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Credibility Modeling via Spline Nonparametric Regression 
Abstract 

Credibility modeling is a rate making process which allows actuaries to adjust fu- 

ture premiums according to the past experience of a risk or group of risks. Current 

methods in credibility theory often rely on parametric models. Blihlmann (1967) 

developed an approach based on the best linear approximation, which leads to an 

estimator that is a linear combination of current observations and past records. Dur- 

ing the last decade, the existence of high speed computers and statistical software 

packages allowed the introduction of more sophisticated methodologies. Some of 

these techniques are based on Markov Chain Monte Carlo (MCMC) approach to 

Bayesian inference, which requires extensive computations. However, very few of 

these methods made use of the additional covariate information related to the risk, 

or group of risks; and at the same time account for the correlated structure in the 

data. In this paper, we consider a Bayesian nonparametric approach to the problem 

of risk modeling. The model incorporates past and present observations related to 

the risk, as well as relevant covariate information. The Bayesian modeling is carried 

out by sampling from a multivariate Gaussian prior, where the covariance structure 

is based on a thin-plate spline (Wahba, 1990). The model uses MCMC technique 

to compute the predictive distribution of the future claims based on the available 

data. Extensive data analysis is conducted to study the properties of the proposed 

estimator, and compare against the existing techniques. 

Keywords: Credibility Modeling, Thin-plate Spline, MCMC, RKHS. 
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1 I n t r o d u c t i o n  

The dictionary definition of a spline is "a thin strip of wood used in building con- 

struction." This in fact gives insight into the mathematical definition of splines. 

Historically, engineering draftsmen used long thin strips of wood called splines to 

draw a smooth curve between specified points. A mathematical spline is the solution 

to a constrained optimization problem. 

In the credibility context, suppose we wish to determine how the current claim 

loss, Yij, depends on the past losses, say Yi,j-1 and Yi,j-2. Our approach is to consider 

the nonparametric regression model 

y,j = g(y , ,~- l ,  y,,j-2) + , , ,  ~ = 1, ..., n ,  (1) 

where g is a smooth function of its arguments. Our objective is to model the de- 

pendency between the current observations Yi~ for all policyholders i = 1, ..., n, and 

those past losses Y~,j-1 and Y~,3-2 through a nonparametric regression at occasion j .  

The concept is similar to multiple linear regressions. Here, the dependent variable 

happens to be Y~j while the past losses Y~,3-1 and Y~,j-2 are treated as covariates. 

For notational convenience, we let Y~ stands for the dependent variable (current ob- 

servation) and use si or ti for covariates (past losses). The key problem is to find a 

good approximation ~ of g. This is a tractable problem, and there are many different 

solutions to this problem. The purpose of this paper is to develop a methodology to 

estimate the function g given the data. We use a nonparametric Bayesian approach 

to estimate the multivariate regression model with Gaussian errors. In this approach, 

very little is assumed regarding the underlying model (signal); and we allow the data 

to "speak for itself". 

Reproducing kernel Hilbert space (RKHS) models have been in use for at least 
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ninety-five years. The systematic development of reproducing kernel Hilbert space 

theory is given by Aronszajn (1950). For further background the reader may refer 

to Weinert (1982) and Wahba (1990). A recent paper given by Evgeni0u (2000) 

contains an introduction to RKHS, which we found to be useful for readers interested 

in further reading. 

A reproducing kernel Hilbert space is a Hilbert function space characterized by 

the fact tha t  it contains a kernel tha t  reproduces (through a inner product) every 

function in the space, or, equivalently, by the fact tha t  every point evaluation func- 

tional is bounded. RKHS models are useful in estimation problems because every 

covariance function is also a reproducing kernel for some RKHS. As a consequence, 

there is a close connection between a random process and the RKHS determined by 

its covariance function. These estimation problems can then be solved by evaluating 

a certain RKHS inner product. Thus it is necessary to be able to determine the form 

of inner product corresponding to a given reproducing kernel. 

In optimal curve and surface fitting problems, in which one is reconstructing an 

unknown function based on the sample data, it is inevitable tha t  the point evaluation 

functionals be bounded. Therefore, one is forced to express the problem in a RKHS 

whose inner product is determined by the quadratic cost functional that  needs to 

be minimized. To solve these problems, one must find a basis for the range of a 

certain projection operator. One way to do this is to determine the reproducing 

kernel corresponding to the given inner product. 

Consider an univariate model 

y, = :(ti) + e,, i = 1, 2, ...n (2) 

where E = (cl, ..., sn)' " N(0, a2I) and f is only known to be smooth. If f has m - 1 
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continuous derivatives and is m th derivative is square integrable, an estimate of f 

can be found by minimizing 

1 _ _  ~ ( y ,  _ S(t~)) 2 + A r/b(S(m ) ( t))  2dt, (3) 
d a  

i = 1  

for some s > 0. The smoothing parameter A controls the trade-off between smooth- 

ness and accuracy. A discrete version of problems such as (3) was considered in 

the actuarial literature by Whittaker (1923), who considered smoothing Yl, ...,Yn 

discretely by finding f = (fl, ..., fn) to minimize 

n n - - 3  

l ~ ( y  i _ f~)2 + A~-'](S~+3 - 3f~+2 + 3Si+l - S~) 2. (4) 
i = 1  i = 1  

If m = 2, (3) becomes the penalized residual sum of squares 

'~ .X f b  
!V'n~(y , - S(t,))2 + (S"(t))2~x (5) 

i = 1  

where A is a fixed constant, and a ~< tl <~ . . .  ~< tn ~< b. If we consider all func- 

tions f ( t )  with two continuous derivatives, it can be shown that  (5) has an unique 

minimizer which is a nature cubic spline with knots at the unique values of t~. As 

~ oo, it forces f"  (t) = 0 everywhere, and the solution is the least-squares line. 

As A ----* 0, the solution tends to an interpolating twice-differentiable function. The 

cubic spline can be generalized to two or higher dimensions. The thin-plate spline is 

one example. It derives from generalizing the second derivative penalty for smooth- 

hess to a two dimensional Laplacian penalty (Wendelberger, 1982). 

This paper is organized as follows. Section 2 introduces the credibility problem. 

Section 3 reviews the thin-plate spline and the Bayesian model behind the smoothing 

spline. Section 4 introduces the basic idea of bivariate regression with Ganssian 
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errors. Section 5 generalizes the results in section 4 to the trivariate case. Section 6 

introduces the applications of the results developed in section 4 and section 5. All 

computations are carried out using Gibbs sampler. All functions, functionals, random 

variables, and function spaces in this paper will be real valued unless specifically 

noted otherwise. 

2 The Credibility Problem 

The classical data type in this area involves realizations from present and past experi- 

ence of individual policyholders. Suppose we have n different risks (or policyholders) 

with a claims record over a certain number of years, say T; 

Y,~l, Y,,2, ..., Y,~T. 

The data can be the amount of losses, the number of claims, or the loss ratio from 

insurance portfolios. Our goal is to estimate the amount or number of claims to be 

paid on a particular insurance policy in a future coverage period. The problem of 

interest is to model the relationship of YT+I to time and the past observed values of 

Y1, Y2, ..., YT, i.e., to establish the relationship: 

y~j = f ( t ,y~l ,y~2, . . . ,y~j_l)  +e~j for i = l , 2  ..... n; j = l , 2 , . . . , T  (6) 

where f is an unknown function and ei~ is a random error term. 

We can also have a more general form of data configuration. Let {Yij : j = 
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1, 2 , . . . ,  Ti; i = 112 , . . . ,  n} be a t ime series of length Ti over which the  measurements  

of the  i th risk (or group of risks) were observed at  t ime points  {ti3 : j = 1, 2, . . ,  Ti}. 

In addition, let X~j be the  observed covariates, such as gender of a policyholder, or 

industry  type  of insureds etc., for the  i th risk (or group of risks) at  t ime tij. In each 

risk (or group of risks), the  da ta  has the  form 

(y~j,X~j,t~j),  j = 1,2, ...,T~; i = 1,2 ..... n,  (7) 

where Xij  = (Xijl ,  X~j2, ..., X~ja) are the  d covariate variables measured at  t ime t~3. 

In this  case, of interest  is to  s tudy the  association between the  current  response Yij 

and the  past  responses Y~5-1 = (Y~,j-1, Y~,j-2, ..., Yit) as well as the  covariates and to 

examine how the  association varies with  time. Table 1 provides the  da ta  lay-out 

assuming j = 1,2, ... ,T. 

Occasion 
Subject  1 . . .  T 

1 Y l l , X l l , I , X l l , 2 , . . . l X l l , d l ~ l l  " �9 " Y l T l X l T , 1 1 X l T , 2 , . . . l X l T , d ~ t l T  

: : . . .  ! 

i Y i l  1 X i l , 1  ~ X i l , 2 ,  "" ", X i l ,d~  ~ i l  " " " Y iT~ X i l , T ,  X i l , T ,  . . .~ X i T , d l  t i T  

: : : 

n Y n l , ~ n l , l , 2 ~ n l , 2 ,  . . . I X n l , d ~ n l  ' '  " Y n T l E n T , 1 , T n T , 2 ~  . . . ~ T n T , d l ~ n T  

Table 1: Da ta  Configuration. 

Therefore, we propose the  following modified model, which is more general t han  (7), 

Yij = f ( t~j ,  Xi3,y~,j_l) + e i j  for i = 1, 2 ..... n; j = 1, 2, ..., T~. (8) 

In this paper,  a new Bayesian approach is presented for nonparametr ic  multivari- 

ate regression wi th  Gaussian errors. A smoothness prior based on thin-plate  splines 

is assumed for each component  of the  model. We use the  reproducing kernel for a 
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thin-plate spline for an unknown multivariate function as in Wahba (1990). All the 

computations are carried out using the Gibbs sampling schemes (Wood et. al., 2000). 

With a burn-in period, it is assumed that iterations have converged to draws from 

posterior distributions. A random sample from the convergence period axe used to 

estimate characteristics of the posterior distribution. This model is used for estima- 

tion of function f and to predict for the future values. We analyze a real data from 

one Taiwan based insurance company. A comparison is being carried out between 

the proposed approach against other existing techniques. 

3 The Thin-Plate Spline 

RKHS methods have been successftflly applied to a wide varieties of problems in the 

field of optimal approximation, which include interpolation and smoothing via spline 

function in one or more dimensions. The one dimensional case is generalized to the 

multidimensional case by Duchon (1977). Duchon's surface spline is called "thin 

plate" spline, because they approximate the equilibrium position of a thin plate 

deflected at scatter points. For an application of thin-plate splines to meteorological 

problems see Wahba and Wendelberger (1980). 

3 .1  T h e  T h i n - P l a t e  S p l i n e  o n  E d 

The theoretical foundations for the thin-plate spline were from Duchon (1975, 1976, 

1977) and Meinguet (1979), and some further results and applications to meteoro- 

logical problems were given in Wahba and Wendelberger (1980) and Wood et. al. 

(2000). 

Let us define the penalty functional 
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f0 1(f Jr . ( f )  = (~)(~))2d~.  

It is assumed tha t  da ta  y = (yl , '  �9 " , y.)~ follows the model  

y,=f(x,)+~,,  i= l , 2 , . . . , n ,  

where Xa E f/  and f l  is a general index set. The  function f is assumed to be a 

smooth function in a reproducing kernel Hilbert space H of a real-valued functions 

on f~. The {ei} are independent  zero mean errors with common unknown variance. 

It is desired to find an est imate of f given y = ( Y l , ' "  ,Yn) t. The  est imate fa of f 

will be  taken as the  minimizer in H of 

t n 

~ - ~ ( y ,  - f (X , ) )  2 + AJm(f), (9) 
i = 1  

where J,n(f) is a seminorm on H with M-dimensional  null space spanned by r  , CM, 

M < n. The seminaorm on the vector space H is a mapping p : H ~ R satisfying 

Ila]l > 0, Ilaall = la]llall, and Ila+bll <= Ilall + Ilbll. Here a and b are arbitrary vectors 

in H and a is any scalar. 

In the  thin-plate  spline Case, we will assume f E X, a space of functions whose 

partial derivatives of total  order m are in L2(Ea). The da ta  model is given by 

y, = f (x l ( i ) , ""  ,xa(i)) +ei ,  i = 1 , 2 , . . .  ,n ,  (10) 

where f E X and e = ( e l , . . .  , e , ) '  ~ N(0, a2I). And J( f )  = jd ( f )  is given by 

J ~ ( f ) =  ~_. a l l . . . ae  ! x .. .  (Oxl. . .Oxe) dxl . . .dxe.  (11) 
o q H _ . . . . . ~ a d ~ : , n  �9 
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We want X endowed with the seminorm j d ( f )  to be an RKHS (that  is, for the 

evaluation functionals in X to be bounded with respect to jd ( f ) ) .  Then, a thin- 

plate smoothing spline is the solution to the following variational problem. Find 

f E X to minimize 

I 
I I  

~ ~-~(Yl -- f ( x l ( i ) , ' "  , Xd(i))) 2 + ~kJd(f). (12) 
i = l  

Let us use the notation t = (Xl, . . .  ,Xd)' and ti = (x l ( i ) , . . .  ,xd(i))'. The null 

space of the penalty functional j d ( f )  is the M-dimensional space spanned by the 

polynomials in d variables of total degree ~< m - 1, where 

In the space H = {f  : J~(f)  < oo} with J~(f)  as a square semi norm, it is 

necessary tha t  2m - d > 0 for the evaluation functional Lt f  = f(t)  to be continuous; 

see Duchon (1977), Meinguet (1979), and Wahba and Wendelberger (1980). For 

m = 2 ,  d = 2 ,  

with M -- 3, and the null space is spanned by r r162 given by 

(14) 

r  x2) = 1, r ~ )  = ~1, r  ~2) = ~.  

Before we go further, we need additional notations. Let s,t  E E d, s = (sl , . . .  ,Sdy 

and t = ( t l , . . .  , Q)', then 
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We can define 

d 

I ~ - t I = ( ~ ( ~ ,  - ti)2) '12. 
i = l  

where 

E(r)  = O~r 2m-d log r if d even 

~d 2 m - d  = omr if d odd, 

(15) 

(-1)d/2+1 
if d even (16) od = 22m-'Trd/2(m -- 1)!(m -- d/2)! 

= ( - 1 ) m r ( d / 2  - m) if d odd. 
22mTcd/2(m - 1)! 

We can also define 

Em(s, t)  = E(I s - t  [). (17) 

Duchon (1977) showed that ,  if t l , . . .  , tn are such tha t  least squares regression on 

r  , CM is unique, then  (12) has an unique minimizer fx with representation 

M n 

I~(t) = ~ d . r  + E c i E m ( t ,  t,). (18) 
~=I i=I 

Note that 0~ can be absorbed into c/ in (18). Let ul,... ,UM be any fixed points 

in E d such that least squares regression on the M-dimensional space of polynomials 

of total degree less than m at the points ul,... ,UM is unique. Let Pl,"" ,PM 
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be the polynomials of total  degree less than m satisfying pi(u#) = 1,i = j and 

pi(uj) = 0 , i  C j .  And let 

M 

KI(s ,  t) = E.~(s, t) - ~p , ( t )E .~(u i ,  s) 
i=1  

M 

-~pj(s)Em(t,~) 
j = l  

M M 

+ ~___~pi(t)pj(s)Em(u,, uS). 
i=l j ~ l  

(19) 

It can be shown tha t  K I is positive semidefinite and is a reproducing kernel for HK 

and fx has a representation (Wahba, 1990) 

where 

M n 

S~ = Z d ~ o .  + Z~g,~,(t),  (20) 
,-'=1 i = l  

K~(.) = Kl( t ,  .). 

The result from (20) can be shown to be the same as (18). 

3.2 Bayes Model Behind The Thin-Plate Spline 

Let us now take a look at the Bayes estimates behind the thin-plate spline. It is 

known that  certain Bayes estimates are solutions to variational problems, and vice 

versa. Consider the random effect model 
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M 

F ( t )  = ZO.r  + b l /2X( t ) ,  t E [0, 11, 
v=l  

Y~ = F( t i )  + e~, i = 1 , . . .  , n.  

(21) 

Let {Ca," �9 ' , CM} span H0, the space of polynomials of total degree less than m, and 

H1 be a RKHS with the reproducing kernel defined by 

E X ( s ) X ( t )  = K a (s, t), 

where Kl(s , t )  given by (19). Then, the model in (21) will result in the thin-plate 

spline. To understand this result, let 

M 

v~; = u, - Z o ~ r  
u=l  

and set f ( t i )  = b l /2X( t i ) .  Then (21) becomes 

= f( t~)  + e~, i = 1 , . . .  , n ,  

withe = ( e l , . ' . ,  e,)' ,,~ N(0, a2I)  and 

E y ( s ) y ( t )  = E [b l / 2X( s )b l / 2X( t ) ]  

= b E [ X ( s ) X ( t ) ]  

= b K  1 (s, t). 

Then, from Wahba (2000), 
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E( 

f(t~) 
f(t~) 
f(t~) 

0 .2 
l Y) = KI( K1 + -~-I)-lY 

0.2 
A(A)y, with A = y .  

(22) 

A(A) is known as the influence matrix and we will use the result later. 

Now, consider the variational problem in H1, we want to find fx to minimize 

i=1 

where IIf  I1~1 is the squared norm in H1. It can be shown that 

[ :(t~) 
E( f(t~) 

:(t.) 

I Y) = KI(  K'  + AI)-lY 

--- A(A)~. 

In summary, given the prior f ~ N(0, bK1), a zero-mean Ganssian stochastic 

process with e -~ (e l , ""  ,on)' "~ N(0,a2I), the posterior mean for f given y is the 

solution to a variational problem in an RKHS. 
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4 B i v a r i a t e  R e g r e s s i o n  

Let us now return to credibility problems. Recall that ,  in the Btihlmann-Stranb 

model, we wish to use the conditional distribution frr+llo(YT+l I O) or the hypothetical 

mean E(YT+II@ = 8) -- ,UT+i(O) for estimation of next year's claims. Since we have 

observed y, one suggestion is to approximate #T+i (0) by a linear function of the past 

data. It turns out tha t  the resulting credibility premium formula Z~" + (1 - Z)# is 

of this form. The idea is to restrict estimators of the form ao + ~T= i atYt, where 

aO, a l , . . . , aT  need to be chosen. We will choose the a's to minimize square error 

loss, tha t  is, 

{ " } 0 = E I , ~ + 1 ( 0 )  - ~ o  - , _ _ ~ , r , ]  ~ �9 

We denote the result by ~o, ~i, ..., ~T for the values of ao, a l ,  ..., aT which minimize 

Q. Then the credibility premium can be written as: 

T 

&o + ~ ~tYt. 
t = t  

Meanwhile, the resulting ao, a l ,  ..., a r  also minimize 

Q1 = E [E(YT+, I Y = y) - a0 - atYt] 2 
t = l  

and 

q~ = E Yr+l - ao - a~B]2 . 
t = l  ) 

Hence, the credibility premium ~0 + ~-~T=l ~tYt is the best linear estimator of each 

of the hypothetical mean E(YT+iIO = 0), the Bayesian premium E(YT+I I Y = Y), 
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and YT+I in the sense of square error loss. 

Now, we want to extend the standard credibility techniques into nonparametric 

regression models. In the credibility context, suppose we wish to determine how the 

current claim loss, Y~j, depends on the past losses, say Y~,j-1 and Y~,j-2. Our approach 

is to establish a model as the nonparametric regression y~j = g(Yi,j-l ,Yi, j-2) + e~, 

i = 1, ...,n, where g is a smooth function of its arguments. Wha t  we want to ac- 

complish is to model the dependency between the current observations y~j for all 

policyholders i = 1, ...,n, and those past losses yi,j-1 and yi,3-2 through a non- 

parametric regression at occasion j .  Once the model is established, we can perform 

one-step ahead prediction on Y~d+l by using y/~ and Yid-1 as covariates. For nota- 

tional convenience, we let yi stands for the dependent variable (current observation) 

and use s~ or ti for covariates (past losses). We develop a methodology to estimate 

the function g, given the data, from a nonparametric regression perspective. We will 

be using a Bayesian approach to fit the proposed model using a Gaussian prior on 

the unknown function g, which uses the reproducing kernel of a thin-plate spline as 

the covariance of the prior distribution (Wahba, 1990, p.30). 

4.1 M o d e l  and Prior  

Without loss of generality, we assume variables si, ti lie in the interval [0,1]. Consider 

the model from the bivariate regression model 

y~ = g ( s i , t ~ ) + e l ,  i =  1 , . . .  ,n,  (23) 

where g is a smooth regression of the variables s and t, and the errors e, are inde- 

pendent N(0, a2). It is convenient to write (23) as 
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y i = a o q - a l S i q - ~ 2 t i q - f ( s i , t i )  q-ei, i =  1, . . .  ,n, 

with f having the zero initial conditions: 

(24) 

which means that 

f(0, 0) = o, 

~ ( 0 ,  0) = o, 

~(0,o)  =o, 

(2s) 

s0 = g(o, o), 

~1 = ~s  (0, 0), 

~2 = ~-(0, 0). 

Model (24) has the same form as (21) with 

r t,) = 1, r t,) = ~,, 03(~,, t,) = t,. 

Now we can specify the prior on (24). 

The prior for f ( s ,  t) is the reproducing kernel for the thin-plate spline in (19). This 

means that f ( s ,  t) is of zero-mean Gaussian random variables with the covariance 

function between f ( s,, ti ) and f ( s ~, t j ) given by 
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c~v(f(si ,  ti), f ( s  t , t j ))  = r~K{(sl,  tl), (Sj, tt) }. 

Using results from (19), the kernel K is given by 

(26) 

where 

K{(si, t,), (st, tj)} = E{(s,, t,), (st, tt) } 
3 

- ~__.2k(s~, t j )E{uk,  (si, t,)} 
k = l  

3 

- ~ p k  (s,, t , )E{(sl ,  tt), uk} 
k = l  

3 3 

+ E ~ v k  (s,, t,)p,(st, t t )E{uk,  u,}, 
k = l  1=1 

(2T) 

E { ( s , ,  t ,) ,  (sj,  t~)} = r 2 log(r) ,  r = ~ / ( s ,  - ~j)2 + (t, - tt)  2. (28) 

This is because that, with d = 2 and m = 2, we have j 2 ( f )  given by (14). Obviously, 

d/2 + 1 is even in (16), so E(r) is proportional to r21og(r). Note that 0~ can be 

absorbed into ci in (18). Furthermore, let 

Pl (s~, ti) = - 1  + 2si + 2t~, p2(si, ti) ----- 1 - 2si, p 3 ( 8 i ,  t i )  = 1 - 2t~. 

By choosing 

1 1 1 ( ~ , 0 ) ,  
~ ,  = ( 5 , 5 ) , ~ 2  = (0, ~ 1 , ~  = 

(29) 

we have Px,P2,P3 be the polynomials of total degree less than 2 satisfying pi(uj) = 
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1,i = j and pi(uj) = 0, i  ~ j .  Then  we are now ready to apply the  random effect 

model in (21). 

To complete the  prior specification for model (24), we take uninformative priors 

for all unknown parameters  (Wood et. al., 2000). We take uniform independent  

prior on [0,10 l~ for the  smoothing parameter  T 2. The  prior for c~ = (a0, a l ,  a2)'  is 

~ N ( 0 , c I ) ,  

with c ---* oc. The  prior for a 2 is 

p(a 2) ~x (a2)  -1-1~  exp( -10 -1~  

The  result ing Bayes es t imate  will be the  solution to the  variat ional  problem in (12) 

with d = 2 and m = 2. 

4 . 2  M o d e l  I m p l e m e n t a t i o n  

In this subsection, we will discuss the  implementat ion of the  model in (24). To make 

this model computat ional ly  feasible, we will consider a t ransformed model. As in 

Wood et. al. (2000), the  sampling scheme requires factoring the  covariance matr ix  

K as Q D Q  1, where Q is an  or thonormal  matr ix  and  D is the  diagonal matr ix  with 

diagonal elements, di, t h a t  are the  eigenvalues of K. 

To ease the  notat ion,  we rewrite model in (24) as 

y~=c~o+c~ls~+c~t~+f~+e~, i = 1 , . . .  ,n ,  (30) 

where f~ = f(si,ti), and f = (fl ,"' , f~)l is Gaussian with zero-mean and the 

covariance T2K. Let 
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= ( , ~ o , , ~ a ,  ,~=)', 

Y = ( Y l , ' " , Y . ) ' ,  

f = ( e l , ' "  " , en) t, 

(31) 

and 

1 sl t l  

1 s2 t2 
Z =  

: 

1 Sn tn 

then we can write (30) in the  matrix form 

(32) 

that  is, 

Yl 

Y2 

Y. 

1 81 t 1 

1 s2 t2 

! . . .  i 

1 s .  t .  

~ 0  

GI + 

G2 

f l  

A + 

A 

E1 

E2 

en 

(33) 

with the  priors, 

y = Z a + f + e ,  (34) 
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~~N(0,~I), 

f~N(0,  r2K), 

~ N ( 0 ,  a2I), 

"c 2 ~ u n i  f [ O ,  101~ 

a 2 ~ IG(10 -s, 10-1~ 

(35) 

where 72 is uniformly distributed in the interval [0, 10 l~ and a 2 has a inverse Gamma 

distribution with parameters 10 -s and 10 -l~ Let us return to the covariance matrix 

K. Since K is positive definite, we can factor K as Q D Q  ~ such that 

Q Q ' = I .  (36) 

We can pre-multiply Q'  to (34), so we have y* = Q~y. And the model becomes 

y*= Z*c~ + if+e*, (37) 

where 

Z* = Q'Z, 

f* = Q'f, 

E* : Qte. 

(38) 

The priors for ~, 72, a 2 will remain the same as in (35). Meanwhile, e* has the same 

distribution as c ,-, N(0, aZI) because of (36) in N(0, a2Q'IQ). However, the prior 
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for f* becomes 

because of 

f* ,,, N(0, T2D), (39) 

Var(Q'f)  = Q'Var(f)Q. 

= Q,r2KQ 

= r 2 Q ' Q D Q ' Q  

= 7-2D, 

where r ~ and D as defined before. 

4 . 3  B i v a r i a t e  R e g r e s s i o n  f o r  t h e  B i i h l m a n n - S t r a u b  Model  

Consider data in Btlhlmaim-Straub Model, it allows different number of exposure 

units or different distribution of claim size across past policy years. This can be 

handled in model (30) by assuming 

G 2 
e i ~  g (o , -~ ) ,  i =  l , . . .  ,n, (40) 

where w~ is the corresponding weight for data value yi. We can also have the same 

matrix form as (34), 

y = Za  + f + e, (41) 

but with the priors 
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~,,,N(0,cI), 

f,~N(O, T2K), 

e~N(O, 0 " 2 w - l ) ,  

r 2 ~ u n i f [ O ,  101~ 

a 2 ~ IG(10 -8,10-1~ 

(42) 

Here W is the diagonal matrix with diagonal elements, w~, the corresponding weight 

for data value Yi. 

This model can be easily transformed to a similar model as in (34) and (35). 

Then we can implement the modified model analogously as in Section 4.2. Now let 

An interim model is given by 

with the priors 

y' = v/-Wy 

Z' = v"WZ, 

f' = v'-Wf, 

E ~ = v / W e .  

y~= ZI(~ + fl+e ~, 

(43) 

(44) 
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~~N(0,cI), 

f 'NN(0, T 2 ~ K ~ ) ,  

c'~N(0,a2I), 

T 2 ~ unif[O, 101~ 

a 2 ,,, IG(10 -s, 10-1~ 

(45) 

We can then set K '  = ~ K ~ .  This means that f ' (s ,  t) is of zero-mean Gaussian 

random variables with the covariance function between f '(si ,  ti) and f ' (s j ,  tj) given 

by 

cov{ f ' ( s , ,  t~), f ' ( s j ,  tj)} = K'{(si, t~), (sj, tj)}. 

This is just a different choice of the prior for the full bivariate surface f ' ( s , t ) .  We 

can then use results from (30) to (39) based on (44) to (45). 

We use the Gibbs sampling scheme where the bivariate regression surface is mod- 

eled by the thin-plate spline prior as described earlier in the paper. A good intro- 

duction to the Gibbs sampler is given by Gelfand and Smith (1990). One of the 

advantages of Gibbs sampling is that it can take advantage of any additive structure 

in the model as explained in Wong and Kohn (1996). The sampling scheme is similar 

to the one used by Wood et. al. (2000) in a model selection context. In our case, 

the estimates of c~, f', ~-2, and ~2 are obtained by generating the iterations c~lJl, f'{31, 

T 2[j] , and r from the sampling scheme described in (45). The constant c is chosen 

to be a large number (c = 102~ so as to ensure that the prior for ~ is essentially a 

noninformative fiat prior. 
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4.4 One-Step Ahead Prediction 

Many problems in actuarial science involve the building of a mathematical model that  

can be used to predict insurance costs or to forecast losses in the future, particularly 

the short-term future. Our approach is to establish a nonparametric regression model 

Yi3 = g(Y~j-1, Y~,j-2) + e~, i = 1, ..., n, where g is a smooth function of its arguments. 

This model allows us to describe the dependency between the current observations 

y~j for all policyholders i = 1, ...,n, and those past losses Y~,j-1 and Y~,~-2 through a 

nonparametric regression function at occasion j .  

Suppose that  we are interested in one step ahead prediction of Y~,j+I. We take 

the posterior mean E(Y~,j+I I Y) as the best predictor of Y~,j+I and use the posterior 

var(Y~j+l I Y) to obtain the posterior pointwise prediction interval. For convenience, 

we estimate the posterior mean and variance of Y~,~+I using empirical estimates based 

on the values of yz,~+~ generated during the sampling period by using the model in 

(30), tha t  is, 

y~j =ao+aly~ , j - l  +a2y~,j-2+ f~+e~, i = 1 , . . .  ,n. 

To generate Yi,3+l, we plug in y~j and Y~,j-1 as covariates. For each iteration, with 

the generated values of a and f from the sampling scheme, we have 

y~ , j+l=ao+aly i j+c~2y i , j_ l+f i+e i ,  i = 1 , . . .  ,n. 

Therefore, the prediction is 

A A A A 

Yij+l ~ 0 +  + +f~ ,  = c~lyi,j c~2yi,j-1 

A 

where f i  is the expected noise on yi given observed data from (22). After a burn- 
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in period, it is assumed the iterations have converged to draws from the posterior 

distribution. We estimate the posterior mean and the posterior variance of Yij+a 

based on the values of Y~,j+I generated during the sampling period. 

5 Nonparametric Regression with Higher Dimen- 

sions 

Suppose the model is now extended to handle three variables. Similarly, we can 

treat s~ and t~ as the past losses and incorporate other relevant information as v,. 

For example, vi can be the number of years a policyholder remain in the same policy 

with the same insurer, or represents different driving age group in auto insurance. 

Then, the regression model is given by 

yi=g(si ,  ti ,vi)+ei, i = 1,.-.  ,n, 

with ei independent N(0, a 2) and with g(.) of the form 

y~=c~o+cqs~+c~2ti+c~av~+ f(si, ti, v~)+q, i = 1 , . . .  ,n. 

The prior on f is specified similarly to (26) and (27), that is 

cov{f(si, ti, vi), f(sj ,  t~, vj)} = r2K{ (si, ti, v,), (sj, tj, vj)} 

where 
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K { ( s i ,  t~, vi), (sj, t j ,  v~)} = E {  (s~, t~, v~), (sj, t3, v3)} 

4 

k = l  

4 

k = l  

4 4 

k = l  /=1 

E{ (s,, t,, ,,,), (sj, tj, . j)  } = ~ log(~), 

pl(si ,  ti, vi) = - 1  + 2si + 2ti + 2v~, 

p2(s~, ti, v d = 1 - 2si, 

p3(s~, t~, v~) = 1 - 2t~, 

pa(s~, ti, vi) = 1 - 2vi 

an d  

1 1 1 1 1 1 ( 1 , ~ , 0 ) .  
~1 = (�89 2' ~),~2 = (0, 2' ~),u3 = ( p o ,  ~) ,~4 = 

This  is because  of (13), where  m = 2, d = 3, a n d  

2 4 2  



- -  

=4 .  

Without loss of generality, we assume that the variables s, t, and v all lie in the 

interval [0,1]. 

Let a = (ao, a l ,a2,a3) '  be the vector of linear regression parameters, and let 

1 sl tl vl ] 
/ 

1 s,~ tn vn j 

The priors for ~, the smoothing parameter r 2, and a 2 are the same as in (35) which 

gives us 

~~N(0,cI), 

fNN(0, T2K), 

eNN(0, a2I), 

r 2 " u n i f [ O ,  101~ 

o-2 ~ IG(IO -s, 10-1~ 

The model implementation and the sampling scheme will be exactly the same as in 
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the bivariate model. 

6 Appl icat ion  to  medical  insurance data  

In this section, the results of Bayesian nonparametric regression model for the Btihlmann- 

Stranb type data with unequal exposure units will be illustrated by an application 

to a collective medical health insurance data from an insurance company in Taiwan. 

We consider a portfolio consisting of thirty-five group policyholders that  has been 

observed for a period of three years. The claim associated with group j (= 1, . . .  , 35) 

in year of observation t (= 1, 2, 3) is represented by the random variable Yjt, which is 

an average taken over wit employee. We choose groups with moderate group size (23 

to 80 individuals), and assume that  the number of employee does not change over 

the periods. Therefore, we have w3t = wj for all t, and the claim Y~t with weights wj 

fulfill the B~lhlmann-Stranb assumptions. Table 2 shows some observed realizations 

of the Yjt, and the numbers of employee wj. We want to determine the estimated 

premium to be charged to each group in year 4. The data  is in new Taiwan dollar 

(NTD). The exchange rate is about 1 US dollar to 35.16 new Taiwan dollar in March, 

2002. 

We consider the semiparametric regression model discussed in section 4.3, 

yj,t.-:aO+alyj,t-1+c~2yj,t-2+f(yj,t-x,yj,t-2)+e~, j = l , - . .  ,n, (46) 

where e~ ~ N ( 0 , ~ ) ,  i = I , . . .  ,n. The function f(Y~,t-l,Y~,t-2) has zero initial 

conditions and is estimated nonparametrically using the priors in (42). The scatter 

plot, fitted surface by (46), and fitted surface by the Bfihlmann-Straub (BS) model 

are shown in Figure 1. The contour plots shown in Figure 2 provide a better look of 

different levels of surfaces. 
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To examine the performance of the regression function, the average squared error 

(ASE) was calculated for the estimates of the regression functions. The ASE is 

calculated as follows 

n 

ASE = ,1 E w  j(~(sj,tj) - g(sj,~j))2. (47) 
~w~ 5=1 
j = l  

The ASE of the bivariate spline nonparametric regression modal is about 214.26, 

while that of the BtLlalmann-Straub model is 2208.07. Clearly, the bivariate spline 

nonparametric regression model outperforms the Bt~.hlmarm-Straub model. 

Our goal is to determine the estimated premium to be charged to each group in 

year 4. We perform one-step ahead prediction discussed in section 4.5. We estimate 

tl~e posterior mean and variance of Y~,4 using empirical estimates based on the values 

of Yj,4 generated during the samphng period. Figure 3 shows some of the posterior 

distributions of Yj,4. Some of the estimated premiums together with 95 percent 

posterior pointwise prediction intervals (in parenthesis) are shown in Table 3. For 

example, for group 3, the estimated premium is 5965.36 NTD for each employee in 

this group, and the total estimated premium is 49 x (5965.36) = 292302.64 NTD. 

Similar calculations can be done for other groups. 

7 Conclusions 

Many problems in actuarial science involve the building mathematical models that 

can.be used to predict insurance cost in the future, particularly the short-term future. 

A Bayesian nonparametric approach is proposed to the problem of risk modeling. 

The model incorporates past and present observations related to the risk, as well as 

relevant covariate information, and uses MCMC technique to compute the predictive 
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distribution of the future claims based on the available data, where the covariance 

structure is based on a thin-plate spline (Wahba, 1990). 

We have illustrated applications of Gibbs sampling within the context of non- 

parametric regression and smoothing. Gibbs sampling provides feasible approach 

to the computation of posterior distributions. Combined with assumed thin-plate 

spline structure of the regression surface and the computational availability of the 

bivariate or trivariate surface estimation, this methodology opens up a new dimen- 

sion to credibility literature. Although our discussion concentrates primarily on two 

and three-dimensional applications, the technique can be easily extended to higher 

dimensional problems. Our investigation shows that  this method performs at a su- 

perior level compared to the existing techniques in the credibility literature. 

In this paper, we have outlined a new approach to modeling actuarial and financial 

data. The model uses a Bayesian nonparametric procedure in a novel manner by 

incorporating a Gaussian prior on function space. We believe that  this procedure 

provides a flexible approach to function estimation and can be used successfully in 

the statistical analyses of a wide range of important problems. 
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Policyholder 
Average claim 1 
No. in group 

Average claim 2 
No. in group 

: 

Average claim 35 
No. in group 

Year l  Year2 Year3 Year4 
5419.09 1691.38 5984.65 ? 

74 74 74 74 
5603.50 4150.12 5797.48 ? 

52 52 52 52 
: : : 

4554.38 4646.96 5059.80 ? 
80 80 80 80 

Table 2: Average claims in group policyholders during three years. 

Policyholder Year 4 
Average claim 3 5965.36 (3080.30, 8877.31) 
No. in group 49 

Average claim 5 5485.61 (1429.58, 9398.640) 
No. in group 45 

Average claim 9 5024.05 (-595.66, 10495.44) 
No. in group 42 
Average claim 14 5000.68 (2173.55, 7648.52) 
No. in group 31 
Average claim 20 6437.74 (2558.72, 7116.71) 
No. in group 36 
Average claim 24 5217.51 (-361.08, 10462,63) 
No. in group 35 
Average claim 26 4959.50 (308.02, 9345.16) 
No in group 42 
Average claim 35 5074.70 (4620.35, 5497.48) 
No. in group 80 

Table 3: Estimated average claim for year 4 with 95 percent posterior pointwise 
prediction interval in parenthesis. 
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Figure 1: Surface Plots. (a) Scatter plot. (b) Plot of regression surface as a function 
of yt-1 and yt-2. (c) Plot of BS model surface. 
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Figure 2: Contour Plots. (a) Plot of regression function as a function of yt-1 and 
yt-2. (b) Plot of BS model. 
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Figure 3: Posterior Plots. (a) Y3,,. (b) Y5,4. (c) Y9,4. (d) Y35,4. 
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