629 - - - 
9,460 - - 35,778 - - - 
9,199 - - 39,999 - - - 
6,238 - - 32,354 - - - 

12,451 - - 40,943 - - - 
9,175 - - 55,758 - - - 

12,874 - - 66,077 - - - 
3,331 - - - 57,904 - 1 
2,943 - - - 41,954 - - 
5,634 - - - 44,684 - - 
4,843 - - - 38,444 - - 
6,097 - - - 45,238 - - 
3,524 - - - 49,198 - - 
4,631 - - - 38,592 - - 
6,165 - - - 53,394 - - 

10,312 - - - 64,933 - - 
2,671 - - - - 61,235 - 
1,084 - - - - 44,897 - 
2,623 - - - - 50,318 - 
2,745 - - - - 43,287 - 
2,238 - - - - 51,336 - 
1,027 - - - - 52,723 - 
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The first five factors are all highly significant, but none of the others are. Yet they are all positive, 

so some recognition of development beyond 5th is clearly needed. Since the differences among the 

factors is small compared to their standard deviations, one possibility is combining some, like 6th 

through 8th and 9th through 11th, or trending them, or replacing them by a constant or constants. For 

this example a constant term was included in the regression and factors f6 to f11 dropped. That 

reduced the number of parameters by five while still recognizing late development. 

Table 9 

Parameter Est value St dev t student Prob(>|t|)
f1 1.64042 0.03751 43.7337 6.2E-50 

f2 0.5132 0.01564 32.8085 3.6E-42 

f3 0.22199 0.0118 18.8143 5.3E-28 

f4 0.11017 0.01095 10.061 7E-15 

f5 0.0359 0.01111 3.23205 0.00193 

f6 0.01486 0.01173 1.26635 0.20991 

f7 0.01079 0.0122 0.88452 0.37968 

f8 0.00931 0.01329 0.69999 0.48643 

f9 0.0017 0.0147 0.1155 0.90841 

f10 0.00348 0.01636 0.21279 0.83216 

f11 0.00451 0.01959 0.23034 0.81855 

5.2 Modeling Diagonal Effects 
Table 10 shows the average residual from the all-factors model and the percent positive for each 

diagonal. The jth diagonal has j+1 fitted values in it except for the 11th, which has 11 values. The 3rd, 

4th, 7th, 9th and 10th diagonals are suspicious. Adding them all to the regression gives the results in 

Table 11. The same factors are significant but with slightly different values. The 3rd diagonal is 

significant at the 5% level, and the 4th and 9th at a bit weaker levels. Some combination of the 

diagonal adjustments might be more significant. 

Table 10 

Diagonal 0 1 2 3 4 5 6 7 8 9 10 11 
Avg Residual 359 721 402 (1,681) 1,226 (142) 93 599 (157) 902 (734) (63)
% Positive 100 50 33 25 80 17 71 88 44 50 27 36 

This model gives separate parameters to all the development factors and the suspicious diagonals. 

Trying parameter reduction, a fairly minimalist model is to keep the first five factors, add a constant 
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to the regression for the later development, keep the 3rd diagonal, and have a common factor for the 

4th, 7th, 9th, and 10th diagonals, but with the 10th subtracted. The constant for all development after 5th 

works well enough because this development is highly random and does not seem to depend on the 

level of previous cumulative. The late development could be due to lawsuits coming to a conclusion 

late in the process, with the timing being highly random. There is still a possibility of improving the 

model by differentiating stages of the late development, however, which is not explored here. The 

regression results are in Table 12. All the parameters are significant enough to keep in the model. 

Table 11 

Parameter Est value St dev t student Prob(>|t|)
f1 1.6345 0.0364 44.947 6.58E-48
f2 0.5127 0.0151 33.988 6.72E-41
f3 0.2208 0.0115 19.274 2.18E-27
f4 0.1103 0.0108 10.236 8.76E-15
f5 0.0293 0.0108 2.7165 0.0086
f6 0.0117 0.0112 1.0430 0.3011
f7 0.0080 0.0117 0.6902 0.4927
f8 0.0043 0.0130 0.3344 0.7392
f9 0.0005 0.0140 0.0359 0.9715
f10 -0.0004 0.0158 -0.0270 0.9786
f11 0.0110 0.0187 0.5855 0.5604
D3 -1657.7 779.5 -2.1266 0.0376
D4 1325.9 700.0 1.8941 0.0630
D9 1041.5 535.1 1.9463 0.0563
D10 -655.2 528.3 -1.2403 0.2197
D7 726.5 573.2 1.2675 0.2099
Table 12 

Parameter Est value St dev t student Prob(>|t|) 
Constant 527.81 255.77 2.0636 0.0428 
f1 1.601 0.03767 42.4984 3.23E-51 
f2 0.499 0.01558 32.0293 3.77E-43 
f3 0.211 0.01167 18.0798 7.01E-28 
f4 0.102 0.01083 9.4008 5.59E-14 
f5 0.021 0.01076 1.9818 0.0515 
D3 -1832 724.59 -2.5284 0.0138 
D4+D7+D9-D10 801.61 245.88 3.2601 0.0017 
 

5.3 Comparing Fits 
The loglikelihood at the maximum for a regression with normal residuals on n observations can 

be expressed as a function of the SSE: 

 log L = (n/2)log[2πeSSE/n] 
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Using this, with p parameters, AICc/2 = (n/2)log[2πeSSE/n] + np/[n – p – 1]. The se of the 

regression is also a function of goodness of fit and number of parameters, so it is a related 

comparative measure. The models discussed above are compared on this basis in Table 13. 

The minimalist model is not a special case of the 16 parameter model because it has a constant 

term. This appears to provide a somewhat better explanation of the development than does the 

combination of factors even before adjusting for number of parameters. 

Model p SSE se AICc/2 
All Development Factors 11 171,040,478 1609.821 684.913 
All Factors and Five Diagonals 16     133,609,815 1479.975 682.907 
Minimalist 8     132,867,569 1387.666 671.218 
Table 13 

5.4 Analysis of Residuals 
Figure 6 is a QQ plot of the residuals of the minimalist model vs. the normal distribution 

regression assumption. The QQ plot graphs the residuals, whereas the PP plot graphs the 

probabilities of the residuals. In the right tail the last few residuals are much higher than the normal 

percentiles, while most of the positive residuals are lower than the normal would suggest. This is not 

very supportive of the normal assumption. 

Figure 7 plots the residuals by delay. Regression assumes that all the residuals have the same 

distribution, but delays 2 through 4 or 5 appear to have a higher variance. Failure to have the same 

residual distribution is a regression problem known as heteroscedasticity. It does not necessarily 

affect the estimates of the coefficients, but it does require a different variance calculation.  

There is a formal test for heteroscedasticity known as White’s test,  which when applied to this 

model is ambiguous about the presence of heteroscedasticity. However White’s test is not regarded 

as definitive. In this model heteroscedasticity would be suspected and even preferred in the sense 

that the smaller observed increments at later stages of development should have lower error 

variances than the larger increments earlier on. A preference for equalizing relative errors actually 

would suggest a lognormal model, which is not explored here. However there are correction 

methods available for adjusting the variance for heteroscedasticity in the model, and these come at 

little cost, because they do not change the estimate much when the variances are in fact constant. 

Thus such an adjustment would be appropriate for calculating the variance for this model. 
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Figure 6 

QQ Plot of Residuals of Minimalist Model of Trucking Data vs. Normal
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Figure 7 

Residuals by Delay
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5.5 Estimating the Variance 

Again the parameter variance can be estimated by the delta method, and the process variance by 

using the standard error. The covariance matrix of the parameters needed for the delta method is a 

standard output of multiple regression software. However when heteroscedasticity is suspected, an 

adjusted covariance matrix is appropriate. 

This discussion is based on Long and Ervin (2000) [11].  They recommend a heteroscedasticity 

consistent covariance matrix they call HC3 whenever there is any chance of heteroscedasticity. 

Explaining this requires getting into the calculations underlying multiple regression. The starting 

point is the matrix X of independent variables, which is an n × p matrix with a row for each 
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observation and a column for each variable. The p × p matrix Z = (X’X)-1 is widely used in 

regression. 

The p × p covariance matrix for the parameter estimates can be expressed in terms of Z and the n 

× n covariance matrix Φ of the observations of the dependent variable as ZX’ΦXZ. When the error 

variances of the observations are constant and independent, i.e., Φ = σ2I, the parameter covariance 

matrix simplifies to σ2Z. This is the usual parameter covariance matrix put out by regression 

programs. A convenient calculation of Z is thus to simply divide this matrix by σ2. 

To correct for possible heteroscedasticity, let ei be the residual for the ith observation and define si 

= xiZxi’, where xi is the row vector of the ith observations of the independent variables. Then ei/(1 – 

si) is an adjusted residual. The adjusted parameter covariance matrix uses the diagonal matrix of 

squared adjusted residuals as the estimate of Φ. Thus: 

  HC3 = ZX’diag[ei
2/(1 - si)

2]XZ  

is the adjusted covariance matrix of the parameters.  

Since the heteroscedasticity is expected to come from differences among column variances, it 

would be reasonable to extend this approach to estimating adjusted column variances as well. The 

average of the squared adjusted residuals down a column of the triangle could be used as the 

estimate of the variance of the residuals for that column. 

For the minimalist model this methodology was applied. The original and revised t-statistics for 

each parameter are in Table 14. The adjusted standard deviations σj by column are in Table 15. 

Using these standard deviations, the actual residuals standardized are graphed against standard 

normal percentiles in Figure 8. While light in the left tail, this adjustment makes the residuals look 

more normal. 

Table 14 

h Constant f1 f2 f3 f4 f5 D3 D4+D7+ 

D9-D10
Original 2.064 42.498 32.029 18.080 9.401 1.982 (2.528) 3.260 
Adjusted 3.501 72.264 17.985 12.838 6.035 3.206 (1.926) 2.574 

Table 15 

927 2,46 2,13 2,01 831 713 800 919 697 808 228 
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Figure 8 

To calculate the variance of the projection, the recursive scheme of Murphy can be applied. First 

denote by Sj the cumulative losses up through lag j for all accident years in the triangle not already 

observed through j. The recursion begins: 

ES1 = cn,0(1+f1)+b  

ESj = (cn-j+1,j-1+ESj-1)(1+fj)+jb, where fj = 0 for j > 5. 

For the process variance given that the parameters are known:  

Var(S1) = σ1
2  

Var(Sj) = EVar(Sj|Sj-1) + VarE(Sj|Sj-1) = jσj
2 + Var[(1+fj)Sj-1] = jσj

2 + (1+fj)2Var(Sj-1) 

For the delta method the derivatives of Sn can be calculated by recursion as well: 

∂ES1/∂b = 1; ∂ESj/∂b = j + (1+fj)∂ESj-1/∂b 

∂ESj/∂fj = cn-j+1,j-1+ESj-1 

∂ESj/∂fi = 0 if i > j and ∂ESj/∂fi = (1+fj)∂ESj-1/∂fi 0 if i < j.  

The results are in Table 16. 
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Table 16 

 Minimal Original Murphy LSM
Reserve estimate 213,553 221,800
Process variance  89,501,787 92,565,591
Parameter variance  86,856,827 138,084,020
Variance  176,358,614 230,649,611
Standard deviation  13,280 15,187

The reserves corrected for calendar-year effects are lower in this case, the process variance is 

lower due to a bit better fit, and the parameter variance is lower because of 8 parameters vs. 11. 

5.6 Variants of the Chain Ladder 
Murphy considered three calculations of chain ladder factors, namely regression, ratio of sums, 

and average of ratios. As mentioned above, the ratio of sums is a regression for each column where 

the incremental losses for the column and the cumulative losses for the previous column are both 

divided by the square root of the previous cumulative, and the average of ratios is the regression 

divided by the previous cumulative itself. 

These adjustments can be done for multiple regression as well. There is only one previous 

cumulative in each row of the design matrix, so the entire row, including the dummy variables and 

the 1 for the constant term if included, can be divided by the previous cumulative or its square root. 

Thus calendar-year effects can be modeled with any variant of the chain ladder. This adjustment is 

not likely to remove heteroscedasticity from the regressions, however, as the smallest incremental 

losses are still going to be factors times the largest previous cumulatives. 

Further variants of the chain ladder using generalized linear models are also possible. Generalized 

linear models replace the normal distribution assumption of the residuals with other distributions. 

The PCS could be used, for example, which would have variance proportional to mean for the entire 

multiple regression. This could in itself eliminate the problem of heteroscedasticity. 

6. EXAMPLE 3 

This example looks at using exposure data, distributions instead of lag factors, and leaving out 

data. Factors are sometimes based on the last five diagonals, or even last five diagonals excluding the 

high and low observations in each column. This example illustrates that it can sometimes be 

appropriate to leave out some data. This is when it is clear that there has been a change in the 

development process. Otherwise leaving out data will increase the variance of the estimate. 
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Excluding high and low observations is particularly problematic in that if factors are from a skewed 

distribution this will bias the estimated factors downward. 

The triangle in Table 17 is cumulative claim counts with exposures for 1978 - 1995 from Taylor 

(2000) [19]. Exposures are growing over time. The usual assumption is that this consists of more 

units from the same population. That is not necessarily the case, however, and may not be so here. 

The development factors are grouped by selected accident-year ranges in Table 18. The 0 to 1 

factors for the four groups are 1.52, 1.37, 1.47, and 1.32, and the factors are fairly consistent within 

each group. Most of the development occurs from 0 to 1, so it is critical to get a good estimate for 

this factor. 

Table 17 Cumulative Claim Count Triangle with Exposures  

Exposure Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 Lag 9 Lg 10
71,543 368 559 587 595 601 606 609 610 610 610 611
75,681 393 544 569 575 579 584 588 589 591 592 592
98,960 517 702 731 748 759 769 777 778 778 778 779

102,974 578 832 881 903 920 926 929 929 930 930 930
106,810 622 828 867 883 886 893 893 894 894 894 894
110,779 660 903 931 943 955 959 963 964 964 964 964
114,307 666 900 953 963 971 975 981 982 982 982 982
117,306 573 839 901 913 918 925 931 936 937 937 938
123,304 582 863 895 922 934 947 953 955 956 956  
125,533 545 765 808 826 838 847 852 854 854   
131,265 509 775 824 846 861 865 873 873    
139,661 589 799 828 845 857 861 870     
152,895 564 760 783 795 804 809      
160,331 607 810 839 848 855       
162,900 674 843 863 875        
170,045 619 809 850         
173,248 660 821          
175,941 660           
One approach to verifying that there actually has been a change in development is to compare 

the variance of the estimate using the full data and using only the more recent data that appears to 

be from a different population. In this case the claims through lag 6 (7th column) were developed 

from all accident years and for the last seven years. Using the Mack formulas, estimating the factors 

from all the years combined gives an expected future claim count for the last seven years of 481, of 

which 68% are from the last accident year, and a standard deviation of 62. From just the last seven 

years alone these estimates are 417 claims with a standard deviation of 42, and 65% are from the last 

accident year. The estimated standard deviation is much lower with the last seven years alone, which 

supports the idea that there has been a change in development patterns. 
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Table 18 – Development Factors for Claim Count Triangle 

1.519 1.050 1.014 1.010 1.008 1.005 1.002 1.000 1.000 1.002 
1.384 1.046 1.011 1.007 1.009 1.007 1.002 1.003 1.002 1.000 
1.358 1.041 1.023 1.015 1.013 1.010 1.001 1.000 1.000 1.001 
1.439 1.059 1.025 1.019 1.007 1.003 1.000 1.001 1.000 1.000 
1.331 1.047 1.018 1.003 1.008 1.000 1.001 1.000 1.000 1.000 
1.368 1.031 1.013 1.013 1.004 1.004 1.001 1.000 1.000 1.000 
1.351 1.059 1.010 1.008 1.004 1.006 1.001 1.000 1.000 1.000 
1.464 1.074 1.013 1.005 1.008 1.006 1.005 1.001 1.000 1.001 
1.483 1.037 1.030 1.013 1.014 1.006 1.002 1.001 1.000   
1.404 1.056 1.022 1.015 1.011 1.006 1.002 1.000     
1.523 1.063 1.027 1.018 1.005 1.009 1.000       
1.357 1.036 1.021 1.014 1.005 1.010         
1.348 1.030 1.015 1.011 1.006           
1.334 1.036 1.011 1.008             
1.251 1.024 1.014               
1.307 1.051                 
1.244                   

Figure 9 graphs the 0 to 1 factors, with the groupings indicated. The last group is subdivided into 

two sub-groups of three years each. It appears that there have been different eras of internally 

consistent development factors, and that the last six factors tend to be lower than the others. This 

supports ignoring most of the older data, especially for the 0 to 1 factor. It raises the question of a 

possible continuing downward trend, however.  

The exposure data is helpful in resolving the question of homogeneity of the last seven years. 

Table 19 shows the claims per 10,000 exposures for the 0 and 1 lags. The grouping of years is a bit 

different here. For cumulative claims, the last six years appear homogeneous and different from the 

years before them. This supports the idea that either the new exposures are from a different 

population or there has been a change in risk conditions. The claims through lag 1 have gone down 

from about 80 per 10,000 exposures to less than 50. 
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The last six years show what actuaries would like to see from using exposures: all the years seem 

to be about the same level after dividing by exposures. This allows for application of an additive 

model, where each column has its own expected increment. There may still be a downward trend 

within these years for incremental claims at lag 1, but this will be ignored for now.  

Figure 9 

Table 19 – Cumulative and incremental claims per 10,000 exposures  

Lag 0 Lag 1 cum Lag 1 incr
51.4 78.1 26.7
51.9 71.9 20.0
52.2 70.9 18.7
56.1 80.8 24.7
58.2 77.5 19.3
59.6 81.5 21.9
58.3 78.7 20.5
48.8 71.5 22.7
47.2 70.0 22.8
43.4 60.9 17.5
38.8 59.0 20.3
42.2 57.2 15.0
36.9 49.7 12.8
37.9 50.5 12.7
41.4 51.7 10.4
36.4 47.6 11.2
38.1 47.4 9.3
37.5  

Additive development of claims per exposure for the last six years through lag five gives an 

outstanding reserve of 357 claims. These years can be developed through the end of the triangle 
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using data from earlier accident years. Comparing claims per exposure at lags 0 to 5 for the first 11 

years to the last 6 shows an average ratio around 1.945. Dividing the average claims per exposure by 

this for the older years at each lag for lags 6 and on gives a projection of the future claims for the 

last 6 years. This adds 35 claims to the expected emergence. Finally doing an additive development 

for the 4 incomplete older years adds 6 more claims, for a total estimated outstanding of 398 claims.  

This is considerably less than the 500 projected from the whole triangle, and can be considered 

an improved estimate due to the use of exposures and the changes that have occurred in the data. 

This shows that ignoring data can give a better and possibly significantly different estimate when 

there are demonstrable changes in the process. However ignoring data otherwise can degrade the 

estimate. It may be possible to find ways to use the older data with time-series methods instead of 

discarding it for the first several lags. The apparent continuing downward trend in the claims per 

exposure at lag 1 gives incentive for following up on this. Taylor (2000) [19] explores some 

alternatives with this data. 

The last 6-year triangle with exposures provides an opportunity to apply a parametric model 

suggested by Clark (2003) [4]. Denoting the exposures for year w by Pw and the probability of claims 

appearing by lag d as Gd, assume that qw,d is Poisson in Pwr(Gd – Gd-1), where r is an overall ratio of 

claims to exposures. Any distribution can be used for G, but here Weibull was assumed, with Gd = 1 

– exp[–(d/θ)ω] for d = 1, 2, …5. Weissner (1978) [24] suggests fitting a truncated version of the 

Weibull, which is technically correct, but for simplicity that was not done here, although it does not 

seem to make a lot of difference in this case since claims have almost finished their development by 

lag 5. By starting at d = 1 the Weibull is fit for claim appearance after lag 0.  

Clark provides the likelihood function and its first two derivatives. MLE for this triangle gives r = 

0.001525, θ = 0.5637 and ω = 0.4980. The resulting outstanding through lag 5 is 354 claims, which 

is similar to the 357 from the additive development. However this model has only 3 parameters, 

while additive development has 5, so there may be a lower variance. 

The sample variance for each column of claims per exposure is the sum of the squares of the 

deviation from the average divided by n – 1. This variance would apply to each projected 

incremental cell. In addition there is the variance of the estimated mean, which is the column 

variance divided by n. This all results in a factor of (n+1)/[n(n – 1)] applied to the sum of squares of 

the column deviations. For the last column with only one observation an ad hoc variance is typically 
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imputed, and here that was the ratio of the squares of the means applied to the previous variance. 

This procedure gives the variance of the ratios to exposure for each column of the triangle. In the 

projection period these are multiplied by the square of the exposures to give the variance of each 

projected cell. The sum of these through lag 5 is 1087.5, so the standard deviation is near 33. 

For the Poisson-Weibull model the process variance of each cell is its mean, by the Poisson 

assumption. The parameter variance for each projected cell can be calculated by the delta method, 

using the derivatives of the loglikelihood from Clark. The covariance matrix of the parameters is in 

Table 20.  

r ω θ 
 6.230E-09 -4.717E-06  3.605E-06
-4.717E-06  6.643E-03 -2.336E-03
 3.605E-06 -2.336E-03  5.950E-03

Table 20 – Covariance matrix of Poisson-Weibull fit 

The w, d projected cell has mean rPw(Gd – Gd-1) and its derivatives wrt the 3 parameters are as in 

Clark. Summing over the projected cells gives the derivatives of the reserve wrt r, ω, θ as 231,931.82, 

95.74 and 65.36. Multiplying the covariance matrix on the left and right by this as a vector gives the 

delta method estimate of parameter uncertainty of 292. When added to the mean this gives a total 

variance of 646, or standard deviation of 25.4. Going from 5 to 3 parameters is a 40% reduction in 

the number of parameters and not much goodness-of-fit was lost, so the standard deviation of the 

estimated outstanding decreased. 

7. CONCLUSIONS 

Two paradigms dominate loss development triangle modeling. The conditional approach models 

each incremental cell’s expected value as a linear function of the previous cumulative losses. The 

unconditional approach models the cell expected losses as a portion of an unobserved level 

parameter for the year. The chain ladder and BF methods are the original examples of these two 

paradigms. The unconditional model often fits better but since it uses more parameters (for the 

accident-year levels), it can have higher variances and wider runoff ranges.  

Alternative unconditional or conditional models can be compared on parameter-penalized 

maximized loglikelihood, but it is difficult to compare across the two paradigms by this method. 

Perhaps the variance of the estimate is the best common comparison. How to compare models is 
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not a settled issue, however. 

Through three examples, ways of improving the estimate were explored. First it is critical to 

identify calendar-year effects. If these are significant, ignoring them biases the estimates of the other 

factors. Including them can improve the fit. After that, improving the model primarily consists of 

getting rid of insignificant parameters. This is not a matter of simply dropping such parameters. It 

instead involves finding models with fewer parameters that nonetheless account for the observable 

features of the data. 

Replacing level parameters by trends has considerable potential for reducing the number of 

parameters without sacrificing the fit of the model. In the examples here only linear trends were 

used and even then just for short periods, but non-linear trends and longer trend periods can be 

helpful in many cases. A related approach that helped in Example 3 is to use probability 

distributions for the lag factors. Exposure data when available may improve the modeling as well. 

When the data has undergone clearly demonstrable changes in structure, using only part of the data 

can improve the estimates, but otherwise ignoring data will usually increase the variance of the 

projection. Time series models that account for the changes in structure may be a useful alternative. 

These could apply vertically, to account for changes in level, horizontally, if high and low 

development seem to alternate, or by diagonal for evolving cost trends. 

Both the conditional and unconditional models can be framed in the notation of multiple 

regression and put into generalized linear models for alternative residual distributions. The examples 

only touched on those possibilities, and many more distributions could be tried. If the normal 

distribution is used, a heteroscedasticity adjustment is needed. A major issue not explored is using 

calendar-year trends that are projected into the future instead of constants for the diagonal effects. 

Changing cost trends can strongly affect the projections, and could be considered a key contributor 

to model risk, also not addressed.  
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