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Least squares credibility is usually derived from some fairly compficated looking assumptions 

about risk across a collective. I t  turns out, however, that the basic results can be developed from 

some standard statistical operations with weighted regression. This is outlined, and some more 

advanced models are tied to the same approach, in this note. 
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CREDIBILITY THEORY FOR DUMMIES 

Credibility theory is usually presented as a mathematically dense body of  formulas. Here is some- 

thing a little different: a short, simple approach. "Dummies" is of  course a relative term. Algebra, 

differential calculus, and some background in statistics are all assumed. 

What is credibility? 
Credibility theory is all about weighted averages. Different estimates of  a quantity are to be 

weighted together. The more credible estimates get more weight. 

In the context of  esrimating expected losses for a member of  a class, there are two natural esti- 

mates: the experience of  the member itsdf, and the average of  the entire class. The former is 

more relevant but also more volatile than the latter. Two general approaches have been taken to 

calculating weights in this case. The limited fluctuation approach is willing to accept the member 

experience at face value if it meets a pre-defined standard of  stability (full credibility) and if not 

reduces the weight enough for the weighted average to meet the stability requirement. The 

greatest accuracy approach measures relevance as well as stability and looks for the weights that 

will minimize an error measure. The average of  the entire dass could be a very stable quantity, 

but if the members of  the class tend to be quite different from each other, it could be of  less 

relevance for any particular class. So the relevance of  a wider class average to any member's 

mean is inversely related to the variability among the members of  the class. 

The error measure used in the greatest accuracy approach is almost always expected squared er- 

ror, so this method is often called "least squares credibility." In Europe it is sometimes called 

"classical credibility." The limited fluctuation approach is called classical in North America. Thus 

"classical" is a term worth avoiding, not only because of  its geographic ambiguity, but also be- 

cause it is a historical rather than a methodological description. 

Least squares credibility 
Suppose you have two independent estimates x and y of  a quantity, with respective expected 

squared errors u and v. Take a weighted average a = zx + (1-z)y. The expected squared error of  
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a is w = zZu + ( l-z)%. What  z minimizes w? Here  is where the calculus comes in. The deriva- 

tive d w / d z  is 2zu + 2(z-1)v. I f  you set that to zero you get: zu+zv = v, or  z = v / (u+v) .  Then 

1-z  is u / (u+v) .  This makes it look like each estimate gets a weight proport ional  to the expected 

squared error o f  the other. To  express the weights as properties o f  the estimates themselves, 

note that  ( 1 / u ) / [ 1 / u  + l / v ]  = 1 / [1+u /v ]  = v / (u+v)  = z. This shows that each estimate gets a 

weight proport ional  to the reciprocal o f  its expected squared error 1. Least squares credibility is 

an application o f  this principle. 

As an example, consider a class o f  risks. Suppose the losses I~i in year j for the ith member  o f  the 

class are randomly distributed as follows: 

LIj ~- C + M i "4" •ij (1) 

where C is the class mean loss, C+ M i is the mean loss for the ith member,  and ~i is the random 

componen t  for the jth period for this member.  It is not  much o f  a restriction to assume that the 

Mi's average to zero as do the I~,i's. Suppose the variance o f  the ivy's is t z and the variance o f  the 

r andom components  I~ii all are si 2. Denote  their average E(si 2) by s 2. 

Somerimes t 2 is called the variance o f  the hypothetical means and s 2 the expected process vari- 

ance. "Hypothet ica l"  refers to the fact that the means C + M~ are not  observed. 

With this setup, consider two estimates o f  member  i mean losses: x, the average losses o f  the 

member  for n periods, and y, the class mean loss C, which for now we will assume to know or at 

least be  able to estimate well enough to ignore the error. To  apply the inverse variance weight- 

ings, we needed to know the expected squared errors o f  x and y f rom the true value o f  C + M i. 

By the definitions, y's expected squared error is just t z. The expected squared error o f x  is the 

expected value o f  its variance siZ/n, i.e., s2/n. Then  applying the inverse expected squared error 

principle gives a weight to x o f  z = (n / sZ) / [n / s  z + 1 / t  z] = n / [ n  + s2/tz]. This is the original 

Biihtmann credibility formula. 

1 This assumes the expected squared error is minimized rather than maximized at this z. The second derivative of w 

is 2u + 2v which is positive, so this assumption is valid. 
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The above would be an appropriate set of assumptions for a class where all members had 

roughly the same exposure, such as single cars. I f  the exposure varies much across members, like 

in territory ratemaking or commercial experience radng, the variances of  the random compo- 

nents could not  reasonably be assumed to be constant over time. To address this case, in t roduce  

an exposure measure Pii for the ith member in period j, and assume that the variance of  its ran- 

dom loss component  is Piisi 2, so each unit of  exposure has a variance of  sl 2. In this case it would 

not be right to assume that M~ has mean zero, in that different members of  the dass would de- 

part from the class mean loss in differing amounts depending on exposure. However, i f  in equa- 

tion (1) L is reinterpreted as losses per unit of  exposure, i.e., pure premium, this assumption 

could be reasonable. In  that case, the variance of~, i would be si2/P~. So here, x is the average loss 

per exposure for the ith member for n periods, and y is the mean pure premium for the class. 

Thus the expected squared error o f y  from C + M i would s~ll be t;. Assume further that x is cal- 

culated as the sum of  the n period losses divided by the sum of  the exposures. Use a " ~ "  in a 

subscript to denote summation, so the total exposures for the ith class over the n periods is Pi~- 

Then the variance o f x  is just Pi_si2/Pi_ 2 = si2/Pi~, with expected value s2/Pi_. So what is the 

credibility of  the pure premium? The inverse expected squared error weighting gives z i = 

(PJ s2 ) / [  P~~/s 2 + t -z] = P~_/[ P,_ + s2/t;]. This is often expressed more simply as z = P/[P+K],  

which is the B/ihlmann-Straub credibility formula. 

C can be estimated by a weighted average of the x's, the member means. The expected squared 

error o f x  from C is t 2 + s2/Pi_, so x should get a weight inversely proportional to that, so pro- 

portional to t-ZPi~/[ P~_ + s2/ta], which is proportional to zj. Thus C can be estimated as a 

weighted average of  the x's where the weights for each member are proportional to the mem- 

ber's credibility. 

What has been lost by the simplified approach? First, instead of  (1), L~j is often considered to be 

a conditional process with a parameter, say q .and a conditional mean and variance given the 

parameter. The conditional means are assumed to average to the class mean C with a variance t 2 

and the conditional variances average to s 2. Then defining M i as the conditional mean less C is 

equivalent to the additive formulation (1). However the full usual derivation gets an additional 
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result: a weighted average of  member means is the best linear combination of any sort of  the 

individual member observations by time period. However, this is a fairly general statement itself, 

and it might be true in general separate from the credibility formulation. 

Both this formulation and the usual credibility derivation ignore the estimation error for C in the 

credibility formula. Empirical Bayes theory addresses this issue, which does make a difference in 

small samples. It  might be possible to get the empirical Bayes results from the inverse squared 

error principle as well. 

Beyond BGhlmann-Straub: Large vs. small risk differences 

The assumption that each unit of  exposure generates the same amount of loss variance is some- 

times described as assuming that a large risk behaves like an independent combination of  small 

risks. Hewitt in his 1967 paper presented some data showing this was not the case 2. Actually 

large risks have more variance than would be expected from treating them as independent com- 

binations of  smaller risks. One thing that contributes to this is that risk conditions change over 

time. Size of exposure does not provide much stability against changing economic and business 

sector changes. A way to model this would be to assume that the variance of the observed loss 

for each risk for each period has the usual component that increases with risk size plus another 

component that increases with risk size squared, i.e., assume that the loss variance is Pii2u 2 + Piis 2. 

Then the variance of  the pure premium would be u z + sZ/Pii. 

The credibility formula now gets more compficated, but is not too bad in the special case where 

there is just one time period. With the inverse expected squared error formula, z = 

[P,-/(P,-u2+s~)l/[ P,-/(P,-u2+s2) + t-~] = P,-/[ V,. + V~_u21t 2 + sa le .  This could be written as z 

= P/[P + AP + K]. For larger values of  P this makes the denominator larger, so decreases the 

credibility compared to P/[P+K]. 

In this case risk stability is a more complicated function of exposure than in the original model. 

In experience rating workers compensation another phenomenon has sometimes been observed: 

2 Loss Ratio Distributions- A Model, PCAS LIV. 
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the large risks' mean loss exposures are less different from the overall mean than are the small 

risks'. This could be a matter of  regulation, where large risks must follow more safety precau- 

tions, but other reasons are possible. Whatever causes this phenomenon, the result is that the 

variance of  Mi (i.e., the variance among risk means) also becomes a function of  exposure. Since 

it is the smaller risks that have more potential for large departures from the overall average pure 

premium, this average becomes less relevant for the small risks, which increases the credibility of  

their own experience. A reasonable formula for the variance among risk means in this situation 

might be t2+v2/P~_ in the single time period case for member i. Suppressing the subscripts on P, 

z becomes z = [P/( PuZ+s2)]/[ P/(Pu2+s2)+ P/(PtZ+v2)] = (Pt 2+v2)/[Pu2+s 2 + Pt 2+v2]. This 

can be simpLified to z = (P + B)/(P + AP + K + B). The extra B in the numerator and denomi- 

nator increases z, especially for smaller risks where P is smaller, which is what was anticipated. 

W h e n  linear estimates don't  work 

So far this discussion has been non-parametric. That is, the forms of  the distributions have not 

entered in. That is the advantage of  linear estimates with squared error penalties. I f  you have 

some information about the type of  distribution available, you can give up the restriction to lin- 

ear functions. In a Bayesian framework the class experience becomes the prior distribution for 

the member experience, and then the Bayesian conditional expected value of  the member mean 

given the data is the least squares estimator of  the member mean of  any sort, linear or not. In 

some cases the conditional mean is a linear function of  the data (e.g., normal and gamma distri- 

butions) so the linear restriction of  credibility theory does not reduce the accuracy. However in 

highly skewed distributions, like some lognormal cases, the Bayes estimate is highly non-linear, 

and credibility weighting can give large errors for classes with small means. 

I f  the distribution type is fairly well understood, Bayesian methods would be preferable in such 

cases. However, an alternative when the member means can be very different from each other is 

to do the usual credibility estimation in the logs of  the data, then exponentiate the results. This 

introduces a downward bias, however, which has to be adjusted multiplicatively to balance to the 

overall data. 
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