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The transformed beta distribution was introduced to the insurance literature in Venter(1983) and 

independently to the economics literature in McDonald (1984). The parameterization discussed 

here was introduced by Rodney Kreps in order to make the parameters more independent of 

each other in the estimation process. The resulting parameters have somewhat separate roles in 

determining the shape of the distribution, and this note examines those effects. 
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Effects of Parameters of Transformed Beta Distributions 

The transformed beta is considered parameterized so that f(x) } (x/d)b–1(1+(x/d)c)-(a+b)/c . Each 

of the parameters will be considered in alphabetical order. In general terms, a determines the 

heaviness of the tail, b the shape of the distribution and the behavior near zero, c moves the 

middle around, and d is a scale parameter. 

a 

All positive moments E(Xk) exist for k < a, but not otherwise. Thus a determines the heaviness 

of the tail. One way to measure tail heaviness is to look at the ratio of a high percentile to the 

median. For a large company, say with 50,000 expected claims, a pretty large claim would be one 

of the five largest – say the 1/10,000 probability claim.  

 

The ballasted Pareto F(x) = 1 – (1+ x/d)-a will be used to illustrate tail heaviness, as it is easy to 

deal with and has essentially the same tail heaviness as the general case. If B is a (big) number, 

the 1 - 1/Bth percentile is d(B1/a – 1). For the example with B=10,000, this is d(104/a – 1). The 

ratio of this to the median (B=2) is thus (104/a – 1)/(21/a – 1). This is very sensitive to a, 

especially for a between 1 and 2, where it often is. The ratio of pretty large claim to median in 

this case is 9254 at a=1.01 down to 788 for a=1.5. Thus the estimate of a could have a big 

impact on excess losses. 

b 

Negative moments E((1/X)k) exist for k<b and not otherwise. This parameter governs the 

behavior of the distribution near 0. In that region, the density is close to constant*(x/d)b–1so the 

derivative of the density is  proportional to (b–1)xb–2. This can be used to ascertain the shape of 

the density for smaller claims, which really determines the overall shape of the distribution. 

 

If b < 1, the slope of the density at zero is negative infinity, so the density is asymptotic to the 

vertical axis. For b=1, the other factor in the density becomes significant, and the slope is a 

negative number. The mode of the distribution is at zero in both of these cases. For 1 < b < 2, 

the slope at zero is positive infinity, so the density is rising and tangent to the vertical axis. For 

b=2, the slope is a positive number, and for b > 2, the slope is zero, so the density is tangent to 

the horizontal axis. For b > 1, then, there is a positive mode.  
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Density Behavior near Zero
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This graph show the 

behavior near zero and 

how that depends on b. 

Since the right tail is an 

inverse power curve, the 

behavior near zero 

determines the overall 

look of the distribution. 

The case b > 2 gives the 

usual shape of a density 

function people think of, 

which rises gradually then 

more steeply before falling 

off with the inverse power 

relationship. The transformed beta in this case looks like a heavy tailed lognormal. The case b = 

1 is also seen a lot, for instance in the exponential and ballasted Pareto distributions. 

c 

The c parameter 

introduces a 

power 

transform x –> 

xc  into the 

transformed 

beta. This tends 

to move the 

middle of the 

distribution 

around. A 

useful measure of where the middle is is the mode, as related to the mean. The ratio of mode to 

mean, when the mean exists (a > 1) and the mode is positive (b > 1), is for the most part an 

Transform ed Beta Mode to Mean as Function of c - a = 1.4, b = 2
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increasing function of c for fixed a and b. The graph above shows the case a=1.4, b=2, and the 

graph below shows the same a for the inverse transformed gamma, which is the limit of the 

transformed beta as b goes to infinity. This is a high enough a to have some cases with a 

reasonably high 

mode, say 40% of 

the mean, but a is 

still small enough 

to be of potential 

use in US liability 

insurance. For b=2, 

the ratio is a strictly 

increasing function 

of c. For the 

limiting case, the 

ratio reaches a peak 

and then declines slightly after that. This will also be the behavior for large values of b. 

Thus something near the 

highest value of the mode-

to-mean ratio for a given a 

and b is provided by the 

limit of the transformed 

beta when c goes to infinity, 

which is in fact the split 

simple Pareto distribution. 

Its density f(x) is 

proportional to (x/d)b–1 for 

x<d and to (x/d)-a-1 for x>d. 

The density is continuous 

but not differentiable at d, which is the mode when b > 1. The 

mean is dab/[(b+1)(a-1)]. Thus the ratio of mode to mean is (a-1)(b+1)/ab =  (1–1/a)(1+1/b). 

This is increasing in a and decreasing in b. The graph above shows this ratio for a from 1.05 to 

Inverse Transformed Gamma Mode to Mean as Function of c - a = 1.4
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2.5 and b-1 from 0.01 to 40 on a geometric scale. 

 

For low values of a, the ratio cannot get very high, as the mean is increased by the heavy tail. 

The ratio for this distribution is close to the upper limit  for the transformed beta with the same 

a and b, so for low values of a, the c parameter is not going to be able to have much effect on 

the mode for any transformed beta distribution.  

 

The ratio declines for increasing b, but rather slowly. It is interesting that for this limiting 

distribution, the maximum mode-to-mean ratio is as b approaches 1, while for the transformed 

beta the mode is zero at b=1. The split simple Pareto at b=1 is the uniform Pareto, which is 

uniform up to d and Pareto after that. Thus its mode is undefined, or it could be considered to 

be the whole interval [0,b]. 

 

The split simple Pareto shows the maximum, and thus the range of mode-to-mean ratios for any 

a and b. How is this ratio affected by c? The transformed beta mean is:  

dΓ(b/c+1/c)Γ(a/c-1/c)/[Γ(a/c)Γ(b/c)], for a > 1, and the mode is: 

d[(b-1)/(a+1)]1/c, for b>1 

This makes the mode to mean ratio: 

[(b-1)/(a+1)]1/cΓ(a/c)Γ(b/c) /[Γ(b/c+1/c)Γ(a/c-1/c)] for a, b >1. The graph below  shows the 

ratio for a=1.4 and a 

range of b’s. The 

high values of b can 

be seen to have a 

relationship to c 

similar to that for 

the inverse trans-

formed gamma, 

with a decrease in 

the ratio for higher 

values of c. The 
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lower values of b have a strictly increasing function of c, like the case b=2 above.  The contours 

of this surface are shown below for a wider range of values.  
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The vertical lines are the contours of the function for fixed values of b, like what was graphed 

for b=2 above. The horizontal lines are the contours of the function for fixed values of c. For 

the smaller c’s the ratio is an increasing function of b, but very slowly increasing, so b has little 

impact. For larger c’s the function increases then decreases. The maximum seems to hit fairly 

early, like around 1.01 to 1.25. This is somewhat surprising, in that for b=1, the mode is zero. 

Thus the mode increases rapidly for b just above 1, especially for higher values of c.  

 

The graph above starts at b–1= 10–15, which is the smallest value for which Excel can do this 

calculation. Even at this level, higher values of c give modes substantially above zero. The mode 

is above 1% of the mean for c as low as 9 for b–1= 10–15. 

 

To illustrate the effect of the c parameter, and thus the mode, on the density function, several 

cases are illustrated on the graph below. All the distributions have a=2, b=3, and mean=1.  
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Effect of c on Transformed Beta Densities
mean = 1, a = 2, b = 3
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Another measure of the location of 

the mode is the percentage 

of the 

distribution 

that is 

below it, 

i.e., 

F(mode). 

If b is high, 

so the density 

stays close to 

the x-axis for a 

while, and then rises 

steeply, the mode can be 

relatively high but F could be 

low at that point. This is generally the case for high b and c. The graph above shows F(mode) 

for a wide range of b and c values for a=1.4. The contours are shown below. 
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This has a very similar shape to the mode-to-mean ratio. Dividing that by this gives an indication 

of how steep is the distribution just below the mode. A graph of the steepness is below. 
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The steepness measure is between zero and two for most of the range of b and c values. It is 

only in the upper right, with high values of b and c, that the steepness gets very high. The 

limiting distribution where both b and c go to infinity is the simple Pareto: F(x) = 1 – (d/x)a. 

This is both the limit of the inverse transformed gamma as c goes to infinity and the split simple 

Pareto as b goes to infinity. 

Split Simple Pareto and Inverse Transformed Gamma, Mean 1, a=1.4, b or c = 20 
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Examples of both that goes towards the simple Pareto limit are graphed above. Both show a 

steep rise to the mode. For the split simple Pareto, the mode is at 0.30, and F(mode) = 0.065. 

This is closer to the limiting case of 0.3 and 0 than is the inverse transformed gamma, with mode 

of 0.31 and 

F(mode) = 0.11.  

 

In contrast, a low b 

with a high c puts a 

lot more of the 

probability below 

the mode. The 

graph here shows 

the case b=1.25, 

Transformed Beta with a=1.4, b=1.25, c=5, Mean = 1
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c=5, which also has a mode of 0.31 but a higher F(mode) of 0.32. It is clear from the graph that 

a lot more of the distribution is below the mode in this case. 

 

Another effect of low values of c can be to increase the tails, even though this might not show 

up in moments. An interesting example is the Weibull distribution, for which a is infinite so all 

positive moments exist, and b=c. Taking b=c=0.2 gives a fairly heavy-tailed distribution for 

which all positive moments exist. This has been traditionally used in the US workers 

compensation line. As an example, take d=100, with a mean of 12,000. In this case, the pretty 

large loss – 1-in-10,000 claim – is 6.6M, or 550 times the mean. This is heavier-tailed by this 

measure than most Pareto distributions. For instance, with a=1.4, this ratio is 287. The cv2 for 

this Weibull distribution is 251, so the cv itself is almost 16. For contrast, a lognormal with the 

same mean and cv would have the 1-in-10,000 loss about 4,750,000. The Weibull has another 

strange feature, however. As b is so small, negative moments do not exist except for powers 

closer to zero than –0.2. This means that a lot of the distribution is packed in towards zero. In 

fact, about 33% of the claims are less than 1, and the median claim is 16. The comparable 

lognormal, which can be given in the limit of a and b both going to infinity, has only 0.2% of its 

claims less than 1, even though the mode is 3. The median claim is 756 for this distribution. 

 

A small c can pump up the tail of the transformed beta as well. For instance, taking a=1.4, and 

b=c=0.2 gives a Burr distribution where the 1-in-10,000 claim is 910 times the mean, and over 

50% of the claims are below 1/12,000th of the mean. Keeping this value of c, but letting b get 

larger, can allow the pretty large claim to be a high multiple of the mean without so many small 

claims. For instance, taking b=1 (which gives the Pareto T), the pretty large loss is 795 times the 

mean, and only 7% of claims are below $1 when the mean is $12,000. Taking b up to 5, keeping 

a=1.4 and c=0.2, these numbers come down to 673 times and 0.1%, which is still very heavy 

tailed without pushing so many claims to unrealistically small sizes. Although this distribution 

has a positive mode, it is at 0.065% of the mean, or 7.8 for a mean of 12,000, so is close to zero. 

 

To get an idea of how b and c influence the tail heaviness, the probability that a loss is greater 

than twice the mean is shown by b and c for a=1.4 below. The graph after that shows the 

probability of being greater than 10% of the mean. 



 10

0

0.02

0.04

0.06

0.08

0.1

0.12

 

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

 



 11

 

d 

The parameter d is a scaling factor. It’s effect is just like re-scaling the x-axis. For instance, to 

convert a distribution expressed in pounds to Canadian dollars, just multiply the scale parameter 

by 3 (typically). Then a probability for an amount expressed in Canadian dollars would be the 

same as for the equivalent amount expressed in pounds.  

 

Where did b and c go? 

Several two-parameter cases of the transformed beta have just the a and d parameters. To 

understand what they are doing, it is helpful to know how b and c were disposed of. Some 

examples: 

 

Ballasted Pareto: b=c=1, so moments in (-1,a), mode zero. Closed form and invertible. 

Loglogistic: a=b=c, so moments in (-a,a), and thus the mode is positive if the mean exists, but 

is probably pretty small with a low steepness. Closed form and invertible. 

Inverse Weibull: b infinite, c=a, also closed form and invertible for simulation. Mode is always 

positive . 

Inverse Gamma: b infinite, c=1, so mode positive but usually less than for inverse Weibull. Not 

closed form. 

Simple Pareto: b=c=infinity, so positive mode, infinite steepness, F(mode) = 0. The opposite 

extreme from the ballasted Pareto for b and c. Invertible. 

Uniform Pareto: c infinite, b=1. Mode ambiguous – whole range from 0 to d is uniform. 

Intermediate between ballasted and simple Paretos and mirror image of inverse gamma in 

parameters. Invertible. 
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