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Abstract 

An application of Maximum Likelihood Estimation (MLE) theory is demonstrated for 

modeling the distribution of loss development based on data available in the common 

triangle format. This model is used to estimate future loss emerge nce, and the variability 

around that estimate. The value of using an exposure base to supplement the data in a 

development triangle is demonstrated as a means of reducing variability. Practical issues 

concerning estimation error and extrapolation are also discussed. 
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Introduction 

Many papers have been written on the topic of  statistical modeling of the loss reserving 

process. The present paper will focus on one such model, making use of the theory of 

maximum likelihood estimation (MLE) along with the common Loss Development 

Factor and Cape Cod techniques. After a review of the underlying theory, the bulk of this 

paper is devoted to a practical example showing how to make use of  the techniques and 

how to interpret the output. 

Before beginning a discussion of a formal model of loss reserving, it is worth re-stating 

the objectives in creating such a model. 

The primary objective is to provide a tool that describes the loss emergence (either 

reporting or payment) phenomenon in simple mathematical terms as a guide to selecting 

amounts for carried reserves. Given the complexity of  the insurance business, it should 

never be expected that a model will replace a knowledgeable analyst, but the model can 

become one key indication to assist them in selecting the reserve. 

A secondary objective is to provide a means of estimating the range of possible outcomes 

around the "expected" reserve. The range of reserves is due to both random "process" 

variance, and the uncertainty in the estimate of  the expected value. 

From these objectives, we see that a statistical loss reserving model has two key 

elements: 

• The expected amount of  loss to emerge in some time period 

• The distribution of actual emergence around the expected value 

These two elements of  our model will be described in detail in the first two sections of 

this paper. The full paper is outlined as follows: 

4 3  



Section 1 : 

Section 2: 

Section 3: 

Section 4: 

Section 5: 

Expected Loss Emergence 

The Distribution of Actual Loss Emergence and Maximum 

Likelihood 

Key Assumptions of the Model 

A Practical Example 

Comments and Conclusion 

The practical example includes a demonstration of the reduction in variability possible 

from the use of an exposure base in the Cape Cod reserving method. Extensions of the 

model for estimating variability of  the prospective loss projection or of  discounted 

reserves are discussed more briefly. 

Most of  the material presented in this paper makes use of maximum likelihood theory 

that has already been described more rigorously elsewhere. The mathematics presented 

here is sufficient for the reader to reproduce the calculations in the examples given, but 

the focus will be on practical issues rather than on the statistical theory itself. 
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Section 1: Expected Loss Emergence 

Our model will estimate the expected amount of loss to emerge based on a) an estimate of 

the ultimate loss by year, and b) an estimate of the pattern of loss emergence. 

For the expected emergence pattern, we need a pattern that moves from 0 to 100% as 

time moves from 0 to 8. For our model, we will assume that this pattern is described 

using the form of a cumulative distribution function I (CDF), since a library of such 

curves is readily available. 

G(x) = 1/LDF x = cumulative % reported (or paid) as of time x 
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We will assume that the time index "x" represents the time from the "average" accident 

date to the evaluation date. The details for approximating different exposure periods 

(e.g., accident year versus policy year) are given in Appendix B. 

For convenience, the model will include two familiar curve forms: Weibull and 

Loglogistic. Each of these curve forms can be parameterized with a scale 0 and a shape 

co ("warp"). The Loglogistic curve is familiar to many actuaries under the name "inverse 

t We are using the formofthe distribution function, but do not mean to imply any probabilistic model. The 
paper by Weissner [9] makes the report lag itself the random variable. By contrast, the loss dollars will be 
the random variable in our application. 
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power" (see Sherman 2 [8]), and will  be considered the benchmark result. The Weibull  

will  generally provide a smaller "tail" factor than the Loglogistic. 

The Loglogistic curve has the form: 

O(xlo~,0) - x~ 
x ~ + 0  ~ 

L D F  x = l+O'° .x  ,~ 

The Weibull curve has the form: 

G(xlco ,O)  = 1 - e x p ( - ( x / O )  '°) 

In using these curve forms, we are assuming that the ~ loss emergence will  move 

from 0% to 100% in a strictly increasing pattern. The model will  still work i f  some 

actual points show decreasing losses, but i f  there is real expected negative development 

(e.g., lines of  business with significant salvage recoveries) then a different model should 

be used. 

There are several advantages to using parameterized curves to describe the expected 

emergence pattern. First, the estimation problem is simplified because we only need to 

estimate the two parameters. Second, we can use data that is not strictly from a triangle 

with evenly spaced evaluation dates - such as the frequent case in which the latest 

diagonal is only nine months from the second latest diagonal. Third, the final indicated 

pattern is a smooth curve and does not follow every random movement in the historical 

age-to-age factors. 

The next step in estimating the amount of  loss emergence by period is to apply the 

emergence pattern G(x), to an estimate of  the ultimate loss by accident year. 

Our model will  base the estimate of  the ultimate loss by year on one of  two methods: 

either the LDF or the Cape Cod method. The LDF method assumes that the ultimate loss 

2 Sherman actually applies the inverse power curve to the link ratios between ages. Our model will apply 
this curve to the age-to-ultimate pattern. 
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amonnt in each accident year is independent of the losses in other years. The Cape Cod 

method assumes that there is a known relationship between the amount of ultimate loss 

expected in each of the years in the historical period, and that this relationship is 

identified by an exposure base. The exposure base is usually onlevel premium, but can be 

any other index (such as sales or payroll), which is reasonably assumed to be proportional 

to expected loss. 

The expected loss for a given period will be denoted: 

/-/Ar;~,y = expected incremental loss dollars in accident year A Y 

between ages x and y 

Then the two methods for the expected loss emergence are: 

Method # 1: "Cape Cod" 

U ...... = Premium Ar .ELR .[G(y Ito,0 ) -  G(xl to,0)] 

Three parameters: ELR, to, 0 

Method #2: "LDF" 

PAr .... = UZTAr[a(ylto,o)-a(xlto, O)] 

n+2 Parameters: n Accident Years (one ULT for each AY) + to, 0 

While both of these methods are available for use in estimating reserves, Method # 1 will 

generally be preferred. Because we are working with data summarized into annual 

blocks as a development triangle, there will be relatively few data points included in the 
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model (one data point for each "cell" in the triangle). There is a real problem with 

overparameterization when the LDF method is used. 

For example, i f  we have a triangle for ten accident years then we have provided the 

model with 55 data points. Fhe Cape Cod method requires estimation of  3 parameters, 

but the LDF method requires estimation of 12 parameters. 

The Cape Cod method may have somewhat higher process variance estimated, but will 

usually produce a significantly smaller estimation error. This is the value of  the 

information in the exposure base provided by the user 3. In short: the more information 

that we can give to the model, the smaller the reserve variability due to estimation error. 

The fact that variance can be reduced by incorporating more information into a reserve 

analysis is, of  course, the point of our ironic subtitle: How to Increase Reserve Variability 

with Less Data. The point is obvious, but also easy to overlook. The reduction in 

variability is important even to those who do not explicitly calculate reserve ranges 

because it still guides us towards better estimation methods: lower variance implies a 

better reserve estimate. 

3 Halliwell [2] provides additional arguments for the use of an exposure index. See especially pages 441 - 
443. 
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Section 2: The Distribution of Actual Loss Emergence and Maximum Likelihood 

Having defined the model for the expected loss emergence, we need to estimate the 

"best" parameters for that model and, as a secondary goal, estimate the variance around 

the expected value. Both of these steps will be accomplished making use of maximum 

likelihood theory. 

The variance will be estimated in two pieces: process variance (the "random" amount) 

and parameter variance (the uncertainty in our estimator). 

2.1 Process Variance 

The curve G(x[ to,0) represents the exoected loss emergence pattern. The actual loss 

emergence will have a distribution around this expectation. 

We,assume that the loss in any period has a constant ratio of variance/mean4: 

Variance= t72 1 ~(CAr~--I.tar~) 2 
Mean n -  p ~,t" -I.t--~r j 

where p = # of parameters 

Car,t = actual incremental loss emergence 

#arj = expected incremental loss emergence 

(this is recognized as being equivalent to a chi-square error term) 

For estimating the parameters of our model, we will further assume that the actual 

incremental loss emergence "c" follows an over-dispersed Poisson distribution. That is, 

the loss dollars will be a Poisson random variable times a scaling factor equal to a 2 . 

4 This assumption will be tested by analysis of residuals in our example. 
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Standard Poisson: Pr(x) - E[x]  = Var (x )  = 2. 
x! 

.~ c ' °2  . e  2 
Actual Loss: c = x.cr2 Pr(c) E[c] = R.<r 2 = lz 

( c l e f 2 ) !  

Var(c)  = fl , .cr 4 = ~ . G  2 

The "over-dispersed Poisson" sounds strange when it is first encountered, but it quickly 

proves to have some key advantages. First, inclusion of  the scaling factor allows us to 

match the first and second moments of  any distribution, which gives the model a high 

degree of  flexibility. Second, maximum likelihood estimation exactly produces the LDF 

and Cape Cod estimates of  ultimate, so the results can be presented in a format familiar to 

reserving actuaries. 

The fact that the distribution of ultimate reserves is approximated by a discretized curve 

should not be cause for concern. The scale factor tr 2 is generally small compared to the 

mean, so little precision is lost. Also, the use of  a discrete distribution allows for a mass 

point at zero, representing the cases in which no change in loss is seen in a given 

development increment: 

Finally, we should remember that this maximum likelihood method is intended to 

produce the mean and variance of  the distribution of  reserves. Having estimated those 

two numbers, we are still free to switch to a different distribution form when the results 

are used in other applications. 

2.2  T h e L i k e l i h o o d F u n c t i o n - F i n d i n g t h e " B e s t " P a r a m e t e r s  

The likelihood function is: 

Likelihood= 1-I Pr(c~) 
J 

c J c F  2 - 2  

= 1"-[, (c~/c~2)! (c~/cy2)! 
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This can be maximized using the logarithm of the likelihood function: 

LogLikelihood = ~, (c  i/0"2) . ln(I.t,./o'2)-Iai/0 .2 -ln((c,/o"2)!) 
i 

Which is equivalent to maximizing: 

e = ~c , . l n (~ t , ) - /~ ,  if cr 2 is assumed to be known 

Maximum likelihood estimators of  the parameters are found by setting the first 

derivatives of  the loglikelihood function g equal to zero: 

be be Og 
~ELR FJO 7~o9 

For "Model # h  Cape Cod", the loglikelihood function becomes: 

Z(c , .  ~(ELR. ?,. [G(x,)-G(x,_, )D-ELR. ~. [G(x,)- G(x,_, )]) 
iS  

where c,.~ = actual loss in accident year i ,  development period t 

= Premium for accident year i 

xt_ ~ = beginning age for development period t 

x, = ending age for development period t 

io x, olxl)l I 
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ZC~,I 
For ~------Le = 0, E L R  = i., 

~eLR Z e,. [O(x,)- C(x,_,)] 
i¢ 

The MLE estimate for ELR is therefore equivalent to the "Cape Cod" Ultimate. It can be 

set based on 0 and to, and so reduce the problem to be solved to two parameters instead 

of three. 

For "Model #2: LDF", the loglikelihood function becomes: 

e -- Z(c,.,. h,(VLr,. [G(x, ) -  Gfx,_, )])- vLr,. [Gfx, ) -  G(x,_, )1) 
i¢ 

c, ) 
~uLr, ~--L-~ = ~(~-EG(x,)-G(x,_,)I 

3 t  ~ ' c i :  
t For ~ut---f, = o, utT, Z[o(x,)_c(x,_,)] 

t 

The MLE estimate for each ULT~ is therefore equivalent to the "LDF Ultimate ''5. It can 

also be set based on 0 and to, and to again reduce the problem to be solved to two 

parameters instead of n + 2. 

A final comment worth noting is that the maximum loglikelihood function never takes 

the logarithm of  the actual incremental development c~.  The model will  work even i f  

some of  these amounts are zero or negative. 

s See Mack [5], Appendix A, for a further discussion of this relationship. 
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2.3 Parameter  Variance 6 

The second step is to f'md the variance in the estimate of  the parameters. This is done 

based on the Rao-Cramer approximation, using the second derivative information matrix 

I ,  and is commonly called the "Delta Method" (c.f. Klugman, et al [3], page 67). 

The second derivative information matrix for the "Cape Cod Method" is 3x3 and assumes 

the same ELR for all accident years: 

1~ 3 2 ey., 

• _ 32 ty., 0 2 g.y, bzt~, 

y•b2 ty ,  ~ b2gy, 

~b2gy,, --b2ey, 

The covariance matrix is calculated using the inverse of  the Information matrix: 

Z = 
"Var(ELR) Cov(ELR, oJ) Cov(ELR, O)] 
Cov(oJ, ELR) Var(o~) Cov(¢o,O) [ 
Cov(O, ELR) Cov(0,o9) Var(O) J 

The scale factor a 2 is again estimated as above: 

n -  p 7~., #~r~ 

_> - 0  .2 . i  -a 

The second derivative matrix for "LDF Method" is (n+2)x(n+2) and assumes that there is 

a different ULT for each accident year. The information matrix, I ,  is given as: 

6 To be precise, we are calculating the variance in the ~ o f  the parameter; the parameter itself does 
not have any variance. Nonetheless, we will retain the term "parameter variance" as shorthand. 
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•0Zgl,, [ y~  02el+, __ O+e,,, ] 
o ... o i,+~L+,+++ + ~ '  

g- O+g2,, 1 O+G, ~ O+Q,, 
0 z.....-TW:'. ~2 "'" 0 ' , aL]Lr~ [Z,  awr~ao)  , auLr~a~ 

I 

I 

~2p ~2g 02p 
• .  + v ~ , i t  v - n . t  n A  : 

0++'.+ v '  0++++,' ... y_+ ++e,. ,  _a+++,, _a+.++., 
vt O0) ., 

I; a2e',' Y a2e2' ' E a~e"' E £ ~  - a 2 e "  
, a~autr,  , a~aUtT~ , a~OULT. .,, azaco ~ 

The covariance matrix Z is again calculated using the inverse of  the Information matrix, 

but for the LDF Method this matrix is larger. 

2.4 The Variance of the Reserves 

The final step is to estimate the variance in the reserves. The variance is broken into two 

pieces: the process variances and the estimation error (loosely "parameter variance"). For 

an estimate of loss reserves R for a given period I-Gr:+,y, or group of periods ~/zAr;x,y, 

the process variance is given by: 

2 Process Variance of  R : ~ • YdzAr:~,y 

The estimation error makes use of  the covariance matrix E calculated above: 
t 

Parameter Variance of  R: Var(E[R]) : (OR) • E. (OR) 

where 

i I n X 
~OR aR aR\ ,[ +n ] aR OR, 

OR = \577-~,5~-,5~+~/) or OR = ,\15~+7/~- f '5-0-'5~+.~/ 
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The future reserve R,  under the Cape Cod method is given by: 

Reserve: R = EPrerrf i tani .ELR.(G(yi)-G(x,))  

The derivatives needed are then easily calculated: 

OR 

O ELR 
l ~pl~l~unli.(a(yi)la(xi)) 

-R : 2 ~ . m  ELRf ?G<y') 0G(x,)] 
~0 ' t 0o 0o j 

oR : E r ~  .ELR.(.~°<y') ~G(x,)] 
5-d ' t o<~ ~ j 

For the LDF Method, let Premitma i = 1 and ELR = ULT~. 

All of  the mathematics needed for the estimate of  the process and parameter variance is 

provided in Appendix A. For the two curve forms used, all of the derivatives are 

calculated analytically, without the need for numerical approximations. 
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Section 3: Key Assumptions of this Model 

• Incremental losses are independent and identically distributed (iid) 

The assumption that all observed points are independent and identically distributed is 

the famous "iid" of classical statistics. In introductory textbooks this is often 

illustrated by the problem of estimating the proportion of red and black balls in an urn 

based on having "randomly" selected a sample from the urn. The "independence" 

assumption is that the balls are shaken up after each draw, so that we do not always 

pull out the same ball each time. The "identically distributed" assumption is that we 

are always taking the sample from the same urn. 

The "independence" assumption in the reserving context is that one period does not 

affect the surrounding periods. This is a tenuous assumption but will be tested using 

residual analysis. There may in fact be positive correlation if all periods are equally 

impacted by a change in loss inflation. There may also be negative correlation if a 

large settlement in one period replaces a stream of payments in later periods. 

The "identically distributed" assumption is also difficult to justify on first principles. 

We are assuming that the emergence pattern is the same for all accident years; which 

is clearly a gross simplification from even a rudimentary understanding of insurance 

phenomenon. Different risks and mix of business would have been written in each 

historical period, and subject to different claims handling and settlement strategies. 

Nonetheless, a parsimonious model requires this simplification. 

• The Variance/Mean Scale Parameter a 2 is fixed and known 

In rigorous maximum likelihood theory, the variance/mean scale parameter o" 2 

should be estimated simultaneously with the other model parameters, and the variance 

around its estimate included in our covariance matrix. 
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Unfortunately, including the scale parameter in the curve-fitting procedure leads to 

mathematics that quickly becomes intractable. Treating the scale parameter as fixed 

and known is an approximation made for convenience in the calculation, and the 

results are sometimes called "quasi-likelihood estimators". McCullough & Nelder [7] 

give support for the approximation that we are using. 

In effect, we are ignoring the variance on the variance. 

In classical statistics, we usually relax this assumption (e.g., in hypothesis testing) by 

using the Student-T distribution instead of the Normal distribution. Rodney Kreps' 

paper [4] provides additional discussion on how reserve ranges could increase when 

this additional source of variability is considered. 

"o Variance estimates are based on an approximation to the Rao-Cramer lower bound. 

The estimate of variance based on the information matrix is only exact when we are 

using linear functions. In the case of non-linear functions, including our model, the 

variance estimate is a Rao-Cramer lower bound. 

Technically, the Rao-Cramer lower bound is based on the true expected values of the 

second derivative matrix. Since we are using approximations that plug in the 

estimated values of the parameters, the resuk is sometimes called the "observed" 

information matrix rather than the "expected" information matrix. Again, this is a 

limitation common to many statistical models and is due to the fact that we do not 

know the true parameters. 
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All of the key assumptions listed above need to be kept in mind by the user of a 

stochastic reserving model. In general, they imply that there is potential for more 

variability in future loss emergence than the model itself produces. 

Such limitations should not lead the user, or any of the recipients of the output, to 

disregard the results. We simply want to be clear about what sources of variability we 

are able to measure and what sources cannot be measured. That is a distinction that 

should not be lost. 
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Section 4: A Practical Example 

4.1 The LDF Method 

For the first part of  this example, we will use the "LDF Method" (referred to above as 

"Method 2"). The improvements in the model by moving to the Cape Cod method will 

be apparent as the numbers are calculated. 

The triangle used in this example is taken from the 1993 Thomas Mack paper [6]. The 

accident years have been added to make the display appear more familiar. 

12 24 36 48 60 72 84 96 108 120 

1991 357,848 1,124,788 1,735,330 2,182,708 2,745,596 3,319,994 3,466,336 3,606,286 3,833,515 3,901,463 
1992 352,118 1,236,139 2,170,033 3,353,322 3,799,067 4,120,063 4,647,867 4,914,039 5,339,085 
1993 290,507 1,292,306 2,218,525 3,235,179 3,985,995 4,132,918 4,628,910 4,909,315 
1994 310,608 1,418,858 2,195,047 3,757,447 4,029,929 4,381,982 4,588,268 
1995 443,160 1.136,350 2,128,333 2,897,821 3,402,672 3,873,311 
1996 396,132 1,333,217 2,180,715 2,985,752 3,691,712 
1997 440,832 1,288,463 2,419,861 3,483,130 
1998 359,480 1,421,128 2,864,498 
1999 376,686 1,363,294 
2000 344,014 

The incremental triangle, calculated by taking differences between cells in each accident 

year, is given by: 

12 24 36 48 60 72 84 

1991 357,848 766,940 610,542 447.378 562,888 574,398 146,342 
1992 352,118 884,021 933,894 1,183,289 445.745 320,996 527,804 
1993 290.507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 
1994 310,608 1,108,250 776,189 1,562,400 272,482 352.053 206,286 
1995 443,160 693,190 991,983 769,488 504,851 470,639 
1996 396,132 937,085 847,498 805,037 705,960 
1997 440,832 847,631 1,131,398 1,063,269 
1998 359.480 1,061,648 1,443,370 
1999 376,686 986,608 
2000 344,014 

96 108 120 

139,650 227,229 67,948 
266,172 425,046 
280,405 

This incremental triangle is actually better arranged as a table of  values, rather than in the 

familiar triangular format (see Table 1.1). In the tabular format, the column labeled 

"Increment" is the value that we will be approximating with the expression 
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...... = ULT,,,. [GO, I o~,O)-G(= I~o,O)]. 

The x and y values are the "From" and "To" dates. 

Before calculating the fitted values, it is worth showing the flexibility in this format. 

First, if  we have only the latest three evaluations of  the triangle, we can still use this 

method directly. 

The original triangle becomes: 

12 24 36 48 60 72 84 96 108 120 

1991 3,606,286 3,833,515 3,901,463 
1992 4,647,867 4,914,039 5,339,085 
1993 4,132,918 4,628,910 4,909,315 
1994 4,029,929 4,381,982 4,588,268 
1995 2,897,821 3,402,672 3,873,311 
1996 2,180,715 2,985,752 3,691,712 
1997 1,288,463 2,419,861 3,483,130 
1998 359,480 1,421,128 2,864,498 
1999 376,686 1,363,294 
2000 344,014 

and the incremental triangle is: 

1991 
1992 
1993 
1994 
1995 
1996 
1997 
1998 
1999 
2000 

12 24 36 48 60 72 84 

2,897,821 
2,180,715 805,037 

1,288,463 1,131,398 1,063,269 
359.480 1,061,648 1,443.370 
376.686 988.668 
344,014 

4,029,929 
504,851 
705,960 

4,647.867 
4,132,918 495,992 

352,053 206.286 
470,639 

96 108 120 

3,606,286 227,229 67.948 
266,172 425,046 
280,405 

The tabular format then collapses from 55 rows down to 27 rows, as shown in Table 1.2. 

Another common difficulty in working with development triangles is the use of  irregular 

evaluation periods. For example, we may have accident years evaluated at each year-end 
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- producing ages 12, 24, 36, etc - but the most recent diagonal is only available as of  the 

end of  the third quarter (ages 9, 21, 33, etc). This is put into the tabular format by simply 

changing the evaluation age fields ("Diag Age") as shown in Table 1.3. 

Returning to the original triangle, we calculate the fitted values for a set of  parameters 

ULTAr , 09, 0 and the MLE term to be maximized. 

Fitted Value: /1At .... = ULTAr. [G(y I co,O) - G(x l co, 0)] 

MLE Term: 

In Table 1.4, these numbers are shown as additional columns. These values also have the 

desired unbiased property that the sum of the actual incremental dollars cAr~x.y equals the 

sum of the fitted values /~Ar~x.y. 

The fitted parameters for the Loglogistic growth curve are: 

co 1.434294 

0 48.6249 

The fitted parameters are found by iteration, which can easily be accomplished in the 

statistics capabilities of  most software packages. Once the data has been arranged in the 

tabular format, the curve- fitting can even be done in a spreadsheet. 

The scale parameter (r 2 is also easily calculated. We recall that the form of this 

calculation is the same as a Chi-Square statistic, with 43 degrees of  freedom (55 data 

points minus 12 parameters). The resulting (r ~ is 65,029. This scale factor may be 

thought of  as the-size of  the discrete intervals for the over-dispersed Poisson, but is better 

thought of simply as the process variance-to-mean ratio. As such, we can calculate the 
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process variance of the total reserve, or any sub-segment of the reserve, by just 

multiplying by 65,029. 

The scale factor o" 2 is also useful for a review of the model residuals (error terms). 

Normalized Residual: rAr;~,y 
~ . ;t ...... 

The residuals can be plotted in various ways in order to test the assumptions in the model. 

The graph below shows the residuals plotted against the increment of loss emergence. 

We would hope that the residuals Would be randomly scattered around the zero line for 

all of the ages, and that the amount of variability would be roughly constant. The graph 

below tells us that the curve form is perhaps not perfect for the early 12 and 24 points, 

but the pattern is not enough to reject the model outright. 

-~ 4 

_13 
1 2  

._~ o 

i -2 
z . 3  

i • il i * 11 I I  ~ # 

• II II i I I 
v v ' ~  

i 

0 12 24 36 48 60 72 84 96 108 120 

Ineun'mnt Age 

A second residual plot of the residuals against the expected loss in each increment (the 

fitted values) is shown below. This graph is useful as a check on the assumption that the 

variance/mean ratio is constant. If the variance/mean ratio were not constant, then we 

would expect to see the residuals much closer to the zero line at one end of the graph. 

132 
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The residuals can also be plotted against the accident year, the calendar year of  

emergence (to test diagonal effects), or any other variable of  interest. The desired 

outcome is always that the residuals appear to be randomly scattered around the zero line. 

Any noticeable pattern or autocorrela tion is an indication that the some of the model 

assumptions are incorrect. 

Having solved for the parameters o~ and 0, and the derived ultimates by year, we can 

estimate the needed reserves. 

Accident Reported Age at Average Growth Fitted U l t ima te  Estimated 
Year Losses 12/31/2000 Age (x) Function LDF Losses Resewes 

1991 3,901,463 120 114 77.24% 1.2946 5,050,867 1,149,404 
1992 5,339,085 108 102 74,32% 1.3456 7,184,079 1,844,994 
1 9 9 3  4,909,315 96 90 70,75% 1.4135 6,939,399 2,030,084 
1994 4,588,268 84 78 66,32% 1.5077 6,917,862 2,329,594 
1995 3,873,311 72 66 60,78% 1.6452 6,372,348 2,499,037 
1996 3,691,712 60 54 53.75% 1.8604 6,867,980 3,176,268 
1997 3,483,130 46 42 44.77% 2.2338 7,760,515 4,297,385 
1998 2,864,498 36 30 33.34% 2.9991 8,590,793 5,726,295 
1999 1,363,294 24 18 19,38% 5.1593 7,033,659 5,670,365 
2000 344,014 12 6 4.74% 21.1073 7,261,205 6,917,191 

Total 34,358,090 69,998,708 35,640,618 

From this initial calculation, we can quickly see the impact of  the extrapolated "tail" 

factor. Our loss development data only includes ten years of  development (out to age 120 

months), but the growth curve extrapolates the losses to full ultimate. From this data, the 

Loglogistic curve estimates that only 77.24% of ultimate loss has emerged as of ten 

years, 
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Extrapolation should always be used cautiously. For practical purposes, we  may want to 

rely on the extrapolation only out to some finite point - an additional ten years say. 

Accident Reported Age at Average Growth Fitted Truncated Losses Estimated 
Year Losses "i2/3112000 Age (x) Function LDF LDF at 240 mo Reserves 

240 234 90.50% 1.1050 10000 
1991 3,901,463 120 114 77.24% 1.2946 1.1716 4,570,810 669,347 
1 9 9 2  5,339,085 108 192 74.32% 1.3456 1.2177 6,501,273 1,162,188 
1 9 9 3  4,909,315 96 90 70.75% 1,4135 1.2792 6,279,848 1,370,533 
1 9 9 4  4,588,268 84 78 66.32% 15077 1 3644 6,260,356 1,672,090 
1995 3,873,311 72 66 6078% 1.6452 1.4888 5,766,692 1,893,381 
1 9 9 6  3,691,712 60 54 5375% 1.8604 1.6836 6,215,217 2,523,595 
1 9 9 7  3,483,130 48 42 44,77% 2.2338 2,0215 7,041,021 3,557,891 
1 9 9 8  2,864,498 36 30 3334% 29991 27140 7,774,286 4,909,788 
1999 1,363,294 24 18 19 38% 5.1593 4.6689 6,365,149 5,001,855 
2000 344,014 12 6 4.74% 21 .1073  191012 6,571,068 6.227,054 

T o t a l  34,358,090 83,345,723 28.987,633 

As noted above, the process variance for the estimated reserve o f  28,987,633 is found by 

multiplying by the variance-to-mean ratio o f  65,029. The process standard deviation 

around our reserve is therefore 1,372,966 for a coefficient o f  variation (C V = SD/mean) 

o f  about 4.7%. 

As an alternative to truncating the tail factor at a selected point, such as age 240, we  

could make use o f  a growth curve that typically has a lighter "tail". The mathematics for 

the WeibuIl curve is provided for this purpose. An example including a fit o f  the Weibull 

curve is shown below. 

Accident Reported Age at Average Growth W e i b u E I  Uitlmate Estimated 
Year Losses 12/31/2000 Age (x) Function LDF Losses Reserves 

1991 3,901,463 120 114 95.91% 1,0525 4,106,189 204,726 
1 9 9 2  5,339,085 108 102 9254% 1,0806 5,769,409 430,324 
1 9 9 3  4,909,315 96 90 89.00% 1.1237 5,516,376 807,061 
1 9 9 4  4,888,268 84 78 84.01% 1.1904 5,461,745 873,477 
1995 3,873,311 72 66 7714% 1.2963 5,020,847 1,147,536 
1996 3,691,712 60 54 6795% 1.4717 5,433,242 1,741,530 
1997 3,483,136 48 42 5601% 1.7853 6,218,284 2,735,154 
1 9 9 8  2,864,498 36 30 41.19% 2.4277 6,954,204 4,089,706 
1999 1,363,294 24 18 23.94% 41764 5,693,693 4,330,399 
2000 344,014 12 6 6.37% 15.6937 5,398,863 5,054,849 

T o t a l  34,358,090 55,572,851 21,214,761 
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The fitted Weibull parameters 0 and to are 48.88453 and 1.296906, respectively. The 

lower "tail" factor of  1.0525 (instead of 1.2946 for the Loglogistic) may be more in line 

with the actuary's expectation for casualty business. The difference between the two 

curve forms also highlights the danger in relying on a purely mechanical extrapolation 

formula. The selection of a truncation point is an effective way of reducing the reliance 

on the extrapolation when the thicker-tailed Loglogistic is used. 

The next step is our estimate of  the parameter variance. 

The parameter variance calculation is more involved than what was needed for process 

variance. As discussed in Section 2.3, we need to first evaluate the Information Matrix, 

which contains the second derivatives with respect to all of  the model parameters, and so 

is a 12x12 matrix. The mathematics for all of  these calculations is given in Appendix A, 

and is not difficult to program in most sottware. For purposes of  this example, we will 

simply show the resulting variances: 

Accident Repor ted  Estimated Process Parameter Total 
Year Losses Resen,~ Std Dev CV Std Dev CV Std Dev CV 

1991 3,901,463 669,347 208,631 31.2% 158,088 23.6% 261,761 39.1% 
1 9 9 2  5,339,085 1,162,188 274,911 23.7% 257,205 22.1% 376,471 32.4% 
1 9 9 3  4,909,315 1,370,533 298,537 21.8% 298,628 21.8% 422,260 30.8% 
1 9 9 4  4,588,268 1,672,090 329,749 19.7% 356.827 21.3% 485,860 29.1% 
1995 3,873,311 1,893,381 350,891 18.5% 401,416 21.2% 533,160 28.2% 
1 9 9 6  3 , 6 9 1 . 7 1 2  2,523,505 405,(F34 16.1% 518,226 20.5% 657,768 26.1% 
1 9 9 7  3 , 4 8 3 , 1 3 0  3,557,891 481,005 13.5% 704,523 19.8% 853,064 24.0% 
1 9 9 8  2 . 8 6 4 , 4 9 8  4,909,788 565,047 11.5% 968,806 1 9 . 7 %  1,121,545 22.8% 
1 9 9 9  1 , 3 6 3 . 2 9 4  5,001,855 570,321 1 1 . 4 %  1,227,880 24.5% 1.353.867 27.1% 
2000 344,014 6,227,054 636,348 1 0 . 2 %  2,838,890 45.6% 2,909,336 46.7% 

Total 34,358,090 28,987,633 1,372,966 4.7% 4,688,826 1 6 . 2 %  4,885,707 16.9% 

From this table, one conclusion should be readily apparent: the parameter variance 

component is much more significant than the process variance. The chief reason for this 

is that we have overparameterization of our model; that is, the available 55 data points are 

really not sufficient-to estimate the 12 parameters of the model. The 1994 Zehnwirth 

paper ([ 10], p. 512t) gives a helpful discussion of the dangers of  overparameterization. 
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The main problem is that we are estimating the ultimate loss for each accident year 

independently from the ultimate losses in the other accident years. In effect, we are 

saying that knowing the ultimate loss for accident year 1999 provides no information 

about the ultimate loss for accident year 2000. As such, our model is fitting to what may 

just be "noise" in the differences from one year to the next. 

This conclusion is unsettling, because it indicates a high level of uncertainty not just in 

our maximum likelihood model, but in the chain-ladder LDF method in general. 

4.2 The Cape Cod Method 

A natural alternative to the LDF Method is the Cape Cod method. In order to move on to 

this method, we need to supplement the loss development triangle with an exposure base 

that is believed to be proportional to ultimate expected losses by accident year. A natural 

candidate for the exposure base is onlevel premium - premium that has been adjusted to a 

common level of rate per exposure. 

Unadjusted historical premium could be used for this exposure base, but the impact of the 

market cycle on premium is likely to distort the results. We prefer onlevel premium so 

that the assumption of a constant expected loss ratio (ELR) across all accident years is 

reasonable. 

A further refinement would include an adjustment for loss trend net of exposure trend, so 

that all years are at the same cost level as well as rate level. 

There may be other candidates for the exposure index: sometimes the original loss 

projections by year are available; the use of estimated claim counts has also been 

suggested. In practice, even a judgmentally selected index may be used. 
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For the example in the Mack paper, no exposure base was supplied. For this exercise, we 

will use a simplifying assumption that premium was $10,000,000 in 1991 and increased 

by $400,000 each subsequent year. 

The tabular format of  our loss data is shown in Table 2. l. This is very similar to the 

format used for the LDF Method but instead of the "AY Total" column (latest diagonal), 

we display the onlevel premium for each accident year. The expected ultimate loss by 

year is calculated as the ELR multiplied by the onlevel premium. 

Accident Onlevel Age at Average Growth Premium x Repot ' ted  Ultimate 
Year Premium 12/31/2000 Age(x) Function Growth Func Losses Loss Ratio 

1991 10,000,000 120 114 7 7 , 7 6 %  7 ,775 ,733  3,901,463 50.17% 
1 9 9 2  10,400,000 108 102 7 4 . 8 5 %  7 ,784 ,278  5,339,085 68.59% 
1 9 9 3  10,800,000 96 90 7 1 . 2 9 %  7 ,899 ,022  4,909,315 63:/7% 
1 9 9 4  11,200,000 84 78 6 6 . 8 7 %  7 , 4 8 9 , 2 0 9  4,588,268 61.27% 
1 9 9 5  11,600,000 72 66 6 1 , 3 1 %  7 ,112 ,024  3,873,311 54.46% 
1 9 9 6  12,000,000 60 54 5 4 , 2 4 %  6 ,508 ,439  3,891,712 56,72% 
1 9 9 7  12,4(X),000 48 42 4 5 . 1 7 %  5 ,600 ,712  3,483,130 62.19% 
1 9 9 8  12.800,000 36 30 3 3 . 6 0 %  4 ,301 ,252  2,864,498 66.60% 
1 9 9 9  13,200,000 24 18 1 9 . 4 6 %  2 ,568 ,496  1,363,294 53.08% 
2000 13,600,000 12 6 4.69% 638,334 344,014 53.89% 

Total 116,000,000 57,477,500 34,358,090 ~ - ' ~  

The Loglogistic parameters are again solved for iteratively in order to maximize the 

value of  the log-likelihood function in Table 2.1. The resulting parameters are similar to 

those produced by the LDF method. 

1.447634 

0 48.0205 

One check that should be made on the data before we proceed with the reserve estimate is 

a quick test on the assumption that the ELR is constant over all accident years. This is 

best done with a graph of the estimated ultimate loss ratios: 
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From this graph, the ultimate loss ratios by year do not appear to be following a strong 

autocorrelatinn pattern, or other unexplained trends. If we had observed an increasing or 

decreasing pattern, then there could be a concern of bias introduced in our reserve 

estimate. 

The following calculation shows the method of  estimating reserves out to the 240 month 

evaluation point. As in the LDF method, this truncation point is used in order avoid 

undue reliance on a mechanical extrapolation formula. 

The Cape Cod method works much like the more familiar Bomhuetter-Ferguson formula. 

Estimated reserves are calculated as a percent of  the premxum and the calculated expected 

loss ratio (ELR). 

Accident Onlevel Age at Average Growth 96.83% minus premium Estimated 
Year Premium 12/31/2000 Age (x) Function Growth Fun¢ x ELR Reserves 

240 234 90.83% 
1991 10,000,000 120 114 77.76% 13.07% 5,977,659 781,218 
1992 10.400.000 108 102 74.85% 15,98% 6,216,765 993,281 
1993 10,800,000 96 90 71.29% 19.54% 6,455.872 1,261,416 
1994 11,200,000 84 78 66.87% 23.96% 6,694,978 1,fi04,008 
1995 11,600,000 72 B6 61.31% 29.62% 6,934,085 2,046,646 
1996 12,000,000 60 54 54.24% 36.59% 7,173,191 2,624,620 
1997 12.400,000 48 42 45.17% 45.66% 7,412,297 3,384,400 
1998 12,800,000 36 30 33.60% 57.22% 7,651,404 4,378,344 
1999 13.200,000 24 18 19.46% 71.37% 7,890,510 5,631,298 
2000 13,600,000 12 6 4.69% 86.13% 8.129.616 7,002.255 

T O t a l  118.000.000 70,536,377 29,707,484 

For the variance calculation, we again begin with the process varianCe/mean ratio, which 

follows the chi-square formula. The sum of  chi-square values is divided by 52 (55 data 

points minus 3 parameters), resulting in a 0 .2 of  61,577. This turns out to be less than 
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the 65,029 calculated for the LDF method because there we divided by 43 (55 data points 

minus 12 parameters). 

The covariance matrix is estimated from the second derivative Information Matrix, and 

results in the following: 

ELR 09 0 
ELR ~0.002421 -0.002997 0.242396"] 
co 0.002997 0.007853 -0.401000 | 
0 ~0.242396 -0.401000 33.021994 .]  

The standard deviation of our reserve estimate is calculated in the following table. 

Accident Reported Estimated Process Parameter Total 
Year Losses R e s e ~  Std Dev CV Std Dev CV Std Dev CV 

1991 3,901,463 781,218 219,329 28.1% 158,913 20.3% 270,848 34.7% 
1992 5,339,085 993,281 247,312 24.9% 192,103 19.3% 313,156 31.5% 
1993 4,909,315 1,261,416 278,701 22.1% 229,523 18.2% 361.047 28.6% 
1994 4,588,268 1,604,006 314,277 19.6% 270,790 16.9% 414,846 25.9% 
1995 3,873,311 2,046,646 355,002 17.3% 314.629 15.4% 474,360 23.2% 
1996 3,691,712 2,624,620 402,015 15.3% 358,200 13.6% 538.445 20.5% 
1997 3,483,130 3,384,400 456,510 13.5% 396,353 11.7% 604,563 17.9% 
1998 2,864,498 4,378,344 519,235 11,9% 421,934 9.6% 669,054 15.3% 
1999 1,363.294 5,631,298 588,862 10.5% 430,873 7.7% 729,664 13.0% 
2000 344.014 7,002.255 656,641 9.4% 439,441 6.3% 790,118 11.3% 

Total 34,358,090 29,707,484 1,352,515 4.6% 3,143,967 10.6% 3,422,547 11.5% 

In the earlier LDF example, the standard deviation on the overall reser,,e was 4,885,707 

and this reduces to 3,422,547 when we switch to the Cape Cod method. The reduction is 

primarily seen in the more recent years 1999 and 2000, but is generally true for the full 

loss history. The reduction in the variance (the standard deviations squared) is even more 

extreme - the overall variance in reserves is cut in half. 

This conclusion is at first surprising, since the two methods are very familiar to most 

actuaries. The difference is that we are making use of more information in the Cape Cod 

method, namely the onlevel premium by year, and this information allows us to make a 

significantly better estimate of  the reserve. 
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4.3 Other Calculations Possible with this Model 

Once the maximum likelihood calculations have been done, there are some other uses for 

the statistics besides the variance of the overall reserve. We will briefly look at three of 

these uses. 

4.3.1 Variance o f  the Prospective Losses 

Reserve reviews always focus on losses that have already occurred, but there is an 

intimate connection to the forecast of losses for the prospective period. The variability 

estimates from the Cape Cod method help us make this connection. 

If the prospective period is estimated to include 14,000,000 in premium, we have a ready 

estimate of  expected loss as 8,369,200 based on our 59.78% ELR. The process variance 

is calculated using the variance/mean multiplier 61,577, producing a CV of 8.6%. 

The parameter variance is also readily calculated using the covariance matrix from the 

earlier calculation. 

ELR ~ 0 
ELR f0.002421 -0.002997 0.242396~ 

~0.002997 0.007853 -0 .401000 |  
0 ~0.242396 -0.401000 33 .021994J  

The .002421 variance on the ELR translates to a standard deviation of 4.92% (by taking 

the square root) around our estimated ELR of 59.78%. Combined with the process 

variance, we have a total CV of 11.9%. 

The CV from this estimate can then be compared to numbers produced by other 

prospective pricing tools. 
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4.3.2 Calendar Year Development 

The stochastic reserving model can also be used to estimate development or payment for 

the next calendar year period beyond the latest diagonal. An example, using the LDF 

method is shown below. 

Accident Reported Age at Growth Age at Growth Estimated Est. 12 month 
Year Losses 12/31/2000 Function 12/31/2001 Function Ultimate Development 

1 9 9 1  3,901,463 120 77.24% 132 7 9 . 6 7 %  5,050,867 122,450 
1 9 9 2  5,339,085 108 74.32% 120 7 7 . 2 4 %  7,184,079 210,145 
1993 4,909,315 96 70.75% 108 7 4 . 3 2 %  6,939,399 247,928 
1 9 9 4  4,588,268 84 66.32% 96 7 0 . 7 5 %  6,917,862 305,811 
1995 3,873,311 72 60.78% 84 6 6 . 3 2 %  6,372,348 353,146 
1 9 9 6  3,691,712 60 53.75% 72 6 0 . 7 8 %  6,867,980 482,859 
1997 3,483,130 48 44.77% 60 5 3 . 7 5 %  7,780,515 699,093 
1 9 9 8  2,864,498 36 33.34% 48 4 4 . 7 7 %  8,590,793 981,372 
1 9 9 9  1,363,294 24 19.38% 36 3 3 . 3 4 %  7,033,659 981,996 
2000 344,014 12 4.74% 24 1 9 . 3 8 %  7,261,205 1,063,384 

Total 34,358,090 69,998,708 5,448,182 

The estimated development for the next 12-month calendar period is calculated by the 

difference in the growth functions at the two evaluation ages times the estimated ultimate 

losses. The standard deviation around this estimated development is: 

Accident Reported Est. 12 month Process Parameter Total 
Year Losses Development Std Dev CV Std Dev CV Std Dev CV 

1991 3,901,463 122,450 89,234 72.9% 24,632 20.1% 92,572 75.6% 
1 9 9 2  5,339,085 210,145 116,900 55.6% 37,767 18.0% 122,849 58.5% 
1 9 9 3  4,909,315 247,928 126,974 51.2% 42,716 17.2% 133,967 54.0% 
1 9 9 4  4,588,268 305,811 141,020 46.1% 50,260 16.4% 149,708 49.0% 
1995 3,873,311 353,146 151,541 42.9% 57,208 16.2% 161,980 45.9% 
1 9 9 6  3,691,712 482,859 177,200 36.7% 74,987 15.5% 192,413 39.8% 
1 9 9 7  3,483,130 699,093 213,217 30.5% 106,043 15.2% 238,131 34.1% 
1 9 9 8  2,864,498 961,372 252,621 25.7% 158,978 16.2% 298,482 30.4% 
1 9 9 9  1,363,294 981,696 252,702 25.7% 225,920 23.0% 338,966 34.5% 
2000 344,014 1,063,384 262,965 24.7% 480,861 45.2% 548,(TO8 51.5% 

Total 34,358,090 5,448,182 595,223 10.9% 635,609 11.7% 870,798 16.0% 

A major reason for calculating the 12-month development is that the estimate is testable 

within a relatively short timeframe. If we project 5,448,182 of development, along with a 

standard deviation of 870,798, then one year later we can compare the actual 

development and see if it was within the forecast range. 
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4.3.3 Variability in Discounted Reserves 

The mathematics for calculating the variability around discounted reserves follows 

directly from the payout pattern, model parameters and covariance matrix already 

calculated. The details are provided in Appendix C. This calculation is, of  course, only 

appropriate if the analysis is being performed on paid data. 

For the Cape Cod calculation of reserves, along with the 240 month truncation point, the 

discounted reserve using a 6.0% rate is provided below. 

Accident Estimated Discounted Process Parameter Total 
Year Reserves Reserves Std Dev CV. Std Oev C.V. Std Dev CV. 

1991 761,218 632,995 179,807 28.4% 125,961 19.9% 219,538 34,7% 
1992 993,281 796,674 201,069 25.2% 149,889 18.8% 250,670 31.5% 
1993 1,251,416 1,003.816 225,216 22.4% 175,599 17,5% 285,767 28.5% 
1994 t,604.006 1.269,446 252,987 19.9% 204,084 16.1% 325,043 25.6% 
1995 2,046,646 1,614.650 285,275 17.7% 232.952 14.4% 368.305 22.6% 
1996 2.624,620 2.068,611 323.114 15.6% 259,904 t2.6% 414,672 20.0% 
1997 3.384,400 2,669,559 367,518 13,6% 280.605 I0.5% 462,394 17,3% 
1998 4.378.344 3,459.057 418,912 121% 289,875 8.4% 509,427 14.7% 
1999 8,631.298 4.449.320 475,291 10.7% 286.857 6.4% 555.147 12,5% 
2000 7.002.255 5.490,513 526,186 9.6% 284,582 5.2% 598.213 10.9% 

Total 29,707,484 23,454,641 1,089,311 4.6% 2,195,224 9.4% 2,453,322 10.5% 

From Section 4.2 above, we saw that the full-value reserve of 29,707,486 had a CV of 

11.5%. The discounted reserve of 23,454,641 has a CV of 10.5%. The smaller CV for 

the discounted reserve is because the "tail" of  the payout curve has the greatest parameter 

variance and also receives the deepest discount. 
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Section 5: Comments and Conclusion 

5.1 Comments 

Having worked through an example of  stochastic reserving, a few practical comments are 

in order. 

1) Abandon your triangles! 

The maximum likelihood model works most logically from the tabular format of  data as 

shown in tables 1.1 and 2.1. It is possible to first create the more familiar triangular 

format and then build the table, but there is no need for that intermediate step. All that is 

really needed is a consistent aggregation of losses evaluated at more than one date; we 

can skip the step of  creating the triangle altogether. 

2) The CV Goes with the Mean 

The question of  the use of the standard deviation or CV from the MLE is common. I f  we 

select a carried reserve other than the maximum likelihood estimate, then can we still use 

the CV from the model? 

The short answer is "no". The estimate of the standard deviation in this model is very 

explicitly the standard deviation around the maximum likelihood estimate. I f  you do not 

trust the expected reserve from the MLE model, then there is even less reason to trust the 

standard deviation. 

The more practical answer is an equivocal "yes", The final carried reserve is a selection, 

based on many factors including the use of a statistical model. No purely mechanical 

model should be the basis for setting the reserve, because it cannot take into account all 

of the characteristics of the underlying loss phenomenon. The standard deviation or CV 
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around the selected reserve must therefore also be a selection, and a reasonable basis for 

that selection is the output of the MLE model. 

The selection of a reserve range also needs to include consideration about changes in mix 

of business and the process of settling claims. These types of considerations might better 

be labeled "model variance", since by definition they are factors outside of the 

assumptions of the model. 

3) Other Curve Forms 

This paper has applied the method of.maximum likelihood using growth curves that 

follow the Loglogistic and Weibull curve forms. These curves are useful in that they 

smoothly move from 0% to 100%, they often closely match the empirical data, and the 

first and second derivatives are calculable without the need for numerical 

approximations. However, the method in general is not limited to these forms and a 

larger library of curves can be investigated. 

In this paper the Loglogistic and Weibull curves were applied to the average evaluation 

age, rather than the age from inception of the historical policy period. This was done for 

practical purposes, and is one way of improving the fit at immature ages. When 

evaluation ages fall within the period being developed (that is the period is not yet fully 

earned), then a further annualizing adjustment is needed. The formulas for this 

adjustment are given in Appendix B. 

5.2 Conclusion 

The method of maximum likelihood is a very useful technique for estimating both the 

expected development pattern and the variance around the estimated reserve. The use of 

the over-dispersed Poisson distribution is a convenient link to the LDF and Cape Cod 

estimates already common among reserving actuaries. 
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The chief result that we observe in working on practical examples is that the "parameter 

variance" component is generally larger than the "process variance" - most of  the 

uncertainty in the estimated reserve is related to our inability to reliably estimate the 

expected reserve, not to random events. As such, our most pressing need is not for more 

sophisticated models, but for more complete data. Supplementing the standard loss 

development triangle with accident year exposure information is a good step in that 

direction. 
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Table 1.1 
Original Triangle in Tabular Format 

AY From To Increment DiaqA~e AY Total 
1991 0 12 357,848 120 3,901,463 
1991 12 24 766,940 120 3.901,463 
1991 24 36 610.542 120 3,901,463 
1991 36 48 447,378 120 3,901,463 
1991 48 60 562,888 120 3,901,463 
1991 60 72 574,398 120 3,901,463 
1991 72 84 146,342 120 3,901,463 
1991 84 96 139,950 120 3,901,463 
1991 96 108 227,229 120 3.901,463 
1991 108 120 67,948 120 3,901,463 
1992 0 12 352,118 108 5,339,085 
1992 12 24 884,021 108 5.339.085 
1992 24 36 933,894 108 5,339,085 
1992 36 48 1,183.289 108 5.339,085 
1992 48 60 445.745 108 5,339,085 
1992 60 72 320,996 108 5,339,085 
1992 72 84 527,804 108 5.339,085 
1992 84 96 266,172 108 5,339,085 
1992 96 108 425,046 108 5,339,085 
1993 0 12 290,507 96 4.909,315 
1993 12 24 1,001,799 96 4,909,315 
1993 24 36 926,219 96 4,909,315 
1993 36 48 1.016,654 96 4,909,315 
1993 48 60 750,816 96 4,909,315 
1993 60 72 146,923 96 4.909.315 
1993 72 84 495,992 96 4,909,315 
1993 84 96 280,405 96 4,909,315 
1994 0 12 310,608 84 4,588,268 
1994 12 24 1,108,250 84 4.588,268 
1994 24 36 776.189 84 4,588,268 
1994 36 48 1,862.400 84 4,588,288 
1994 48 50 272,482 84 4.588,268 
1994 60 72 352,953 84 4,588,268 
1994 72 84 206,286 84 4,588,268 
1995 O 12 443.160 72 3,873,311 
1995 12 24 693,190 72 3,873,311 
1995 24 36 991,983 72 3,873,311 
1995 36 48 769,488 72 3,873,311 
1995 48 60 504,851 72 3,873,311 
1995 60 72 470,639 72 3,873.311 
1996 0 12 396r132 60 3,691,712 
1996 12 24 937,085 60 3.691,712 
1996 24 36 847.498 60 3,691,712 
1996 36 48 805,037 60 3,691,712 
1996 48 60 705,960 60 3,691,712 
1997 102 12 440,832 48 3,483,130 
1997 24 847,631 48 3.483,130 
1997 24 36 1,131~398 48 3,483,130 
1997 36 48 1,063.269 48 3,483,130 
1998 9 12 359,480 36 2,864,498 
1998 12 24 1,061,648 36 2,864,498 
1998 24 36 1,443,370 36 2.864,498 
1999 0 12 376,586 24 1,363,294 
1999 12 24 986,608 24 1,363.294 
2000 0 12 344,014 12 344.014 
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Table 1.2 
Triangle Collapsed for Latest Three Diagonals 

AY From To Incr~nent Diag Age AY Total 
1991 O 96 3,606,286 120 3,901,463 
1991 66 108 227.229 120 3,901,463 
1991 108 120 67,948 120 3,901,463 
1992 O 84 4,647,867 108 5,339,085 
1992 94 96 266,172 106 5,339,085 
1992 96 108 425,046 108 5,339,085 
1993 0 72 4,132,918 96 4,909,315 
1993 72 84 495,992 96 4.909,315 
1993 84 96 280,405 96 4,909.315 
1994 O 60 4,029,929 84 4,588,268 
1994 60 72 352,C53 84 4,588,268 
1994 72 84 206,286 84 4,588,268 
1995 0 48 2,897,821 72 3,873.311 
1995 48 60 504,851 72 3,873,311 
1995 60 72 470,639 72 3,873,311 
1996 O 36 2,180,715 60 3,691,712 
1996 36 48 805,037 60 3,691,712 
1996 48 60 705,960 60 3,691,712 
1997 O 24 1,288,463 48 3,483,130 
1997 24 36 1,131,398 48 3,483,130 
1997 36 48 1,063,269 48 3.483,130 
1998 O 12 359,480 36 2,B64,498 
1998 12 24 1,061,648 36 2,864,498 
1998 24 36 1,443,370 36 2,864,498 
1999 0 12 376.686 24 1,363,294 
1999 12 24 986,6C8 24 1,363,294 
2000 0 12 344.014 12 344.014 
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Table 1.3 
Latest Diagonal Representing only 9 Months of Development 

a v  Emm Ysa t~r.mme.at ~ 
1991 6 12 357,848 
1991 12 24 766,940 
1991 24 36 610,542 
1991 36 48 447,378 
1991 48 60 562,888 
1991 60 72 574,398 
1991 72 84 146,342 
1991 84 96 139.950 
1991 96 108 227,229 
1991 106 117 67,948 
1992 0 12 352,118 
1992 12 24 884,021 
1992 24 36 933,894 
1992 36 48 1~183,299 
1992 48 60 445,745 
1992 60 72 320,996 
1992 72 84 527,804 
1992 84 "96 266.172 
1992 96 105 425,046 
1993 0 12 290.507 
1993 12 24 1,001.799 
1993 24 36 926,219 
1993 36 48 1,016,664 
1993 48 60 750,816 
1993 60 72 146,923 
1993 72 84 495,992 
1993 84 93 280,405 
1994 0 12 310,608 
1994 12 24 1,108,250 
1994 24 36 776,189 
1994 36 48 1,562,400 
1994 48 60 272,482 
1994 60 72 352,053 
1994 72 81 206,286 
1995 0 12 443,160 
1995 12 24 693,190 
1995 24 36 991,983 
1995 36 48 769,488 
1995 48 60 504,851 
1995 60 69 470,639 
1996 0 12 396,132 
1996 12 24 937,085 
1996 24 36 847,498 
1996 36 48 805.037 
1996 48 57 705,960 
1997 0 12 440,832 
1997 12 24 847,631 
1997 24 36 1,131,398 
1997 36 45 1.063,269 
1998 0 12 359,480 
1998 12 24 1,061,648 
1998 24 33 1,443,370 
1999 0 12 376,686 
1999 12 21 986,608 
2000 0 9 344,014 

117 3,901,463 
117 3,901,463 
117 3,901,463 
117 3,901,463 
117 3,901.463 
117 3,901,463 
117 3.901,463 
117 3,901,463 
117 3,901.463 
117 3,901,463 
105 6.339.085 
105 5,339,086 
105 5,339,085 
105 5,339,085 
106 5.339,085 
105 5,339,085 
105 5.339,085 
106 5,339,085 
105 5,339,085 
93 4,909,315 
93 4,909.316 
93 4,909,315 
93 4,909,315 
93 4,909,315 
93 4,909,315 
93 4.909,315 
93 4,909.315 
81 4,588,268 
81 4,588,268 
81 4,588,268 
81 4,588,268 
81 4,588.268 
81 4,588,268 
81 4,688.268 
69 3,873,311 
69 3,873,311 
69 3,873,311 
69 3,873,311 
69 3,873,311 
69 3,873,311 
57 3,691.712 
57 3,691,712 
57 3,691,712 
67 3,691.712 
57 3,691,712 
45 3,483.130 
45 3,483,130 
45 3,483,130 
45 3,483,130 
33 2,864,498 
33 2,864,498 
33 2,864,498 
21 1 ~363,294 
21 1,363,294 
9 344,014 
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Table 1.4 
Original Triangle along with Fitted Values - 

AY From To Irlcrement Dia~ Ago AY Total 
1991 0 12 357.848 120 3.901.463 
1991 12 24 766.940 120 3.901.463 
1991 24 36 610,542 120 3.901.463 
1991 36 48 447,378 120 3.901.463 
1991 48 60 562.888 120 3.901.463 
1991 60 72 574.398 120 3,901.463 
1991 72 84 146.342 120 3,901.463 
1991 84 96 139.950 120 3.901,463 
1991 96 108 227.229 120 3.901,463 
1991 108 120 67.948 120 3.901.463 
1992 0 12 352,118 108 5.339.085 
1992 12 24 884.021 108 5.339.085 
1992 24 36 933.894 108 5.339.085 
1992 36 48 1.183.289 108 5.339.085 
1992 48 60 445,745 108 5.339.085 
1992 60 72 320.996 108 5,339.085 
1992 72 84 527.604 108 5.339.085 
1992 84 96 266,172 108 5.339.085 
1992 96 108 425.046 108 5.339.085 
1993 0 12 290.507 96 4.909.315 
1993 12 24 1.001.799 96 4.909.315 
1993 24 36 926.219 96 4.909.315 
1993 36 48 1.016.654 96 4.9G9.315 
1993 48 60 750.816 96 4.909,315 
1993 60 72 146.923 96 4.909.316 
1993 72 84 495,992 96 4.909.315 
1993 84 96 280.405 96 4.909.315 
1994 0 12 310.608 84 4.588.268 
1994 12 24 1.108.250 84 4,588.268 
1994 24 36 776.189 84 4.588.268 
1994 36 48 1.562.400 84 4.588.268 
1994 48 60 272.482 84 4.588,268 
1994 60 72 352,053 84 4.588.268 
1994 72 84 206.286 84 4.588.268 
1995 0 12 443.160 72 3,873.311 
1995 12 24 693.190 72 3.673.311 
1995 24 36 991.983 72 3.873.311 
1995 36 48 769,488 72 3.873.311 
1995 48 60 504.551 72 3,873.311 
1995 60 72 470.639 72 3.873.311 
1996 6 12 396.132 60 3,691.712 
1996 12 24 937,085 60 3,691.712 
1996 24 36 847.498 60 3.691,712 
1996 36 48 805.037 60 3.691,712 
1996 48 60 705.960 60 3.691.712 
1997 0 12 440.832 48 3.483.130 
1997 12 24 847.631 48 3.483.130 
1997 24 36 1.131.398 48 3,483,130 
1997 36 48 1.063,269 48 3.483.130 
1998 0 12 359,480 36 2,864.498 
1998 12 24 1,061,648 36 2~864.498 
1998 24 36 1.443,370 36 2,864,498 
1999 O 12 376,686 24 1,363,294 
1999 12 24 986,606 24 1,363,294 
2000 0 12 344.014 12 344,014 

34.358.090 

LDF Method 

EsL ULT Fitted MLETerm Chi-Square 
5,050.868 239.295 4.192.814 58,734 
6.050.868 739,686 9,624,727 1.004 
5,050.868 705,171 7,516.507 12,698 
5,050.868 576.987 5.357,739 29,114 
5.050.868 453.829 6.878.055 26.206 
5.050.868 355.106 6.985.799 135.422 
5.050.868 279 .911  1.555.543 63.737 
5,050.868 223,278 1.500.370 31.098 
5,050.868 180.455 2.569,751 12.124 
5.050,866 147.745 661.056 43,099 
7.184,081 340.360 4.144.834 496 
7.184,081 1.052,089 11.206.001 26.848 
7,184.081 1.002.997 11,902.020 4,761 
7.184.081 820,675 15.293.216 160.220 
7,184.081 645.502 5,317.578 61,817 
7,184.081 505,083 3,710,390 67,094 
7.184.081 398 .131  6.407,657 42.235 
7.184.081 317.579 3.054.416 8,321 
7.184.061 256,670 5,037.510 110.456 
6,939.401 328,768 3,361.574 4.453 
6.939.401 1.016,256 12.840.263 206 
6.939,401 968.836 1t.798.028 1,875 
6.939.401 792,724 13.016.722 63,266 
6,939.401 623,517 9,394.719 25,990 
6.939.401 487.881 1,436.491 238.280 
6,939.401 384 .571  5,993,828 32,282 
6.939,401 306,763 3,235.826 2.265 
6,917,864 327,748 3,616.974 896 
6.917.864 1.013.102 14,312.364 8.936 
6.917.864 965.829 9.730,631 37.236 
6.917.864 790.264 20.427,319 754.424 
6,917.864 621.582 3.013.334 196.065 
6,917,864 486,366 4,123.668 37,092 
6.917.664 383,377 2.268,795 81,803 
6.372,350 301.903 5.289,828 66.093 
6.372,350 933,213 8.595.646 61.734 
6,372.350 889.668 12,699.114 11.767 
6,372.350 727,947 9,658.589 2,371 
6,372.350 572,566 6,120,690 8.008 
6,372.350 448,014 5,676,214 1.143 
6.867.982 325.384 4.792,625 15,382 
6.867.962 1,005,797 11,945,927 4.694 
6.867.982 956.865 10,714,153 12.935 
6,867,982 784,566 10,142.109 534 
6.867.982 617,100 8,795.314 12.796 
7.780,518 368.618 5,281,753 14.147 
7.780,518 1.139.436 10.681.663 74.730 
7,780.518 1.086.268 14,638,194 1.875 
7.780.518 888,809 13,675.465 34.244 
8.590.795 407.006 4~236.247 5,550 
8,590,795 1.258.098 13.652.867 30.675 
8,590,795 1.199.393 19,003.928 49,629 
7.033.660 333.234 4.456.931 5.666 
7,033.660 1,030.060 12,629,654 1,833 
7.261.202 344.014 4,1341.627 0 

34,358.090 2,796.260 
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Table 2.1 
Original Triangle along with Fitted Values - Cape Cod Method 

AY From To Increment Oiaq Aqe Premium 
1991 0 12 357,848 120 10,000,090 
1991 12 24 766,940 120 10,000,000 
1991 24 36 610,542 120 10,000,600 
1991 36 48 447,376 120 10,000,000 
1991 48 60 562,888 120 10,900,000 
1991 60 72 574,398 120 10,000,000 
1991 72 84 146,342 120 10,600,000 
1991 84 96 139,950 120 10,000,000 
1991 96 108 227,229 120 10,000,000 
1991 106 120 67,948 120 10,000,000 
1992 O 12 352,118 108 10,400,000 
1992 12 24 684,021 106 10,400,000 
1992 24 36 933,894 108 10,400,000 
1992 36 48 1,183,289 108 10,400,000 
1992 48 60 445,745 108 10,400,000 
1992 60 72 320,996 108 10,400,000 
1992 72 84 527,804 108 10,400,000 
1992 84 96 266,172 109 10,4OO,O00 
1992 £6 106 425.046 108 10,400,000 
1993 0 12 290,507 £6 10,800,000 
1993 12 24 1,001,799 £6 10.800,000 
1993 24 36 926,219 £6 10,800,000 
1993 36 48 1,016,654 96 10,800,000 
1993 48 60 750,816 £6 10,500,000 
1993 60 72 146,923 96 10,800,000 
1993 72 84 495,992 £6 10,900,000 
1993 84 £6 280,405 £6 I0,800,000 
1994 O 12 310,606 84 11,200,000 
1994 12 24 1,108,250 84 11,200,000 
1994 24 36 776,189 84 11,200,000 
1994 36 48 1,662,400 84 11,200,000 
1994 48 60 272,482 84 11,200,000 
1994 60 72 352,053 84 11,200,000 
1994 72 84 206,286 84 11,200,000 
1995 0 12 443,160 72 11.606,000 
1995 12 24 693,190 72 11.600,000 
1995 24 36 991,983 72 !1,600,000 
1995 36 48 769,488 72 11,600,000 
1995 48 60 504,851 72 11,600,000 
1995 60 72 470,639 72 11,600,000 
1996 0 12 396,132 60 12,000,000 
1996 12 24 937,085 60 12,000,000 
1996 24 36 847,498 60 12,000,000 
1996 36 48 805,037 60 12,000,000 
1996 48 60 705,960 60 12,000,000 
1997 0 12 440,832 48 12,400,000 
1997 12 24 847,831 48 12,400,000 
1997 24 36 1,131,398 48 12,400,000 
1997 36 48 1,063,269 48 12,400,000 
1998 0 12 359,480 36 12,800,000 
1998 12 24 1,061r646 36 12,500,000 
1998 24 36 !,443,370 36 12,800,600 
1999 O 12 376,686 24 13,200000 
1999 12 24 986,606 24 13,200,000 
2000 0 12 344,014 12 13600,000 

34,369,090 

Est. ULT Fitted MLE Term Chi-Square 
5,977,659 28&569 4,208,482 21,285 
5,977,659 862,582 9,817,292 15,152 
5,977,659 845,554 7,486,969 65,319 
5,977,659 691,227 5,324,318 86,024 
5,977,659 542,171 6,689,629 792 
5,977,659 422,833 7,018,339 54,329 
6,977,659 332,202 1,528,317 103,965 
5,977,659 264,171 1,463,014 58,412 
5,977,659 212,900 2,574,877 964 
5,977,859 173,860 646,001 64,519 
6,216,765 291,792 4,139,169 12.472 
6,216,765 917,885 11,219,571 1,249 
6,216,765 879,376 11,902,601 3,380 
6,216,765 718,876 15,238,302 300,023 
6,216,765 563,856 5,338,946 24,742 
6,216,765 439,746 3,731,261 32,066 
5216,765 345,490 6,365,446 96,207 
6,216,765 274,738 3,058,687 267 
6,216,765 221,416 5,009,964 167,273 
6,455,872 303,015 3,363,630 516 
6,455,872 953,188 12,839,147 2,479 
6,455,872 913.198 11,798,887 195 
6,455,872 746,525 13,001,675 97,746 
6,455,872 585,545 9,385,515 46,646 
6,455,872 456,660 1,457,996 210,084 
6,455,872 358,778 5,985,187 52,477 
6465,872 265,305 3,236,950 84 
6,694,979 314,238 3,617,409 42 
6,694,976 988,491 14,309,720 14,509 
6,694,979 947,020 9,734,175 30,816 
6,694,976 774,174 20,411,270 802,533 
6,694,978 607,232 3,021,320 184,538 
6,594,978 473,573 4,127,077 31,182 
6,694,976 372,066 2,273,929 73,866 
6,934,085 325,460 5,299,566 42,565 
6,934,065 1,023,795 8,569,280 106,759 
6,934,085 980,842 12,704,721 127 
6,934,085 801,823 9,659,092 1,304 
6,934,085 628,919 6,111,729 24,475 
6,934,085 490,486 5,676,368 803 
7,173191 336,683 4,704,848 10,497 
7,!73,191 1,059,098 11,941,015 14,056 
7,173,191 1,014,664 10,706,291 27,541 
7,173,191 829,472 10,142,011 720 
7,173.191 650,606 8,799,134 4710 
7,412,297 347,906 5,276,973 24,821 
7,412,297 1,094,401 10,092,516 55,643 
7,412,297 1,048,487 14,635,924 6,556 
7,412,297 657,121 13,668,552 49,581 
7,651,404 359,129 4,239,137 O 
7,651,404 1,129,704 13,666,979 4.100 
7,651.404 1,082,309 18,972,750 120,451 
7,890,510 370.351 4,459,595 108 
7890,510 1165,008 12,616,168 27,319 
8.129,616 381,574 4,039715 3697 

34,358,090 3,202,001 
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Appendix A: Derivatives of the Loglikelihood Function 

The loglikelihood function for the over-dispersed Poisson is proportional to 

~, = Z c , . h - . @ , ) - U ,  
i 

where /.l,., = ELR.P~.[G(x, IoJ,O)-G(x,_, I~o,0)] 
as described in section 2.2 of this paper. The derivatives below are then used to complete 

the Information Matrix needed in the parameter variance calculation. 

The derivatives of the exact loglikelihood function would require dividing all of these 

numbers by the constant scale factor ~ ~ , but it is easier to omit that here and apply it to 

the final covariance matrix at the end. 

OELR 2 = 

o2e Z p  ' [~GI,<,) ~GO<,_,!] 
bELROO ,., "[" ' ~  20 J 

, .  c, 
{)-"~ -- a(x, ) -  G(x,_ 1 ) ELR. P~ "L' - ~  {)to J] 

a~o ~ (c(x, ) -  C(x,_,))~ j / ~,o ~o j 

~<°2 Jl 
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~2e 
3co 30 

_- y_I[ -~,, , IP  ~(x,) ~u,-,/.1p~tx,) 
,.,tL(~(x,)-~(x,_l))JL~ a,,, J L ~  a~'-'!]+ 

[G(~,)-G(~,_,) z e 1 ra*G(~,) a~(x,_,).] 1 
c,, -E R-,J. [  ~ at.oao j j  

a0 C(x,)-G(x,_,) L ,30 

~,e _rr -c, ,  ]r~c(x,)~_~,_,)]' 
~o~ -- ~lL/~/x, /~/x,_, / /"Jt-  ~ + 

cu ELR 
'J [ ao' ~ JJ 

For the LDF Method, these same formulas apply but replacing: 

ELR .-.e ULT~ and P~ --e 1. 
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Weibull Distribution 

G(x) = F(x) = 1 -  exp[-(x/O) '°] 

~ = ~-lol~e~P~-~°~x 
E[xq  = O ~ . r ( l + k / c o )  

0 is approximately the 63.2%-tile = 1 -exp [ -1 ] ,  LDF o ~. 1.582 

aa(~) 
3to 

3G(x) 
- exp [-a~lL,o,j • 

~0 

a~ a(~) 

32G(x)  

3oJ30 

302 _ exp~_~j./o;./~/.{ l+~.E'-/o;l} 
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Loglogistic Distribution (for "inverse power" LDFs) 

x~ ( 1  / 
G ( x )  = F ( x )  x°' +O °~ - 1 - - l + ( x / O ) ~  o 

~,(xo)(oo~ 
:(x) = x.tx--~+o~j.tx~--7-~- J 

E[x*] = O k. r(l+ k/~).r(1-k/~) 

0 is the median of the distribution L D F  e = 2.000 

OG(x)  

~w 
{ x ° " { 0 "  

aG(.) 
oo 

_ ( x °  )( o° ~(-,o~ 
t :--7-~-j t ~-~+o~ j t T  ) 

a ~ G(~) 

0¢o 2 

X° O°  x 2 X¢° 

~2°/x>/~o2 xo xo+o° l/ : oo+oo )C-~/{,+° [, 2 ( o ~  ~ x° 1} 
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Appendix B: Adjustments for Different Exposure Periods 

The percent of ultimate curve is assumed to be a function of the average accident date of  

the period being developed to ultimate. 

G" (x [ co, 0) = cumulative percent of  ultimate as of  average date x 

Further, we will assume that this is the percent of ultimate for the portion of the period 

that has already been earned. For example, if we are 9 months into an accident year, then 

the quantity G°(4.5 1 o9,0) represents the cumulative percent of  ultimate of  the 9-month 

period only. The loss development factor LDF 9 = l /G ' (4 .5  1~o,0) is the adjustment 

needed to calculate the ultimate loss dollars for the 9-month period (before annualizing). 

In order to estimate the cumulative percent of  ultimate for the full accident year, we also 

need to multiply by a scaling factor representing the portion of the accident year that has 

been eamed. 

The AY cumulative percent of  ultimate as of  9 months is 

GAv(9[09,0) = /1-~/ 'G'(4.51¢o,0) 

We find therefore that we need to make two calculations: 

1) Calculate the percent of the period that is exposed; Expos(t) 

2) Calculate the average accident date given the age from inception t; AvgAge(t) 

These functions can be easily calculated for accident year or policy year periods. 
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1) Calculate the percent of the period that is exposed: Expos(t) 

For accident years (AY): 

= Jt/12 t-<12 
Expos(t) 

tl t>12 
o r  

For policy years (PY): 

J{. (t/12) 2 t <_ 12 
Expos(t) ] 

[ l - ~ . m a x (  2 - t / 1 2 , o )  2 t >12 

100.0% 

80.0% 

60.0% 

" 40.0% 

20.0% 

0,0% 

Cumulative Percent of Exposure Expos(t) 

j 

I 2 3 4 5 6 7 8 9 10 11 12 13 ~4 15 16 17 18 19 20 21 22 23 24 25 26 27 

E v a ~  Age in Months = t 
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2) Calculate the average accident date of the period that is earned: AvgAge(t) 

For accident years (AY): 

It / 2 t <_ 12 
A vgAge(t) 

[ t - 6  t > 1 2  

or AvgAge(t) = rnax(t-6,t/2) 

For policy years (PY): 

A vgAge(t) I t~3 

( t - 1 2 ) + ~ .  ( 2 4 -  t).  (1 - Expos(t)) 
Expos(t) 

t_<12 

t > 1 2  

The final cumulative percent of ultimate curve, including annualization, is given by: 

[ GAvo, ey(t ]co, O) = Expos(t).G*(AvgAg4t)[co, O)] 
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Appendix C: Variance in Discounted Reserves 

The maximum likelihood estimation model allows for the estimation o f  variance o f  

discounted reserves as well as the variance o f  the full-value reserves. These calculat ions 

are a bit more tedious, and  so are given just  in this appendix. 

Calculation of Discounted Reserve 

We begin by  recall ing that the reserve is estimated as a sum o f  portions o f  all the 

historical accident  years,  and is calculated as: 

Reserve: R = yd . t~  . . . .  = ~ U L T A r ( G ( y ) - G ( x ) )  
AY AY 

This expression can be expanded as the sum o f  individual increments.  

y - x  

R = ] ~ U L r ~ . ( ~ ( x + ~ ) - G ( ~ + k - I ) )  
,IY k=l 

To be even more  precise, we could write this as a continuous function. 

Y 0 G(t) 
R = 2 ~ U L J ~ r . J g ( t ) d t  where g ( t ) -  

3 t  AY 

The value o f  the discounted reserve R a would then he writ ten as follows. 

Y t 1 
R a = Z U L T A r . ~ v - X .  g( t )dt  where v = -  

At x 1 + i  

For  purposes o f  this paper,  we will assume that the discount rate i is constant. There is 

also some debate as to what  this rate should be (cost o f  capital?, market  yield?), but we 

will avoid that discussion here. 

An  interesting note on this expression is seen in the case o f  x = 0  and y = o o ,  in which  the 

form o f  the discounted loss at time zero is directly related to the moment  generat ing 

function o f  the g rowth  cur~e. 

i v ' . g ( y ) d t  = Se-""°+°.g( t )d t  = M G F ( - I n ( I + i ) )  
0 0 
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Unfortunately, for the Logtogistic and Weibull growth curves, the moment generating 

function is intractable and so does not simplify our calculation. For practical purposes 

we will use the incremental approximation instead. 

y - x  

R~ ~ ~,YyLTA,.v ..... (G(~ + k ) - G ( ~  + k -  1)) 
A Y  k - [  

The variance can then be calculated for the discounted reserve in two pieces: the process 

variance and the parameter variance. 

Process Variance 

The process variance component is actually trivial to calculate. We already know that the 

variance of the full value reserve is estimated by multiplying by the scale factor a 2. We 

then need to recall that the variance for some random variable times a constant is given 

by Var(v ~ .R) = v 2k .Var(R). 

The process variance of the discounted reserve is therefore: 

y x  

Var(Rd) = crZ. y~yULTA,..v2k-l.(G(x +k)-G(x +k - l ) )  
A Y  k~l  

Parameter Variance 

The parameter variance again makes use of the covariance matrix of the model 

parameters Z. The formula is then given below. 

Var(E[Ra] ) = (ORa)'.Z.(c3R,) 

where 

= L ORa ORa 0 - ~ )  for theCapeCodmethod ~Ra \~ELR' ~ '  - 

o r  

l aR~ for the LDF method 
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In order to calculate the derivatives of the discounted reserves, we make use of the same 

mathematical expressions as for the full value reserves. That is, 

O=ff_R = ~)-~.O/.tAy,~ becomes ORa = ~vAr.x "o#Ar'~ 

The calculation is similar to the variance calculation for the full value reserve, but now it 

is expanded for each increment so that the time dimension is included. The complexity 

of the calculations does not change, but the number of times they are performed greatly 

increases. 

The combination of the process and parameter variances is simple addition, the same as 

for the full value reserves, since we make the assumption that the two sources of variance 

are independent. 
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