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Abstract 

Multifractals are mathematical generalizations of fractals, objects displaying "fractional 
dimension," "scale invariance," and "self-similarity." Many natural phenomena, includ- 
ing some of considerable interest to the casualty actuary (meteorological conditions, 
population distribution, financial time series), have been found to be well-represented by 
(random) multifraetals. In this part I paper, we define and characterize multifractals and 
show how to fit and simulate multifractal models in the context of two-dimensional 
fields. In addition, we summarize original research we have published elsewhere 
concerning the multifractal distribution of insured property values, and discuss how we 
have used those findings in particular and multifractal modeling in general in a severe 
storm catastrophe model. 

Introduction 

In this section, we introduce the concepts of fractals and multifractals. 

Fraetals 

Mathematicians have known of sets whose dimension is not a whole number for some 
time, but the term "fractal'" emerged on the scientific and popular scenes with the work of 
Benoit Mandlebrot in the 1960s and 1970s [Mandlebrot 1982]. 

Mathematically, a fractal can be defined as a point set with possibly non-integer 
dimension. Examples of fractals include continuous random ~alks (Weiner processes), 
the Cantor set, and the Sierpinski triangle (the latter two discussed below). Phenomena in 
natqre that resemble fi-actals include dust spills and coastlines. 

Regular tYactals possess the attribute of self-similarity. This means that parts of the set 
are similar (in the geometrical sense of equivalence under a transformation consisting of 
magnification, rotation, translation, and reflection) to the whole. This givcs regular 
fractals an "infinite regress" look, as the same large-scale geometrical features are 
repeated at ever smaller and smaller scales. Self-similarity is also known as scale 

The authors would like to thank Jol~l Mangano for his contributions to this paper, Shaun Lovejoy and 
Daniel Schertzer tbr their helpful conversations, and Gary Venter for his review of an early draft. Errors, 
of cottrse, are solely the responsibility of the authors. 
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symmetry or scaling - the fractal doesn ' t  have a characteristic scale at which its features 
occur; they occur at all scales equally. 

Irregular fractals do not possess  strict self-similarity, but possess  statistical self-similarity 
and scaling. This will be clarified below. 

The key numerical index o f  a fractal, i t s fractal  dimension, deserves further explanation. 
It is not immediately obvious how the concept o f  dimension from linear algebra, the 
m a x i m u m  number  o f  linearly independent vectors in a space, can be generalized to 
include the possibility o f  noninteger values. While there are several ways  o f  doing so - 
and they often coincide - the so-called capacity dimension (somet imes  misnamed the 
Hausdorf f  dimension 2) is perhaps the easiest to understand. 

Consider  a closed and bounded subset  S o f  N-dimensional  Euclidean space R N. We 
define a covering o f  S o f  size ~. to be a set o f  hypercubes {Hi} such that (1) each 
hypercube is o f  size ~. on a side and (2) the set S is contained within the union o f  all 
hypercubes uHi .  For any ~., let n(~.) be the m i n i m u m  number  o f  hypercubes needed to be 
a covering o f  S. The dimension o f  S can then be defined in terms o f  the scaling behavior 
o f  coverings o f  S, i.e., the behavior o f  n(~.) as ~.---~0. 

Examples:  

• I f  S consists o f  a finite number  o f  points, then for all ~. less than the m i n i m u m  
distance between points, a covet ing needs to have as m a n y  hypereubes as there are 
points: n is constant for small ~,. 

• I fS  consists o f  a line segment  o f  length L, then n(~.)=L/~.: n varies as the reciprocal o f  
the first power o f  scale ~.. 

• If  S consists  o f  a (sub-) hypercube o f  dimension m and length L on a side, then n(~.) is 
approximately (L/~.)m: n varies as the reciprocal o f  the ruth power o f  scale ~.. 

This exponential relation, n(~.) oc ~-ra, motivates the definition o f  fractal dimension: 

d = - l i m / I ° g ( n ( a ) )  ) (1) 
~-,o~, log(a)  J 

The previous examples  show that by this definition, a set o f  isolated points has  d imension 
zero, a line segment  has dimension one, and an m-hypercube has dimension m, as we 
would expect. 3 

Subsets  o f  the unit interval may  have various d imensions  less than or equal to one, and 
cardinality is no guarantee o f  dimension for infinite sets. Finite point sets have 

2 The definition of Hausdorff dimension is more technically complicated, involving an inftmum rather than 
a limit, thereby handling cases where the limit (in equation t below) does not exist. 

3 Note that the dimension N of the embedding space is irrelevant. While it is true that a line segment of 
finite length can be made to fit in a hypercube of arbiUarily small side if the dimension of the hypercube is 
big enough, what really matters is the scaling behavior. That is, if the side of the hypercube is halved, then 
two of them are needed to cover the line segment - unplying the line segment has dimension one. 
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dimension zero, o f  course, but there are countable subsets with dimension zero and those 
with dimension one. For example, the set o f  rational numbers (a countable set) is a dense 
subset o f  the real numbers, meaning that any open set around a real number contains a 
rational. Therefore, the fractal dimension o f  the rationals is the same as that o f  the reals 
(they need exactly the same covering sets), that is, one. 

On the other hand, the countable set consisting o f  points Xk = a k, k=1,2,3 .. . .  where 
0<ct<l, has dimension 0. This can be seen by considering coverings by blocks o f  length 
~.= cd for some arbitrary j. The first block covers all points xj, x~+t, and at most (j-l)  
blocks are needed to cover the other ( j- l)  points. Thus, 

log(n(~.))/log(~.) < Iog(j)/(j*log(ct)) --~ 0. 

Nothing in the definition o f  fractal dimension precludes the possibility o f  a set S having a 
noninteger dimension d. We now present some examples to show how this can happen. 

The Cantor set is a subset o f  a line segment and is defined recursively as follows. Start 
with the entire line segment. Remove the middle third, leaving two disconnected closed 
line segments. Repeat the process on each remaining line segment, ad infinitum. In the 
limit, we have the Cantor set. At stage k o f  the construction (the whole segment being 
stage 0), we have 2 k subsegments each o f  length 3 "k, for a total length of  (2/3) k. In the 
limit, the Cantor set has measure 4 zero (it consists o f  points with no net length) because 
in the limit, (2/3) k goes to zero. For any length 2.=3 -k, we need 2 k segments Hi to cover 
the set. Therefore the fractal dimension o f  the Cantor set is log(2)/log(3) = 0.63093 .... 
corresponding to something between a line and a set o f  isolated points. 

The self-similarity o f  the Cantor set follows directly from its construction. Each sub- 
segment is treated in precisely the same way (up to a scale factor) as the original 
segment. 

As an example o f  a noninteger fractal dimension in a 2-dimensional space, consider the 
Sierpinski triangle (also known as the Sierpinski gasket). This subset o f  the unit square is 
defined recursively as follows: Start with an equilateral triangle and its interior. Draw an 
inscribed triangle (point down) connecting the midpoints o f  each side. This divides the 
triangle into four similar and congruent sub-triangles. Remove the interior o f  the 
inscribed triangle. Repeat the process on each o f  the remaining three sub-triangles. 
Figure 1 shows an approximation to the result. As with the Cantor set, the Sierpinski 
triangle has zero measure (no area), because each stage o f  the construction takes up (3/4) k 
area o f  the outer triangle. Assuming the original triangle is inscribed in a unit square, at 
stage k o f  the construction, we need 3 k squares Hi o f  side 2.=2 -k to cover the set. 
Therefore, the Sierpinski triangle has fractal dimension log(3)/log(2) - 1.584963 .... 
corresponding to something between a linear and a planar figure. 

The self-similarity o f  the Sierpinski triangle again follows directly from its construction. 
Each sub-triangle is a miniature version o f  the original triangle and is similar to all other 
triangles appearing in the set. 

4 Measure theory is reviewed in the next section. 
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The analysis o f  fractal dimension by this method is generally termed box-counting. 
There are other approaches, but they will not be discussed here. Note that the method 
applies to arbitrary sets, not just self-similar ones. A non-self-similar set is called an 
irregular fractal i f  it has a noninteger fractal dimension. 

Among natural phenomena, coastlines are frequently cited as good examples o f  irregular 
fractals. The measured length o f  a coastline depends on the scale o f  accuracy o f  the 
measuring tool. Comparing maps at various scales, one can see progressive deterioration 
o f  detail as larger scales are used. What appears as a wrinkled inlet on one map is 
abstracted to a simple polygon on the next and then obliterated completely on the next. 
[Barnsley] gives the fractal dimension o f  the coast o f  Great Britain as approximately 1.2. 
[Woo] discusses numerous areas where fractal laws relate to natural hazard processes. 

This notion o f  scale-dependent measurements will play a central role in the practical 
application o f  fractal and multifractai theory to real-world problems. 

Multifractals 

Multifractals, also known as fractal measures, generalize the notion o f  fractals. 
Mandlebrot also worked on multifractals in the 1970s and 1980s [Mandlebrot 1988], but 
the first use o f  the term is credited to U. Frisch and G. Parisi [Mandlebrot 1989]. Rather 
than being point sets, multifractals are measures (distributions) exhibiting a spectrum o f  
fractal dimensions. 

A brief  review o f  measure theory is in order. A measure It on a space X is a function 
from a set o f  subsets o f  X (a o-algebra o f  "measurable sets") to the real numbers R. In 
order to be a measure, the function It must satisfy It(~)=0, It(S)_>0, and p. o f  any count- 
able collection o f  disjoint sets must equal the sum o f  It on each set. Actuaries typically 
encounter only probability measures, where, in addition, p.(X)=l. The usual measure on 
R N is Lebesgue measure v(S), characterized by the fact that i f  S is a rectangular solid 
with sides o f  lengths ~i, i= 1 . . . . .  N, then v(S)=Fli2.i. 

I f  a measure It on R N is zero on every set for which v is zero (i.e., it is absolutely 
continuous), then the ratio o f  measures/a(H)/v(H) where H is a neighborhood (with non- 
zero measure) around a point x is well-defined, and in the limit, as the neighborhood 
shrinks to measure zero, the ratio fix), if  it exists, is the density o f  It, also known as the 
Radon-Nikodym derivative. Not all measures have densities; think o f  a probability 
function with a point mass at zero. As H shrinks around the point mass, It(H) cannot 
become less than the point mass, but v(H) goes to zero; the density becomes infinite. 

Multifractals, as measures, tend to be extremely ill.behaved, not characterizable in terms 
o f  densities and point, line, plane, etc., masses. 

The simplest way to create a multifractal is by a multiplicative cascade. Consider the 
"binomial multifractal," constructed on a half-open unit interval (0,1] with uniform 
density as follows: Divide the interval into two halves (open on the left) o f  equal length. 
Distribute 0<p<l o f  the mass uniformly on the left half  and l-p o f  the mass uniformly on 
the right half  (here p is a constant throughout all stages o f  the construction). Repeat on 
each subinterval. Figure 2 shows several stages o f  construction with p=I/3.  The 
horizontal axes show the unit interval and the vertical axes show density. The upper left 
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panel shows stage 1, where 1/3 o f  the mass is on the left half  and 2/3 is on the right. Note 
that the average density is 1. The upper right panel shows stage 2, where the left and 
right halves have each been divided. The 2 "d and 3 rd quarters o f  the interval have the 
same density because they have masses of(1/3)*(2/3) and (2/3)*(1/3), respectivelj¢. The 
lower left panel shows stage 4 where the interval has been divided into 2 = 16 
subsegments. Some local maxima seem to be appearing, they are labeled. The lower 
right panel shows stage 7, and begins to give a sense o f  what the ultimate multifractal 
looks like. Note the similarity o f  left and right halves. 

As you can see, at the local maxima, the density "blows up" as the scale resolution gets 
finer. Note how the maximum density increases from panel to panel. However, the rate 
o f  divergence is different at different points. The set o f  locations with particular 
(different) rates o f  divergence turn out to be fractals (with different fractal dimensions). 
Thus we have layers o f  fractals representing different "orders of  singularities," with a 
relationship between the rate o f  divergence and the fractal dimension. See Appendix A 
for mathematical details. 

This relationship is known as the spectrum o f  singularities - no single fractal dimension 
suffices to characterize the fractal measure, hence the name multifractaL 

Having a spectrum o f  singularities means that the multifractal measure consists o f  
infinitely spiky peaks sprinkled throughout predominant valleys, but that with proper 
mathematical technology, the peaks can be classified by the rate at which they diverge to 
infinity, and comparable peaks can be collected together into fractal "mountain ranges.'" 

Figure 3 shows a real-world density field that approximates a multifractal. It is the 
population density o f  the northeastern USA. The big spike in the middle is New York 
City. Lesser spikes pick out other densely-populated cities. 

In their analysis o f  turbulent meteorological phenomena, [Schertzer & Lovejoy] write the 
functional relationship between a chosen scale o f  resolution ~. and the average densities 
q~ measured at that scale as: 

Pr{~ a > 2 r }Qc 2 -~'' '  (2) 

This is very much in the spirit o f  box-counting for fractals, except the equivalent 
formulation for fractals would have (1) the event inside Pr{ } being the probability o f  
finding any point o f  the fractal in a k-neighborhood, instead o f  points that satisfy a 
certain degree of  singularity, and (2) the exponent on the right hand side being a constant, 
the fractal dimension o f  the set, instead o f  a function. In this formulation, the function 
c(y) carries all the information necessary to characterize, in a statistical sense, the 
multifractal. 5 

s It is tempting to read this equation as a statement about the probability of encountering a point with 
exponent ~/or higher or the probability of fractal dimension. However, if the fractal dimension of points 
having exponent "f or higher is less than the dimension of the embedding space, then such points make up a 
set of (Lebesgue or probability) measure zero. In the typical multifractal, "'almost" all the mass is 
concentrated in "almost" none of the region. The equation is really a statement about the scaling 
relationship between mtensity and probability. 
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Compare Figure 3 with Figures 4 and 5. The former measures population density at the 
resolution o f  8 miles. The latter two measure it at resolutions o f  16 and 32 miles, 
respectively. Clearly, one 's  impression of  this density field is largely driven by the scale 
of  resolution used. A systematic investigation o f  the appearance o f  a field using various 
scales o f  resolution is at the heart o f  multi fractal analysis. 

A box-counting approach developed by [Lavallre et. al.] known as Probability 
Distribution Multiple Scaling (PDMS) can be used to estimate the probabilities o f  
singularities with assorted rates o f  divergence. (See also [Lovejoy & Schertzer 1991].) It 
turns out that directly estimating c(y) in such a fashion is not a productive approach to 
analyzing real data sets for multifractality due to the severe demands that the procedure 
places on the sample data. In the next section, we will show how multifractals can be 
understood equally well through the behavior o f  their moments. 

[Pecknold et. al.] give many examples o f  (apparent) multifractals in nature. See also 
[Ladoy et. al.] These include rain and cloud fields (measured from scales o f  a thousand 
kilometers and years down to millimeters and seconds - see [Lovejoy & Schertzer 
1991]), human population density (as above, also see further discussion below), and 
foreign exchange rates. Part o f  the impetus for the development and practical application 
ofmultifractal analysis came from "the burgeoning mass o f  remotely sensed satellite and 
radar data" [Tessier et. al., 1993]. Depending on the scale o f  resolution used, measure- 
ments o f  cloud cover could be made to vary drastically; moreover, how this variation 
with scale behaved was also dependent on the level o f  intensity chosen as a threshold 
just the sort o f  fractals-within-fractals behavior to be expected from multifractal fields. 

Spatial Fields 
In this section, we delve into the general theory o f  self-similar random fields, focusing on 
the two-dimensional case. (The extension to three or more dimensions is straight- 
forward.) Examples are taken from our applications in property-liability insurance. 

Analysis of Multifraetal Fields 

Analysis o f  random multifractals is an extension o f  the analysis o f  random fields. Recall 

that a random field ~o(r) is a collection o f  real-valued random variables ~p, indexed by r, 
where r may be 

• an integer, for example, in the case where the random field is a (discrete) time series, 

• a real number, for example, in the case where the random field is a (continuous) 
stochastic process, 

• a vector in D-dimensional Euclidean space R D, in the case o f  a general random field. 

Typically, we focus on O = 1 for financial/econometric time series and O = 2 for spatial distributions in 
geography or meteorology. 

To analyze a random multifractal, we must first respect the fact that it is a measure, and 
strictly speaking may not (typically does not) possess real-valued densities. Therefore, 
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we cannot treat a random multifractal as a random field q~(r). 6 However, as we have 
seen in previous sections, when viewed at a finite scale of resolution L, a multifractal 

does have a well-behaved density that we can treat as a random field ~oL(r). Thus, the 
approach to studying random multifractals is to consider sequences o f  random fields that 
describe the density o f  the measure at various scales o f  resolution, and to study the 
scaling behavior o f  those sequences. 

Appendix B outlines the mathematics. The box-counting approach appears to admit 
straightforward application (and becomes PDMS) as discussed above. For various 
reasons discussed below, it is more fruitful to deal with moments of  the random fields. 
The key object o f  the analysis is the so-called K(q) function, describing the scaling 
behavior o f  the qth-moments o f  the sequence o f  random density fields as the scale of  
resolution 3. varies. At finer resolutions, the density fields appear more "spiky" and 
average q-powers o f  the fields for q>l  (q<l)  get arbitrarily large (small) according to the 
power law: 

E(~P q ) = ( 2 )  -r<q) . (3) 

The boundary conditions K(O) = K(I)  = 0 further constrain the K(q) curve. 

S y n t h e s i s  o f  M u l t i f r a c t a i s ;  2 -D M n l t i p l i c a t i v e  C a s c a d e  

Above, we described how recursive application o f  multiplication o f  densities - a multi* 
plicative cascade - generated the simple binomial multifractal on a line segment. A 
similar operation, in two dimensions, can be used to generate a multifractal akin to the 
Sierpinksi triangle. Consider the following two-by-two matrix: 

a =[201 ~ 104 ] (4) 

Take a unit square with uniform density. Divide it into four quadrants and multiply the 
density in each quadrant by the corresponding element o f a .  Note that the average o f  the 

four elements o f  a is 1.0, so the average density across the entire square is unchanged. 
Repeat the procedure on each quadrant, recursively. In the limit, we have a multifractal. 
At stage k, neighborhoods o f  the upper left comer have average density 2 k. That point has 
the highest degree o f  singularity. 7 The lower left comer has a different sort o f  
singularity, with density 0.6 k approaching zero as the scale shrinks. The entire lower 
right half  is empty (density zero). Like the Sierpinski triangle, in fact, the s]uare is 
almost everywhere empty: at each stage, the area with nonzero density is (3/4) which 
approaches zero as k increases without bound. Figure 6 depicts the result. 

6 It might be tempting to consider a random measure as a collection of random variables indexed by subsets 
of the underlying R ° space, but that quickly becomes awkward to work with. 

7 Countably many other points have the same degree of singularity. These are the "upper left comers" of 
k a  nonzero subcells; at all stages k after some stage a, they have density m2 " . 
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A random version of the Sierpinski multifractal can be seen in Figures 7 and 8. Here, the 
positions of the elements of  a are randomly shuffled at each downward step in the 
cascade. Statistically, the random and regular versions are identical, but visually, the 
random version suggests phenomena taken from biology or geography. 

Figure 9 shows the empirically fit and theoretical ("universal") K(q) curves for the 
Sierpinski multifractal. The latter will be explained in the next section. 

Universa l i ty  Classes; F o r m  of  K(q) 

By making certain plausible assumptions about the mechanisms generating a multifractal, 
we can arrive at a "universal" theory, akin to a central limit theorem, for multifractals. 
The critical assumption is that the underlying generator (analogous to the multiplicative 
factors in the matrix of the previous example) is a random variable with a specific type of 
distribution: the exponentiated extremal L~vy distribution. This is plausible because Lrvy 
distributions generalize the Gaussian distribution in the central limit theorem. 

This leads to a two-parameter family of K(q) curves: 

K(q)=IaC~t_l(q~-q) a ~ l  
(5) 

[ C , . q l o g ( q )  a = 1  

where C~ acts as a magnification factor and ct, related to the tail index of  the L~vy 
generator, determines curvature. These parameters in turn can be related to position and 
scale parameters/1 and cr to be applied to a "standard" L~vy variable A~(- 1 ). 

The derivation, and an introduction to Lrvy variables, is presented in Appendix C. 

Synthes is  o f  Mult i fraetais:  Extremal  L~vy Generators  

In creating multifraetals for liability applications, we adopt this still somewhat 
controversial theory of  universality. 8 That is, each step of a simulated multiplicative 
cascade is a multiplication by the random factor a given by equation 32 (Appendix C) for 
appropriately chosen parameters. A cdf of random step factors corresponding to the best 
universal fit to the Sierpinski cascade example above is shown in Figure 11 (thick curve). 
A multiplicative cascade with these random step factors could be used instead of the four- 
element array used above (shown as thin line step function) to construct a multifractal 
with roughly the same properties as the Sierpinski multifractal. 

The Laplace transform of  the logarithm of these factors take on the particularly simple 
forms described in Appendix C. This fact is exploited in data analysis, as will be 
explained later in the discussion of  Trace Moments. 

s The scope and relevance of the necessary conditions to real-world phenomena are hotly debated. 
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Example Spectrum Analysis: Insured Property Portfolios 

A preliminary step, to be taken before fitting a K(q) curve to suspected multifractal data, 
is spectrum (Fourier) analysis. The key point is that a multifractal must possess a spectral 
density having a certain shape: a straight line in a log-log plot. Furthermore, the slope o f  
that line has additional implications. Therefore, spectrum analysis is used as a screening 
step before applying multifractal analysis. The mathematics relating K(q) to spatial 
spectral density is presented in Appendix D. 

The spatial distribution o f  the human environment has been studied in geography and 
human ecology. [Major] analyzed homeowners insurance property as a two-stage Poisson 
process. Multifractal approaches include the analysis by [Tessier et al. 1994] o f  the 
global meteorological network (i.e., locations o f  weather stations) and [Appleby] 's study 
o f  population in the USA and Great Britain. Until [Lantsman et. al.], no one had studied 
the spatial distribution o f  insured property values (Total Insured Value, or "TIV"). 

[Lantsman et. al.] show that some portfolios o f  insured homeowners properties display a 
spatial distribution consistent with multifractal behavior (over appropriate scales). Figure 
12 shows the isotropic power spectra o f  the insured value density of  five geographically 
distinct regions o f  an insured property portfolio. 

The preparation of  such graphs starts with a grid o f  insured values at a sufficiently small 
scale of  resolution. First, accumulate insured value totals over a 2tin-squared grid over 
the UxU area. In practice, we have found Tm=7 or 8 to be comfortable for Pentium-III 
class machines. If  the data originates as individual observations (e.g., geocoded lat-lon 
locations) then each observation must be assigned to the appropriate grid cell. If the data 
originates as areal data (e.g., accumulated values for polygons) then the data must be 
allocated to the grid. In any case, make sure that L=U/2 TM is larger than the resolution of  
the data. For analysis o f  large portfolios with ZIP-level data, we typically use U - 512 or 
1024 miles 9 with Tm = 6 or 7, resulting in a resolution o f  L=8 miles, which is a bit bigger 
than the square root o f  the average area o f  a ZIP code)  ° 

The second step is to compute the 2-dimensional discrete Fourier transform (DFT) of  the 
array. The third is to convert to an isotropic power spectrum. Appendix D has details. 
Roughly speaking, the isotropic power spectrum reveals the strength (vertical axis) o f  
various periodicities (horizontal axis) in the spatial data, averaged over all directions. 

The horizontal axis o f  Figure 12 represents the wavenumber (spatial frequency) r where, 

e.g., wavenumber r =10 corresponds to a periodicity o f  512/10 = 51.2 miles. The plots 

stop at the finest resolution o f  8 miles, corresponding to wavenumber r = 512/8 = 64. 
The vertical axis represents the power (spectral density - i.e. Fourier component ampli- 
tude - squared) P(r), with arbitrary constant factors used to separate the five curves. 

9 A 1024-mile square covers about one-sixth of the USA. 

~0 Since most of the population resides in smaller, more densely populated ZIP codes, we feel that an 8-mile 
resolution is appropriate. 
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All but one curve show the smooth, Ioglinear relationship between power and wave 
number that is to be expected from a self-similar random field. The exception displays 
higher than expected spectral amplitude at wavenumbers 45-50 (-11 miles) and less than 
expected at wave numbers 30-35 (-16 miles). This anomaly was traced to unique factors 
in this insurer's distribution channel. They had a strong affinity marketing program for 
military personnel. In Washington DC proper, the portfolio's spatial density of  insured 
value was nearly zero. However, in two suburban enclaves adjacent to nearby military 
bases, the value density was among the highest observed in the region. The two groups 
were about 11 miles apart and 16 miles away from the center of  DC. If  not for this 
unusual geographic structure to the market, the power spectrum would have been similar 
to that of the other regions. 

Fitting g(q); Trace Moment Analysis 

In this section, we discuss how to fit a universal K(q) curve to spatial data and use the US 
population density in the northeast (Figure 3 discussed previously) as an example. 
Conceptually, the idea is very simple: construct an empirical K(q) curve by measuring 
the moment scaling behavior as expressed in equation 14 (Appendix B), then find 
parameters Ci and ct that produce a best-fitting theoretical K(q) curve (equation 5, 
equation 31 of  Appendix C). In practice, a few wrinkles emerge. 

Data preparation starts with the gridding process discussed above in the context of 
spectral analysis. Most of  the square grid should contain meaningful data; too many 
"structural zeroes" (e.g., representing water or other area that cannot by definition 
support positive values) will distort the analysis. In the case of Figure 3, each grid entry 
is an approximate t~ count of  persons living in that 8x8 mile geographic square. 

Having represented the field as a 2Tin-square matrix, normalize the entries by dividing 
each by the average value of  all the entries; this makes the average entry equal one. 

The next step is to prepare a series of locally averaged ("dressed") versions of the data 
matrix, each 2 r on a side for T=0,2,...,Tm-1. Specifically, the four elements indexed by 

I+1 - (2*r+i, 2*c+j) (where i=O,l and j=0,1) of the 2 grid are averaged to become the value 
of  the (r,c) element of  the 2 T grid. These represent the same field, but at progressively 
coarser scales of resolution.12 See Figures 3 through 5, mentioned previously. Note that 
for each grid, the average cell value is one. The coarsest grid, corresponding to T=0 and 
scale U, consists of  the single entry, one. 

The fourth step is to compute qth powers of the dressed fields and look for a loglinear 
relationship between them and the scale. If multifractal scaling is present, we should see, 
for each fixed q, a linear relationship between T (the label identifying the coarseness of  a 

H Recall the original data was at the ZIP code level o f  resolution, so entire ZIP codes were allocated to 
particular grid squares, introducing a bit o f  distortion at the smallest scales. 

12 Tm As a refinement of  this prOcess, we start with two grids, the 2 -sided grid as described, as well as a 
, Tn~2 slightly coarser 3 2 -sided grid, and operate on them in parallel. This way, we get a factor o f  i .5 or 1.33 

(ideally it would be the square root o f  two) between adjacent scale ratios instead o f  a factor o f  two. This  
doubles the sample o f  scale ratios in the analysis. 
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grid, equal to Iog~ of the number of  rows or columns in the grid ) and the logarithm of the 
average of  the qth power of the grid entries. 

Figure 13 shows this relationship for q = 0.6, 0.9, and 1.4. These so-called trace 
moments are close enough to linear to make the multifractal model appropriate. 

Having satisfied ourselves that scaling is present, the fifth step is to estimate K(q) values 
as coefficients in a linear regression version of equation 16 (Appendix B), for each of  a 
range of  values for q. A certain amount ofjudgrnent is called for, however, in choosing 
the range over which the regression should be carried out. [Essex] and [Lavall6e et. al.] 
discuss "symmetry breaking" that results from the limitations of sample data. The 
selected range of scaling must avoid these extremes in order to deliver unbiased estimates 
of moments, and hence undistorted K(q) estimates. Linear regression in this case suggests 
that K(0.6) = -0.2, K(0.9) = -0.1, and K(1.4) = 0.3. An example of the resulting empirical 
K(q) curve based on slopes estimated from regressions of trace moments corresponding 
to q values ranging from 0.16 to 4.5 is shown in Figure 14. 

Before considering how to best fit a universal K(q) to the empirical curve, we must 
address additional limitations of the methodology. The relation between K(q) and c(7 ) 
(the latter "box counting" exponent expressing the scaling behavior of  probability of 
extreme values) is given by a Legendre transform; there is a one-to-one correspondence 
between moments and orders of singularities [Tessier et. al. 1993]. Realistic limitations 
to data (rounding low values to zero, finite sample size, bounded sample) can limit the 
range of  observable singularities and consequently introduce distortions in the measured 

K(q). In addition, estimating the universal parameters Cl and o. by nonlinear least 
squares may run afoul of a substantial degree of collinearity between the parameters. 

For such instances, [Tessier et. al. 1993, 1994] developed the double trace moments 
technique. This is based on the observation that i f a  universal field is exponentiated first 
by 1"1, then averaged to scale Z., then exponentiated to q, we have the relation 

K(q,rl) = r/~' . K(q,1) (6) 

where the second arguments refer to the exponent of the original field from which the 

K(q) estimate is made. This allows an estimation of the field's O~ by fixing q and varying 
r I. Figure 15 shows a graph of log K(q,rl) vs. log r 1 for various q. Due to the limitations 
cited above, this equation as applied to sample data tends to break down except for a 

limited range of q; thus we estimate ot as the maximum slope observed in the graph. With 

a good estimate o f ~  in hand, an ordinary least-squares estimate of Ct is easy to obtain. 

In this case, a standard two-parameter nonlinear regression does fine, with Ct =0.66 and 

Ci = 0.72 obtained. The resulting theoretical K(q) curve is compared, to the empirical 
version in Figure 16. 

Simulating Universal nultifractal Data; Synthetic Geocoding 

The utility of a model of  insured value emerges when detailed geographical information 
about a portfolio of  risks is lacking. Often the information fed into catastrophe models in 
the US is based on aggregations at the county or ZIP code level. While this may suffice 
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for hurricane risk analysis, it does not for thunderstorm wind, tornado or hail perils. On 
the one hand, the average s!ze o f  a ZIP code is 8 by 8 miles, and the distribution o f  
properties over the area is typically very sparse, irregular and non-uniform. A damage 
potential (expected damage rate) field representing a hail or tornado event is o f  a 
comparable scale (scattered patches less than a mile wide by a few miles long for hail; 
narrower and longer for tornadoes), and it, too, is highly non-uniform (e.g., 90% o f  the 
damage potential from a tornado occurs in less than 5% o f  its area). Given that the 
details o f  the hazard and exposure fields must be superimposed to obtain a reasonable 
estimate o f  losses sustained, one can appreciate the difficulty of  working with aggregate 
data. 

Previous solutions to the problem were simplistic and reflected a characterization o f  TIV 
over the area either as regularly or randomly uniformly distributed, or, at the other 
extreme, concentrated at a single point, (i.e., the area's centroid). The result o f  this kind 
o f  misrepresentation is a critical misestimation o f  the variability inherent in the process o f  
loss generation. Figures 17 and 18 illustrate this. 

Figure 17 is a map o f  a portion o f  a real homeowner property portfolio. The scale is 8 
miles on a side, the average size o f  a ZIP code. Figure 18 shows a realization o f  the same 
number o f  homes assuming a uniform spatial point process. The true portfolio shows 
more "clumps and gaps" than the relatively smoother uniform random version. Figure 19 
shows the results o f  applying the multifractal model. While it does not reproduce the 
original portfolio (no random model would be expected to), it does appear to exhibit the 
same spatial statistics. When intersected with a number o f  simulated damage footprints 
from hail or tornadoes, it will clearly do a better job o f  estimating the damage probability 
distribution than will either the uniform random version or a version that puts all the 
properties at the center o f  the figure. The uniform distribution will result in too many 
small loss events and not enough large loss events, and vice-versa for the centroid. 

The construction o f  a synthetic geocoding proceeds as follows: 

1. Create a multifractal field over the area in question. Typically, we use a five- 
to seven-stage process, depending on the outer scale. A seven-stage process 
divides a square into 27x27=16,384 grid cells; this is sufficient to carve an 8- 
mile square into 2.5 acre parcels. At each stage i = 0 to Tin, instantiate a 2ix2 i 
array o f  independent and identically distributed exponentiated extremal Lrvy 
random variables (see equation 32 o f  Appendix C). 13 In the example o f  
Figure 19 we used the parameters t~ = 0.8, Cj = 0.6. In [Lantsman et. al.], we 
reported different parameters for industry and selected client portfolios, t4 
Combine factors via multiplicative cascade as described for the Sierpinski 
multi fractal. 

~3 [Samorodnitsky & Takku] has an efficient algorithm for simulating Ldvy variables. 

~4 Specifically, ot = 1.024 and C~ = 0.560 for industry TIV measured at the ZIP code level, and a = 0.552, 
C~ = 0.926 for a geocoded client portfolio. The implications of this difference are discussed in that paper. 
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2. Normalize the field and use it as a probability distribution to drive a 
multinomial point process. If the area is a polygon other than a square, then 
grid ceils must be identified as to being inside or outside the polygon. Outside 
grid cells are zeroed out; inside cell intensity values are divided by the total o f  
all inside values to renormalize. Say the grid probability in cell i is p,. The 
desired number o f  homes, N, is then allocated to each cell Ni, by a 
multinomial(N, Pl, P2 . . . . .  P4^Tm) joint random variable draw. In practice, this 
is implemented by a sequence o f  conditional binomial r.v. realizations. The 
first r.v. is Ni-binomial(N, p~). Subsequent cells'  realizations are conditional 
on all that precede, viz., N3-binomial(N-Ni-N2, p3/(I-pl-p2)), etc. 

Project APOTH: Thunderstorm Simulation 

Occurrence rates for small scale thunderstorm-related perils (wind, hail, tornadoes) have 
traditionally been computed as an annual rate averaged over a fairly wide region. This is 
done by counting the number o f  occurrences of  some peril o f  interest - say, hail two 
inches or more in diameter, tornadoes F3 or more, etc. - in a given area (frequently, a 
one- or two-degree longitude/latitude box). This count is normalized to the area o f  the 
box and the period o f  record. When this process is continued for more boxes (usually 
overlapping), contour maps can be plotted showing the smoothed variation in the rate. 
These types o f  maps are often developed for differing severity levels, such as hail >1", 
>2", etc. or tornadoes >F2, >F3, etc. To this extent, both frequency and severity are 
incorporated into them. 

Maps such as these are often used to estimate the probability o f  occurrence for an event 
o f  at least a certain severity at a single location. Such an application might be estimating 
the chance that a nuclear power plant will be hit by an F4 or F5 tornado. These maps can 
also be used to estimate probabilities o f  an event hit to a town or subdivision. 

Unfortunately, point-frequency maps are not very useful for modeling the typical 
insurance catastrophe loss event. While there are cases where a single violent tornado or 
a single storm o f  large diameter hail hits a highly populated area and produces a large 
loss, there are also other cat events whose losses are aggregates o f  many moderate losses 
which occurred in different locations, possibly over several states and over several days. 

The goal o f  Project APOTH (Atmospheric Perils Other Than Hurricane) is to develop the 
capability to credibly estimate probabilistic losses from the thunderstorm perils o f  hail, 
tornado, and straight-line winds (non-tornadic high wind gusts). The APOTH project 
presently has models that can realistically simulate both the geographical and seasonal 
characteristics o f  severe storms, as well as model their small-scale ground damage 
patterns as they affect homeowners  anywhere in the lower 48 states o f  the USA. The 
model can be easily extended to include other lines of  business once vulnerability 
functions become available from further research. 

One objective o f  natural hazard simulation is to produce a "future history" o f  
meteorological events, in sufficiently rich detail to be able to explore the range o f  damage 
effects on a subject portfolio o f  insured properties, yet maintain a statistically stationary 
relationship to the available historical data upon which the simulation is based. 
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The production of tornadoes and hail involves meteorological processes exhibiting 
complex behavior over a wide range of scales, from synoptic weather patterns (thousands 
ofkm) down to the size of  the hailstone (millimeters or centimeters). We have made use 
of multifractal modeling, not only to distribute property values in statistically appropriate 
patterns, but directly in the simulation of the hazards themselves. 

Multifractal modeling is not appropriate to all scales, however. Thunderstorms exhibit a 
strong seasonality during the year, nonhomogeneity of occurrence frequencies over 
distances of thousands of km, and anisotropy in terms of preferred directions of 
movement. At the smaller scales, the structure of tornado tracks and hail streaks 
(continuous bands of hailfall) are also highly idiosyncratic. In between, however, we 
have found that the scale of the swath (tens to hundreds of km) on a single day is 
amenable to multifractal modeling. 

Figure 20 shows a set of  reported hail occurrences for 3/30/98. Unfortunately, while 
swaths may make conceptual and meteorological sense, data are not reported in swath 
groupings. Before we can analyze swaths, we must identify them, using various tools 
including Bayesian classification, modal clustering, and nearest-neighbor methods. 
Figure 21 shows the same set of reports, now grouped into meaningful swaths. 

In order to expand the data into a meaningful set of  possible altemative scenarios, we 
have followed the practice of other modelers in using the historical data as a template for 
a synthetic "'probabilistic database" of  possible events. Figure 22 exemplifies the typical 
practice of  equally displacing all reported events by some random X-Y translation 
vector. ]5 One of our innovations is to use multifractal modeling to create and recreate 
alternative detailed patterns within a given swath. 

Our procedure is as follows: 

1. Historical reports are grouped into swaths as mentioned above. 

2. Swaths are characterized by a small number of  key parameters: the location, 
size, orientation, and eccentricity of the bounding ellipse; the prevailing storm 
motion direction within, and parameters describing the overall intensity level 
of  the activity. In the case of hail, intensity is defined by a categorical type 
label and the total volume of hail (number of  hailstones). In the case of  
tornado, intensity is defined by Fujita class-specific Poisson parameters for 
the number of touchdowns and two principal component scores defining the 
conditional distribution of tornado path lengths. In the case of non-tornado 
wind, intensity is defined as total wind power (war(s). 

3. When an historical swath is drawn from the database as a template for a 
simulated swath, the ellipse is gridded at the 1-km scale and a multifractal 
field (with parameters appropriate to the peril and type) is laid down over the 
grid. As described above for simulated geocoding, this field is "condensed" to 
a schedule of report (hail, tomado, or wind event) locations. 

Js Since this translation is by no more than a degree in either direction, it is a bit difficult to see at first. 
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4. Details of each report (hail streak size and intensity details; tornado F-class 
and track length, etc.) are drawn from conditional distributions, with 
correlation induced with the intensity of the underlying multifractal field at 
the point of condensation. 

Figure 23 shows several realizations of the multifractal simulation of these particular 
swaths. Note how they respect the ellipse boundaries, yet vary dramatically in their inner 
detail. A much richer variety of possible outcomes is made possible, compared to simple 
location-shift models, but the statistics of event properties and their spatial colocation are 
still respected. 

Conclusion 

In this part I paper, we introduced the ideas of fractal point sets and multifractal fields. 
We showed that while those mathematical constructs are rather bizarre from a traditional 
point of view (e.g., theory of smooth, differentiable functions), they nonetheless have 
applicability to a wide range of natural phenomena, many of which are of considerable 
interest to the casualty actuary. We showed how to analyze sample data from 
multidimensional random fields, detect scaling through the use of  the power spectrum, 
detect and measure multifractal behavior by the trace moments and double trace moments 
techniques, fit a "universal" model to the trace moments function K(q), and use that 
model to simulate independent realizations from the underlying process by a 
multiplicative cascade. In particular, we discussed synthetic geocoding and the 
simulation of non-hurricane atmospheric perils. 

In the companion part. II paper, we focus on time series analysis and financial 
applications. 
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Appendix A: Binomial Multifractal 
This appendix establishes' a relationship between orders o f  singularities and fractal 
dimension in the binomial multifractal on the half-open unit interval (0,1]. We follow the 
presentation in [Mandlebrot 1989]. 

Divide the interval into two halves (each open on the left) o f  equal length. Distribute 
0<p<l o f  the mass uniformly on the left half and 1-p o f  the mass uniformly on the right 
half  (here p is a constant throughout all stages o f  the construction). Repeat on each 
subinterval. 

At stage k o f  the construction, we have 2 k pieces o f  length 2 k, o f  which k!/(h!(k-h)!) o f  
them have density ph( 1 _p)k-h. 

Any point x in the interval can be expanded as a binary number 0.blb2b3 .... ~6 By 
considering the sequence o f  expansions truncated at bk, we make meaningful statements 
about the behavior o f  the measure at x. For example, define 

1 * 
f ( k )  =- k -~b , .  (7) 

Then, in a Z=2 k -wide  neighborhood o f  x, the average density is p~'f~k)(l-p)~k) = Z ~00, 

where a ( k ) =  Iog2(pl-~k)(l-p)f(k)). I f  f =---]imf(k), the proportion o f  l ' s  in the binary 

expansion, exists, then we can consider that the density behaves as k -~ in the  limit. Such 
a point is termed a singularity of exponent ct. As ~. gets smaller, the density may grow 
without limit or shrink to zero, but the rate o f  that growth is controlled by the exponent ct, 
a quantification o f  spikiness at that point. (This is the classical Hrlder exponent.) 

What is the fractal dimension o f  the set o f  such points? (Here, the exposition becomes 
quite deliberately sketchy, as proper delta-epsilon arguments would take up an undue 
amount o f  space.) At stage k, we have a total o f  2 k intervals, o f  which n = k!/((kf)!(k(1- 
f))r) have density defined byf(k) = f  Recalling Stirling's approximation for factorial, 

xr~ 2~/~. e x p( - x ) ,  x ~'~2 (8) 

we can write an approximation for n as 

42Mcf(' - f )  

This gives us a fractal dimension d = f log2f + (1-f)log2(l-f). Since the exponent a = 
flog2(l-p) + ( l - f )  log2(p) is also a function o f  f, we have a functional relationship 

between the order o f  the singula~rity a and the fractal dimension d o f  the set o f  points 
having that exponent. 

sb Since binary xyz0111.., is the same as xyzl000_., let us agree to use only the I I I... representation for 
such cases. (This is consistent with our closing the right side of intervals.) 
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Appendix B: Analysis of Multifractal Fields 

A random field is c a l l e d  s ta t ionary  t7 if  the distribution of  q~(rl ) is the same as that o f  

ql(r2) for any different rl  and r2. This does not imply the two random variables are 
independent, however.  For example,  a multivariate normal may have identical marginal 
distributions but nonetheless  possess  a nontrivial correlation structure. A nonstationary 

field is said to have s ta t ionary  increments  if  the distribution of  qT(rl ) - qT(r2) depends 

only on the difference vector r l  - r2.  Furthermore, for D >1, such a field is said to be 

i sotropic  if  the distribution o f  qg(rl)  - qg(r2) depends only oil the magni tude  of  that 

vector, [rl - r21. 

Our discussion follows [Novikov & Stewart], [Shertzer & Lovejoy], [Marshak et. al.] and 

[Menabde et. al.] in the general context o f  a D-dimensional  space and for stationary 
fields. The generalization to non-stationary fields will be discussed in Appendix D. 

Formally, consider a measure  la(X) whose domain consists of  a c~-fietd o f  subsets X of  
R D. Define the scale-L average density as: 

q~L ( r )  = L - °  / z ( V )  (10) 

where V is a / ) -d imens iona l  hypercube o f  side length L centered at r. Our first condition 

for p. to be a random multifractal is to assume ~pt,(r) is a random field. For a particular 

realization o f  ~a, we can compare such field realizations at different scales o f  resolution L 
and U by considering their relative densities 18 defined as: 

aL, v ( r )  = (PL ( r )  / (Pu (r )  ( 11 ) 

where L < U, therefore V L c V U . This is only defined for nonzero values o f  (,ou, but 

note that when it is zero, so must  be (PL. We have the property that: 

aL,v = at. .pa p. U (12) 

where L < p < U (therefore V L c Vp c Vu), and we have suppressed ment ion o f  

volume centers r. This is true for any realization, and thercfore can be considered a 
statement about the random variables as well.19 

These relative densities are random fields in their own right. They characterize how the 
fluctuation (or in termit tencv)  o f  the field varies as a function o f  scale. The assumption o f  

17 Physicists would use the word conservative. 

1~ These would be known as Radon-Nikodym derivatives to a statistician or breakdown coefficients to a 
physicist. 

~9 It is helpful Io think of  the measure ~a as a physical quantity, such as mass, rather than a probability 

measure. That way, probability statements about the random la will not be confused with statements about 
the properties of  particular realizations of  la. 
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stationarity implies that aL.V is a random variable whose distribution does not depend on 

the position of the volume,center r. Furthermore, we assume it depends only on the ratio 
L/U and that the random variables aL.p and ap.v in equation (3) are independent. This 
last statement is the techn{cal definition of it(X) being a statistically self-similar (a.k.a. 
scale-invariant, or scaling) random measure. 

Scaling of Moments, g(q) Function 

It is possible to show that under these assumptions the statistical moments of aL.V have 
the property: 

E(aqL,U ) = q q E(aL,p)E(ap,  U ) (13) 

where E( . )  is expected value operator. Since the moments of aL,V depend only on the 

ratio L/U, the most general expression for scaling behavior of statistical moments is: 

E(aqL,u ) = ( L / U )  -K(q) (14) 

with the boundary conditions K(O) = K(1) = O. 

It is worth noting that for some processes K ( q ) = O . ( q - 1 )  (for q>O)which is 
usually referred to as simple scaling or the (mono)fractal case. However, in nature, most 
processes exhibit a more complex behavior and the K(q) function evaluation requires a 
more elaborate approach. There is a wide class of random multiplicative cascade models 
that produce multiscaling behavior and multifractal fields [Parisi & Frisch]. 

For the special case where scale steps are factors of two, we can specialize equation 14. 

From the definition of aL,8 in equation 11, and noting that 99o is equal to one, we can 
write; 

E(aq.2 ',u ) = E(~.2' ) = 2rK(q) (15) 

log2 [E(epq 2_r ) ] =  T .  K ( q )  (16) 

This form reveals K(q) as the coefficient in a log-linear regression between the scale 
index T and average q-power of the field, as used in empirical data analysis. 
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Appendix C: Universality Classes; Form of K(q) 
To further explore the structure and behavior o f  the K ( q )  function we follow [Schertzer 
& Lovejoy], [Lovejoy & Schertzer 1990], and especially [Menabde et. al.] and formalize 
the idea of  a multiplicative cascade generator (MCG): 

GL, U =-In@L LD / o~,U t~) (17) 

We assume that the measure is not zero on any finite hypercube, therefore G is every- 

where defined. By definition o f  ~L (equation t 0 o f  appendix B), the ratio is less than one 
and so GL,t; is a non-negative random variable whose distribution depends only on the 

ratio L/U.  For arbitrary n, we can introduce n hypercubes of  side length p ,  which nest 

between VL and Vt~ so that: 

Ll pt = P~ I,°2 =...=P, IU =(LIU) ~ .... (18) 

After a series o f  transformations the resulting expression for G~.,t, will be: 

GL, U = Gt.,p ' + G p,.p~ + . . . +  G I, , U (19) 

The random variables on the right-hand side o f  equation (8) are assumed to be indepen- 
dent and identically distributed random variables with a pdf: 

p(g;  (L / U)"" )  = p(g;  p, / p,., ) (20) 

which depends solely o'n the scale ratio, ( L / U )  l/n . The property expressed in equations 

19 and 20 implies that the probability density for GL.u belongs to the class o f  infinitely 
divisible distributions [Feller]. The natural candidate for a MCG would therefore be a 
random variable with a stable L~vy distribution. 

An aside oil Lrvy random variables is in order. Lrvy random variables generalize 
Gaussian (normal) random variables in the Central Limit Theorem. The CLT states that 
the distribution o f  a sum o f  a set o f  N independent, identically distributed random 
yariables with f inite variance converges to a normal distribution as the number N 
increases without bound. More generally, if  the restriction to finite variance is removed, 
we can say that the sum converges to a L~vy distribution. 

Lrvy distributions are characterized by four parameters: ct, which must be in (0,2]; 13, 
which must be in [-1,1]; and la and ~>0, which are otherwise unrestricted. The latter two 
are location and scale parameters, respectively, allowing us to express a Lrvy random 
variable as ~t+~Aa(13) where A is "standardized" and depends on only two parameters. 
Note that cr is not the standard deviation because in general, variance is infinite for a 
Lrvy random variable. The parameter ~t is the tail index: the case et=l gives the Cauchy 
distribution while the case t~=2 gives the Normal distribution. As x increases without 
bound, the probability that a Lrvy random variable exceeds x is proportional to x -~. The 
second parameter, 13, is a symmetry index: i f  13=0, then the distribution is symmetric; 
otherwise, the probability of  the upper tail is proportional to 1+13 and the probability o f  
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the lower tail is proportional to !-[3 (in the large-x limit). When ct=i, the 13 parameter 
becomes irrelevant, and is conventionally set to 0. While there is no closed-form 
expression for the distribution function for Lrvy variables, the characteristic function is 
analytically tractable/° 

To develop a moment scaling relation for the random multifraetal p.(X) we apply the 
Laplace transform to the density functionp(g," L/U): 

oe 

~(s;L/U) = ~exp(-s.g)p(g;L/U)dg (21) 
0 

where s > 0. 

Becausep(g," L/U) is the pdfofan infinitely divisible distribution, from equation 18 we 
can conclude: 

~ ( s ;  L / U )  = ~," (s; (L / U )  j/") (22) 

Equation 22 has the solution: 

g ( s ;  L / U) = (L / U) z(s) (23) 

where, according to the general properties of infinitely divisible distributions [Feller], 

Z(s) can in the most general case he represented by a Lebesgue integral: 

Z(s) = ~1 - e x p ( - s  • X)M(dx) (24) 
X 

0 

where M is a measure such that the integral: 

x-~M(dx) < oo (25) 
I 

For processes under consideration with some degree of rigor we can limit ourselves to 

considering only measures M having a density M .  In such cases we can replace the 

Lebesgue integral with a Riemann integral, replacing M(dx) with M dx. It is this density 

function M* (or equivalently Z(s) or p(g,'L/U) ) that completely determines the 
properties of the MCG and therefore the (statistical) properties of the self-similar 
multifractal p.(X). 

The expression in equation 21 could be considered as an expectation of exp(-sGL.~) and 
can be rewritten as follows: 

2o Refer to [Samorodnitsky & Takku] for information on simulating and evaluating Ldvy random variables. 
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gt(s ;  L / U )  = E[exp(-sGL,L, )] 

= E[exp(sln(~OLL D/tpvUD)] = E((o L/~pt,)~(L/U)St , (26) 

From equations 23 and 26 we can find the moment scaling relation: 

E(~O L / tp v )s = (L I U)  -~D+zl~) (27) 

From equations 14 (appendix B) and 27, after replacing s with q, we can get following 
expression: 

K(q)  = q D -  z ( q )  (28) 

Since by definition in equation 14, K(I)=O, one has the normalization condition in 

equation 28 that Z(I)=D. The asymptotic behavior of K(q) could be deduced from 
equations 24 and 28 as: 

K(q) = qD + 0(1) (29) 

One can choose any form for the density measure M that satisfies the convergence and 
normalization conditions of equations 25 and 28. The most appealing measure is: 

M ' ( x )  oc x -a (30) 

(specifying only the limiting behavior for large x) which corresponds to a stable L6vy 
distribution [Feller]. With this choice of measure and proper renormalization we can 
express K(q) as: 

K ( q ) = I a C ~ l _ l ( q ~ - q )  a ¢ : l  
(31) 

C ~ - q l o g ( q )  cz = 1 

This expression represents the classes of "universal generators" [Schertzer & Lovejoy]. 
The first remarkable thing to notice is that a universal generator is characterized by only 

two fundamental parameters ( G ,  a'). The idea behind the introduction of universality 
classes is that whatever generator actually underlies the multiplicative cascade giving rise 
to a random multifractal, it may "converge" (in some sense) to a well-defined universal 
generator. 

With only two degrees of freedom, the K(q) curves represented by universal multifractals 
are of a limited variety. As mentioned previously, K(q) is constrained to go through the 
points (0,0) and (1,0) with negative values when 0<q<l and posilive values for q>l. The 

parameter CI clearly behaves as a vertical scaling factor. The o' parameter affects the 

curvature, as can be seen in Figure 10, with the extreme case of a -~, 0 converging to a 
straight line (with discontinuity at q = 0). 

For this "universality" result to be useful, we must also investigate which classes of MCG 
are stable and attractive under addition and will at least converge for some positive 
moments (not necessarily integer order). The task to specify universality classes could be 
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accomplished by considering the Lrvy distribution in a Fourier framework, i.e., its 
characteristic function. The restriction imposed by the Laplace transform (equation 21) is 
that we require a steeper than algebraic fall-off of the probability distribution for positive 

order moments, hence, with the exception of the Gaussian case (Or = 2), we have to 

employ strongly asymmetric, "extremal" Lrvy laws (fl = -1), as emphasized by 

[Schertzer & Lovejoy]. The Lrvy location parameter/1 is fixed by the normalization 

constraint and the scale parameter cr is derived from Cl [Samorodnitsky & Takku]. 
Roughly speaking, the universality theory states that multifractals built from random 
multiplicative cascades are statistically equivalent to those built from a special class: the 
exponentiated extremal L~vy variables: 

a = exp(/.t  + or.  A,~ ( -  1)) (32) 

According to [Schertzer & Lovejoy], we can designate the following main universality 

classes by specifying the parameter a: 

1. tz- 2: the Gaussian generator is almost everywhere (almost surely) continuous. The 
resulting field is a realization of the log-normal multiplicative cascade introduced by 
[Kolmogorov], [Obukhov], and [Mandelbrot 1972] to account for the effects of 
inhomogeneity in three-dimensional turbulent flows (turbulent cascades). 

2. 2 > a > 0: the Lrvy generator is almost everywhere (almost surely) discontinuous and 
is extremely asymmetric. 

3. ct = 0+: this limiting case corresponds to divergence of every statistical moment of 
the generator and represents the so-called "'fl" model. 
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Appendix D: Spectrum Analysis; K(q) and Spectrum Slope 
In this section, we explore the relation between the moment  scaling function K(q) and 
the power spectrum o f  the stationary field (PL that represents a random multifractal at the 
(sufficiently small) scale o f  resolution L. 21 Recall that the power spectrum o f  a t ime 
series or one-dimensional  stochastic process quantifies the magni tude (amplitude) o f  
cycles o f  various lengths (periods). Spectral analysis generalizes to mult idimensional  
fields by characterizing not only the amplitude and periodicity o f  such "waves"  but their 

directions as well. An isotropic power spectrum averages the D-dimensional  power 
spectrum over all directions, converting it to a one-dimensional  spectrum. 22 

Because o f  Fourier duality between the correlation function o f  the field and its power 
spectrum [Feller] it is customary in analysis o f  empirical stochastic processes to examine 
the correlation structure o f  a process and then map it into Fourier space. But the 
correlation function is not well suited to analyzing non-stationary fields so we need to 
develop some  guidance as to how to check for stationarity, and, i f  it exists, how to 
quantify the underlying field. 

Because in the case o f  stationarity the functional form o f  the correlation function closely 

relates to the K(q) function, we can be reasonably confident in establishing a direct link 

between the power spectrum and K(q) function o f  the field. Following [Menabde et al.], 
we demonstrate  how it could be accomplished. 

For a D-d imens iona l  isotropic random field (pL(r): 

E(~ L (r~)~PL (r2)) = C([r~ - r~ l) (33) 

where C(r)is the correlation function o f  the field. 

The Fourier transform o f  tpt(r) field is defined as: 

g/(k) = ~exp(-ikr)(o L (r)d °r (34) 

where i = ",/-1, the unit imaginary number.  For an isotropic field (equation 33) one has  
that: 

E(~(k)V.,(h)) ~,~(k-h)P(k) (3s) 

21 Historically, power spectrum analysis played a central role in identifying and characterizing the scaling 
properUes of self-similar random fields. Recent advances [Marshak et al.] in understanding the limitations 
of applicability and sensitivity of power spectrum analysis leads one to realize that the issue of stationarity 
is critical in qualifying and quantifying interminency of the field. The erroneous assumption that everything 
could be extracted from knowledge of the spectral exponent leads to a failure to discriminate between 
qualitatively different fields. 

u This is explained more fully below. 
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where 8 ( )  is a delta function (1 at 0, 0 elsewhere) and P(k) is the isotropic power 
spectrum. On the other hand, from equations 33 and 34 we can get the expression: 

E ( ~ , ( k ) ~ ( h ) )  = ~ e x p ( - i k r ,  - ihr2)C([r ,  - r2l)a°r,a°r, (36) 

After some mathematical manipulations with integrals involving change of  variables, 
introduction of polar coordinates, and performing the integration over the angular 
variables, one can obtain the following elegant result for the power spectrum of a 
stationary isotropic random field: 

P(k ) oc k -°÷x<2) (37) 

The practical implementation of the above on an NxN square grid V(m,n) of  intensity 
values is as follows: Compute the array: 

N " 

Convert this to the isotropic power spectrum by accumulating values IH(k,h)l 2 (i.e. 
complex magnitude squared) into one-dimensional array cells A(r) where 

,(l(k + N/2)modN- N/2 I 
r= rouna~ (h + N/2)modU- N/2 )" (39) 

(Here, the vertical bars indicate vector magnitude, i.e., square root of sum of squares.) 
Then convert A values to averages P by dividing each accumulated A entry by the 
number of H cells contributing to the entry. 

Equation 37 could be utilized in many ways: to check a D-dimensional stationary 
isotropic field for SS properties, to verify the validity of a numerical approximation of the 
K(q) function at the point q = 2, or to examine a non-stationary field with stationary 
increments (Brownian motion and "fractional Brownian motion"). Note that P(k) and 
K(2) can be computed by independent methods from the same data, enabling one to 
verify the consistency of assumptions about stationary increments. 

If  we relax the assumption of  stationarity, the problem of identification and 
characterization of SS fields develops some complications. We outline some important 
guidelines in handling non-stationary fields: 

1. First of  all, the power spectrum analysis still can indicate self-similarity of the field 
under investigation, revealing the following form: 

P(k) oc k -p (4o) 

2. For D-dimensional fields the condition ]3 > D will indicate lack of stationarity, but 
some transformations of  the original field (like power-law filtering or taking the 
absolute value of small-scale gradients) could produce a stationary field. 
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3. The spectral exponent f l  contains information about the degree of stalionarity of the 
field. The introduction of a new parameter H (sometimes called the Hurst exponent) 

related to/~ could aid in the task of characterizing the degree of persistence or long- 
term memory of the field. We will illustrate the importance of parameter H for time 
series in the part II paper. 

4. The arguments that the correlation function is not well suited for non-stationary 
situations (because of its translation dependence) led to the development of new ideas 
about the statistical properties of non-stationary fields to be properly estimated by 
spatial averaging procedures. The Wiener-Khinchine relation applicable to fields with 
stationary increments [Monin & Yaglom] states that it is the second-order structure 
function - not the correlation function - that is in Fourier duality with the power 
spectrum. We will introduce the structure function in the context of time series 
analysis in the part I1 paper and illustrate how lhe structure fimction is the one- 
dimensional analog of the K(q) function. 

A further refinement of the multiplicative cascade is to pass from the discrete cascade, 
which is what has been described up to this point, to the continuous cascade. The idea 
behind a continuous cascade is that rather than proceeding in identifiable steps, the 
multiplicative transfer of intensity variation between scales happens continuously at all 
scales. [Schertzer & Lovejoy] describe a method of implementing continuous cascades 
by means of the Fourier transform. 

The functional form for K(q) (equation 31 in appendix C) could be extended to 
nonstationar)' fields, and fractional integration (power-law filtering in Fourier space) 
could be used to transform simulated stationary random fields to any desired degree of 

non-stationarity (in the sense of spectral exponent f l  ). This is considered more fully in 
the part II paper. 
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Figure 1: Sierpinski Triangle
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Figure 2: Stages of the Binomial Multifractal
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Figure 3:  Northeastern USA Population Density



Figure 4:  N.E. USA at 1/2 resolution



Figure 5:  N.E. USA at 1/4 resolution



Figure 6:  Sierpinski Multifractal



Figure 7:  Random Sierpinski Multifractal



Figure 8:  Random Sierpinski Multifractal (Perspective)
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Figure 9: Sierpinski Multifractal K(q) Function



Figure 10: Effect of Alpha on K(q) Curve



Figure 11: Universal Generator Distribution



Figure 12: Comparative Portfolio Spectra



Figure 13: Selected Trace Moments of Population



Figure 14: Empirical K(q) of Population



Figure 15: Double Trace Search for Alpha



Figure 16: Empirical vs. Theoretical K(q) for Population
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Figure 17: Actual Portfolio Map



Figure 18: Poisson Simulation of Portfolio



Figure 19: Multifractal Simulation of Portfolio



Figure 20: 3/30/98 Hail Reports As Given



Figure 21: Hail Reports In Swaths



Figure 22: Hail Reports Shifted



Figure 23: Multifractal Simulations of Hail Reports


