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Abst r act

Thi s paper focuses on issues and nethodol ogies for fitting
alternative statistical nopdels--probability distributions--to
sanpl es of insurance |loss data. The interaction of paranetric
loss distributions, deductibles, policy Ilimts and rating
variables in the context of fitting distributions to |osses are
di scussed. Fitted loss distributions serve an inportant function
for the purpose of pricing insurance products. The procedures
illustrated in this paper are based on a sanple of insurance

| osses, and with [ ognormal as the underlying |oss distribution.
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1. I ntroduction



This section presents sone prelimnaries regarding |osses,
deductibles, policy limts and rating variables as inputs for
fitting distributions to losses. In section 2, a nethod for
fitting a single distribution to losses is considered. In this
i nstance, the information provided by rating variables is either
not considered or is not available. The nethod of maxinmum
i keli hood has been applied to estimte npodel paraneters in the
presence of deductibles and policy limts. Sections 3 and 4
devel op nethodologies for fitting alternative statistical
nodel s--famly of loss distributions--to |loss data, using the
informati on provided by rating variables. This is achieved by
requiring a parameter of a loss distribution to depend upon
values of rating variables. Criteria for assessing goodness of
fit are discussed. Furthernore, large sanple statistical tests
for assessing the impact of rating variables upon |oss
distributions are given. Some concluding statenents are made in
section 5.

I nsurance data considered here have the follow ng
characteristics: a) losses are specified individually, b) for
each individual loss, the infornmation about deductibles and
policy limts is furnished, and c¢) for each |oss, we have
auxiliary policy information regarding the rating variables.
Each of these three itens is discussed further bel ow.

Losses are given on an individual basis, and have not been
grouped by |oss size. The nethodologies to fit distributions to
data differs, depending on whether |osses are grouped or

i ndividually specified. Losses nmay be closed or open. The anount



recorded for each loss is the incurred value as of the |atest
avail abl e evaluation period. If sone losses in the sanple data
are still open as of the latest evaluation period, then those
| osses should be properly adjusted for further devel opnent.
Unfortunately, nost of the nethodologies for developnment of
losses to their ultinmate values are only available for grouped
data. Further research on the topic of devel opnent of individua
losses to their individual ultimate values 1is welconed.
I ndi vi dual | osses should be suitably trended to reflect val ues
expected in the future. The nethodol ogy presented in this paper
has been applied to a sanple of comercial fire |osses (see
Table A of Appendix A). Those |osses were nostly closed, as of
their latest evaluation date, hence adjustments for further
devel opnmrent were not warranted. Finally, in order to fit
distributions to | osses, zero | osses shoul d be excl uded.
Deductibles are used to exclude certain |losses. Usually
deductibles are small--for exanple, a few hundred or a few
t housand dollars. However, for a large insured, deductibles my
be sizable due to the existence of self-insured retention or
ot her underlying coverages. Only dollar deductibles are
considered here. Tine deductibles such as waiting periods are
not treated. A reported loss with a value in excess of its

deductible is said to be left truncated. If a |loss arises froma

policy with no underlying deductible, then for the purpose of
the conputation, a value of zero is inmputed as the "deductible"
anmpunt. It is not required that the deductible amunt be the

sane for each | oss.



Policy limts serve to |limt the anmount of paynent on a
given loss or a loss occurrence. Wen the loss amunt is at
least as large as its policy limt, the loss is said to have

been right censored. If a loss arises froma policy where there

is no underlying policy limt, then any anpunt greater than the
| oss anmpbunt may be inputed as the "policy |limt". In these
i nstances, those |osses have not been censored. Varying policy
limts are allowed for. In fact, no grouping of |osses based
upon deductible or policy limt anmounts is required.

Samples of insurance |oss data are wusually inconplete.
This is due to inclusion of left truncated (losses in excess of
deducti bles) and right censored (sonme |osses capped by their
respective policy limts) data in the sanple. Due to this
i nconpl eteness of data, it beconmes more difficult to estimate
the paraneters of a loss distribution and to assess the goodness
of fit. Many traditional approaches for estimtion of paraneters
of a loss distribution or assessing the goodness of fit of a
distribution are valid only if the sanple of observations is
conplete, that is, when there are neither left truncated nor
ri ght censored observations in the sanple.

Rating variables in insurance depend upon the Iline of
busi ness, the degree of conpetition present in the market, and
regul ation. The effect of the rating variables wupon |oss
distributions has inportant inplications for underwiting
selection. It also provides for a nore differentiated rating
system How to incorporate the information provided by rating
variables into the process of fitting distributions to |osses is

di scussed in sections 3 and 4.



Followwng is a description of how to fit a single

distribution to a sanple of insurance | oss data.

2. Fitting a Single Distribution to
Losses

Fitting a single distribution to l|losses is based upon
consideration of alternative statistical nodels--probability
di stributions--as data-generating nechanisns. The assunption
made is that the observed |osses are a realization of a
probabilistic process governed by a paranetric distribution. The
purpose of fitting a distribution to losses is to identify a

specific paranetric distribution which provides a reasonable fit

to the data. A good introduction to the subject of fitting
distributions to losses is given by Hogg and Klugman (1984).
Thi s paper conplenents their work by focusing on certain rel ated
topics. First, nore enphasis is placed on the procedures for
fitting loss distributions to individual |oss data rather than
grouped data. Second, nethodologies required to incorporate
rating variables in the process of fitting distributions to
| osses are presented in sections 3 and 4. Finally, readers of
this paper may find the conputer prograns (codes) given here to
be beneficial for the purpose of the conputing maxinum
i kelihood estinmates of paraneters of a |loss distribution.
Fitting a distribution to |losses serves to noderate the
effect of sanpling variation in the data. This is achieved by

replacing an enpirical distribution by a nore snmoothed (fitted)



di stri bution. Furt her nore, estimtes of tail probabilities
beyond the range of the original data can be provided based on
fitted distribution.

At least two problems conplicate the fitting of a
paranetric distribution to |oss data. The first problem concerns
the tendency of many losses to be settled at rounded figures.
This notion is inconpatible wth selecting a paranetric
di stribution such as |ognormal or Pareto, where the probability
of taking any specified value is zero. The second problem ari ses
from the fact that nmany statistical procedures assune that
| osses in a sanple are identically distributed. Insurance risks
are normally heterogeneous. Each risk has its own risk
characteristics and its own propensity to produce a potenti al
| oss. For instance, two different drivers have differing |oss
propensities. To a certain extent, risk characteristics are
reflected by underwiting rating factors. For this reason, risks
with the sanme values for their underwiting factors are cross-
classified to produce "honpgeneous" classes. The use of rating
factors to cope with the heterogeneity problem is addressed in
sections 3 and 4. In this section, the information provided by
rating factors is ignored in order to concentrate on fitting a
single loss distribution to data.

For the sake of exposition, the process of fitting a
single distribution to |oss data has been broken down into four
st eps:

1. Consideration of a nunmber of parametric probability

distributions as potential candidates for wunderlying

| oss distribution.



2. For each distribution specified in step 1, the
estimation of the parameters of the distribution from
sanpl e data--hence, the determ nation of a set of fitted
di stributions.

3. Specification of a criterion for choosing one or a few

fitted distributions fromstep 2 above.

4. Assessing the goodness of fit for the fitted

distribution(s) in step 3.

Let us proceed with a more detailed account of these
steps. These steps will be illustrated below by reference to a
numeri cal exanple. The first step requires considering a number
of paranetric distributions as potential candidates for the data
generating mechani sm The list of potenti al paranetric
di stributions as candidates for loss distribution is enornous.
In practice, one can entertain only a few paranetric

distributions for the purpose of fitting a distribution to

| osses. In this paper, | have selected the follow ng paranmetric
probability distributions: |ognormal, Pareto, Weibull, gammms,
i nverse gamma, and exponential. This list is subjective, but

sone of the above distributions have been used by actuaries and
have appeared in actuarial literature. The list chosen here is

only for illustrative purposes and is not neant to be

exhausti ve.

The second step involves the estimation of the paraneters
of each probability distribution selected in step 1 from the
data. Once one has estinmated the parameters of a given
distribution, one then has a fitted distribution. The estimtion

of parameters of a loss distribution is made difficult because



of inconpleteness of data. Sone comonly used statistica
procedures to estimate paraneters of a distribution for a sanple
of conplete data are: the method of nonments, the |east squares
estimation as wused for regression nodels, and the maxinmm
i kelihood estimation. These paraneter estimtion procedures are
outlined in nobst basic statistics texts. For inconplete sanple
data (presence of left truncated or right censored data), the
above estimation procedures are not applicable w thout further
nmodi fi cations. The application of estimtion procedures suitable
for conplete data to insurance data which is inconplete wll
produce inefficient paranmeter estimates. In this paper, the
estimation of paraneters of a loss distribution is based upon
proper specification of the Ilikelihood function reflecting the
presence of left truncated and right censored observations in
t he dat a.

Foll owi ng are sonme necessary notations needed to wite an
expression for the likelihood function in the case of inconplete

dat a.

Let vy, be the ith | oss amount (incurred value), 1£i£n,

where n denotes the nunber of |osses in the data set.

th

Di is the deductible for the i | oss.

th

PL is the policy limt for the i | oss.

f(y;q,j) denotes the density function for the | oss anpunt in
the case of conplete data. q is the primary paraneter of
interest. | is the nuisance paranmeter which may be a vector.

F(y;q,j) denotes the cunulative distribution function for

the | oss amount.



The contribution of a loss to the functional form of the
i kelihood function depends upon whether the loss is ground-up
or in excess of deductible, and furthernore if the | oss has been
capped by its respective policy limt. Hence, the contribution
of a loss to the likelihood function may be one of the four
nmutual Iy exclusive and exhaustive forns, witten as L;, L, Lg
and L, as defined below. In addition, four indicator variables,
d,, d, dy and d, are wused in order to wite a succinct
expression for the likelihood function of the sanple.
Case 1: No deductible, and | oss below policy limt (neither |eft

truncated nor right censored data). The conplete sanple case.

L= f(yai) (2. 1a)

_JLIfD;=0and y, <PL,

dip =] .
10, Otherwise

(2. 1b)

Case 2: A deductible, and loss below policy limt (left

truncat ed data)

. _ (D, +y;50]) (2.2a)
2 1- F(D;;q])
_1LI1fD;>0and y;, <PL;

dip =] .
10, Otherwise

(2. 2b)

Case 3: No deductible, and | oss capped by policy limt (right
censored data)

L3=1-F(Hﬂ;qj) (2. 3a)

_JLIfD;=0and y, 3 PL,

diz =] .
10, Otherwise

(2. 3b)

Case 4: A deductible, and | oss capped by policy limt (left

truncated and right censored data)



_1- F(D; +PLija. )

_ : (2. 4a)
14 1- F(D;:q.j )
iLIfD >0and vy; 3 PL.
g, = ot Di>0andy = FL; (2. 4b)
10, Otherwise
The contri bution of the ith | oss to the likelihood function is
gi ven by
L = Lildil Lizdiz Ligdi3 Li4di4 (2.5)

The |ikelihood function for the sanple is given by
L=OL (2.6)

The | og-likelihood is given by

| =4 log(L) (2.7a)
=4 (2. 7b)
I =log(L;) (2. 8a)

=d;;log(Lyy) +diz log(Li;) +diglog(Li;) +dis log(Li,) (2.8b)
where the log, as used in this paper, represents the natural
| ogarithm
Equation (2.5) represent the contribution of the i'" loss to the

i kelihood function. The |ikelihood function for the data is
given by equation (2.6). To estimate the paraneters g and | we

shoul d maxi m ze the likelihood function or alternatively
mnimze the negative of the logarithmof the |ikelihood
function. Equation (2.7) and (2.8) provide expressions for the

| ogarithm of the Iikelihood function.

10



Note that the contribution to the likelihood function for an
i ndi vi dual observation in nost basic statistics textbooks is of
the form (2. 1a).

The third step requires a criterion for ranking or
conparing alternative fitted probability distributions. This
step is needed to reduce the nunber of fitted distributions in
step 2 to one or a few potential candidates. A statistical
criterion used for conparing alternative nodels--statistica
distributions--is based upon the value of Akaike s Information
Criterion, AIC refer to Akai ke (1973).

The AIC criterion is defined by

AlC = - 2(maxim zed | og-1ikelihood)
+ 2(nunber of paraneters estimated)

Note, AIC can also be witten as
AlC = - 2{maxim zed | og-Iikelihood — nunber of paraneters esti mated}
When two nodel s are conmpared, the nodel with a smaller AlIC val ue
is the nore desirable one.
The AIC is based on log-likelihood and it penalizes the | og-
likelihood by subtracting for the nunber of par aneters
esti mat ed.
Two other nodel selection criteria wused in statistics are
Schwarz’ s Bayesian Information Criterion (BIC), Schwarz(1978),
and Devi ance as used in Ceneralized Linear Mdels; see MCullagh
and Nelder (1989). These three criteria are based on maxim zed
| og-1i kel i hood function.

Before proceeding to step 4, regarding fit, | shal
illustrate steps 1, 2, and 3 by reference to a nunerica

exanple. Let us consider the data in Table A of Appendix A

11



Here, we have a sanple of 100 commercial fire |osses. For each
| oss the deductible, policy limt, and the code for a type of
construction are stated. For the tinme being, let us ignore the
informati on about the construction since we are concerned wth
fitting a single distribution to the data. For each distribution
listed in Table 1 below, | have conputed the mnmaxim zed | og-
i kelihood function, and the corresponding Al C values. For the
case of Weibull distribution, the program used to conpute the
maxi mum | i kel i hood estimate of paraneters and the computed val ue
of maximzed |og-likelihood function is given as Exhibit 1 in
Appendix B. This program is coded in S Plus, a statistical
software suitable for data analysis. The conputation of
maxi m zed |ikelihood function for other distributions in Table 1

is simlar to the one for Wi bull.

12



Table 1

Negati ve
maxi m zed
| og-1i kel i hood Nunber of
Di stribution function Par anet ers Al C
[ ognor nal 897.8 2 1799.
Par et o 895. 2 2 1794.
Wi bul | 899. 8 2 1803.
ganmma 914.5 2 1833.
i nverse ganma 893.7 2 1791.
exponenti al 986. 4 1 1974.

ophOOPO



Wth regard to Table 1, it should be noted that the values of
maxi m zed |ikelihood function are positive. The values of
| ogarithm of the maxim zed |ikelihood functions are negative and
hence the negatives of the logarithm of the maxim zed |ikelihood
functions are positive figures.

Table 1 can be used for selecting a paranetric distribution for
the data. Based on the AIC criterion as a nethod of ranking
different fitted distributions, note that the AIC values of
| ognormal , Pareto, and inverse gamma are "conparable". The AIC
values for gamma  and exponenti al di stributions suggest

relatively nmore inferior fits. | have selected lognormal, wth
paranmeters m and s? as the distribution to be fitted to our

data. There are several reasons for this selection. First, it is
easier to interpret the paraneters of a |ognormal distribution.
Selecting a sinpler nodel is preferable, as it is easier to

explain and conprehend. By taking the logarithm of the | osses,

the m paraneter represents the |ocation paranmeter (nean), and

the s paraneter is the scale (standard deviation). Second,

| ognormal distribution has been previously used to describe the
distribution of fire | osses; see Benckert and Jung (1974).

Now we proceed with step 4, regarding the fit. By
exam ni ng the data in Appendix A, we note that the | osses can be
divided into four categories according to four cases defined for

specification of the |ikelihood function (see Table 2 bel ow):
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Table 2

# Case Nunber of Losses
1. No deductible and | oss below policy limt 1

2. A deductible, and | oss below policy limt 96

3. No deductible and | oss capped by policy limt 0

4. A deductible and | oss capped by policy limt

15



For our data, nobst of the | osses are of case 2, i.e., |osses
wi th deductibles and val ues below their policy limts. Due to
the paucity of data, we concentrate only on case 2.

For | ognormal distribution, we can conpute theoretica
conditional distributions (probabilities) and conditiona
limted expected val ues based on a fitted distribution, and
conpares these quantities with their respective sanple
counterparts.

The conditional distribution or probability of a | ognornal
random variable, X, with parameters mand s is given by
log(b) - log(a) -
F D FEE

P(X£b| X >a) = S
ORI
S

where F is the cunulative distribution function of a standard
normal distribution. Here a represents a threshold or a
deducti ble amount D, and b is usually the sum of deductible and
limt, i.e., D+ PL.

The conditional limted expected value is defined
by

1.2
Mm=S 2 _ 2 -
e 2 [F(LTE,) p (@ TSy, £ 00T,

. ~ 1
E[min(X,b)|[X>a] = ITEFEiEFTﬂ{
S

Tabl e 3 summari zes the compari son of theoretical and sanple

val ues of conditional probabilities and conditional limted

expected val ues for case 2 of data in Appendi x A

16



Table 3

Conpari son of Conditional Probabilities and
Condi tional Limted Expected Value for Fitted
Lognormal with its Sanple Val ues

a = 500
P(X£b| X >a) E[min(X,b) |[X>a]

Based on Sampl e Based on Sampl e
b | ognormal * estimate | ognor mal * estimate

2, 000 0. 485 0.494 1,538.7 1,620.9
5, 000 0.714 0. 699 2, 666. 4 2,737.2
10, 000 0. 832 0. 843 3,747.2 3,764.3
20, 000 0. 909 0. 904 4,969. 3 4,907.7
30, 000 0.938 0. 952 5,716.8 5,547.9
40, 000 0. 954 0.976 6, 248. 3 5,833.6
50, 000 0. 964 0. 988 6, 655. 8 6,071.7

# m=5.887, ¢§ = 2.302 are the maxi mum | i kel i hood esti nates

for the fitted |l ognormal distribution.
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The conparisons of fitted and sanple quantities in Table 3
suggests the |l ognormal provided a "reasonable” fit to the data.
It is worth making a few comrents regarding fit. First, our
sanple size is 100, with 96 observations for case 2. Wth snall
sanpl e sizes, considerable sanpling variability are encountered
in estimtion of nodel paraneters. Second, a perfect fit inplies
no snoothing! Third, the fit for a specific type of distribution
is judged to be good if it has a high predictive power, that is,
whet her the sanme type of distribution provides good fits to many

sanples of the same kind. A quotation from Lindsey (1995), is

appropriate here: "If a nodel represents the sanmple too well, it
will have no chance of representing a second, simlarly
generated, sanple very well. A nodel too close to a sanple wll

usually be too far from the population.” Finally, it is worth
enphasi zing that there are nmany other possible potential
candi dates (probability distributions) for fitting to a specific
data set. Thus, curve fitting is to some extent subjective and
not a perfect science. Froma practical point of view, there are
other considerations related to fitting a distribution to a
sanpl e. These are: a) the volume and quality of data, b) the
time constraint in which to do the curve fitting, c¢) the
know edge and experience of the curve fitter, d) availability of
suitable software (programs), e) convergence of iterative
algorithnms for estimation of nodel paraneters, and specification
of initial values for paraneters, and f) the treatnent of

outliers. Last but not the least is consideration of the purpose

18



for which the fitted distribution is wused. Wth all these
qualifications regarding fit, we shall assune the |ognormnal

provides a reasonable fit to the data in Appendi x A

3. Fitting a Famly of Distributions to Loss
Dat a: A Mean Approach

In section 2, procedures to fit a single distribution to
| oss data were considered. The information provided by rating
vari abl es was not considered. As nentioned earlier, risks in
i nsurance tend to be heterogeneous. Risks with different
attributes may well have different |oss distributions. To a
certain degree, a risk’s characteristics are reflected through
the values pertained by its rating variables. Thus, we expect
the loss distribution for fire for a small unprotected frane
buil ding be different froma large, highly protected and fire-
resistive building. It is desirable to have | oss distributions
whi ch reflect these differences. Qur approach to this issue is
to construct suitable statistical nodels--famly of |oss
di stributions. Two possible solutions are proposed in this
paper. The first solution, as explained in this section, is
simlar in spirit to the Generalized Linear Mdels (GM
approach. An excellent account on the subject of GLMis given by
McCul | agh and Nel der (1989). An alternative solution is
presented in section 4.

Loss distributions dependent upon rating variabl es have

i nportant inplications for underwiting selection and
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determ nation of rates. By including the rating variables, one
generally inproves the fit to the data. Using statistical nodels
enabl es one to assess the effect of rating variables on | oss
distributions by performng statistical tests of hypotheses.

A traditional approach for obtaining loss distributions
dependent upon risk attributes is to segnent |osses into
subgroups. Then, for each subgroup, a separate fitted |oss
distribution is obtained. For instance, in fire insurance,
|l osses may be classified broadly by construction as frane,
masonry and fire-resistive. Three fitted loss distributions can
be obtained according to the types of construction. Segmentation
of data into classes gives rise to credibility problens. For the
problem alluded to, it would be exasperating if one considered
ei ght construction types instead of three, and in addition,
considered other rating factors such as protection and
occupancy.

In section 2, we noted that the |ognormal distribution
provides a reasonable fit to the data in Appendix A. Mrroring
t he approached used in &M let us nowfit a famly of | ognornal
di stributions to our data.

The G.M net hodol ogi es consist of three conmponents. These

are referred to as the random conponent, the systematic
conponent, and the link. The random conponent: the random
variable of interest, Y (e.g., losses) or a transformation of Y,

has a distribution belonging to the exponential famly of
di stributions. The density, in canonical form for t he

exponential famly is

20



f(y;a.j ) =exp{[(qy- b(@))/a| )] +c(y.] )}
where a(.), b(.) and c(.) are sone specific functions. g is the
primary paraneter of interest, and | is often referred to as
the nuisance paraneter. Suitable loss distributions in the
exponential famly include normal, ganmm and inverse (Gaussi an.

The systematic conponent of a G.M specifies the

expl anatory variables, x.x, ..., X, (e.g., rating variables). The

expl anatory variables may only influence the distribution of the

Y through a single linear function called the |inear predictor

h,

h :b0+b1x1+ . +bpxp

The link, g, specifies how the nmean of Y, E(Y), is related
to the linear predictor h, i.e.

g(E(Y)) =h =a b, x,

The formof the link function varies by the type of distribution

within the exponential famly of distributions. For the nornal
distribution the link function is the identity map, i.e., m= h.

In GM the information provided by explanatory
variables (rating variabl es) is sunmmarized by a |linear
predi ctor. Each explanatory variable is considered either as a
factor (categorical) or as a covariate (quantitative). For
i nstance, sex, construction, and protection are categorical in
nature, while age and ampbunt of insurance are quantitative.

Some additional notations are needed to specify our

statistical nodel. Let h; denote a linear predictor for the ith

21



loss. It summari zes the informati on conveyed by the rating

vari abl es for the ith | oss. W write

h =XTh
'y

=axllbl
j=0

d

—b0+abjxij
j=1

where b is a (p+1) - 1 vector of unknown paraneters. XI is a

(p+1) -~ 1 vector of known constant ternms, x.’s. The first elenent

1]

of XI Xo 1S set equal to one. Its purpose is to represent a

constant term (intercept) in the expression for the |linear
predictor. The other x,'s conponents, 1£j£p, are used to
represent rating variables. The value of p is partially
dependent upon the nunber of categorical rating factors included
in the nodel, as well as their respective nunber of Ilevels
(values). In addition, p depends upon the number of quantitative
rating variables in the npodel. Note that when rating variabl es
are not taken into consideration, or the information about them
is not available, then p takes on the value of zero. This
corresponds to the fitting of a single distribution to the
entire |l oss data as described in section 2.

Following are sone exanples of the linear predictors, h;,
to be discussed throughout this paper. Sonme conmonly used
categorical rating factors in fire insurance are construction,
protection, and occupancy. The anpunt of insurance (insured

buil ding value), a neasure of exposure, is quantitative. Here,
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we shall consider only construction and building value for
illustrative purposes. Assume there are three possible
construction types (levels), nanely frame, masonry and fire-
resistive. In GM as well as regression analysis, t he
contribution of a categorical variable to a linear predictor is
made by specifying dumry variables. For the construction rating
factor, we need to introduce two dummy variables C, and C,,

defined as foll ows:

c. =1L 1f thei” risk isaframe
171 0, Otherwise

If thei™ risk isamasonry

C. :11’
i2 =4 0, Otherwise
h

For the it | oss, let BV, denote the anmpunt of insurance

purchased by the policyholder to cover damages arising from
peril of fire to the building. For a fire policy, the policy
limt for the building cover is synonynous with the building
value. Since there is a wide range of variability anong buil di ng
val ues, we shall use the logarithm of the building val ue instead
of building value as our covariate in the |inear predictor. For
these two vari abl es, nanely, construction and buil ding val ue, we
shall define four statistical nopdels corresponding to four

linear predictors as foll ows:

Model A:  h, =b, (3. 1A

Mbdel B: h, =by +b, C, +b, C, (3. 1B)
Mbdel C: h, =b, +b log(BV,) (3.10
Mbdel D: h, =bg +b, log(BV,) +b, C; +b5 C,, (3. 1D)
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The |inear predictor given by equation (3.1A) is used when
either we do not take into consideration the information given
by rating variables or when no information on rating vari abl es
is available. In these instances, we are fitting a single
distribution to the entire data. W shall refer to this Mdel A
as the "base" nodel (distribution). The base distribution is
used as a benchmark to gauge the relative inprovenent in fit by
i ncluding rating vari abl es.

The i near predi ct or correspondi ng to (3.1B) is
appropriate if <construction is the only rating factor used.

Using the statistical nethodology developed here, the entire

data is used to estimate the values of the paraneters bo, bl,b2
si mul taneously. This approach is different fromthe one in which
the data is segnmented into three sub-groups according to types
of construction.

The linear predictor (3.1C) is wused when we wsh to
exanmne only the effect of exposure size (building value) on
| oss distribution.

Finally, we shall wuse (3.1D) when both construction and
building value are considered. In this case, the vector

X' =(1 log(BV,) C; C,) represents the contribution of the i th

risk’s attributes to the linear predictor, and p has the val ue
of three.

The four Ilinear predictors given by (3.1A), (3.1B),
(3.1C), and (3.1D) generate four statistical nodels. This is an
exanpl e of nested nodels. For nested nodels, sone nodels are a

special case of a nore general nodel. The linear predictors
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(3.1A), (3.1B) and (3.1C) are special cases of the |inear
predictor (3.1D). For the linear predictor (3.1D), Mdel D, we

can entertain the following statistical tests of hypotheses:

H:b =b =b, =0 (3.2)
H:b, =b, =0 (3.3)
H:b =0 (3.4)

The null hypothesis (3.2) is used to test if either construction
or building value (exposure size) has any effect on |oss
di stribution. The acceptance of this null hypothesis, subject to
the usual interpretation of Type Two error probability, suggests
that the rating variables have no appreciable influence on the
loss distribution. The rejection of (3.2) inplies that the
inclusion of building value or construction in the |Iinear
predi ctor gives a superior nodel as conpared to the fit by the
base distribution, Model A. The acceptance of the null
hypot hesis (3.3) suggests that in the presence of building
value, the addition of the construction factor does not inprove
the fit. Null hypothesis (3.4) can be simlarly interpreted.

By conducting statistical tests corresponding to the
previously stated hypotheses, the effects of rating variables on
| oss distributions can be assessed. The test statistics are
likelihood ratio tests. The asynptotic distribution of test
statistics are Chi-squares. Hence, for small sanple sizes, the
inplications of the above tests based on Chi-squares are only
approxi mately val i d.

Here, we assune that the underlying |oss random vari abl e,

Y;--for the i'" risk--has a | ognornal distribution wth
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paranmeters m and s? The paraneter mis the nean of transforned

variable log(Y;). W shall refer to nodels in this section as

"Mean" nodels. Using an approach simlar to GLM we relate the
rating variables of interest to parameter m by wusing an

identity link function. That is,

m=x'b
o
—b0+a&pj
|
where by, by, ..., b, are regression like parameters and x.'Ss

1)
represent the contribution of explanatory rating variables for

the i'" risk. Hence, we have a fam |y of |ognormal distributions,
wWith paranmeters by by, ..., b, and s? to describe the distribution
of | osses.

It is assumed that the paraneter s is the sane for each risk
and does not vary by the rating variables. W shall exam ne an
alternative approach in the next section, where s is not
const ant . Al t hough, the nmean and variance of the |oss
distributions vary by rating variables, but due to the constancy
of s, the skewness, and the kurtosis are not dependent on rating

vari abl es.

The mechanism to fit a famly of |ognormal distributions
to the data of Table A of Appendi x A has now been established. A
set of nested hypotheses of interest, (3.2), (3.3), and (3.4) in
reference to nodel (3.1D) has also been stated. W now need to
perform the necessary conputations to estinmate the node

par anet ers, and cal cul ate | og-likelihood statistics for
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alternative nodels as described by linear predictors (3.1A),
(3.1B), (3.10), and (3.1D).
The program to conpute maxi num |ikelihood estimate of nodel
paraneters for the linear predictor (3.1D), as well as the val ue
of the negative of log-Ilikelihood based upon maxi mum |ikelihood
estimates is given as Exhibit 2 of Appendix B.
Li kelihood ratio test statistics are needed for performng
nested statistical tests of hypothesis (3.2), (3.3), and (3.4).
The likelihood ratio test statistics can be calculated fromthe
val ues of log-likelihood statistics for the appropriate nodels.
The upper portion of Table 4 bel ow provides the val ues of
the negative of log-likelihood statistics for the “nmean” nodels
according to linear predictors (3.1A), (3.1B), (3.1C, and
(3.1D). The lower portion of Table 4, provides the values of the
necessary likelihood ratio test statistics for perform ng nested
statistical hypotheses (3.2), (3,3), and (3.4). In addition, the
appropriate 95'" percentiles and degrees of freedom of the

asynptotic distributions of test statistics are al so provided.
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Tabl e 4

Li kel i hood Statistics for Alternative
Statistical Mdels

"Mean" Mbdel s
Li near Negative of |ogarithm of
Model Pr edi ct or Li kel i hood function
A m = b0 897. 7654
B m = b0 + blcil + bzci2 894. 8344
C m = b0 + bllog(BVi) 896. 8284
D m =b, +Dblog(BV,)+b, C +bC, 892. 7099
Nest ed Hypot heses based on Mbydel D
DF 95'" perc.
Test of Li kel i hood Rati o* for of
Hypot hesi s Test Statistics Chi -sg. Chi-sq.
oo b, =b, =b =0 -2(logL, - logL_ )= 10.1110 3 7.8147
H:b, =b, =0 -2(log L - log L )= 8.2370 2 5.9915
oo b, =0 -2(log L, - log L )= 4.2490 1 3. 8415

* L, L, L. and L_, above, correspond to likelihood statistics

for “Mean” Models A, B, C, and D respectively.
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Let us interpret the results given by Table 4, [ater on we shall
make some qualifications regarding our interpretations.

If we are interested to test whether construction factor or
building value has an effect upon the shape of the |oss

di stribution, t he appropriate nul | hypot hesi s is

HO:b1 = b2 = b3 =0. The value of the test statistic, i.e., the

i kelihood ratio test statistics is 10.111. Since 10.111 exceeds
the value of 7.8147 (the boundary of rejection region), it inplies
that we should reject the null hypothesis H. The inplication is either
construction or building value have an influence on the shape of the
loss distribution. Simlar interpretations can be given for the other
two null hypot heses.

Some qualifications regarding the above interpretation of Table 4 are in
order. First, due to relatively small sanple size, and the
approxi mate distribution of Ilikelihood ratio test, as Chi-
squares, we should be careful to interpret the results given in
Table 4. Second, the nunerical estimate of paraneters (see
Exhibit 2 of Appendix B) and the inplications of the nested test
of hypotheses, are only for illustrative purposes and are not
intended to be used for any rating purposes.

Finally, the Mdel D has the l|argest |ikelihood value. Based
upon the values of likelihood statistics, as well as the AC
values, Mddel D fits the data better than Mdel A, the base
distribution. Recall that Mddel A corresponds to the case of
fitting a single distribution to the data. Thus, t he
consideration of rating variables has led to an inprovenent in

fit, and this inprovenent is statistically significant.
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4. Fitting a famly of Lognor mal
Distributions with Different Scal e Paraneters

In section 3, a famly of lognormal distributions using a
procedure “simlar” to the G.M approach was introduced. These

alternative statistical npdels were referenced to as "Mean"

nmodel s. The linear predictor was set equal the m paraneter of

the lognormal, and the s paraneter was assunmed to be constant.

By considering the logarithm of |osses, log(Y), the rating

variables affected the nean of the distribution but not the

scale, the s paraneter. In this section, a famly of | ognornal
distributions is introduced where the scale s is made to depend

on rating variables, and the paraneter m is treated as a
constant. Using nethodology simlar to that in section 3, four
new statistical nodels A, B, C, and D, are defined corresponding

to four linear predictors as follows:

Model A: s, =b, (4.1A
Model B: s;=by+b,C;+b,C, (4. 1B)
Model C s; =by+b,log(BV;) (4.10
Model D s; =bg+b,log(BV,)+b,C, +b,C, (4.1D)
These nodels will be referred to as "Scale" nodels. Parallel to

the devel opnent in section 3, we have three nested statistical
hypot heses of interest for Mddel D, linear predictor (4.1D),

defi ned as

30



H:b =b =b =0 (4.2)

I
(=2
1
o
1
o

(4.3)

H:b =0 (4.4)

The purpose and interpretation of these hypotheses is simlar to
those of (3.2), (3.3), and (3.4) of section 3.

Wth the nechanism established in section 3, we want to
evaluate the it of alternative "Scale" nodels fitted to the data
in Table A of Appendix A The results of these conputations are
summarized in Table 5 below A program for the nmaxinmm
i kelihood estimate of paraneters, and likelihood statistics for
Model B, linear predictor (4.1B), is given in Exhibit 3 of
Appendi x B. For conparison purposes, the values of 1|ikelihood
ratio statistics for the "Mean" nodels are also reproduced in

Tabl e 5.
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Tabl e 5

Li kel 1 hood Statistics for Alternative
Statistical Mdels

"Scal e" Model s

Negative of |ogarithm of

Li near
Model Predi ct or Li kel i hood function
A s;=by, 897. 7654
B s,=by+b,C,+b,C, 892. 4242
C si =b,+b,log(BV;) 895. 7967
D S; =by,+b,logBV;)+b,C,+b;C, 887. 9109

Nest ed Hypot heses Based On Model D
Conpari son of "Mean" & "Scal e" Model s

DF 95'" perec.
Test of Li kel i hood Ratio Mean Scale for of
Hypot hesi s Test Statistics* MNodel Model Chi-sg. Chi-sg.
H:b, =b, =0 - 2(log LC - log LD) 8.2370 15.7716 2 5. 9915
H:b =0 -2(log LB - log LD) 4,2490 9.0266 1 3. 8415

*Dependi ng upon the context, the L,. L, L.
to likelihood functions for "Mean" or "Scal e" Mdels A B, C, and D.

and L _, above, correspond
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Once again we should be careful to interpret the results
given in Table 5 due to relatively small sanple size, and the
approxi mate distribution of |ikelihood ratio test as Chi-
squares. Wth these qualifications in mnd, it appears that the
"Scal e" nodels provide a better fit than the "Mean" nodels to

our dat a.

5. Concl usi on

This paper discusses issues related to curve fitting. It
provi des appropriate statistical nmet hodol ogies for fitting
paranetric distributions to loss data. |In particular, the
i nteraction of paranetric probability di stributions,
deductibles, policy limts and rating variables are considered.
The presence of deductibles and policy limts conplicate the
estimation of paraneters of | oss distribution, and the
assessnent of goodness of fit. Procedures to fit a single
distribution or a famly of distributions to |oss data were
given. Statistical tests of hypotheses to assess the effect of
rating variables wupon loss distribution were discussed. The
met hodol ogi es developed in this paper were applied to a sanple
of loss data wusing lognormal as the reference distribution.
Sample prograns coded in S-Plus, a statistical package, were
provided to illustrate the numerical conputation of maxinum
i kelihood estimate of nodel paraneters and maxim zed |ikelihood
function. Finally, the results in this paper suggest that for

any specific data set, there my be many viable statistical
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nodel s suitable for the purpose of fitting distributions to the

dat a.
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1, 000
500
250

1, 000
500
250
250

1, 000
100

1, 000

Pol i cy
Limt
57, 000
41, 000
1, 000
60, 000
10, 000
24,000
16, 000
60, 000
66, 000
36, 000
53, 000
70, 000
51, 000
79, 000
139, 000
155, 000
150, 000
98, 000
100, 000
110, 000
115, 000
100, 000
153, 000
120, 000
100, 000
350, 000
373, 000
208, 000
600, 000
284, 000
263, 000
312, 000
280, 000
312, 000
250, 000
300, 000
625, 000
319, 000
9, 214, 000
3, 000, 000
800, 000
838, 000
1, 400, 000
1, 500, 000
36, 819, 000
1, 282, 000
1, 000, 000
6, 127, 000
1, 140, 000
1, 910, 000

Appendi x A: TABLE A

185
22,930
498
990

5, 491
1,185
6, 032
13,775
150
4,536
298
335

Cons-
truction

NWNWNNWWNWWNWWNENNENRPWORPENNNERPWREPNNNNENENNENNENNNEREN

Deduct - Policy

i ble Limt
250 43, 000
1, 000 1, 000
100 33, 000
250 7, 000
250 64, 000
250 45, 000
500 30, 000
250 2,000

0 10, 000

250 52, 000
250 3, 000
100 50, 000
250 89, 000
1, 000 200, 000
250 100, 000
250 85, 000
250 103, 000
250 110, 000
500 110, 000
250 175, 000
1, 000 154, 000
250 100, 000
250 134, 000
500 125, 000
1, 000 115, 000
250 630, 000
1, 000 402, 000
500 204, 000
250 300, 000
250 350, 000
500 595, 000
1, 000 275, 000
250 290, 000
250 560, 000
1, 000 371, 000
1, 000 362, 000
250 317, 000
500 6,817,000
1,000 3,010,000
5,000 6,023,000
250 700, 000
1,000 1,000, 000
500 1,442,000
1,000 2,000, 000
1,000 2,526,000
500 65, 065, 000
1,000 1,236,000
1,000 5, 000, 000
250 2,275,000
1,000 2,700,000

*Building | osses with asterisks next
respective insured building values (right censored.)

Loss
75
865
206
2,303
11, 760
402
3,352
511
1,115
237
1,197
7,107
535
5, 959
1, 224
85, 000*
2,358
31, 243

1, 247

10, 000
4,525

16, 981
4,911

81, 692
21, 447
992

Cons-
truction

NNNNNWNENNRPRPONNENERPNERPONNENNNNNWOERNNERPONNNNNNEERNNENON

to them are | osses capped by their
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Appendi x B: Exhibit 1

An S-Plus Programto Conpute Maxi mum Li kel i hood
Esti mate of Paraneters & Maxim zed Li kel i hood
Statistic for Weibull Distribution

nmydat a<- Tabl eA

nK-
Vi
{

dat a. f rame( nydat a)
bul | <-function(landa, alfa, data = data.matrix)
D <- data.matrix[, 1]
PL <- data.matrix[, 2]
y <- data.matrix[, 3]
z <- D¥((y <PL)*y+(y >=PL)*PL)
del tal<- (D==0)*(y <PL)
del ta2<- (D> 0)*(y <PL)
del ta3<- (D==0)*(y >=PL)
del ta4<- (D> 0)*(y >=PL)
L1 <- al fa*landa*(z~(al fa-1))*exp(-1anda*(z”alfa))
L2 <-(al fa*l anda*(z~(al fa-1))*exp(-1anda*(z”alfa)))/exp(-Ianda*(D alfa))
L3 <- exp( - landa * (z"alfa))
L4 <- exp( - landa * (z"alfa))/exp( - landa * (Dralfa))
| ogL<- deltal*l og(L1)+delta2*l og(L2)+delta3*l og(L3)+del t a4*| og(L4)
-logL }

m n. Wi bul | <-ms(~Wei bul | (1 anda, al fa), data=m start

st (|1 anda=1, al f a=. 15))

m n. i bul |

val
par

0.
for

ue: 899. 802
anmeters:
| anda al fa
4484192 0.223073
mula: ~ Weibull(landa, alfa)

100 observati ons

cal

[: ms(formula = ~ Weibull(landa, alfa), data = m start = list(landa

=1, alfa = 0.15))

S-Plus is a statistical package produced by StatSci, a division of

Mat

Wi

hSoft, Inc., Seattle, Washington.

bul | density is: f(xl ,a)=al x> "exp(-1 x?)
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Appendi x B: Exhibit 2

An S-Plus Programto Conpute Maxi mum Li kel i hood
Estimate of Paraneters & Maxi m zed Likeli hood
Statistic for a Famly of Lognornmal Distributions
Based on “Mean” Mdel D

nmydat a<- Tabl eA
nk- dat a. f rame( nmydat a)
| ognor mal . nodel . D <- function(b0, bl, b2, b3, si gma, data=data. matri x)
{ D<- data.matrix[, 1]
PL <- data.matrix[, 2]
y <- data.matrix[, 3]
z <- D+(y*(y<PL)+PL*(y>=PL))
cnst <- data.matrix[, 4]
Cl <- cnst == 1
C <- cnst == 2
d <-D+(D == 0)*1
mu <- bO+bl*l og(PL) +b2* C1+b3* C2
deltal <- (D == 0)*(y < PL)
delta2 <- (D > 0)*(y < PL)
delta3 <- (D == 0)*(y >= PL)
deltad <- (D > 0)*(y >= PL)
L1 <- dl norm(z, nu, si gma)
L2 <- dlnorm(z, nu, si gma)/(1-pl norm(d, mu, si gma))
L3 <- 1-plnormz, mu, si gna)
L4 <- (1-plnorm(z, mu,sigma))/(1-plnormd, nu, si gma))
| ogL <-deltal*l og(L1)+delta2*l og(L2)+delta3*l og(L3)+del t a4*| og(L4)
-logL }
m n. nmodel . D<- ns( ~l ognor nmal . nodel . D( b0, b1, b2, b3, si gma), data=m
start=list(b0=4.568, bl=0.238, b2=1.068, b3=0.0403, signma=1.322))
m n. nodel . D
val ue: 892. 7099
par anet er s:

b0 b1 b2 b3 si gnma
1.715296 0.3317345 2.154994 0.4105021 1.898501
formula: ~ |ognornmal.nodel.D(b0, bl, b2, b3, signma)
100 observati ons
call: ms(formula = ~ | ognornal.nodel . D( b0, bl, b2, b3, sigm), data=m

start =list(b0=4.568, bl=0.238, b2=1.068, b3=0.0403, signma=1.322))
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Appendi x B: Exhibit 3

An S-Plus Program To Conpute Maxi mum Li kel i hood
Estimate of Paraneters & Maxi m zed Likeli hood
Statistic for a Famly of Lognormal Distributions
Based on "Scal e" Mdel B

nmydat a<- Tabl eA
nm<- dat a. franme(nydat a)
| ognor mal . Scal e. nodel . B<- function(b0, bl, b2, nu, data=data. matri x)
{ D<- data.matrix[, 1]
PL <- data.matrix[, 2]
y <- data.matrix[, 3]
cnst <- data.matrix[, 4]
z <- D+ (y*(y < PL)+PL*(y >= PL))
Cl <- cnst == 1
C <- cnst == 2
d<- D+ (D==0) * 1
sigma <- bO+b1*Cl+ b2* C2
deltal <- (D == 0)*(y < PL)
delta2 <- (D > 0)*(y < PL)
delta3 <- (D == 0)*(y >= PL)
deltad <- (D > 0)*(y >= PL)
L1 <- dl norm(z, nu, si gnma)
L2 <- dlnormz,mu,sigma)/(1 - plnorm(d, nu, si gma))
L3 <- 1 - plnorn(z, mu, sigm)
L4 <- (1 - plnorm(z,mu,sigma))/ (1 - plnorm(d, mu, sigm))
| ogL <-deltal*l og(L1)+delta2*l og(L2)+delta3*l og(L3)+del tad*| og(L4)
-1 ogL }
m n. Scal e. B<- ns(~l ognor mal . Scal e. nodel . B( b0, b1, b2, mu), data=m
+ start=list(b0=2, b1=0, b2=0, Nnu=6))
m n. Scal e. B
val ue: 892.4242
par anet er s:

b0 bl b2 mu
1.583642 1.324647 0.1066956 6.55098
formula: ~ |ognornal. Scal e. nodel . B(b0, b1, b2, mu)
100 observati ons
call: ms(fornmula = ~ |ognormal. Scal e. nodel . B(bO, bl, b2, mu), data = m
start = list(b0 =2, bl =0, b2 =0, nmu = 6))
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