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Abstract 

Aggregate Loss Distributions are used extensively in actuarial practice, both in ratemaking and reserving. 
A number of approaches have been developed to calculate aggregate loss distributions, including the 
Heckman-Meyers method, Panjer method, Fast Fourier transform, and stochastic simulations. All these 
methods are based on the assumption that separate loss frequency and loss severib distributions are 
available. 

Sometimes, however, it is not practical to obtain frequency and severity distributions separately, and only 
aggregate information is available for analysis. In this case the assumption about the shape of aggregate 
loss distribution becomes very important, especially in the "tail" of  the distribution. 

This paper will address the question of what type of probability distribution is the most appropriate to use 
to approximate an aggregate loss distribution. 
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Introduction 

Aggregate loss distributions are used extensively in actuarial practice, both in ratemaking 
and reserving. A number of  approaches have been developed to calculate aggregate loss 
distribution, including the Heckman-Meyers method, Panjer method, Fast Fourier 
transform, and stochastic simulations. All these methods are based on the assumption that 
separate loss frequency and loss severity distributions are available. 

Sometimes, however, it is not practical to obtain frequency and severity distributions 
separately, and only aggregate information is available for analysis. In this case, the 
assumption about the shape of aggregate loss distribution becomes very important, 
especially in the "tail" of the distribution. 

This paper will address the question what type of probability distribution is the most 
appropriate to use to approximate an aggregate loss distribution. We start with a brief 
summary of some important results that have been published about the approximations to 
the aggregate loss distribution. 

Dropkin [3] and Bickerstaff [1] have shown that the Lognormal distribution closely 
approximates certain types of homogeneous loss data. Hewitt, in [6], [7], showed that two 
other positive distributions, the gamma and log-gamma, also provide a good fit. 

Pentikainen [8] noticed that the Normal approximation gives acceptable accuracy only 
when the volume of risk business is fairly large and the distribution of the amounts of the 
individual claims is not too heterogeneous. To improve the results of Normal 
approximation, the NP-method was suggested. Pentikainen also compared the NP- 
method with the Gamma approximation. He concluded that both methods give good 
accuracy when the skewness of the aggregate losses is less than !, and neither Gamma 
nor NP is safe when the skewness of the aggregate losses is greater than 1. 

Seal [9] has compared the NP method with the Gamma approximation. He concluded that 
the Gamma provides a generally better approximation than NP method. He also noted 
that the superiority of the Gamma approximation is even more transparent in the "tail" of 
the distribution. 

Sundt [11] in 1977 published a paper on the asymptotic behavior of the compound claim 
distribution. He showed that under some special conditions, if  the distribution of the 
number of claims is Negative Binomial, then the distribution of the aggregate claims 
behaves asymptotically as a g a(ama-type distribution in its tail. A similar result is 
described in [2] (Lundberg Theorem, 1940). The theorem states that under certain 
conditions, a negative binomial frequency leads to an aggregate distribution, which is 
approximately Gamma. 

The skewness of the Gamma distribution is always twice its coefficient of variation. 
Since the aggregate loss distribution is usually positively skewed, but does not always 
have skewness double its coefficient of variation, adding a third parameter to the Gamma 
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was suggested by Seal [9]. However, this procedure may give positive probability to 
negative losses. Gendron and Crepeau [4] found that, if severity is Inverse Gaussian and 
frequency is Poisson, the Gamma approximation produce reasonably accurate results and 
is superior to the Normal, N-P and Escher approximations when the skewness is large. 

In 1983, Venter [12] suggested the Transformed Gamma and Transformed Beta 
distributions to approximate the aggregate loss distributions. These gatmna-type 
distributions, allowing some deviation from the Gamma, are thus appealing candidates. 

This paper continues the research into the accuracy of different approximations of the 
aggregate loss distribution. However, there are two aspects that differentiate it from 
previous investigations. 

First, we have restricted our consideration to two-parameter probability distributions. 
While adding the third parameter generally improves accuracy of approximation, 
observed samples are usually not large enough to warrant a reliable estimate of an extra, 
third, parameter. 

Second, all prior research was based upon theoretical considerations, and did not consider 
directly the goodness of fit of various approximations. We are using a different approach, 
building a large simulated sample of aggregate losses, and then directly testing the 
goodness of fit oI' various approximations to this simulated sample. 

Description of the Method Used 

The ideal method to test the fit of a theoretical distribution to a distribution of aggregate 
losses would be to compare the theoretical distribution with an actual, statistically 
representative, sample of observed values of the aggregate loss distribution. 
Unfortunately, there is no such sample available: no one insurance company operates in 
an unchanged economic environment long enough to observe a representative sample of 
aggregate (annual) losses. Economic trend, demography, judicial environment, even 
global warming, all impact the insurance marketplace and cause the changes in insurance 
losses. Considering periods shorter than a year does not work either because of seasonal 
variations. 

Even though there is no historical sample of aggregate losses available, it is possible to 
create samples of values that could be aggregate insurance losses under reasonable 
frequency and severity assumptions. Frequency and severity of insurance losses for major 
lines of business are being constantly analyzed by individual insurance companies and 
rating agencies. The results of these analyses are easily available, and of a good quality. 
Using these data we can simulate as many aggregate insurance losses as necessary and 
then use these simulated losses as if they were actually observed: fit a probability 
distribution to the sample and test the goodness of fit. The idea of this method is similar 
to the one described by Stanard [10]: to simulate results using reasonable underlying 
distributions, and then use the simulated sample for analysis. 
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Our analysis involved the following formal steps: 

1. Choose severity and number of claims distributions; 
2. Simulate the number of claims and individual claim amounts, and calculate the 

corresponding aggregate loss; 
3. Repeat many times (5,000) to obtain a sample of aggregate losses; 
4. For different probability distributions, estimate their parameters, using the 

simulated sample of aggregate losses; 
5. Test the goodness of fit for the various probability distributions. 

Selection of Frequency and Severity Distributions 

Conducting our study, we kept in mind that the aggregate loss distribution could 
potentially behave very differently, depending on the book of business covered. Primary 
insurers usually face massive frequency (large number of claims), with limited 
fluctuation in severity (buying per occurrence excess reinsurance). To the contrary, an 
excess reinsurer often deals with low frequency, but a very volatile severity of losses. To 
reflect possible differences, we tested several scenarios that are summarized in the 
following table. 

Scenario # Type of I Expected Number Per Occurrence Type of  Severity 
Book of Business of Claims Limit Distribution 

1 Small Primary, 50 $0 - 250K 5 Parameter 
Low Retention , Pareto 

2 Large Primary, 500 $0 - 250K 5 Parameter 
Low Retention Pareto 

3 50 $0 - 1000K Small Primary, 
High Retention 
Large Primary, 
High Retention 
Working Excess 

500 

20 

$ 0  - 1 0 0 0 K  

$750K xs 
$250K 

5 Parameter 
Pareto 

5 Parameter 
Pareto 

5 Parameter 
Pareto 

6 High Excess [ 10 $4M xs $1M 5 Parameter 
i Pareto 

7 High Excess 10 $4M xs $ I M Lognormal 

Number of claims distribution for all scenarios was assumed to be Negative Binomial. 
Also, we used Pareto for the severity distribution in both primary and working excess 
layers. In these (relatively) narrow layers, the shape of the severity distribution selected 
has a very limited influence on the shape of the aggregate distribution. In a high excess 
layer, where the type of severity distribution can make a material difference, we tested 
two severity distributions: Pareto and Lognormal. More details on parameter selection for 
the frequency and severity distribution can be found in the exhibits that summarize our 
findings for each scenario. 
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Distributions Used for the Approximation of Aggregate Losses 

As we discussed before, we concentrated our study on two-parameter distributions. 
Basically, we tested three widely used two-parameter distributions, to test their fits to the 
aggregate loss distributions constructed in each of the seven scenarios. Each of these 
three distributions was an appealing candidate to provide a good approximation. The 
following table lists the three distributions used. 

Type of [ Parameters Probability Density Mean Variance 
Distribution Function 

Normal cr 2 

Lognormal 

Gamma 

~t 
(~>0 

I.t 
t~>0  
(x>O 
13>0 

f(x) =l/(o~/2n) * 
exp(-(x- ~t)2/(2o2)) 

fix) =l/(ox~/2r0 * 
exp(-(ln x - ~)2/(2o2)) 

f(x) = 1/(F(x)) * 
13-~x"'texp(-x/[3) 

P 

exp(~t + o2/2) exp(2~t + o 2) * 
[exp(o 2) - 1] 

a[32 

A Normal distribution appears to be a reasonable choice, at least when the expected 
number of claims is sufficiently large. One would expect a Normal approximation to 
work in this case because of the Central Limit Theorem (or, more precisely, its 
generalization for random sums; see, for instance, [5]). As we shall see, however, to 
make this happen, the expected number of claims must be extremely large. 

A Lognormal distribution has been used extensively in actuarial practice to approximate 
both individual loss severity and aggregate loss distributions ([1], [3]). A Gamma 
distribution also has been claimed by some authors ([6], [9]) to provide a good fit to 
aggregate losses. 

Parameter Estimates and Tests of Goodness of Fit 

Initially we used both the Maximum Likelihood Method and the Method of Moments to 
estimate parameters for the approximating distributions. The parameter estimates 
obtained by the two methods were reasonably close to each other. Also, the distribution 
based on the parameters obtained by the Method of Moments provided a better fit than 
the one based on the parameters obtained by the Maximum Likelihood Method. For these 
reasons we have decided to use the Method of Moments for parameter estimates. 

Once the simulated sample of aggregate losses and the approximating distributions were 
constructed, we tested the goodness of fit. While the usual "deviation" tests (Kolmogorov 
- Smirnov and g2-test) provide a general measurement of how close two distributions are, 
they can not help to determine if the distributions in question systematically differ from 
each other for a broad range of values, especially in the "tail". To pick up such 
differences, we used two tests that compare two distributions on their full range. 
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The Percentile Matching Test compares the values of distribution functions for two 
distributions at various values of the argument up to the point when the distribution 
functions effectively vanish. This test is the most transparent indication of where two 
distributions are different and by how much. 

The Excess Expected Loss Cost Test compares the conditional means of two distributions 
in excess of different points. It tests values E[X - x I X > x] * Prob{X > x}. These values 
represent the loss cost of the layer in excess o fx  if X is the aggregate loss variable. The 
excess loss cost is the most important variable for both the ceding company and 
reinsurance carrier, when considering stop loss coverage, aggregate deductible coverage, 
and other types of aggregate reinsurance transactions. 

Results and Conclusions 

The four exhibits at the end of the paper document the results of our study for each of the 
seven scenarios described above. The exhibits show the characteristics of the frequency 
and severity distributions selected for each scenario, estimators for the parameters of the 
three approximating distributions, and the results of the two goodness-of-fit tests. 

The results of the study are quite uniform: for all seven scenarios the Gamma distribution 
provides a much better fit than the Normal and Lognormal. In fact, both Normal and 
Lognormal distributions show unacceptably poor fits, but in different directions. 

The Normal distribution has zero skewness and, therefore, is too light in the tail. It could 
probably provide a good approximation for a book of business with an extremely large 
expected number of claims. We have not considered such a scenario however. 

In contrast, the Lognormal distribution is overskewed to the right and puts too much 
weight in the tail. The Lognormal approximation significantly misallocates the expected 
losses between excess layers. For the Lognormal approximation, the estimated loss cost 
for a high excess layer could be as much as 1500% of its true value. 

On the other hand, the Gamma approximation performs quite well for all seven scenarios. 
It still is a little conservative in the tail, but not as conservative as the Lognormal. This 
level of conservatism varies with the skewness of the underlying severity distribution, 
and reaches its highest level for scenario 2 (Large Book of Business with Low 
Retention). When dealing with this type of aggregate distribution, one might try other 
alternatives. 

As the general conclusion of this study, we can state that the Gamma distribution gives 
the best fit to aggregate losses out of the three considered alternatives for the cases 
considered. It can be recommended to use the Gamma as a reasonable approximation 
when there is no separate frequency and severity information available. 
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Scenario 1 

Frequency: Negative Binomial 
Expected Number of Claims 50 
Severity: 5 Parameter Truncated Pareto 
Expected Severity 13,511 
Per Occurrence Limit 250,000 

Method of Moments estimated parameters for: 
Lognorrnal Normal Gamma 
Mu 13.347 Mu 691,563 Alpha 
Sigma 0.447 Sigma 325,246 Beta 

Mean 691,563 Mean 

Percentile matching~ 
P(X>x) 

_x Empirical ~ o r m a l  N o r m a l  Gamma 
500,000 69.36% 6 9 . 2 2 %  7221% 68.90% 
750.000 38.06% 3 4 . 2 7 %  4 2 . 8 7 %  37.02% 

1,000,000 16.48% 14.72% 17 15% 16.16% 
1,250,000 6.16% 608% 4.30% 6,11% 
1.500,000 1.94% 2 53% 0.65% 2.09% 
1,750,600 0.62% 1 07% 0.06% 0.66% 
2,000,000 6.06% 0 47% 0.00% 0.20% 

Expected Loss costs 
E[X-xl X>x] * P(X>x) 

Empirical Lognormal N o r m a l  Gamma 
237,751 2 2 7 , 0 1 1  1 7 8 , 6 4 8  234,823 
104,504 100,316 43,996 t03,823 
38,636 42,118 5,123 40,019 
12.293 17,660 245 13,924 
3,618 7,553 4 4.483 

870 3,323 0 1,369 
111 1,507 0 393 

Scenario 2. 

Frequency: Negative Binomial 
Expected Number of Claims 500 
Severity: 5 Parameter Truncated Pareto 
Expected Severity 13,511 
Per Occurrence Limit 250.000 

Method of Moments estimated parameters for: 
Lognormal Normal Gamma 
Mu 15.740 Mu 6,922,204 Alpha 
Sigma 0.144 Sigma 1,004,786 Beta 

Mean 6,922,204 Mean 

Percentile matching_ 

_x Empirical ~ r m a l  
6,000,000 82.48% 82.07% 
7,000,000 44.92% 44 05% 
8,000,000 13.74% 1413% 
9.000,000 2.64% 2.94% 
9.500,000 1.02% 1 18% 

10,000,000 0.28% 0.44% 
10,500,000 0.02% 0.16% 

P(X>x) 
Normal Gamma 

82.06% 81.94% 
46.91% 46.01% 
14.17% 14.26% 
1 93% 2.63% 
0.52% 0.94% 
0.11% 6.30% 
0.02% 0.09% 

Expected Loss costs 
E[X-xl X>x] * P(X>x) 

Empirical Lognorma! Norma l  Gamma 
t,009,130 1,001,072 836,942 1,007,562 

362,107 3 6 2 , 9 5 6  170 ,371  363,947 
83,509 89,015 10,310 83,937 
11,978 15,524 137 12,315 
3,821 5,838 8 4,024 

586 2,072 0 1.192 
16 699 0 322 

Exhibit 1 

4.521 
152,965 

691,563 

47.462 
145,849 

6,922,204 



4~ 

Frequency: Negative Binomial 
Expected Number of Claims 50 
Severity: 5 Parameter Truncated Pareto 
Expected Severity 18,991 
Per Occurrence Limit 1,000,000 

Percentile matching 
P(X>x) 

x Empirical Lognormal N o r m a l  Gamma 
1,000,000 38.88% 3547% 4739% 38.70% 
1,500,000 18.28% 1484% 19 75% 17.27% 
2,000,000 6.82% 6.44% 5 09% 7.08% 
2,500,000 2.82% 2,95% 0.77% 2.78% 
2.750,000 1.54% 204% 024% 1.88% 
3,000,000 0,92% 1,43% 0.07% 1.03% 
3,250,000 0.42% 1 01% 0 02% O.8;P/o 
3,500,000 0.28% 0.73% 0.00% 0 . 3 ~  

Frequency: Negative Binomial 
Expected Number of Claims 500 
Severity: 5 Parameter Truncated Pareto 
Expected Severity 18,991 
Per Occurrence Limit 1,000,000 

Percentile matching 
P(X>x) 

_x Empiricel Lognormal No rma l  Gamma 
10,000,000 40JN% 3979% 4 3 . 7 4 %  41.12% 
12,000,000 12.S0% 1 2 . 4 4 %  1230% 12.59% 
14,000,000 2.18% 2 81% 153% 2,43% 
15,000,000 0.88% 1 23% 039% 0.92% 
16,000,000 0.38% 0.52% 0.08% 0.32% 
17,000,000 0.12% 021% 0.01% 0.10% 
18,000,000 0.0(5% 0.08% 0 00% 0.03% 

Scenario 3. 

Method of Moments estimated parameters for: 
Lognormal Normal Gamme 
Mu 13590 Mu 958,349 Alpha 
Sigma 0 605 Sigma 636,775 Beta 

Mean 958,349 Mean 

Expected Loss costs 
E[X-xl X>x]" P(X>x) 

~ i r i c a l  Lognormal Normal Gamma 
233,797 212 ,405  110 ,782  228,287 
94,548 94,109 13,815 94,254 
35,445 44,012 692 ~,798 
12,438 21,761 13 13,826 

7,085 15,599 1 8,362 
4,021 11,313 0 8,062 
2,534 8,296 0 3,029 
1,697 6,145 0 1,807 

Scenario 4. 

Method of Moments estimated oammeters for: 
Lognormal Normal Gamm~ 
Mu 16,065 Mu 9,685,425 Alpha 
Sigma 0,204 Sigma 1,995,223 Beta 

Mean 9,685,426 Mean 

E x ~ . e d  Loss cost~ 

Empirical L0gnormal 
8S0,476 651,609 
160,831 165,420 
22,879 33,145 
8,930 13,941 
3,160 5,689 
1,060 2,268 

l U  888 

E[X-x i X>x] " P(X>x) 
Normal Gamma 

283,657 854,236 
14,936 181,977 

166 24,231 
9 8,544 
0 2,799 
0 887 
0 247 

Exhibit 2 

2265 
423,106 

958,349 

23564 
411,021 

91685,425 
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Frequency: Negative Binomial 
Expected Number of Claims 20 
Severity: 5 Parameter Truncated Pareto 
Expected Severity 315,640 
Per Occurrence Excess Layer $750K x $250K 
Skewness 0.416 

Percentile matching 
P(X>x) 

x Empir ical  Legnormal Normal Gamma 
6,000,000 50 .26% 46.50% 54.46% 48.72% 
8,000,000 24 .48% 21.77% 26.83% 23.81% 

10,000,000 9.70% 9.40% 8 . 8 8 %  0.87% 
12,000,000 3.28% 3.96% 1 . 8 8 %  3.63% 
14,000,000 1.00% 1.68% 0 . 2 5 %  1.22% 
18,000,000 0.28% 0.72% 0 . 0 2 %  0.38% 
20,000,000 0.04% 0.14% 0 . 0 0 %  0.03% 

Scenario 5. 

Method of Moments estimated parameters for: 
Lognormal Normal Gamma 
Mu 15.571 Mu 6,306,951 Alpha 
Sigma 0.416 Sigma 2,739,428 Beta 

M e a n  6,306,951 Mean 

Expected Loss costs 
E[X-xl X>x] * P(X>x) 

Empirical Lognormal No rma l  Gamma 
1,225,433 1,173,911 682,504 1,218,440 

503,151 515 ,230  120,368 511,426 
174,023 219,525 9,991 191,144 
54,155 93,588 355 65,274 
14,274 40,508 5 20,761 

3,491 17,921 0 5,238 
772 3,779 0 494 

Exhibit 3 

5.301 
1,189,872 

6,306,951 
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Scenario 6. 

Frequency: Negative Binomial 
Expected Number of Claims 10 
Severity: 5 Parameter Truncated Pareto 
Expected Severity 1,318,316 
Per Occurrence Excess Layer $4M x $1M 
Skewness 1 B87 

Loqnormal 
Mu 
Sigma 

Mean 

Method of Moments estimated parameters for' 
Normal Gamma 

16006 Mu 12,985.319 Alpha 
0864 S i g m a  131683,648 Beta 

12.985319 Mean 

Percentile matchingL 
P(X>x) 

x Enlpirical Log.normal Norma l  Gamma 
15.000,000 31.80% 27 46% 44 15% 31.13% 
20.000.000 22.42% 17 57% 30 41% 21.61% 
25.000.000 15.32% 11 70% 19 00% 15.05% 
30,000,000 10.56% 8.06% 1069% 16.50% 
40.000.000 5.36% 4 15% 242% 5.14% 
50,000,000 2.52% 2 32% 0 34% 2.52% 
60,000.000 1.10% 1 38% 0 03% 1.24% 

Expected Loss costs 
E[X-x I X>x] " P(X>x) 

Empirical Lognormal Norma l  Gamma 
4,359,267 3,731,938 1,991,361 4,319,503 
3,026,84t 2,628,509 806 .980  3,011,961 
2,094,021 1.908,864 271 ,738  2,106,§72 
1,455,987 1,421,737 74.986 1,473,927 

689,160 837,602 3.009 724,182 
324,128 525,046 49 356,764 
152,034 345,040 0 176,096 

Scenario 7. 

Frequency: Negative Binomial 
Expected Number of Claims 10 
Severity: Lognormal 
Expected Severity 2 166,003 
Per Occurrence Excess Layer $4M x $1M 
Skewness 1 190 

Lognormal 
Mu 
Sigma 

Mean 

Method of Moments estimated parameters for: 
Normal Gamma 

16601 Mu 20.233,595 Alpha 
0667 S i g m a  151141,348 Beta 

20 233,595 Mean 

Percentiie matching 
P(X>x) 

x Empirica ! Loqnorma! Norma l  Gamma 
20.000 000 42.16% 37 60% 50 62% 40.65% 
25.000,000 30.66% 25 76% 37 65% 29.44% 
30.000,000 21.52% 17 77% 25 95% 20.99% 
40.000.000 10.64% 876% 9 59% 10.31% 
50.000.000 5.24% 4 55% 2 47% 4.91% 
60.000.000 2.06% 2 48% 0 43% 2.29% 
70000,000 0.76% 1 41% 0 05% 1.05% 

Expected Loss costs 
E[X-xl X>x] * P(X>x) 

Empirie~ L oRnormal Norma l  Gamma 
5,984,377 5,371.757 3.116,920 6,861,977 
4,167,564 3.806.611 1,488,582 4,122,201 
2,877,740 2.731,389 615 ,453  2,872,036 
1,299,737 1.462.583 65,324 1,364,938 

546,755 822,414 3,471 635,179 
204,979 482,606 88 291,091 
69,923 293,789 1 131,796 

Exhibit 4 

0.901 
14,419,533 

12,985,319 

1.786 
11,330.681 

20.233.595 


