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Abstract

This paper focuses on issues and methodologies for fitting

alternative statistical models--probability distributions--to

samples of insurance loss data. The interaction of parametric

loss distributions, deductibles, policy limits and rating

variables in the context of fitting distributions to losses are

discussed. Fitted loss distributions serve an important function

for the purpose of pricing insurance products. The procedures

illustrated in this paper are based on a sample of insurance

losses, and with lognormal as the underlying loss distribution.
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1. Introduction
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This section presents some preliminaries regarding losses,

deductibles, policy limits and rating variables as inputs for

fitting distributions to losses. In section 2, a method for

fitting a single distribution to losses is considered. In this

instance, the information provided by rating variables is either

not considered or is not available. The method of maximum

likelihood has been applied to estimate model parameters in the

presence of deductibles and policy limits. Sections 3 and 4

develop methodologies for fitting alternative statistical

models--family of loss distributions--to loss data, using the

information provided by rating variables. This is achieved by

requiring a parameter of a loss distribution to depend upon

values of rating variables. Criteria for assessing goodness of

fit are discussed. Furthermore, large sample statistical tests

for assessing the impact of rating variables upon loss

distributions are given. Some concluding statements are made in

section 5.

Insurance data considered here have the following

characteristics: a) losses are specified individually, b) for

each individual loss, the information about deductibles and

policy limits is furnished, and c) for each loss, we have

auxiliary policy information regarding the rating variables.

Each of these three items is discussed further below.

Losses are given on an individual basis, and have not been

grouped by loss size. The methodologies to fit distributions to

data differs, depending on whether losses are grouped or

individually specified. Losses may be closed or open. The amount
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recorded for each loss is the incurred value as of the latest

available evaluation period. If some losses in the sample data

are still open as of the latest evaluation period, then those

losses should be properly adjusted for further development.

Unfortunately, most of the methodologies for development of

losses to their ultimate values are only available for grouped

data. Further research on the topic of development of individual

losses to their individual ultimate values is welcomed.

Individual losses should be suitably trended to reflect values

expected in the future. The methodology presented in this paper

has been applied to a sample of commercial fire losses (see

Table A of Appendix A). Those losses were mostly closed, as of

their latest evaluation date, hence adjustments for further

development were not warranted. Finally, in order to fit

distributions to losses, zero losses should be excluded.

Deductibles are used to exclude certain losses. Usually

deductibles are small--for example, a few hundred or a few

thousand dollars. However, for a large insured, deductibles may

be sizable due to the existence of self-insured retention or

other underlying coverages. Only dollar deductibles are

considered here. Time deductibles such as waiting periods are

not treated. A reported loss with a value in excess of its

deductible is said to be left truncated. If a loss arises from a

policy with no underlying deductible, then for the purpose of

the computation, a value of zero is imputed as the "deductible"

amount. It is not required that the deductible amount be the

same for each loss.
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Policy limits serve to limit the amount of payment on a

given loss or a loss occurrence. When the loss amount is at

least as large as its policy limit, the loss is said to have

been right censored. If a loss arises from a policy where there

is no underlying policy limit, then any amount greater than the

loss amount may be imputed as the "policy limit". In these

instances, those losses have not been censored. Varying policy

limits are allowed for. In fact, no grouping of losses based

upon deductible or policy limit amounts is required.

Samples of insurance loss data are usually incomplete.

This is due to inclusion of left truncated (losses in excess of

deductibles) and right censored (some losses capped by their

respective policy limits) data in the sample. Due to this

incompleteness of data, it becomes more difficult to estimate

the parameters of a loss distribution and to assess the goodness

of fit. Many traditional approaches for estimation of parameters

of a loss distribution or assessing the goodness of fit of a

distribution are valid only if the sample of observations is

complete, that is, when there are neither left truncated nor

right censored observations in the sample.

Rating variables in insurance depend upon the line of

business, the degree of competition present in the market, and

regulation. The effect of the rating variables upon loss

distributions has important implications for underwriting

selection. It also provides for a more differentiated rating

system. How to incorporate the information provided by rating

variables into the process of fitting distributions to losses is

discussed in sections 3 and 4.
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Following is a description of how to fit a single

distribution to a sample of insurance loss data.

2. Fitting a Single Distribution to
Losses

Fitting a single distribution to losses is based upon

consideration of alternative statistical models--probability

distributions--as data-generating mechanisms. The assumption

made is that the observed losses are a realization of a

probabilistic process governed by a parametric distribution. The

purpose of fitting a distribution to losses is to identify a

specific parametric distribution which provides a reasonable fit

to the data. A good introduction to the subject of fitting

distributions to losses is given by Hogg and Klugman (1984).

This paper complements their work by focusing on certain related

topics. First, more emphasis is placed on the procedures for

fitting loss distributions to individual loss data rather than

grouped data. Second, methodologies required to incorporate

rating variables in the process of fitting distributions to

losses are presented in sections 3 and 4. Finally, readers of

this paper may find the computer programs (codes) given here to

be beneficial for the purpose of the computing maximum

likelihood estimates of parameters of a loss distribution.

Fitting a distribution to losses serves to moderate the

effect of sampling variation in the data. This is achieved by

replacing an empirical distribution by a more smoothed (fitted)
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distribution. Furthermore, estimates of tail probabilities

beyond the range of the original data can be provided based on

fitted distribution.

At least two problems complicate the fitting of a

parametric distribution to loss data. The first problem concerns

the tendency of many losses to be settled at rounded figures.

This notion is incompatible with selecting a parametric

distribution such as lognormal or Pareto, where the probability

of taking any specified value is zero. The second problem arises

from the fact that many statistical procedures assume that

losses in a sample are identically distributed. Insurance risks

are normally heterogeneous. Each risk has its own risk

characteristics and its own propensity to produce a potential

loss. For instance, two different drivers have differing loss

propensities. To a certain extent, risk characteristics are

reflected by underwriting rating factors. For this reason, risks

with the same values for their underwriting factors are cross-

classified to produce "homogeneous" classes. The use of rating

factors to cope with the heterogeneity problem is addressed in

sections 3 and 4. In this section, the information provided by

rating factors is ignored in order to concentrate on fitting a

single loss distribution to data.

For the sake of exposition, the process of fitting a

single distribution to loss data has been broken down into four

steps:

1. Consideration of a number of parametric probability

distributions as potential candidates for underlying

loss distribution.
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2. For each distribution specified in step 1, the

        estimation of the parameters of the distribution from

        sample data--hence, the determination of a set of fitted

   distributions.

  3. Specification of a criterion for choosing one or a few

         fitted distributions from step 2 above.

4. Assessing the goodness of fit for the fitted

         distribution(s) in step 3.

Let us proceed with a more detailed account of these

steps. These steps will be illustrated below by reference to a

numerical example. The first step requires considering a number

of parametric distributions as potential candidates for the data

generating mechanism. The list of potential parametric

distributions as candidates for loss distribution is enormous.

In practice, one can entertain only a few parametric

distributions for the purpose of fitting a distribution to

losses. In this paper, I have selected the following parametric

probability distributions: lognormal, Pareto, Weibull, gamma,

inverse gamma, and exponential. This list is subjective, but

some of the above distributions have been used by actuaries and

have appeared in actuarial literature. The list chosen here is

only for illustrative purposes and is not meant to be

exhaustive.

The second step involves the estimation of the parameters

of each probability distribution selected in step 1 from the

data. Once one has estimated the parameters of a given

distribution, one then has a fitted distribution. The estimation

of parameters of a loss distribution is made difficult because
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of incompleteness of data. Some commonly used statistical

procedures to estimate parameters of a distribution for a sample

of complete data are: the method of moments, the least squares

estimation as used for regression models, and the maximum

likelihood estimation. These parameter estimation procedures are

outlined in most basic statistics texts. For incomplete sample

data (presence of left truncated or right censored data), the

above estimation procedures are not applicable without further

modifications. The application of estimation procedures suitable

for complete data to insurance data which is incomplete will

produce inefficient parameter estimates. In this paper, the

estimation of parameters of a loss distribution is based upon

proper specification of the likelihood function reflecting the

presence of left truncated and right censored observations in

the data.

Following are some necessary notations needed to write an

expression for the likelihood function in the case of incomplete

data.

Let yi be the i
th

 loss amount (incurred value), ,ni1 ≤≤

where n  denotes the number of losses in the data set.

D
i
 is the deductible for the i

th
 loss.

PL
i
 is the policy limit for the i

th
 loss.

f y( ; , )θ ϕ  denotes the density function for the loss amount in

the case of complete data. θ is the primary parameter of

interest. ϕ is the nuisance parameter which may be a vector.

F y( ; , )θ ϕ  denotes the cumulative distribution function for

the loss amount.
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The contribution of a loss to the functional form of the

likelihood function depends upon whether the loss is ground-up

or in excess of deductible, and furthermore if the loss has been

capped by its respective policy limit. Hence, the contribution

of a loss to the likelihood function may be one of the four

mutually exclusive and exhaustive forms, written as Li1, Li2, Li3,

and Li4, as defined below. In addition, four indicator variables,

δ i1, δ i2, δ i3 and δ i4 are used in order to write a succinct

expression for the likelihood function of the sample.

Case 1: No deductible, and loss below policy limit (neither left

truncated nor right censored data).  The complete sample case.

L f y
i i1

= ( ; , )θ ϕ                         (2.1a)

     


 <=

=
                     Otherwise  ,0

PL   and  0D If ,1 ii
1

i
i

y
δ            (2.1b)

Case 2: A deductible, and loss below policy limit (left

truncated data)

      L
f y

Fi

i

2 1
=

−

+( ; , )

( ; , )

D

D
i

i

θ ϕ

θ ϕ
                  (2.2a)



 <>

=
                     Otherwise  ,0

PL   and  0D If ,1 ii
2

i
i

y
δ            (2.2b)

Case 3: No deductible, and loss capped by policy limit (right

censored data)

      L F
i i3

1= − ( ; , )PL θ ϕ                     (2.3a)

      


 ≥=

=
                     Otherwise  ,0

PL   and  0D If ,1 ii
3

i
i

y
δ            (2.3b)

Case 4: A deductible, and loss capped by policy limit (left

truncated and right censored data)
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     L
F

Fi

i

4

1

1
=

−
−

+( ; , )

( ; , )

D PL

D
i

i

θ ϕ
θ ϕ

                 (2.4a)

     


 ≥>

=
                     Otherwise  ,0

PL   and  0D If ,1 ii
4

i
i

y
δ            (2.4b)

The contribution of the i
th

 loss to the likelihood function is

given by

        L L L L Li i i i ii i i i= 1 2 3 41 2 3 4
δ δ δ δ

                 (2.5)

The likelihood function for the sample is given by

      L Li
i

= ∏                            (2.6)

The log-likelihood is given by

l = ∑ log( )Lii                                  (2.7a)

  = ∑ l ii

i

                                     (2.7b)

      li iL= log( )                                   (2.8a)

        = + + +δ δ δ δi i i iL L L Li i i i1 2 3 41 2 3 4log( ) log( ) log( ) log( )    (2.8b)

where the log, as used in this paper, represents the natural

logarithm.

Equation (2.5) represent the contribution of the ith loss to the

likelihood function. The likelihood function for the data is

given by equation (2.6). To estimate the parameters θ and ϕ  we

should maximize the likelihood function or alternatively

minimize the negative of the logarithm of the likelihood

function. Equation (2.7) and (2.8) provide expressions for the

logarithm of the likelihood function.
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Note that the contribution to the likelihood function for an

individual observation in most basic statistics textbooks is of

the form (2.1a).

The third step requires a criterion for ranking or

comparing alternative fitted probability distributions. This

step is needed to reduce the number of fitted distributions in

step 2 to one or a few potential candidates. A statistical

criterion used for comparing alternative models--statistical

distributions--is based upon the value of Akaike’s Information

Criterion, AIC; refer to Akaike (1973).

The AIC criterion is defined by

AIC = - 2(maximized log-likelihood)
+ 2(number of parameters estimated)

Note, AIC can also be written as

AIC = - 2{maximized log-likelihood – number of parameters estimated}

When two models are compared, the model with a smaller AIC value

is the more desirable one.

The AIC is based on log-likelihood and it penalizes the log-

likelihood by subtracting for the number of parameters

estimated.

Two other model selection criteria used in statistics are

Schwarz’s Bayesian Information Criterion (BIC), Schwarz(1978),

and Deviance as used in Generalized Linear Models; see McCullagh

and Nelder (1989). These three criteria are based on maximized

log-likelihood function.

Before proceeding to step 4, regarding fit, I shall

illustrate steps 1, 2, and 3 by reference to a numerical

example. Let us consider the data in Table A of Appendix A.
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Here, we have a sample of 100 commercial fire losses. For each

loss the deductible, policy limit, and the code for a type of

construction are stated. For the time being, let us ignore the

information about the construction since we are concerned with

fitting a single distribution to the data. For each distribution

listed in Table 1 below, I have computed the maximized log-

likelihood function, and the corresponding AIC values. For the

case of Weibull distribution, the program used to compute the

maximum likelihood estimate of parameters and the computed value

of maximized log-likelihood function is given as Exhibit 1 in

Appendix B. This program is coded in S-Plus, a statistical

software suitable for data analysis. The computation of

maximized likelihood function for other distributions in Table 1

is similar to the one for Weibull.
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Table 1

                     Negative
                     maximized
                     log-likelihood   Number of
    Distribution     function         Parameters     AIC       

lognormal 897.8               2          1799.6
   Pareto          895.2               2          1794.4

Weibull 899.8               2          1803.6
gamma 914.5               2          1833.0
inverse gamma 893.7               2          1791.4
exponential 986.4               1          1974.8
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With regard to Table 1, it should be noted that the values of

maximized likelihood function are positive. The values of

logarithm of the maximized likelihood functions are negative and

hence the negatives of the logarithm of the maximized likelihood

functions are positive figures.

Table 1 can be used for selecting a parametric distribution for

the data. Based on the AIC criterion as a method of ranking

different fitted distributions, note that the AIC values of

lognormal, Pareto, and inverse gamma are  "comparable". The AIC

values for gamma and exponential distributions suggest

relatively more inferior fits. I have selected lognormal, with

parameters µ and σ2, as the distribution to be fitted to our

data. There are several reasons for this selection. First, it is

easier to interpret the parameters of a lognormal distribution.

Selecting a simpler model is preferable, as it is easier to

explain and comprehend. By taking the logarithm of the losses,

the µ parameter represents the location parameter (mean), and

the σ parameter is the scale (standard deviation). Second,

lognormal distribution has been previously used to describe the

distribution of fire losses; see Benckert and Jung (1974).

Now we proceed with step 4, regarding the fit. By

examining the data in Appendix A, we note that the losses can be

divided into four categories according to four cases defined for

specification of the likelihood function (see Table 2 below):
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Table 2

#        Case                      Number of Losses

1. No deductible and loss below policy limit         1

2. A deductible, and loss below policy limit        96

3. No deductible and loss capped by policy limit        0

4. A deductible and loss capped by policy limit         3
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For our data, most of the losses are of case 2, i.e., losses

with deductibles and values below their policy limits. Due to

the paucity of data, we concentrate only on case 2.

For lognormal distribution, we can compute theoretical

conditional distributions (probabilities) and conditional

limited expected values based on a fitted distribution, and

compares these quantities with their respective sample

counterparts.

The conditional distribution or probability of a lognormal

random variable, X, with parameters µ and σ is given by

P X b X a

b a

a
( )

(
log( )

) (
log( )

)

(
log( )

)
≤ > =

−
−

−

−
−

  
Φ Φ

Φ

µ

σ

µ

σ
µ

σ
1

where Φ  is the cumulative distribution function of a standard

normal distribution. Here a represents a threshold or a

deductible amount D, and b is usually the sum of deductible and

limit, i.e., D + PL.

The conditional limited expected value is defined

by

E X b X a
a

e b a
b

b[min( , ) ]
(
log( )

)
{ [ (

log( )
) (

log( )
)] [ (

log( )
)]>

−
−

+ − −
−

− −
+ −

−
= }

1

1

1
2

2
2 2

1

Φ
Φ Φ Φµ

σ

µ σ µ σ
σ

µ σ
σ

µ
σ

Table 3 summarizes the comparison of theoretical and sample

values of conditional probabilities and conditional limited

expected values for case 2 of data in Appendix A.
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Table 3

Comparison of Conditional Probabilities and
Conditional Limited Expected Value for Fitted

Lognormal with its Sample Values

a = 500

              P X b X a( )≤ >           E X b X a[min( , ) ]>
          Based on   Sample       Based on       Sample
    b    lognormal* estimate     lognormal*     estimate
 2,000     0.485     0.494        1,538.7       1,620.9
 5,000     0.714     0.699        2,666.4       2,737.2
10,000     0.832     0.843        3,747.2       3,764.3
20,000     0.909     0.904        4,969.3       4,907.7
30,000     0.938     0.952        5,716.8       5,547.9
40,000     0.954     0.976        6,248.3       5,833.6
50,000     0.964     0.988        6,655.8       6,071.7

* $µ = 5.887, $σ = 2.302 are the maximum likelihood estimates
for the fitted lognormal distribution.
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The comparisons of fitted and sample quantities in Table 3

suggests the lognormal provided a "reasonable" fit to the data.

It is worth making a few comments regarding fit. First, our

sample size is 100, with 96 observations for case 2. With small

sample sizes, considerable sampling variability are encountered

in estimation of model parameters. Second, a perfect fit implies

no smoothing! Third, the fit for a specific type of distribution

is judged to be good if it has a high predictive power, that is,

whether the same type of distribution provides good fits to many

samples of the same kind. A quotation from Lindsey (1995), is

appropriate here: "If a model represents the sample too well, it

will have no chance of representing a second, similarly

generated, sample very well. A model too close to a sample will

usually be too far from the population." Finally, it is worth

emphasizing that there are many other possible potential

candidates (probability distributions) for fitting to a specific

data set. Thus, curve fitting is to some extent subjective and

not a perfect science. From a practical point of view, there are

other considerations related to fitting a distribution to a

sample. These are: a) the volume and quality of data, b) the

time constraint in which to do the curve fitting, c) the

knowledge and experience of the curve fitter, d) availability of

suitable software (programs), e) convergence of iterative

algorithms for estimation of model parameters, and specification

of initial values for parameters, and f) the treatment of

outliers. Last but not the least is consideration of the purpose
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for which the fitted distribution is used. With all these

qualifications regarding fit, we shall assume the lognormal

provides a reasonable fit to the data in Appendix A.

3. Fitting a Family of Distributions to Loss
Data: A Mean Approach

In section 2, procedures to fit a single distribution to

loss data were considered. The information provided by rating

variables was not considered. As mentioned earlier, risks in

insurance tend to be heterogeneous. Risks with different

attributes may well have different loss distributions. To a

certain degree, a risk’s characteristics are reflected through

the values pertained by its rating variables. Thus, we expect

the loss distribution for fire for a small unprotected frame

building be different from a large, highly protected and fire-

resistive building. It is desirable to have loss distributions

which reflect these differences. Our approach to this issue is

to construct suitable statistical models--family of loss

distributions. Two possible solutions are proposed in this

paper. The first solution, as explained in this section, is

similar in spirit to the Generalized Linear Models (GLM)

approach. An excellent account on the subject of GLM is given by

McCullagh and Nelder (1989). An alternative solution is

presented in section 4.

Loss distributions dependent upon rating variables have

important implications for underwriting selection and
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determination of rates. By including the rating variables, one

generally improves the fit to the data. Using statistical models

enables one to assess the effect of rating variables on loss

distributions by performing statistical tests of hypotheses.

A traditional approach for obtaining loss distributions

dependent upon risk attributes is to segment losses into

subgroups. Then, for each subgroup, a separate fitted loss

distribution is obtained. For instance, in fire insurance,

losses may be classified broadly by construction as frame,

masonry and fire-resistive. Three fitted loss distributions can

be obtained according to the types of construction. Segmentation

of data into classes gives rise to credibility problems. For the

problem alluded to, it would be exasperating if one considered

eight construction types instead of three, and in addition,

considered other rating factors such as protection and

occupancy.

In section 2, we noted that the lognormal distribution

provides a reasonable fit to the data in Appendix A. Mirroring

the approached used in GLM, let us now fit a family of lognormal

distributions to our data.

The GLM methodologies consist of three components. These

are referred to as the random component, the systematic

component, and the link. The random component: the random

variable of interest, Y (e.g., losses) or a transformation of Y,

has a distribution belonging to the exponential family of

distributions. The density, in canonical form, for the

exponential family is
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 f y y b a c y( ; , ) exp{[( ( )) / ( )] ( , )}θ ϕ θ θ ϕ ϕ= − +

where a(.), b(.) and c(.) are some specific functions. θ  is the

primary parameter of interest, and ϕ  is often referred to as

the nuisance parameter. Suitable loss distributions in the

exponential family include normal, gamma and inverse Gaussian.

The systematic component of a GLM specifies the

explanatory variables, x x x p1 2, ,  .  .  .  ,  (e.g., rating variables). The

explanatory variables may only influence the distribution of the

Y through a single linear function called the linear predictor

η,

η β β β= + +0 1 1x pxp . . . +

The link, g, specifies how the mean of Y, E(Y), is related

to the linear predictor η, i.e.

g E Y xj j( ( )) = ∑η β  =
j

The form of the link function varies by the type of distribution

within the exponential family of distributions. For the normal

distribution the link function is the identity map, i.e., µ = η.

In GLM, the information provided by explanatory

variables (rating variables) is summarized by a linear

predictor. Each explanatory variable is considered either as a

factor (categorical) or as a covariate (quantitative). For

instance, sex, construction, and protection are categorical in

nature, while age and amount of insurance are quantitative.

Some additional notations are needed to specify our

statistical model. Let ηi denote a linear predictor for the i
th
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loss. It summarizes the information conveyed by the rating

variables for the i
th

 loss. We write

        η βi xi
T=

           =
=

∑ xij j
j

p

β
0

           = +
=

∑β β0
1

j ij
j

p

x

where β  is a ( )p + ×1 1   vector of unknown parameters. x
i
 is a

( )p + ×1 1   vector of known constant terms, xij’s. The first element

of x
i
, xi0 is set equal to one. Its purpose is to represent a

constant term (intercept) in the expression for the linear

predictor. The other xij’s components, 1 ≤ ≤j p, are used to

represent rating variables. The value of p is partially

dependent upon the number of categorical rating factors included

in the model, as well as their respective number of levels

(values). In addition, p depends upon the number of quantitative

rating variables in the model. Note that when rating variables

are not taken into consideration, or the information about them

is not available, then p takes on the value of zero. This

corresponds to the fitting of a single distribution to the

entire loss data as described in section 2.

Following are some examples of the linear predictors, ηi,

to be discussed throughout this paper. Some commonly used

categorical rating factors in fire insurance are construction,

protection, and occupancy. The amount of insurance (insured

building value), a measure of exposure, is quantitative. Here,
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we shall consider only construction and building value for

illustrative purposes. Assume there are three possible

construction types (levels), namely frame, masonry and fire-

resistive. In GLM, as well as regression analysis, the

contribution of a categorical variable to a linear predictor is

made by specifying dummy variables. For the construction rating

factor, we need to introduce two dummy variables Ci1 and Ci2,

defined as follows:

      


=

                   Otherwise 0,
frame a isrisk  i  theIf 1, th

1iC

      


=

                        Otherwise 0,
masonry  a isrisk  i  theIf 1, th

2iC

For the i
th

 loss, let BV
i
 denote the amount of insurance

purchased by the policyholder to cover damages arising from

peril of fire to the building. For a fire policy, the policy

limit for the building cover is synonymous with the building

value. Since there is a wide range of variability among building

values, we shall use the logarithm of the building value instead

of building value as our covariate in the linear predictor. For

these two variables, namely, construction and building value, we

shall define four statistical models corresponding to four

linear predictors as follows:

Model A:   η βi = 0                      (3.1A)

Model B:    η β β βi i iC C= + +0 1 1 2 2                 (3.1B)

Model C:    η β β
i

= +
0 1

 
i

log(BV )                (3.1C)

Model D:    η β β β βi i iC C= + + +0 1 2 1 3 2 i   log(BV )       (3.1D)
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The linear predictor given by equation (3.1A) is used when

either we do not take into consideration the information given

by rating variables or when no information on rating variables

is available. In these instances, we are fitting a single

distribution to the entire data. We shall refer to this Model A

as the "base" model (distribution). The base distribution is

used as a benchmark to gauge the relative improvement in fit by

including rating variables.

The linear predictor corresponding to (3.1B) is

appropriate if construction is the only rating factor used.

Using the statistical methodology developed here, the entire

data is used to estimate the values of the parameters β β β
0 1 2

    ,  ,

simultaneously. This approach is different from the one in which

the data is segmented into three sub-groups according to types

of construction.

The linear predictor (3.1C) is used when we wish to

examine only the effect of exposure size (building value) on

loss distribution.

Finally, we shall use (3.1D) when both construction and

building value are considered. In this case, the vector

xi
T

i iC C= ( ) )1 1 2   log (BV     i  represents the contribution of the i
th

risk’s attributes to the linear predictor, and p has the value

of three.

The four linear predictors given by (3.1A), (3.1B),

(3.1C), and (3.1D) generate four statistical models. This is an

example of nested models. For nested models, some models are a

special case of a more general model. The linear predictors
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(3.1A), (3.1B) and (3.1C) are special cases of the linear

predictor (3.1D). For the linear predictor (3.1D), Model D, we

can entertain the following statistical tests of hypotheses:

H
0 1 2 3

0:  β β β= = =                   (3.2)

H
0 2 3

0:  β β= =                       (3.3)

H
0 1

0:  β =                           (3.4)

The null hypothesis (3.2) is used to test if either construction

or building value (exposure size) has any effect on loss

distribution. The acceptance of this null hypothesis, subject to

the usual interpretation of Type Two error probability, suggests

that the rating variables have no appreciable influence on the

loss distribution. The rejection of (3.2) implies that the

inclusion of building value or construction in the linear

predictor gives a superior model as compared to the fit by the

base distribution, Model A. The acceptance of the null

hypothesis (3.3) suggests that in the presence of building

value, the addition of the construction factor does not improve

the fit. Null hypothesis (3.4) can be similarly interpreted.

By conducting statistical tests corresponding to the

previously stated hypotheses, the effects of rating variables on

loss distributions can be assessed. The test statistics are

likelihood ratio tests. The asymptotic distribution of test

statistics are Chi-squares. Hence, for small sample sizes, the

implications of the above tests based on Chi-squares are only

approximately valid.

Here, we assume that the underlying loss random variable,

Yi--for the ith risk--has a lognormal distribution with
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parameters µi and σ2
. The parameter µi is the mean of transformed

variable log(Yi). We shall refer to models in this section as

"Mean" models. Using an approach similar to GLM, we relate the

rating variables of interest to parameter µi by using an

identity link function. That is,

iµ = xi
Tβ

   = + ∑β β0 xij j
i

where β β β0 1, ,  .  .  .  , p 
are regression like parameters and xi j’s

represent the contribution of explanatory rating variables for

the ith risk. Hence, we have a family of lognormal distributions,

with parameters β β β0 1, ,  .  .  .  , p and σ2 to describe the distribution

of losses.

It is assumed that the parameter σ is the same for each risk,

and does not vary by the rating variables. We shall examine an

alternative approach in the next section, where σ is not

constant. Although, the mean and variance of the loss

distributions vary by rating variables, but due to the constancy

of σ, the skewness, and the kurtosis are not dependent on rating

variables.

The mechanism to fit a family of lognormal distributions

to the data of Table A of Appendix A has now been established. A

set of nested hypotheses of interest, (3.2), (3.3), and (3.4) in

reference to model (3.1D) has also been stated. We now need to

perform the necessary computations to estimate the model

parameters, and calculate log-likelihood statistics for
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alternative models as described by linear predictors (3.1A),

(3.1B), (3.1C), and (3.1D).

The program to compute maximum likelihood estimate of model

parameters for the linear predictor (3.1D), as well as the value

of the negative of log-likelihood based upon maximum likelihood

estimates is given as Exhibit 2 of Appendix B.

Likelihood ratio test statistics are needed for performing

nested statistical tests of hypothesis (3.2), (3.3), and (3.4).

The likelihood ratio test statistics can be calculated from the

values of log-likelihood statistics for the appropriate models.

 The upper portion of Table 4 below provides the values of

the negative of log-likelihood statistics for the “mean” models

according to linear predictors (3.1A), (3.1B), (3.1C), and

(3.1D). The lower portion of Table 4, provides the values of the

necessary likelihood ratio test statistics for performing nested

statistical hypotheses (3.2), (3,3), and (3.4). In addition, the

appropriate 95th percentiles and degrees of freedom of the

asymptotic distributions of test statistics are also provided.
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Table 4

Likelihood Statistics for Alternative
Statistical Models

"Mean" Models

         Linear                               Negative of logarithm of
Model   Predictor                            Likelihood function
  A   µ β

i
=

0
                          897.7654

  B   µ β β β
i i i

C C= + +
0 1 1 2 2

             894.8344

  C   µ β β
i

= +
0 1

 
i

log(BV )                     896.8284

  D   µ β β β β
i i i

C C= + + +
0 1 2 1 3 2

 
i

  log(BV )        892.7099

Nested Hypotheses based on Model D

                                                   DF       95th perc.
Test of                  Likelihood Ratio*         for      of
Hypothesis               Test Statistics           Chi-sq.  Chi-sq.

H
0 1 2 3

0:  β β β= = =   − −2(log log )L L
A D

= 10.1110       3     7.8147

H
0 2 3

0:  β β= =        − −2(log log )L L
C D

= 8.2370        2     5.9915

H
0 1

0:  β =             − −2(log log )L L
B D

= 4.2490        1     3.8415

* L L
A B C D

, , , L   and  L , above, correspond to likelihood statistics

for “Mean” Models A, B, C, and D respectively.
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Let us interpret the results given by Table 4, later on we shall

make some qualifications regarding our interpretations.

If we are interested to test whether construction factor or

building value has an effect upon the shape of the loss

distribution, the appropriate null hypothesis is

H
0 1 2 3

0:  β β β= = = . The value of the test statistic, i.e., the

likelihood ratio test statistics is 10.111. Since 10.111 exceeds

the value of 7.8147 (the boundary of rejection region), it implies

that we should reject the null hypothesis H0. The implication is either

construction or building value have an influence on the shape of the

loss distribution. Similar interpretations can be given for the other

two null hypotheses.

Some qualifications regarding the above interpretation of Table 4 are in

order. First, due to relatively small sample size, and the

approximate distribution of likelihood ratio test, as Chi-

squares, we should be careful to interpret the results given in

Table 4. Second, the numerical estimate of parameters (see

Exhibit 2 of Appendix B) and the implications of the nested test

of hypotheses, are only for illustrative purposes and are not

intended to be used for any rating purposes.

Finally, the Model D has the largest likelihood value. Based

upon the values of likelihood statistics, as well as the AIC

values, Model D fits the data better than Model A, the base

distribution. Recall that Model A corresponds to the case of

fitting a single distribution to the data. Thus, the

consideration of rating variables has led to an improvement in

fit, and this improvement is statistically significant.
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4. Fitting a family of Lognormal
Distributions with Different Scale Parameters

In section 3, a family of lognormal distributions using a

procedure “similar” to the GLM approach was introduced. These

alternative statistical models were referenced to as "Mean"

models. The linear predictor was set equal the µ parameter of

the lognormal, and the σ parameter was assumed to be constant.

By considering the logarithm of losses, log(Y), the rating

variables affected the mean of the distribution but not the

scale, the σ parameter. In this section, a family of lognormal

distributions is introduced where the scale σ is made to depend

on rating variables, and the parameter µ is treated as a

constant. Using methodology similar to that in section 3, four

new statistical models A, B, C, and D, are defined corresponding

to four linear predictors as follows:

Model A:    σ βi = 0                       (4.1A)

Model B:    σ β β βi i iC C= + +0 1 1 2 2                (4.1B)

Model C:    σ β βi = +0 1 ilog(BV )                 (4.1C)

Model D:    σ β β β βi i iC C= + + +0 1 2 1 3 2 i   log(BV )  (4.1D)

These models will be referred to as "Scale" models. Parallel to

the development in section 3, we have three nested statistical

hypotheses of interest for Model D, linear predictor (4.1D),

defined as
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H
0 1 2 3

0:  β β β= = =                   (4.2)

H
0 2 3

0:  β β= =                       (4.3)

H
0 1

0:  β =                            (4.4)

The purpose and interpretation of these hypotheses is similar to

those of (3.2), (3.3), and (3.4) of section 3.

With the mechanism established in section 3, we want to

evaluate the it of alternative "Scale" models fitted to the data

in Table A of Appendix A. The results of these computations are

summarized in Table 5 below. A program for the maximum

likelihood estimate of parameters, and likelihood statistics for

Model B, linear predictor (4.1B), is given in Exhibit 3 of

Appendix B. For comparison purposes, the values of likelihood

ratio statistics for the "Mean" models are also reproduced in

Table 5.
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Table 5

Likelihood Statistics for Alternative
Statistical Models

"Scale" Models

        Linear                             Negative of logarithm of
Model   Predictor                           Likelihood function
  A       σ βi = 0                             897.7654
  B       σ β β βi i iC C= + +0 1 1 2 2                   892.4242
  C       σ β β

i
= +0 1 ilog(BV )                    895.7967

  D       σ β β β βi i iC C= + + +0 1 2 1 3 2 i   log(BV )         887.9109

Nested Hypotheses Based On Model D
Comparison of "Mean" & "Scale" Models

                                              DF     95th perc.
Test of             Likelihood Ratio  Mean   Scale  for     of
Hypothesis          Test Statistics*  Model   Model Chi-sq. Chi-sq.

H0 1 2 3 0:  β β β= = =  − −2(log log )LA LD  10.1110   19.7090  3   7.8147

H
0 2 3

0:  β β= =     − −2(log log )LC LD
   8.2370  15.7716  2    5.9915

H
0 1

0:  β =          − −2(log log )LB LD    4.2490   9.0266  1    3.8415

*Depending upon the context, the L L
A B C D

, , , L   and  L , above, correspond

to likelihood functions for "Mean" or "Scale" Models A, B, C, and D.
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Once again we should be careful to interpret the results

given in Table 5 due to relatively small sample size, and the

approximate distribution of likelihood ratio test as Chi-

squares. With these qualifications in mind, it appears that the

"Scale" models provide a better fit than the "Mean" models to

our data.

5. Conclusion

This paper discusses issues related to curve fitting. It

provides appropriate statistical methodologies for fitting

parametric distributions to loss data. In particular, the

interaction of parametric probability distributions,

deductibles, policy limits and rating variables are considered.

The presence of deductibles and policy limits complicate the

estimation of parameters of loss distribution, and the

assessment of goodness of fit. Procedures to fit a single

distribution or a family of distributions to loss data were

given. Statistical tests of hypotheses to assess the effect of

rating variables upon loss distribution were discussed. The

methodologies developed in this paper were applied to a sample

of loss data using lognormal as the reference distribution.

Sample programs coded in S-Plus, a statistical package, were

provided to illustrate the numerical computation of maximum

likelihood estimate of model parameters and maximized likelihood

function. Finally, the results in this paper suggest that for

any specific data set, there may be many viable statistical
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models suitable for the purpose of fitting distributions to the

data.
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Appendix A: TABLE A

Deduct-   Policy         Cons-       Deduct- Policy          Cons-
ible      Limit  Loss    truction    ible     Limit  Loss    truction
1,000     57,000     502    2        250     43,000      75     2
  250     41,000  31,971    1      1,000      1,000     865     3
1,000      1,000     367    1        100     33,000     206     2
  250     60,000     698    2        250      7,000   2,303     1
  100     10,000   4,863    2        250     64,000  11,760     2
  250     24,000     834    2        250     45,000     402     2
  250     16,000     646    1        500     30,000   3,352     1
  250     60,000     198    2        250      2,000     511     1
1,000     66,000     275    2          0     10,000   1,115     2
  250     36,000     500    1        250     52,000     237     2
  100     53,000   1,518    2        250      3,000   1,197     2
  250     70,000   2,430    2        100     50,000   7,107     2
  250     51,000     357    1        250     89,000     535     2
  250     79,000   2,008    2      1,000    200,000   5,959     2
  500    139,000   3,044    1        250    100,000   1,224     3
  250    155,000     238    2        250     85,000  85,000*    1
  250    150,000   3,244    2        250    103,000   2,358     2
  250     98,000     850    2        250    110,000  31,243     2
  250    100,000     198    2        500    110,000   1,488     1
  100    110,000 110,000*   1        250    175,000   2,702     3
  250    115,000   1,191    1      1,000    154,000     850     2
  250    100,000   1,852    3        250    100,000     300     2
5,000    153,000   4,433    1        250    134,000     930     2
  250    120,000     100    2        500    125,000     305     2
  250    100,000   2,501    2      1,000    115,000     190     2
  250    350,000   1,057    2        250    630,000   1,875     1
  250    373,000     180    1      1,000    402,000   5,075     2
1,000    208,000   9,385    1        500    204,000     972     2
1,000    600,000   2,300    3        250    300,000     271     3
1,000    284,000   5,589    1        250    350,000      87     1
1,000    263,000     652    2        500    595,000     625     2
  250    312,000   3,975    1      1,000    275,000  20,934     1
  250    280,000     485    2        250    290,000     609     1
1,000    312,000   2,092    2        250    560,000     325     2
2,500    250,000 250,000*   1      1,000    371,000   6,012     1
  250    300,000     250    2      1,000    362,000     860     2
  500    625,000   1,305    3        250    317,000   2,720     2
1,000    319,000   6,729    3        500  6,817,000   1,040     3
  500  9,214,000     185    2      1,000  3,010,000  48,762     1
1,000  3,000,000  22,930    3      5,000  6,023,000  20,576     1
1,000    800,000     498    3        250    700,000     230     2
  500    838,000     990    2      1,000  1,000,000     200     2
  250  1,400,000   5,491    3        500  1,442,000   1,247     1
1,000  1,500,000   1,185    3      1,000  2,000,000  10,000     2
  500 36,819,000   6,032    2      1,000  2,526,000   4,525     3
  250  1,282,000  13,775    2        500 65,065,000  16,981     2
  250  1,000,000     150    3      1,000  1,236,000   4,911     2
1,000  6,127,000   4,536    2      1,000  5,000,000  81,692     2
  100  1,140,000     298    3        250  2,275,000  21,447     2
1,000  1,910,000     335    2      1,000  2,700,000     992     2

*Building losses with asterisks next to them are losses capped by their
respective insured building values (right censored.)
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Appendix B: Exhibit 1

An S-Plus Program to Compute Maximum Likelihood
Estimate of Parameters & Maximized Likelihood

Statistic for Weibull Distribution

mydata<-TableA
m<-data.frame(mydata)
Weibull<-function(lamda, alfa, data = data.matrix)
  {    D <- data.matrix[,1]
      PL <- data.matrix[,2]
       y <- data.matrix[,3]
 z <- D+((y <PL)*y+(y >=PL)*PL)
    delta1<- (D==0)*(y <PL)
    delta2<- (D> 0)*(y <PL)
    delta3<- (D==0)*(y >=PL)
    delta4<- (D> 0)*(y >=PL)
    L1 <- alfa*lamda*(z^(alfa-1))*exp(-lamda*(z^alfa))
    L2 <-(alfa*lamda*(z^(alfa-1))*exp(-lamda*(z^alfa)))/exp(-lamda*(D^alfa))
    L3 <- exp( - lamda * (z^alfa))
    L4 <- exp( - lamda * (z^alfa))/exp( - lamda * (D^alfa))
    logL<- delta1*log(L1)+delta2*log(L2)+delta3*log(L3)+delta4*log(L4)
   -logL  }
min.Weibull<-ms(~Weibull(lamda,alfa), data=m, start
=list(lamda=1,alfa=.15))
min.Weibull
value: 899.802
parameters:
     lamda     alfa
 0.4484192 0.223073
formula:  ~  Weibull(lamda, alfa)
100 observations
call: ms(formula =  ~ Weibull(lamda, alfa), data = m, start = list(lamda
= 1, alfa = 0.15))

S-Plus is a statistical package produced by StatSci, a division of
MathSoft, Inc., Seattle, Washington.

Weibull density is: f x x x( ; , ) exp( )λ α α λ λα α= −−1
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Appendix B: Exhibit 2

An S-Plus Program to Compute Maximum Likelihood
Estimate of Parameters & Maximized Likelihood

Statistic for a Family of Lognormal Distributions
Based on “Mean” Model D

mydata<-TableA
m<-data.frame(mydata)
lognormal.model.D <- function(b0,b1,b2,b3,sigma, data=data.matrix)
  {  D <- data.matrix[,1]
    PL <- data.matrix[,2]
     y <- data.matrix[,3]
     z <- D+(y*(y<PL)+PL*(y>=PL))
  cnst <- data.matrix[,4]
    C1 <- cnst == 1
    C2 <- cnst == 2
     d <-D+(D == 0)*1
    mu <- b0+b1*log(PL)+b2*C1+b3*C2
 delta1 <- (D == 0)*(y < PL)
 delta2 <- (D > 0)*(y < PL)
 delta3 <- (D == 0)*(y >= PL)
 delta4 <- (D > 0)*(y >= PL)
 L1 <- dlnorm(z,mu,sigma)
 L2 <- dlnorm(z,mu,sigma)/(1-plnorm(d,mu,sigma))
 L3 <- 1-plnorm(z,mu,sigma)
 L4 <- (1-plnorm(z,mu,sigma))/(1-plnorm(d,mu,sigma))
 logL <-delta1*log(L1)+delta2*log(L2)+delta3*log(L3)+delta4*log(L4)
 -logL  }
min.model.D<-ms(~lognormal.model.D(b0,b1,b2,b3,sigma), data=m,
 start=list(b0=4.568, b1=0.238, b2=1.068, b3=0.0403, sigma=1.322))
min.model.D
value: 892.7099
parameters:
       b0        b1       b2        b3    sigma
 1.715296 0.3317345 2.154994 0.4105021 1.898501
formula:  ~  lognormal.model.D(b0, b1, b2, b3, sigma)
100 observations
call: ms(formula = ~ lognormal.model.D(b0, b1, b2, b3, sigma), data=m,
start =list(b0=4.568, b1=0.238, b2=1.068, b3=0.0403, sigma=1.322))
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Appendix B: Exhibit 3

An S-Plus Program To Compute Maximum Likelihood
Estimate of Parameters & Maximized Likelihood

Statistic for a Family of Lognormal Distributions
Based on "Scale" Model B

mydata<-TableA
m<- data.frame(mydata)
lognormal.Scale.model.B<- function(b0,b1,b2,mu, data=data.matrix)
   { D <- data.matrix[,1]
 PL <- data.matrix[,2]
 y <- data.matrix[,3]
    cnst <- data.matrix[,4]
 z <- D + (y*(y < PL)+PL*(y >= PL))
 C1 <- cnst == 1
 C2 <- cnst == 2
 d <- D + (D == 0) * 1
 sigma <- b0+b1*C1+ b2* C2
 delta1 <- (D == 0)*(y < PL)
 delta2 <- (D > 0)*(y < PL)
 delta3 <- (D == 0)*(y >= PL)
 delta4 <- (D > 0)*(y >= PL)
 L1 <- dlnorm(z,mu,sigma)
 L2 <- dlnorm(z,mu,sigma)/(1 - plnorm(d,mu,sigma))
 L3 <- 1 - plnorm(z,mu,sigma)
 L4 <- (1 - plnorm(z,mu,sigma))/(1 - plnorm(d,mu,sigma))
 logL <-delta1*log(L1)+delta2*log(L2)+delta3*log(L3)+delta4*log(L4)
   -logL   }
 min.Scale.B<- ms(~lognormal.Scale.model.B(b0,b1,b2,mu), data=m,
+ start=list(b0=2,b1=0,b2=0,mu=6))
 min.Scale.B
value: 892.4242
parameters:
       b0       b1        b2      mu
 1.583642 1.324647 0.1066956 6.55098
formula:  ~  lognormal.Scale.model.B(b0, b1, b2, mu)
100 observations
call: ms(formula =  ~ lognormal.Scale.model.B(b0, b1, b2, mu), data = m,
start = list(b0 = 2, b1 = 0, b2 = 0, mu = 6))


