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Abstract 

The actuarial and the financial approach to the pricing of risk remain 
different despite the increasingly direct interconnection of financial and 
insurance markets. The difference can be summarized as pricing based on 
classical risk theory (insurance) vs. non-arbitrage pricing (finance). 
However, comparable pricing principles are of importance when it comes 
to transferring insurance risk to financial markets and vice versa as it is 
done e.g. by alternative risk-transfer instruments or derivative products. 
Incompatibilities blur business opportunities or may open up the 
possibility to arbitrage. 

For these situations, the paper aims to bridge the gap between insurance 
and finance by extending the non-arbitrage pricing principle to insurance. 
The main obstacle that has to be tackled is related to the incompleteness of 
the insurance market. It implies that equivalent martingale probabilities 
are not uniquely defined. By the information theoretical maximum entropy 
principle a sensible way to choose a particular equivalent martingale 
measure is found. This approach parallels the successful application of the 
maximum entropy principle in finance. 

The paper pays special attention to the role that investment opportunities 
beyond risk-free investments play for insurance operations. Equivalent 
martingale probabilities for the combination of insurance operation risk- 
free investment and a risky investment are determined. They turn out to be 
connected to the Esscher measure. This recovers a generalized form of a 
well-known actuarial premium calculation principle. 

The sketched approach is further investigated for typical reinsurance 
structures like stop-loss and excess-of-loss reinsurance. Arbitrage-free 
reinsurance premiums are calculated. A numerical example stresses the 
influence that characteristics of risky investment opportunities have on 
arbitrage-free premiums. 
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1 Introduction 

The interconnection of financial and insurance markets has become more direct during the past 

two decades. This is due to the repositioning of insurance companies as integral financial service 

providers, increasing exposures that tend to exceed the capacity of the insurance market and 

finance-related insurance products (e.g. catastrophe-bonds). Presumably, the convergence of 

insurance and finance has attained its most advanced level in alternative risk transfer contracts, 

where insurance and financial risks are covered jointly. 

Financial and insurance markets and the pricing of respective products differ in many respects. 

On the market side, the main difference can be summarized as warehousing of risk (insurance) 

versus intermediation of risk (finance). Insurance pricing on the other hand is in general based on 

classical risk theory while finance relies on non-arbitrage pricing. Establishing comparable 

pricing principles is, however, of importance when it comes to transferring insurance risk to 

financial markets and vice versa. Incompatibilities blur business opportunities or open up the 

possibility to arbitrage. This is a main motivation for this paper. 

Non-arbitrage pricing relies on liquid and efficient markets. Clearly, most of the insurance 

market is neither liquid nor efficient. Nevertheless, there are situations where in addition to 

pricing based on classical risk theory the corresponding non-arbitrage value of an insurance 

contract is of interest, e.g. when part of the risk is transferred to the financial markets or 

insurance risk is traded. With a growing interconnection of financial and insurance markets this 

situation becomes more frequent. A pioneering area in this respect is the insurance of credit risk, 

where warehousing and intermediation of risk overlap in a very natural way. 

Pricing of insurance contracts is commonly based on real probabilities P ,  i.e. probabilities 

reflecting the actual likelihood of loss events. In the simplest one period case, the premium for an 

insurance contract covering losses X according to the equivalence principle is 
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1 
premium = Ee[X ] + S[X ] 

l + r  I 

(I.I) 

where EP[X] is the loss expectation calculated under the real probability measure P ,  discounted 

with a risk-discount rate r t chosen according to actuarial judgement. S[X] is the safety loading 

or risk premium. A particular choice of r r and S[X] should reflect the overall risk related to the 

contract, the risk-free interest rate, the cost of capital, the expected investment return, market 

conditions etc. For complex contracts this is usually not an easy task. 

Following the seminal work of Black, Scholes and Melton in the early 70's, in finance, the non- 

arbitrage pricing principle lead to a shift away from the real probability measure P to equivalent 

martingale measures Q. Valuation of a future (stochastic) cash flow F under the equivalent 

martingale measure Q takes the form 

1 
price = Ee[F] 

l+r~  

0.2) 

where EQ[ .] denotes the expectation operator under the measure Q. Pricing in this context thus 

invokes again the equivalence principle, however, with respect to the equivalent martingale 

measure Q. The discounting is performed with the directly observable risk-free interest rate r~r 

and there is no modification due to a loading. An appealing feature of (1.2) is that once the 

equivalent martingale measure Q is known, the valuation of the cash flow F is performed 

without recourse to subjective criteria. Economically, non-arbitrage pricing derives its 

justification from the existence of a hedge portfolio that creates an overall risk-less position. The 

existence of a hedge portfolio in turn relies on liquid and efficient markets. Arbitrage-free 

pricing was pioneered by Black and Scholes (1973). Cox and Ross (1976) and Harrison and 

Kreps (1979) established the sound theoretical basis in terms of risk-neutral valuation and 

equivalent martingale measures. 
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The main difference between classical risk theory and the non-arbitrage approach to pricing is 

that the non-arbitrage approach substitutes real probabilities and expert knowledge for 

'preference-free' probabilities that comply with the non-arbitrage assumption. The fundamental 

task in both cases remains to find the corresponding probabilities. 

Gerber (1973) has introduced martingale methods to risk theory. Since then, a number of papers 

have been investigating martingales in risk theory. Mainly, these papers deal with assessing ruin 

probabilities. For a review of insurance related use of martingals see e.g. Schmidli (1996). The 

martingale approach to premium calculation, which is considered here, has been pioneered by 

Delbaen and Haezendonck (1989). In this paper it was shown that common premium principles 

can be recovered by martingale methods. Another important paper in this context is by 

Sondermann ( 1991), who considers arbitrage-free pricing for reinsurance. 

The emphasis of this paper lies on the practical application of martingales to the pricing of 

insurance contracts whose performances depend on financial markets. The main problem arising 

is that, due to the incompleteness of the insurance market, equivalent martingale probabilities are 

not uniquely defined. Another difficulty arises since often the return distribution of insurance 

contracts is fundamentally different from that of asset returns ('heavy tails'). Thus it is not 

straightforward to apply standard financial techniques as e.g. the Black-Scholes-Merton 

framework. We show how the information theoretical maximum entropy principle can be applied 

to choose in a sensible way a particular equivalent martingale measure in this situation. 

The paper pays special attention to the role that investment opportunities beyond risk-free 

investments play for insurance operations. Equivalent martingale probabilities for the 

combination of insurance operation risk-free investment and a risky investment are determined. 

They turn out to be connected to the Esscher measure. This recovers a generalized form of a 

well-known actuarial premium calculation principle. 
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The maximum entropy principle has been successfully applied in other fields and to similar 

problems in finance (e.g. Stutzer, 1996). The methods used here thus are not new. Also, other 

approaches to unify the actuarial and financial pricing based on different methodology (e.g. 

deflators, Jarvis et al. 2001) exist. 

The paper is organized as follows: Section 2 gives a very brief review of basic concepts used in 

this paper. In Section 3 a non-arbitrage condition for insurance contracts is formulated. Section 4 

tackles the problem of determining equivalent martingale probabilities in an incomplete market. 

Equivalent martingale probabilities are determined by making use of the maximum entropy 

principle. Section 5 generalizes the theory to include investment opportunities. Section 6 

discusses issues related to unique valuation and implied discounting rates. As an example, simple 

reinsurance structures are considered in Section 7. This section also contains results of numerical 

simulations that illustrate some of the main results. Section 8 extends the one-period case of 

Section 7 to a multi-period framework. The last section presents conclusions. 

2 Brief Review of Basic Concepts used in this Paper 

This paper aims at bridging the gap between financial and insurance pricing by introducing some 

of the concepts of modem finance and information theory into insurance. For our purpose, the 

concepts of non-arbitrage pricing and equivalent martingale probabilities are of importance. 

They are covered by standard textbooks like e.g. Hull (2000) or Copeland and Weston (1992). In 

short, non-arbitrage pricing relies on the insight I that, in the absence of arbitrage opportunities, 

the price (or premium) of some contingent claim should match the price for a position perfectly 

hedging its risk. As has first been shown by Cox and Ross (1976) and Harrison and Kreps 

(1979), this insight can be reformulated mathematically in terms of 'equivalent martingale 

probabilities', i.e. in terms of a probability measure Q satisfying for a given random process X 

E q X T ] =  X, 

(2A) 

J It was this insight (and its mathematical tormulation) that gained Merton and Scholes the Nobel price in 1997. 
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Equation (2.1) has a straightforward interpretation: The best forecast of future values X r at 

T > t is the observed value X,. 

When pricing contingent claims in the non-arbitrage framework, equivalent martingale 

probabilities substitute the 'real' probabilities P e.g. derived from historical data. Dealing with 

equivalent martingale probabilities one should keep in mind that they emerge as a consequence 

of the non-arbitrage assumption and that they're 'artificial' insofar as they do not need to 

correspond to any real probabilities or beliefs. Second, it is important to note that only for 

complete and efficient markets there exists a unique equivalent martingale measure. In 

incomplete markets, however, equivalent martingale measures are not uniquely defined. This 

reflects the fact that contingent claims can be hedged only partially. 

In our context of incomplete insurance markets, basic concepts of information theory come into 

play when a particular equivalent martingale measure Q is chosen from the infinite possibilities. 

Information theoretical concepts prove useful by providing a measure of the information a 

particular equivalent martingale measure Q embodies. In the absence of information other than 

the non-arbitrage assumption, the rationale is to choose the distribution that embodies least 

additional information. In a discrete setting, this is achieved by maximizing the entropy 2 

S =-'~ql" ln[qi] 
i 

(2.2) 

where the ql 's  are the probabilities associated with a particular equivalent martingale measure Q 

Defining probability distributions by maximizing (2.2) has a longstanding history in information 

theory and statistical ph~,sics. The method is known as the Information Theoretical Maximum 

Entropy Principle. A more comprehensive review of information theoretical concepts lies 

beyond the scope of this paper. However, there are accessible textbooks covering these topics 

(see e.g. Cover and Thomas (1991)). 
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3 Formulating the Non-Arbitrage Constraint 
Consider the simplest form of insurance: An insurer accepts the liability to pay for the compound 

loss 

U 
X = ~"~ Lj 

j=! 

(3.1) 

occurring over a period [0,T] where Lj is the (random)jth claim amount during the time period 

and N is the random number of claims. Here we will assume that the claim amounts L~ are 

independently and identically distributed and Lj --L refers to the claim distribution without 

deductible or limit. In exchange for this liability, the insurer receives a premium b .  For 

simplicity it is assumed that there are no costs or investment returns and payments are made at 

time T only (for a generalization see Section 4). Then, the premium b can be interpreted as a 

risky asset generating one-period returns 

b - X  

b 

(3.2) 

The definition of the insurance related return R directly depends on b .  To stress this point, 

b will be referred to as the reference premium in the following. 

The non-arbitrage theorem can be expressed in different ways. An intuitive formulation in a 

discrete setting refers to different states i of the world, each of which is characterized by a set of 

payoffs. These payoffs originate from assets, e.g. in our case from the premium b or a risk-free 

bond. To formulate the non-arbitrage condition, realizations lj.~ and n i of the single claim 

amount L and the claim number N are considered. They translate by (3.1) and (3.2) into 

realizations xl and r~ of the compound loss X and return R respectively. In addition, a risk-free 

z Behind this lies the equivalence of  the expression for information content and the expression for entropy as 
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bond with return r,1 is considered. Following standard procedures (see e.g. Neftci (2000)) in 

finance, (1 + r~ ) and (1 + r,r ) are identified with the insurance and bond related payoffs in the ith 

state. Grouping the payoffs in a matrix D e ~2.x where K is the total number of states leads to 

D=[(l+re) (l+re.) A (l+rr 
[ ( l + r  0 ( l + r z ) A  (l+rx) j 

(3.3) 

The non-arbitrage theorem now states that if there is no arbitrage, positive constants V/~ exist 

such that 

11 [(l+r~/)(l+r~) A (l+rr 1 
l J = L ( l + f i )  ( l + r  21 A (l+rx) j [Vtx 

holds. With qi = g i .  (1 + re ) relation (3.4) becomes 

I llqq l 1 ( 1 + ~  (l+rO L (l+r~) 
[ ( l+r r  (l+r,~) (l+re-"---~] LqxJ 

(3.4) 

(3.5) 

can be interpreted as probabilities (as the from which it is evident that the quantities qi 

inspection of the first component demonstrates the positive ql 's  sum up to one). The q~ 's are 

interpreted as 'risk-adjusted' or 'risk-neutral' probabilities. From (3.5) it follows that under the 

probability measure Q we have 

discovered by Shannon (1948) who identified the generation of information with the reduction of entropy. 
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[l+~] l+r~ L b J 

(3.6) 

i.e. under the measure Q, (1 + R)/(1 + re )is a martingale and the q~ 's are equivalent martingale 

probabilities. 

Given the probabilities q~, the arbitrage-free pricing of an arbitrary insurance contract referring 

to the losses L and the claim number N is straightforward. It takes the form 

n o n -  arbitrage premium = 1 E Q[f(L,N)] 
l + r e  

(3.7) 

where f(L,N) stands for the loss amount to be paid according to the insurance contract. 

Relation (3.7) is formally identical to (1.2). According to it, the non-arbitrage premium is the 

expectation value calculated under the equivalent martingale measure Q, discounted by the risk- 

free interest rate rq. No risk premium is added since the risk adjustment is internalized by the 

change of the probability measure. Pricing any insurance contract whose loss can be written as 

f(L,N) thusreduces to determine the equivalent martingale probabilities q~. 

In complete and efficient markets, the strict economic justification of (3.7) relies on the fact that 

the non-arbitrage premium coincides with the (unique) price of a hedging portfolio that yields an 

overall risk-less position. In incomplete markets (e.g. insurance markets) considered here, 

however, the situation is more complex. It can be shown that no unique and perfect hedging 

portfolio exists. This is reflected by the fact that in general the equivalent martingale 

probabilities q~ are not uniquely defined. The question that arises is how the martingale 

probabilities should be defined, or, in other words, what particular equivalent martingale 

measure Q should be chosen out of the infinitely many possibilities. We will address this 

question in the next section. 
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4 Equivalent Martingale Measure 
The insurance market is neither liquid, effective, nor it is complete. An immediate consequence 

is that pricing contingent claims by their replication cost is not possible which implies that no 

unique equivalent martingale measure exists. Other practical difficulties arise since often the loss 

distribution of L is fundamentally different from that of asset returns. In particular, the loss 

distribution L may often show heavy tails, i.e. relatively high probabilities of  large losses 3. Thus 

it is not straightforward to apply standard financial techniques like the Black-Scholes-Merton 

framework, which implicitly relies on complete markets and log-normal distributed random 

variables. How can, nevertheless, as much as possible of the appealing properties of  non- 

arbitrage pricing be recovered in this situation? 

The equivalent martingale probabilities q~ have to fulfill according to the non-arbitrage 

assumption the relation (3.5) representing a linear system of two equations and K unknowns ql- 

The system is of the form 

1 S = D*q 
l + r  0 

(4.1) 

For given S =[1,1] r and D (specified by K realizations r~ ), q is not determined uniquely. 

Indeed, there exist an infinite number of solutions for q~ which reflects market incompleteness. 

The underdetermined nature of  (4.1) is formally known as the 'Inverse Problem'. Several 

methods exist to deal with such situations. One of the most elegant and well-founded ways is 

provided by the maximum entropy principle of information theory, which we will follow here. In 

finance, the maximum entropy principle has been successfully applied in a similar context to 

problems related to option pricing. Rubinstein (1994) used the maximum entropy principle to 

:~ A characteristic property of heavy tailed distributions is the non-existence of higher moments E[X k] for 

somek > k 0. As an example, consider the Pareto distribution whose second and higher moments do not exist if 

a < 2 .  
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infer martingale measures from observed option prices (Rubinstein 1994). Buchen and Kelly 

(1996), Stutzer (1996) and Gulko (1999) worked out generalizations and applications of this idea 

referring to option pricing. In the following, we use to a large extent the same well known 

information theoretic methods as Stutzer (1996). 

4.1 Determining Equivalent Martingale Probabilities 

The only information available about the equivalent martingale probabilities q; is the non- 

arbitrage constraint as specified by (3.5) and the assumption that all realizations r; are equally 

alike. Any other additional information (e.g. the volatility of the equivalent martingale 

probabilities q;) would be imposed on the martingale probabilities q; without justification since 

relation (3.5) is the only constraint defining properties of the equivalent martingale probabilities. 

A consistent criterion to make a choice along this line is the additional information a particular 

distribution is adding besides the constraint (3.5). One should try to minimize it. Minimizing 

additional information is equivalent to maximize the entropy 

S =-~[qi .In[q/] 
i 

(4.2) 

associated with a particular distribution {q;} (Jaynes, 1957a,b). This information theoretical 

Maximum Entropy Principle guarantees the chosen distribution to incorporate no information 

other than specified by the constraint (3.5), which is equivalent to choose the distribution that is 

'most unbiased' or is 'embodying least structure'. 

The problem of maximizing the entropy associated with the distribution q; is a constraint 

maximizing problem: 

maxS = - y ~ q ; .  ln[qi] 
i 

(4.3) 

under the constraints 
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I: ~,qi = 1 (normalization) 
i 

(4.4) 

II: q~ _> 0, Vi (positivity) 

III: Eo[ I + R  ] [l---~r#j=l~r#~qi(l+r~):Sd (non-arbitrage condition) 

(4.5) 

(4.6) 

It is solved by using Lagrangian multiplier techniques, i.e. maximizing the expression 

(4.7) 

where, Y and fl represent the Lagrangian multipliers associated with the constraints (4.4) and 

(4.6). Maximizing (4.7) leads to 

E [_~l+r,.] XpL, - r,J 
q/= ~ r l+ r  i 1 

(4.8) 

where /~- '= ~Exp[y(l+r~)/(l+r,r (constraint (4.4)). The parameter ~ is to be determined 

numerically by the non-arbitrage constraint (4.6). Since the distribution (4.8) is an exponential, 

constraint (4.5) is automatically fulfilled. 
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To recapitulate: The distribution (4.8) is the maximum entropy probability distribution (or 'most 

unbiased' probability distribution). It has been deduced from the maximum entropy principle and 

the non-arbitrage constraint. By construction, the probabilities (4.8) are equivalent martingale 

probabilities. Their distribution is consistent with the non-arbitrage theorem and is otherwise 

assumption-free. 

4.2 A Information Theoretical Justification of the Esscher Premium Principle 

As a side remark note that (4.8) is equivalent to a special case of the Esscher Transform 

x 

SExp[~,. y]-dF(y,t) 

F(x,y) = Pr[X < x,y] = -- 

i Exp[y �9 y]. dF(y,t) 

(4.9) 

where the parameter )' can be chosen to be consistent with a non-arbitrage condition similar to 

(4.6). As discussed by Gerber and Shiu (1994), resulting equivalent martingale probabilities can 

be used for option pricing. For discrete probabilities ql as discussed here, the Esscher Transform 

becomes 

~ E x p [ y  l+r~ ] 

F(r,y)=Pr[R<rdt] - r,<r L l + r q j  

~ E x p [ y  l+~  ] 
., [ l + r # j  

(4.10) 

With y = y, (4.10) is consistent with the non-arbitrage constraint and (4.8) is recovered. This 

shows the special case of the Esscher transform to be equivalent to the maximum entropy 
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probability distribution. In this sense, the Esscher transformation (4.10), which lies at the heart  o f  

the well-known Esscher premium principle 4, has an information theoretical justification. 

5 Including Costs and Investment Return 

Costs and investments play a crucial role for the profitability of  insurance operations. While  

costs enter premium calculations in a straightforward way, this is less obvious for investments .  

Pricing of  contracts and assessing reserves depends directly on the anticipated investment  return. 

Usually, investment opportunities are taken into account by a risk-adjusted discounting factor in 

(1.1) whose determination is left for actuarial judgment.  From the market perspective, the 

difficulty lies in finding a market conforming discount factor for the combined risk o f  insurance 

and investment operation or, in other terms, the market price of  the overall risk. A way to address 

this problem is to consider arbitrage-free pricing o f  insurance operations that reflects and 

incorporates investment possibilities. 

The max imum entropy approach provides an elegant way to account for investment returns and 

cost simply by modifying or adding constraints. Fixed costs c modify the return related to 

insurance (risky asset b ) according to 

b - c - X  
R - - -  

b 

(5.0 

Further, assume that the insurer is investing the amount  b during the period [0,T] in which no 

payments  are made in a risky asset with (stochastic) return Y. The overall return of  the insurance 

operation then becomes 

. 

4 The Esscher premium principle defines (as e.g. the Variance premium principle) a particular way of calculating a 
safety loading or risk premium. Interestingly enough, the Esscher premium principle relies on 'distorted' 
probabilities in much the same way as non-arbitrage pricing relies on equivalent martingale probabilities. Indeed, in 
our case here, the martingale probabilities can be seen as originating as a special case from the Esscher premium 
principle. Besides this, there exist other economically relevant links (e.g. to the framework of Pareto-optimal risk 
exchange, see Biihlmann (1980)). I thank Peter Blum for stressing this point. 
The connection of the Esscher premium principle to information theory, non-arbitrage pricing, and Pareto-optimal 
risk exchange certainly warrants a more detailed study. 

331 



b - c - X  
R "  - - -  I- Y 

b 
(5.2) 

Note that the overall return R"' of the insurance operation will reflect diversification effects that 

are present due to the non (or only partially) correlated nature of the returns R and Y. 

Again, equivalent martingale probabilities are calculated as outlined in Section 2 and 3. The only 

differences are that the constraint (4.6) is modified to reflect the cost c and that a new non- 

arbitrage constraint 

Ilr: 
Q I+Y 1 

E [ - - ]  = - - ~ q i ( l +  yi):~ 
Ll+r~ J l+r, /  , 

(5.3) 

for the investment return is added. Because of linearity, (1 + R'~ r,r is automatically a 

martingale, i.e. no modification for R "  is needed. Maximizing the entropy in analogy to (4.7) 

leads to 

_ Exp[(1 + r.)-'!?,(l + ~,)+ 72(1 + y,))] 
q i -  ~Exp[(1 + re)-(2~,(1 + r , )+?2(l+ y,))] 

i 

(5.4) 

where the parameters Yt and Y2 are determined by the constraints (4.6) and (5.3), respectively. 

The non-arbitrage value of an insurance contract is defined according to (3.7) again. Note that 

the discounting is done with respect to the risk-free interest rate r e , i.e. the dependence on the 

investment return is internalized. 

Evaluating (3.7) with the equivalent martingale measure (5.4) will account for investment 

opportunities. Specifically, it will yield the non-arbitrage value of the combination of insurance 

and investment operation and, by this, the market price of the overall risk. Thus, the non- 

arbitrage pricing principle (3.7) together with the equivalent martingale measure (5.4) provides a 

unified valuation of assets and liabilities. 
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The equivalent martingale measure (5.4) will also reflect diversification effects present due to the 

non (or only partially) correlated nature of the returns R and Y. To see this, consider that (5.4) 

depends on the correlation of R and Y. How the correlation affects the non-arbitrage premium, 

however, is not easy to guess since it depends on the parameters 7~ and 72 that depend on the 

correlation themselves. What can be inferred from (5.4) is that for negative, fixed #j and 92 a 

positive correlation between R and Y results in relatively more weight being put on low returns. 

Vice versa, no correlation or negative correlation will decrease the relative weight on low 

returns. This feature of (5.4) can be interpreted in terms of a portfolio effect. We will come back 

to these issues in Section 7. 

To end this Section, note that relation (5.4) can be interpreted as a generalization of the Esscher 

transformation (4.10). The transformed measure Q in (5.3) depends not on a single measure P 

but on two measures P~ and P2 related to insurance and investment returns. Relation (5.4) can 

easily be extended to cover more complex situation with additional investment (or insurance) 

opportunities (provided that the number of states of the world is bigger than the number of 

incorporated risk factors plus two). 

6 Unique Valuation and Implied Discounting 
In comparison to real probabilities P ,  the equivalent martingale probabilities Q will put more 

weight on low returns. This connects in a natural way to the insurance related concept of the 

safety loading. In Delbaen and Haezendonck (1989) it was shown that common premium and 

loading principles can be recovered by suitably choosing martingale probabilities. The case of a 

compound Poisson process was considered. The situation here is different in two respects: First, 

in addition to the insurance return, the stochastic investment return is considered. Second, we 

will be interested in the discounting factor that is implied by the overall non-arbitrage value of 

the contract and a particular loading. The motivation for this stems from the fact that according 
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to standard finance, the non-arbitrage value coincidences with the (unique) market price. While 

this interpretation relies on liquidity, effectiveness and completeness of the market that don't  

fully apply in the current case, the implied discounting rate may nevertheless shed some light on 

how the discounting factor in (1.1) has to be chosen. 

The implied discounting factor is obtained by solving the equation 

l E p [ f ( L ) ] + S [ f ( L ) ] =  1 Ee[f(L)]  
l+r,. l + r ~  

(6.1) 

for (l+r~) where f (L)  stands for the loss occurred by an insurance structure. It reconnects the 

actuarial and financial view. By definition, it is consistent with the chosen loading principle and 

the market value of the overall risk of insurance and investment operation as implied by non- 

arbitrage pricing. 

Relation (6.1) defines the implied discounting factor (l+r~) in a unique way. One has to keep in 

mind however that the right hand side of equation (6.1) depends on the martingale measure Q, 

which is, due to the incompleteness of the insurance market, not uniquely defined. As well, Q is 

linked by construction to the reference premium b.  Thus, the implied discounting factor (1 + r,) is 

relative to the reference premium b as defined 'ground-up' by (1.1) 

1 
B = Ev[XI+S[X] 

l + r  I 

Other definitions for b can be considered. And indeed, in a real life situation likely a reference 

premium would be considered that is referring to Ee[f'(L)] and S(f'(L)),  or simply to a 

premium of an already placed contract. 
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7 An Example: Simple Reinsurance Structures 

An illustrative example of non-arbitrage pricing with methods discussed here is reinsurance. 

Sonderman (1991) has pioneered pricing of reinsurance contracts with martingales. Premiums 

are calculated under the assumption of an arbitrage-free reinsurance market and in the context of 

the continuous Lundberg model. Considering discounted cash flows based on stochastic interest 

rates links the insurance and finance side. However, there is no explicit non-arbitrage condition 

for investments in financial assets. By these assumptions, the model of Sondermann (1991) 

differs in two respects from the approach followed here. First, we developed a unified view of 

insurance .and investment operations. There is no discounting of cash flows that creates the 

somehow artificial bridge between insurance and finance. Investments in financial and 

insurance-related risky assets are considered on an equal footage. Second, a discrete setting is 

investigated which reflects the reality of basic reinsurance policies that are renewable once a 

year. The quarterly traded catastrophe insurance futures traded at the Chicago Board of Trade 

give a comparable real-life example. 

Two simple reinsurance structures will be considered here, one of which is related to compound 

claim amounts X (stop-loss insurance) and the other one to single claim amounts L i (excess of 

loss insurance). Both refer to the same underlying asset b with stochastic one-period returns 

defined by (3.2). 

7.1 Stop-Loss Reinsurance 

In the case of stop-loss reinsurance, an insurer cedes the risk of being exposed to compound 

losses X surpassing some threshold d to a reinsurer. For simplicity, it is again assumed that no 

payments are made in the time period [0,T]. What is the non-arbitrage value of reinsurance in 

this situation and its relation to the premium b ? The incurred loss, which at time T is ceded to 

the reinsurer, is 

f ( L , N )  = f ( X )  = max(X -d ,0 )  

(7.1) 
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where d is the deductible. Note that (7.1) is basically the payoff of a call option. On the other 

hand, the insurer incurs the loss 

min (X ,d )  

(7.2) 

Taking the expectation value of (7.1) with respect to the equivalent martingale measure Q and 

discounting with the risk-free rate leads to the non-arbitrage reinsurance premium 

Because of the relation 

b r ~ i ~  ~ - 
E~ [max(X - d,0)] 

l+r,~ 

(7.3) 

max(X - d ,0) = X - min(X,  d)  = X - (d - max(d - X,0)) 

the reinsurance premium br,i, ~ can also be expressed as 

(7.4) 

b,,,~, = ( b - d )  + E~ - X,0) ]  
l + r  e l+r,r  

(7.5) 

The first term in (7.5) is the discounted value of a cash amount ( b - d )  while the second term 

corresponds to the value of a 'put option on insured losses' with strike d .  Thus, the value of 

reinsurance for the insurer equals to holding (or lending) the cash amount (b - d )  at the risk-free 

rate r,.f and selling a put option with strike d .  In this context it is important to keep in mind that 

by the equivalent martingale measure Q expression (7.3) (or (7.5)) for the reinsurance premium 

b,~.~ implicitly takes into account the investment return Y which means that the equivalent 

martingale measure Q depends on both, the insurance return related to X and the investment 

return Y. 
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Relation (7.5) shows how the insurance premium b and reinsurance premium bre~n ~ are 

interconnected when no arbitrage is present. Other relations can be deduced. An illustrative 

reminiscence to the well known 'call-put parity' in finance following from (7.4) is 

b + E ~ [max(d - X,0)] = d + E ~ [max(X - d,0)] 

(7.6) 

With respect to the premium b and the deductibled, equation (6.6) interconnects the value of 

put and call options with equal strike (i.e. deductible) on compound losses X .  Similar relations 

for more complicated reinsurance structures can be deduced. 

7.2 Excess-of-Loss Reinsurance 

Up to now, only a compound claim amount X has been considered. In the most common cases 

of insurance and reinsurance, however, the amount to be paid does depend on single claim 

amounts. As an example consider excess-of-loss reinsurance where the amount for the ith claim 

to be paid by the reinsurer is 

max(L i - d,O) 

(7.7) 

The total amount paid in the period [O,T] is obtained by summing over i 

N 
f(L, N) = ~ max(L, - d,O) 

i=l 

(7.8) 

Here, N is the (random) number of claims occurring in the period [0,T]. Interpreting (7.8) as a 

payoff functionf(L,N) of the underlying asset b ,  the non-arbitrage premium is calculated by 

taking the expectation value of (7.9) with respect to the equivalent martingale measure Q 

E Q max - d, 

br = eins 
l + r e  

(7.9) 
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The expectation value E Q [.] in expression (7.9) can be written (see e.g. Daykin, Pentikaienen 

and Pensonen (1994)) as 

) r e i n s  - -  

E ~ [N]. E ~ [max(L~ - d,0)] 

i + r r  

(7.10) 

and, in analogy to Section 7.1, an equivalent expression 

b,~i,. ~ (b-Ee[Nl'd) ~ EO[N].Ee[max(d-L,O)] 
l + r ~  l+r,r 

can be obtained. In the same manner, relation (7.6) now becomes 

(7.11) 

EQ[max(L-d,O)]=( EO~]-d )+ Ee[max(d- L,O)] 
(7.12) 

The interpretation is similar to the one in the case of compound losses. With respect to the 

premium b ,  the deductible d and the expected value of number of claims evaluated under the 

equivalent martingale measure Q, equation (7.12) interconnects the value of  put and call options 

with equal strike (i.e. deductible) on individual losses L i . 

7.3 Numerical Examples 

For illustrative purposes, this section presents numerical results for the reinsurance examples of  

Section 7.1 and 7.2. Arbitrage-free reinsurance premiums are calculated as a function of the 

deductible d .  Particular attention is paid to the role of investment possibilities. 
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We assume that the investment return Y over the period T is a normally distributed with mean 

#1 and standard deviation o" I . The dependence of  non-arbitrage premiums on investment 

opportunities is investigated by comparing non-arbitrage premiums for different parameter 

values Pl  and tr I . The numerical examples are based on loss amounts generated from Poisson 

distributed claim numbers N and lognormal distributed claim amounts L.  The corresponding 

parameter values are given in Table 1, together with the characterization of  the investment return 

Y. Investment returns Y for different parameter values /.t I and 0" I have been obtained by 

scaling and shifting. The numerical results are based on 50 scenarios (i.e. states of  the world) that 

correspond to about 200 single losses 5. These numbers are sufficient to sample a large part of  the 

compound loss distribution X .  

The compound loss distribution is shown in Figure 1 together with an example of  equivalent 

martingale probabilities. The equivalent martingale probabilities are shown for parameter values 

/.t I = 6 %  and o" t = 5%. Figure 2 and Figure 3 present non-arbitrage premiums for stop-loss 

reinsurance as a function of  the deductible d and various combinations of/.t I andt:r I . 

Corresponding non-arbitrage premiums for excess-of-loss reinsurance are shown in Figure 4 and 

Figure 5, again as a function of  the deductible d .  This time however the deductible d refers to 

single claim amounts. The Figures show generic features: By construction of  the equivalent 

martingale probabilities, all non-arbitrage premiums coincide f o r d  =0. This reflects the fact that 

as discussed in Section 6 non-arbitrage premiums are defined relative to a given premium b .  It 

should be noted that the particular choice d =0 is arbitrary. In principle, corresponding results 

for any reference premium b' can be derived. For d ~ 0 the non-arbitrage premiums reflect the 

investment characteristics: For a fixed volatility tr I the higher the average investment return p /  

is, the higher is the non-arbitrage premium, i.e. the arbitrage-free value of  the contract. For a 

fixed average return /.t~ and varying volatility o ' t ,  a reversed situation is encountered: The 

higher the volatility ty~, the lower is the non-arbitrage premium. These relations are the same 

5 The investment return time-series and the loss scenarios correspond to the typical data that is needed in real life 
examples. Historical data can be used in a straightforward way. 
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independently of the nature of the reinsurance contract (i.e. excess-of-loss or stop-loss) 

considered here. 

Figure 2 to Figure 5 in addition show the expected loss EP[f(X )] as a function of the deductible 

d and sample insurance premiums calculated from the variance premium principle 

1 Ee[f(X)]+S[f(X)]=l~rEe[f(X)]+Ot.Var[f(X)] premium = 1 + r e 

with ct -----0.015. By equating the insurance premium with the non-arbitrage premium, the implied 

discounting factor (1+ r~) can be deduced. Implied discount factors corresponding to Figure 5 

are plotted in Figure 6. The arbitrage-free premiums (and the related implied discounting factor 

(l+r~)) have to be understood as originating from the combined insurance and investment 

operations. This explains the somewhat counterintuitive fact the higher investment returns 

correspond to lower implied discounting rates. In the present one-period case, these implied 

discount factors have little meaning besides reconnecting the actuarial and financial premium 

calculation. 

The example considered here is one in which the insurance premium is in general higher than the 

non-arbitrage premium. Obviously, depending on the loading S[f(X)] and other parameters, the 

situation could be reversed. In such a situation, the question of how investment related value 

could be transferred back to the insured by lowering the premium becomes important. A 

discussion of these issues lies beyond the scope of this paper. However we note that a consistent 

way of valuing the passing of investment generated value to the primary insurer should be based 

on the equivalent martingale measure Q, i.e. on an arbitrage-free valuation. 

Finally, Figure 7 demonstrates the presence of a portfolio effect. It shows excess-of-loss non- 

arbitrage premiums for different correlations between insurance and investment return. The 

different cases have been obtained by considering insurance and investment returns with rank 
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correlation 1, approximately, 0 and -1, respectively. These cases thus represent the extremes. 

The graphs show a pronounced and expected dependence on the correlation between insurance 

and investment return. 

8 Multi-Period Contracts 

The one-period setting considered here is easily generalized to the multi-period case. Basically, 

the constraints (3.6) and (5.3) have to capture multi-period payoffs. As well, the discounting with 

respect to the risk-free interest rate r,/should account for multiple periods. In the simplest case 

where no term structure is present, constraint (3.6) e.g. becomes 

[ ~  (1 + ro,)' J ~1 

Considering multiple periods will allow for the valuation of long-term contracts, which often 

come with complex option-like structures (e.g. commutation features, guarantees). Recently, 

with the pressure from under-performing financial markets, issues related to the valuation of 

options became especially important in life insurance. 

9 Conclusions 

The relevance of arbitrage-free pricing relies on the liquidity and efficiency of the insurance 

market. Liquidity and efficiency are not features of the insurance market in general and thus the 

non-arbitrage approach to pricing of insurance contracts may be inadequate. The situation is 

different when insurance risk is traded or transferred to the financial markets and vice versa. In 

this case, the implicit assumptions underlying the non-arbitrage approach may be satisfied in that 

a (at least partial) hedge can be set up. Even for traditional insurance structures the financial risk 

due to investments can become comparable to the insurance risk itself (e.g. life insurance). In 
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these cases the price for the overall risk should reflect in some way the price financial markets 

are putting on risk. In this paper we tried to tackle this problem by extending the non-arbitrage 

principle to the insurance side. Due to incompleteness of the insurance market, no unique 

equivalent martingale measure exists. The information theoretical maximum entropy principle is 

applied to make a sensible choice in this situation. 

Equivalent martingale probabilities consistent with the combined non-arbitrage conditions for 

insurance and investment operations for a one-period horizon are calculated. They turn out to be 

linked to a generalized form of the Esscher measure and show correlation dependence. The latter 

illustrates the presence of a portfolio effect. These findings are illustrated by a numerical 

example referring to common reinsurance-like structures. 

In summary, a practicable and well-motivated way to infer overall market prices for combined 

insurance and investment operations based on the non-arbitrage pricing principle has been 

outlined. While the relevance of this approach may be limited for traditional insurance structures 

with only limited exposure to financial risk, the market price is clearly of relevance for insurance 

structures whose performances depend heavily on the performance of financial markets. 
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Type 
/a 

(7  

Loss Number Loss Severity Invest. Return Risk-free Rate 

Poisson LogNormal Normal Constant 

4.0 1.0 4%, 5%, 6% 3% 

8.0 3%,4%,5%,7% 

Table I Distribution types and parameter values referring to numerical examples discussed in 

Section 7. 

0.9 

0.8 _ _  m ~  _ _  

i 
0.7 - -  - -  

0.6 - -  - -  - -  

0.5 . . . .  

0.4 . . . .  

0.3 . . . . .  ' 

0.2 _ I + Real ~ o b a b i l i t i e ~  i 
0 . 0 1  ~ ~ ~ ~ -  ~ -  ~ -  ~ 1  l . . . .  " Martingale Probabilities Q 

0 5 10 15 20 25 30 35 0 
x 

Figure 1 Real probabilities P and corresponding equivalent martingale probabilities Q referring 

to an investment return #~ =6% with volatility cr~ =5% (see text). 
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FiguP 2 Stop-loss structure. Expected loss, premium and non-arbitrage premiums for different 

investment opportunities as a function of the deductible d. 
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Figure 3 Stop-loss structure. Expected loss, premium and non-arbitrage premiums for different 

investment opportunities as a function of the deductible d. 
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Figure 4 Excess-of-loss structure. Expected loss, premium and non-arbitrage premiums for 

different investment opportunities as a function of the deductible d. 
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Figure 5 Excess-of-loss structure. Expected loss, premium and non-arbitrage premiums for 

different investment opportunities as a function of the deductible d. 
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Figure 6 Implied discount factors (corresponding to Figure 5) as a function of the deductible d. 
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Figure 7 Effect of correlation between insurance and investment returns on non-arbitrage 
premiums for the excess-of loss structure. 
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