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Abstract  

The application of loss trends has long been a fundamental part of the 

ratemaking process. Despite this, the actuarial literature is somewhat lacking in 

the description of methods by which one can estimate the proper loss trend from 

empirical data. Linear or exponential least squares regression is widely used in 

this regard. However, there are problems with the use of least squares 

regression when applied to insurance loss data. 

In this paper, some common pitfalls of least squares regression, as it is 

commonly applied to insured loss data, and two alternative methods of 

evaluating loss trends will be illustrated. Both methods are based on simple least 

squares regression, but include modifications designed to account for the 

characteristics of insurance loss data. 

The results of various methods are compared using industry loss data. 

Stochastic simulation is also used as a means of evaluating various trend 

estimation methods. 

The concepts presented are not new. They are presented here in the context of 

analyzing insured loss data to provide actuaries with additional tools for 

estimating loss trends. 
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Introduction 

This paper is organized into eight sections. The first section will describe the 

importance of estimating loss cost trends in Property/Casualty ratemaking. In 

addition, it will introduce the common industry practices used to estimate the 
underlying loss cost inflation rate. 

The second section will provide a review of basic regression analysis since 

regression is commonly utilized for estimating loss trends. It will also describe 
other relevant statistical formulae. 

The third section will describe some characteristics of insured loss data, This 

section will describe how insured losses violate some of the basic assumptions of 

the ordinary least squares model. It will also describe the complications that 
result because of these violations. 

The fourth section will describe several methods that can be utilized along with 

informed judgement to identify outliers. 

The fifth and sixth sections will describe two alternative methods that address the 

shortcomings of ordinary least squares regression on insured loss data. 

The seventh section applies the common method of exponential least squares 
regression and the two alternative methods to industry loss data and compares 
the results. 

In the last section, the performance of exponential least squares regression and 
the alternative methods will be evaluated using stochastic simulation of loss data 
with a known underlying trend. 

While the determination and use of credibility is an essential component of loss 

trend determination, it is beyond the scope of this paper. However, the concepts 
and methods presented here apply equally to the determination of the trend 

assigned to the complement of credibility. The methods presented here are 

designed to extract as much information about the underlying trend from the 

available data. They are not intended to minimize the importance or use of 

credibility. 
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In addition to credibility, there are many other considerations that must be taken 

into account when applying loss trends, such as the effect of limits and 

deductibles. These issues are beyond the scope of this paper. 

Section 1: Actuarial Literature and Industry Practice 

In the ratemaking process, it is widely agreed that trend selection is the 

component that requires the most judgement. 1 According to the Actuarial 

Standards of Practice, the application of the appropriate trending procedures is 

essential to estimating future costs in the determination of rates. 2 

Despite the importance of trending in ratemaking and the degree of judgment 

required, there is little written specifically regarding the determination of loss 

trends. Most ratemaking papers cite trending as an integral part of the process 

and describe the author's selected approach. This is entirely appropriate as the 

subject of these papers is ratemaking and not specifically trend estimation. 

The actuarial literature is sparse on the process of selecting the type of data to 

evaluate, preparing trend data, choosing the most appropriate model and 

assessing the appropriateness of the selected trends. 

There are papers addressing several of the important basic issues of trending. 

These include the appropriate trending period and the overlap fallacy. 3 In 

addition, the CAS examination syllabus addresses the permissibility of using 

calendar year data to determine trends applied to accident year data. 4 These 

authors have well and fully addressed these topics and they need not be 

revisited. 

1 David R. Chernick, "Private Passenger Auto - Physical Damage Ratemaking", p. 6. 

2 ASP #13... 

3 Chernick, ibid., Charles F. Cook, "Trend and Loss Development Factors", CAS Proceedings, 

Vol. LVII, p. 1 and McClenahan, Foundations of Casualty Actuarial Science, 2d Ed, Casualty 

Actuarial Society, Arlington, VA, 1990, Chapter 2. 

4 Cook, ibid. 
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In much of the syllabus material, both past and present, there are considerable 
differences between the types of data used for trending and the amount of 

discussion dedicated to the selection of the trend. Generally, each paper selects 

either calendar or accident year data and utilizes either the simple linear or 

exponential regression model with little guidance regarding which is more 

appropriate or discussion of the data to which the model is applied. These 
omissions are understandable since the subject of the articles is ratemaking, of 

which trend selection is only one component. There are acknowledgements of a 

need for better loss trending procedures contained in several papers. 

A survey of rate filings was conducted to assess common industry practice. 

From this review, it is difficult to know definitively the amount of analysis that 

underlies the selection of trends. However, each company and the one rating 

agency examined display four-quarter-ending calendar year data with either 
simple linear or exponential regression results to support loss trend selections, s 

As illustrated in both literature and practice, it is common in the Property & 

Casualty industry to estimate loss cost trends using either linear or exponential 
least squares regression. This is understandable since least squares regression 

is familiar to both regulators and company management. Further, least squares 

regression has been integrated into all commonly used electronic spreadsheet 

packages. 

The validity of using linear or exponential least squares regression, the basic 
assumptions of regression analysis and the characteristics of loss data, in 

evaluating ratemaking trends has not been widely addressed. When selecting a 

model to estimate future trends, it is important to consider whether the data used 

violates assumptions of the model. 

Loss Data 

An essential consideration in evaluating loss trend involves the selection of the 

type of loss statistics to analyze. It is often useful to analyze both paid and 

incurred loss frequency and severity if available. 

5 Allstate, Nationwide, Progressive, State Farm and ISO 
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For example, paid claim counts may include claims closed without payment. 

Therefore, changes in claim handling procedures during the period under review 

may affect the trend estimate. Likewise, changes in case reserving practices and 

adjuster caseloads may affect incurred and/or paid severity amounts. 

Analysis of both paid and incurred amounts, or amounts net versus gross of 

salvage and subrogation, can assist in identifying changes in claims handling. In 

any event, the loss statistics used should be defined consistently throughout the 

experience period. For example, if the paid loss amounts are recorded gross of 

salvage and subrogation for a portion of the time period, and net for the 

remaining, the amounts should be restated to a consistent basis prior to analysis. 

Section 2: Least Squares Regression Basics 

Least squares regression is a general term that refers to an extensive family of 

analytical methods. All of these methods share a common basic form. 

where, 

}~ is the i '~ observation of the response variable. 

,8, is a vector of model parameters to be estimated. 

.~, is a vector of the the independent variables 

~, is the random error term. 

Regression models are designed to use empirical data to measure the 

relationship between one or more independent variables and a dependent 

variable assuming some functional relationship between the variables. The 

functional relationship can be linear, quadratic, logarithmic, exponential or any 

other form. 

The important point is that the functional relationship, the model, is assumed 

prior to calculation of the model parameters. Incorrect selection of the model is 

an element of parameter risk. 

In addition to selection of the model, regression analysis also involves 

assumptions about the probability distributions of the observed data. This is 

26 



essential in the development of statistical tests regarding the parameter 

estimates and the performance of the selected model. 

Simple L inear  Regress ion 

The most common form of regression analysis is simple linear regression. The 

simple linear regression model has the following form. 

= P0 + # ,  X ,  + E, 

where, 

Y, is the i 'h observation of the response variable. 

,b' 0 and ,8, are the model parameters to be estimated. 

X, is the i 'h value of the independent variable. 

e, is the random error term. 

The parameters of the regression model are estimated from observed data using 

the method of least squares. This method will not be described in detail here. It 

is sufficient for our purpose to note that the least squares estimators, b,, have 

the following characteristics: 

1. They are unbiased. That is, E[b,] = p , .  

2. They are efficient. The least squares estimators have the minimum 

variance among all unbiased linear estimators. 

3. The least squares estimators are the same as the maximum likelihood 

estimators when the distributions of the error terms are assumed to be 

independent and normally distributed with a mean of zero and a 

variance of (~2. 

Because the normal distribution of the error terms is assumed, various statistical 

inferences can be made. Hypothesis testing can be performed. For example, 

the hypothesis that the trend is zero can be tested. Confidence intervals for the 

regression parameters can be calculated. Also, confidence intervals for F and a 

confidence band for the regression line can be calculated. These very useful 

results make simple linear regression appealing. 
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Exponential Regression 
While linear regression models are often satisfactory in many circumstances, 

there are situations where non-linear models seem more appropriate. Loss cost 

inflation is often assumed to be exponential. The exponential model assumes a 

constant percentage increase over time rather than a constant dollar increase for 

each time period. 

The general form of the exponential regression model is given by 

}~ = Yo + Y~ e~'v' + E, 

The parameter estimates of a non-linear regression model usually cannot be 

described in closed form. Therefore, numerical methods are used to determine 

parameter estimates using either the least squares or maximum likelihood 

method. Often electronic spreadsheet software will include tools to estimate the 

parameters for several non-linear regression models. 

As with linear regression, statistical inferences such as confidence intervals for 

the parameter estimates, hypothesis testing and a confidence band for the fitted 

curve can be made. 

The Exponential to Linear Transformation 
In practice, the linear regression algorithm is often applied to the natural 

logarithm of the observed data. This transformation of the observed data 

simplifies the calculation of the regression parameters. However, in using this 

approach the analyst has, perhaps unknowingly, assumed the error terms are 

Iognormally distributed rather than normally distributed. 

The observed data is modeled using the equation, 

Ln(Y, ) = ~o +/31 .~( + 6, 

This transformation is equivalent to the model, 

Y, = Ke ~'''' .[e" ], where K = e '~ and e" is the error term. 

and the trend is obtained from the linear least squared regression estimate of/~',. 
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If the error term of the linear regression model, c,, is assumed to have a 

N(0,c) distribution, it can be shown that the error term in the transformed model 

is Iognormal with expected value e °'12 . The error terms are positively skewed. 

This distribution of the error terms in the linearized model may be preferable to 

the normal distribution if the analyst believes it is more likely that observed 

values are above the mean than below the mean. This certainly may be the case 

with insured loss data. 

Note that the Iognormal distribution of the error term in the linearized model 

affects the calculation of confidence intervals and test statistics for the model. 

The familiar forms of the test statistics based on the normal distribution do not 

apply. 

The Coefficient of Determination, R 2 

Perhaps the most cited statistic derived from regression analysis is the coefficient 

of determination, R 2. R 2 can be interpreted as the reduction of total variation 

about the mean that is explained by the selected model. When R a is closer to 

one, the greater is the modeled relationship between X and Y, whether the model 

is linear, exponential or some other form. 

The Durbin-Watson Statistic 

The Durbin-Watson statistic, D, is used to test for serial correlation of the 

residual errors, e,. The value of D is calculated from the observed and fitted 

values of Y, where e, = (~ - ~ ) .  

n 

D ~ f=2 
n 

/=1 

This value is compared to critical values, d~ and d., calculated by Durbin and 

Watson. The critical values define the lower and upper bounds of a range for 

29 



which the test is inconclusive. When D > d ~ ,  there is no serial correlation 

present. When /_) < dr., there is some degree of serial correlation present. 6 

Sect/on 3: Insured Loss Data 

There are several distinct characteristics of insured loss data that should be 

recognized when selecting a regression model. In broad terms, one expects 

data to be comprised of an underlying trend, a seasonality component, a possible 

cyclical nature and a random portion. 7 These traits make the estimation of the 

underlying trend more difficult and the rigid use of simple linear or exponential 

regression imprudent. 

Unusual Loss Occurrences 

The nature of insured losses may violate the common assumptions of simple 

linear or exponential least squares regression. For example, loss events that 

cause widespread damage can generate extraordinarily high claim frequencies in 

a given time period. The reverse, a time period with an extraordinarily low claim 

frequency, is unlikely. A similar skewness can occur in severity data for small 

portfolios or, almost certainly, in medium to large portfolios of liability risks due to 

shock losses. Examples of these characteristics are evident in trend data 

provided by the Insurance Services Office. 

Widespread Loss Events 

In the chart below of Homeowner claim frequencies as reported by the Insurance 

Services Office for the state of Oregon, there is an obviously unusual occurrence 

in the first quarter of 1996. The increase in claim frequency over the prior annual 

period is over 50%. 

6 Neter, et. al., A~j)lied Linear Statistical Models, 4 ~ ed., McGraw-Hill, Boston, 1996 p 504. 

7 Spyros Makndakis and Steven C. Wheelwright, _Forecasting Methods for__Mana~ement. 5 ~h Ed., 

John Wiley & Sons, New York, 1989, p. 96. 
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Because the data is twelve-month-moving, the dramatic rise in frequency that 

occurred in the first quarter of 1996 is transferred to the subsequent three 
observations. Therefore, the error terms are not independently distributed, as 

commonly assumed, due to the construction of the data. 

A review of the severity data for the same time period shows a corresponding, 

though less dramatic, drop in claim severity. This is typical of a high frequency, 

low severity weather loss event. This drop in claim severity may go unnoticed if it 

were not for the associated increase in frequency. Again, due to the twelve- 
month moving organization of the data, the error terms are not independently 

distributed. 
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Shock Losses 
A high severity claim in a small portfolio may cause a distortion in the data and 

affect the trend calculated by ordinary least squares methods if no adjustments 
are made. A visual inspection of Nevada Private Passenger Auto Bodily Injury 

severity data provided by the Insurance Services Office shows an unusual 

occurrence in the first quarter of 1998. 

The quarterly data shows the elevated severity in the first quarter of 1998 neatly 

as one high point while the four quarter ending data exhibits this phenomena as 

a four point plateau, This phenomenon occurs more often in smaller portfolios, 
even when utilizing basic limit data. 

Nevada PPA - Bodily Injury Liability 
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Effects of Unusual Loss Occurrences 

While the cause of these events is dissimilar, the result on the data is the same. 

One may expect the distribution of the error term for claim frequency and severity 

to be positively skewed, rather than normally distributed as commonly assumed. 

The Iognormally distributed error terms of the transformed exponential regression 

model may be more appropriate than the exponential model with normally 

distributed errors. 

As demonstrated above, insured loss frequency and severity data may exhibit 
abnormally high random error. If these errors occur early in the time series, the 

resulting trend estimates from least squares regression will be understated. 

Conversely, if the shock value occurs late in the time series, the trend estimate 
will be overstated. The use of twelve-month-moving data compounds this effect 

since the shock is propagated to three additional data points. 

There are several methods available to identify outliers and measure their 

influence on the regression results. These include Studentized Deleted 

33 



Residuals, DFFtTS, Cook's Distance and DFBETAS. 8 The identification of such 

occurrences is addressed in section four below. 

Seasonality of Data 

The nature of insurance coverage creates seasonal variation in claim frequency 

and severity. For example, winter driving conditions may cause higher Collision 

and Property Damage Liability claims in the first quarter. Similarly, lightning 

claims may be more prevalent during the summer months in certain states. The 

probability of severe house fires may be higher during the winter months. Auto 

thefts may be more frequent in summer months causing elevated severity for 

Comprehensive coverage. 

When reviewing New York Private Passenger Auto data for Collision coverage 

on a quarterly basis, one can see the seasonal nature of claim frequencies. This 

seasonality can be illustrated by grouping like quarters together. 

New York Collision 

Qtrly Paid Frequency 

110 

10.0, i I . . . . . . .  ~ . . . .  

@ 
90 . . . . . . . . . . . . . . .  

80 ~ 
70 
60 1 

Year/Qtr 

Generally, the use of twelve-month-moving data is a convenient method for 

adjusting the seasonal nature of insured losses. However, four-quarter-ending 

a Neter, et. al., ibid, and Edmund S Scanlon, "Residuals and Influence in Regression", CAS 

Proceedings, Vol. LY-,XXI, p. 123 
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data creates serially correlated errors when used in ordinary least squares 

regression. 

Serially Correlated Error 
Actuarial literature shows trend data organized in a variety of ways. Some 

authors use twelve-month-moving calendar year data observed quarterly, others 

use accident year data observed annually, still others use calendar quarter data 

observed quarterly. Each format has advantages and disadvantages. It is 

important to recognize the implications of the data organization on the regression 

results. 

Any organization of data that has overlapping time periods from one point to the 

next, by its construction, results, in serially correlated error terms. Serial 

correlation of error terms occurs when the residual errors are not independent. 

This result is shown for twelve-month-moving calendar year data in Exhibit 2 

using the Durbin-Watson statistic. 

Additionally, one can plot residuals to detect serial correlation. Below the 

residual plot is displayed for twelve-month-moving New York Collision frequency. 

As one can see, the errors for adjacent points are related. As noted above, the 
independence of the error terms in ordinary least squares regression is generally 

assumed and certain conclusions about the regression statistics are based on 

this assumption. 
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According to Neter, et. al., when this assumption is not met the following 

consequences result. 

1. The estimated regression coefficients are still unbiased, but they no longer 

have the minimum variance property and may be quite inefficient. 

2. Minimum Squared Error (MSE) may seriously underestimate the variance 

of the error terms. 

3. The standard deviation of the coefficients calculated according to ordinary 
least squares procedures may seriously underestimate the true standard 

deviation of the estimated regression coefficient. 

4. Confidence intervals and tests using the t and F distributions are not 

strictly applicable. 

Remedial  Measures 

Each of the first two issues with the insured loss data, widespread loss events 
and extraordinary claim payments, can be resolved by removing outlying points 

before calculating the exponential or linear regression. The removal technique 

must rely on statistical tests and actuarial judgment. This will be discussed in the 

following section. Seasonality and serial correlation can be addressed using 

regression with indicator variables on quarterly data. Regression with indicator 

variables explicitly incorporates seasonality as a component of the model. The 

use of quarterly data eliminates the serial correlation resulting from the use of 

overlapping time periods. 

Comments on Goodness-of-Fit 

Estimating the underlying trend in a given dataset entails more than simply fitting 

a line to a set of data During the estimation process, it is important to determine 
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w h e t h e r  the underlying assumptions are met and whether  the equation 

accurately models the observed data. 9 

Many consider R 2, the coefficient of determination, the most important statistic for 

evaluating the goodness-of-fit. The coefficient of determination is the proportion 

of the data's variability over t ime that is explained by the fitted curve. However, it 

is widely agreed that this is not sufficient. 1° The coefficient of determination, by 

itself, is a poor measure of goodness-of-fit.1 

To assume that a low R 2 implies a poor fit is not appropriate. It has been shown 

that a low or zero trend, by its nature, has a low R2value. 12 Also, whenever  the 

random variation is large compared to the underlying trend the R 2 will not be 

sufficient to determine whether  the fitted model is appropriate. One can illustrate 

the low R a values associated with data exhibiting no trend over time. The scatter 

plot below was generated from a simulation with an underlying trend of zero. 

Simulation R e s u l t s  " 
Underlying Trend = 0% 

1 .oo 

0.80 

~ 0.60 

~', 0.40 
n~ 

0.20 

0.00 
-3.5% -2.5% -1.5% -0.5% 0.5% 1.5% 

Estimated Trend 
2.5% 3.5% 

9 scanlon, ibid. 

lo D. Lee Barclay, "A Statistical Note on Trend Factors: The Meaning of R-Squared", CAS Forum, 

Fall 1991, p. 7, and Ross FonticeUa, "The Usefulness of the R z Statistic", CAS Forum, Winter 

1998, p. 55, and Scanlon, ibid. and Neter et. al., ibid. 

11 Barclay, ibid. 

la Barclay, ibid. 
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The residuals between the actual and fitted points are highly useful for studying 

whether a given regression model is appropriate for the data being studied. 13 It 

is useful to graph the fitted data against the observed data to look for patterns. TM 

A random scattering of residuals occurs when the fit is proper. 15 It is important 

that the error term not appear systematically biased when compared to 

neighboring points. 

The use of the R 2 statistic or plots of the residuals may result in the decision that 

the model is an appropriate fit to the data. This conclusion applies to the 

historical period based on this analysis. Another consideration is the 

extrapolation of the trend model into the future. As McClenahan illustrates with 

the use of the 3 rd degree polynomial, a perfect fit within the data period does not 

always result in the appropriate trend in the future. TM Extrapolation beyond the 

data period should also be considered before the decision to proceed with the 

model is undertaken. 

Section 4: Identification of Outliers 

This section describes methods by which one can identify extraordinary values 

from observed loss data. These methods are designed to identify outliers from a 

dataset on which regression is to be performed. An excellent reference on these 

and other statistical methods is Applied Linear Statistical Models by Neter et. al. 

Each of these methodologies cannot be applied without judgement. None of the 

methods is so robust as to produce reliable results in all circumstances. 

13 Neter, et. al., ibid, p. 25. 

14 Fonticello, ibid. 

15 Barclay, ibid. 

le McClenahan, ibid. 
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Therefore, the selected points should always be compared to the original 

dataset. 

The identification of the cause of the outlier is preferred. For example, if 

possible, the claims department should be consulted if a single large claim or if a 

widespread claims event, such as a catastrophe, appear to distort the data. 

Visual Methods 
When performing simple linear regression there are several visual methods 

which can result in easy identification of outlying points. Among these graphs 

are residual plots against the independent variable, box plots, stem-leaf plots and 

scatter plots 17. While residual plots may lead to the proper inference regarding 

outliers, there are instances when this is more difficult. When the outlier imposes 

a great amount of leverage on the fitted regression line, the outlier may not be 

readily identifiable due to the resulting reduction of the residual. 

Studentized Residuals 
There are several standard methods that can be utilized to assist with the 

identification of outliers, each with advantages and disadvantages. The 

studentized residual detects outliers based on the proportional difference of the 

error term, ¢,, and the variance of these errors. The studentized residual is 

defined: 
e i r ,= 

s{~ ,}  ' 

Where s{e i } is an estimate of the standard deviation of the residual. This 

estimate is easily calculated as s{e,} =~MSB( ] -h , ) ,  where h, is the diagonal 

element of the hat matrix H= X ( X ~ )  -~ X ' .  Interestingly, ]~ = HY and e = ( ! -  H)Y. 

The hat matrix will be used in future development of outlier identification for 

simplification of the formulae. 

This method has the same disadvantage as identification of outliers using 

residual graphing. The variance of the errors includes the error of the i th 

17 Neter,  et. al, ibid. 
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observation. In addition, there is no statistical test from which one can base a 

decision regarding outliers. 

Student ized Dele ted Residuals 

A significant improvement in identifying outliers uses the studentized deleted 

residual. For the i'hobservation the deleted residual, d,, is the difference 

between the i'* observation, g,, and the fitted point when the fitted curve 

includes all but the i 'h observation, ~',~,~. By excluding the i 'h observation one can 

determine the influence of the observation on the fitted function. Fortunately, the 
deleted residual can be computed relatively easily. 

d, ~ - ~' Y, - Y,(,) where h,, is the diagonal from H. 
1 - h .  

The deleted residual, d,, when studentized (divided by the estimated standard 

deviation of d,), follows the t(n-p-1) distribution. Therefore, each studentized 

deleted residual can be tested using t ( l - a / / 2 n , n - p - ] ) .  Fortunately, the 
studentized deleted residuals, L, can be computed without performing n 

separate regressions. It can be shown that, 

e, ~ n - p - 1  

"= ~sE~,, 0 - h,,) = e, LssE(-~ - h,-~ ; -  e f  J 

DFFI TS 

One measure of influence is the DFFITS statistic. The DFFITS is the 
standardized difference between the fitted regression with all points included and 

with the i '~ point omitted. 

Eh l 2 
DFFITS,  - ~ , l h "  = t, • 

This represents the number of standard deviations 1~ increases or decreases 

with inclusion of the i 'h observation. Note that the DFFITS statistic is a function 

of the studentized deleted residual and can be computed without performing 

multiple regressions. Observations are coHered~_/ outtiers if the DFFITS is 
greater than one for medium datasets and 2,/P/ for large datasets. ¥ / n  
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Cook's D 

Another measure of influence is Cook's Distance measure, D,. Scanlon utilizes 

Cook's D statistic to identify outliers. TM Cook's D measures the influence of the 

i 'h case on all f~ted values. 
/1 ^ 

-r,,,,) 
Oi 

- j=l 

p . M S E  

The denominator standardizes the squared difference measure of the numerator. 

Evaluation of Cook's D is accomplished by utilizing the F(p, n-p) distribution. A 

percentile value less than 10-20% shows little influence on the fitted values, while 

a percentile value of 50% or more indicates significant influence. 

Fortunately, Cook's D can be calculated for each observation from a single 

regression using the following relationship. 

p.MSE (l-h.) 

As with all models good judgement is imperative and comparison to the original 

data is advised. In addition to the methods described above, one can calculate a 

confidence band around the fitted curve. Observations outside the confidence 

band are candidates for removal. 

Each of these methods is designed to identify a single outlier from the remaining 

data. These techniques may not be sufficient to distinguish outliers when other 

outliers are adjacent or nearby. Each of these methods is extendable to identify 

multiple outliers from the remaining data. However, a discussion of these 

extensions is beyond the scope of this paper. 

la Scanlon, ibid. 
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Section 5: Manual  Intervention - Deletion~Smoothing of  Outliers 

Manual Intervention 

The identification of extraordinary values is certainly a matter of judgement. In 

the analysis that follows, the determination of outliers is completed by use of 

visual inspection. 

In many cases a visual review of the twelve-month-moving data can identify 

outliers. However, the occurrence of two ouliers within four quarters of each 

other can be difficult to detect using twelve-month-moving data. For this analysis 

the data is decomposed into the quarterly loss data shown below. 

Table 1 - Quarterly Frequency - Oregon Homeowners  

1 '~ Quarter 2 nd Quarter 3 rd Quarter 4 th Quarter 

1994 6.167 5.778 6.194 7.319 

1995 7573 6.665 8076 8613 

1996 24.861 8.456 7006 6 555 

1997 9.303 6053 5.906 5778 

1998 7.300 5.301 5.592 5 986 

1999 8.539 5.463 4.965 

The observed frequency in the first quarter of 1996 is identified as an outlier. 

Treatment of Outliers 

Once the outliers have been identified, one can proceed in several ways. First, 

the analyst may simply remove the outlying point from consideration and 

complete the analysis as if the observation did not occur. While this alternative 

may seem appealing, it does not allow for the reconstruction of twelve-month- 

moving data. 

The second approach is to replace the outlier with the fitted point from the 

regression after removal of the outlier. This removes the outlier from the 

regression entirely, but allows reconstruction of the four-quarter-ending data. 

The final approach is to replace the outlying point with the fitted point plus or 

minus the width of a confidence interval, as appropriate. This choice mitigates 
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the extent to which the outlier affects the regression results, without removing the 
point entirely. 

For simplicity, the authors have selected the first approach for comparison 

purposes but acknowledge that the other two procedures may be appropriate in 

other circumstances. 

Parameter  Est imat ion 

Estimation of the underlying trend in the data is completed through exponential 

regression on the quarterly data, excluding the outliers, with indicator variables to 

recognize any seasonality. 

Section 6: Qua l i ta t i ve  P red i c t o r  Var iab les  f o r  Seasona l i t y  

This method of least squares regression recognizes the seasonal nature of 
insured losses through the use of qualitative predictor variables, or indicator 

variables. Indicator variables are often used when regression analysis is applied 

to time series data. Also, since the data used in this method is quarterly rather 

than twelve-month-moving, first-order autocorrelation of the error terms is not 

present. Hence, the issues that arise from such autocorrelation are eliminated. 

The linearized form of the exponential regression model is given as 

Ln(Y~) =,8o + fl, X ,  + f l : D  2 + f lsD s +f l ,  D, +6, 

Where, 

}I, is the dependent variable 

X, is the independent variable (time) 

D 2 = 1, if second quarter, 0 otherwise 

D 3 = 1, if third quarter, 0 otherwise 

D 4 = 1, if fourth quarter, 0 otherwise 

c, is the random error term 

The model above can be viewed as four regression models, one for each set of 

quarterly data. 
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The exponential equivalents, without error terms, are 

First Quarter: 

Second Quarter: 

Third Quarter: 

Fourth Quarter: 

}I, = [e po ].  e p,x, 

Y, =e  ~' .[e~o].eP, x, 

Y, = e  ~' .[e.8O ].e¢, x, 

Y, = e "  .[e "8° ].e Ax' 

One can think of ¢~' as the trend component of the model and e ~' , J '  and eP' as 

the seasonal adjustments to e ~° . 

Essentially, the assumption is that the rate of change in frequency or severity 

over time is constant for all quarters, but the level of frequency or severity differs 

by quarter. This differs from multiple regression models, which assume separate 

trends for each quarter. A single trend, rather than four different trends, is 

intuitively appealing for ratemaking applications. 

Section 7: Comparison of Results 

This section compares trend estimates derived from five estimation methods 

applied to industry data provided by The Insurance Services Office. The data is 

displayed in Exhibit 1. Exponential least squares regression on twelve-month- 

moving data, quarterly data and annual data are used as examples of common 

industry practice. The results from the exponential regressions will be compared 

to results derived from the alternative methods described above. 

Detailed calculations using the Oregon Homeowners data are shown in the 

attached exhibits. The results in the tables below show the annual trend derived 

from each method and the associated R 2 value in parentheses. 

Table 1 - Oregon Homeowners Frequency 

# Years of Observations 

Method ~ 3~E= 4_~yr, 5~r 

12 MM -1 5% (.06) -13.9% (.53) -170% (.62) ~9% (17) 

Quarterly -156% (.32) -26.7% (.45) -132% (.21) -39% (03) 

Annual - -53% (.50) -192% (72) -10.1°/o (.34) 

Manual Adjustment -- -6.8% (.79) -8.4% (58) -2 6% (20) 

Indicator Variables -94% (.91) -222% (.75) -109% (.48) -26% (27) 

44 



Table 2 - New York PPA Collision Frequency 

# Years of Observations 

Method ~ 3 yr. 4yr. ,Syr~ 

12 MM 0.3% (.04) -1.7% (.43) -2.2% (.61) -1.9% (.58) 

Quarterly -0.6% (.00) -1.6% (.07) -2.8% (.17) -1.7% (.10) 

Annual -- -0.6% (.14) -2.3% (.66) -1.2% (.37) 

Manual Adjustment . . . . .  1.0% (.80) -0.8% (.84) 

Indicator Variables 1.7% (.83) -0.6% (.80) -2.2% (.76) -1.2% (.74) 

Table 3 - Nevada PPA Bodily Injury Severity 

# Years of Observations 

Method ~ 3 yr. 4yr. 5yr. 

12 MM 1 2% (06) 3.0% (.52) 3.1% (.72) 3.1% (.78) 

Quarterly 4.9% (.10) 4.3% (.20) 4.1% (.31) 2.7% (.25) 

Annual -- 3.5% (.63) 2.8% (.71) 37% (.85) 

Manual Adjustment -- 1.2% (.85) 1.9% (.65) 1.4% (.41) 

Indicator Variables 9.4% (.57) 4.9% (.36) 4.0% (.37) 27°/o (.27) 

The manual adjustment method and regression using indicator variables provide 

addit ional est imates of the underlying loss trend to assist the actuary in selecting 

appropriate adjustment for ratemaking. 

Section 8: Evaluation of Methods Using Stochastic Simulation 

In this section, a simulation is constructed to test the accuracy of each estimation 

method, Each of the five methods above is applied to the simulated data. 

Personal auto severity data is simulated using a known underlying trend, a 

normally distributed random error term, a seasonal adjustment for each quarter 

and a shock variable to simulate a single large claim payment, 

45 



Simulation Parameter Estimation 

Based on the Nevada PPA Bodily Injury severity analysis from the previous 

section the following simulation parameters were selected. 

Table 5 - PPA Bodily Injury Severity Simulation Parameters 

Trend 3.5% e a' - l 

Severity Variance 5.048 10 .2 MSE / Yo 2 

Base Severity $8,700 e '~° = E IYo ] 

Seasonal Shock Shock 

Quarter Adj_ustment Probability_ Magnitude 

First 1.000 -- 1/23 20% 

Second 1.013 e p~ 1/23 20% 

Third 0.987 e p~ 1/23 20% 

Fourth 1.03 e p' 1/23 20% 

The shock probability and magnitude were chosen based on the observed data. 

Of the 23 observations, only one observation appeared to have an extraordinarily 

high severity. The magnitude of the shock is fixed at 20%. The simulation could 

be further modified to include a stochastic variable for the shock magnitude. 

Simulations for other states and lines of business would incorporate other 

parameter values based on observed data. 

The simulation function is given by, 

Ln(Y, ) = [flo + P, X,  + lt2 D 2 + p ,  Ds + f14 D4 ]" ~', + 

where, 

and 

Pr[l~, = (1 + ~, )] = 1 / 2 3 ,  

Pr[I~, = l.OOl = 22 / 23 ,  

~, is  N ( O , o  "2) 
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The shock value of the natural logarithm of the severity, !+ 6, , corresponding to 

the shock value of the severity must be calculated. It can be shown that the 

value of 5, is given by 

In(! + a) , where a is the shock value for Y. 
po +p,X, +P2 

Likewise, the error variance, ~x 2 , for In(y, ) is derived from the estimated 

variance of Y, = MSE~ 2 according to the following relationship. 
/Y0 

MSE (e ~ -1) 
^ = e ~ '  

Simulation Results 

Ten thousand simulated data sets were generated. The five estimation methods 

were applied to each data ~et. 

It is important to note that the application of the manual intervention method 

assumed correct identification of the extraordinary observations in every 

simulation. In practice, identification of extraordinary values depends on 

judgement and statistical methods as described previously. Therefore, the 

comparison that follows may overstate the accuracy of the manual intervention 

method. 

The table below summarizes the results of each regression method based on 

10,000 simulations of twenty observations. Since the underlying trend in the 

simulation is known, accuracy is measured using the absolute difference 

between the estimated trend and the actual trend. The percentage of estimates 

above the actual trends is also shown in order to detect upward bias in the 

estimation method. Also, the percent of estimates within various neighborhoods 

of the actual trend are calculated. 

The simulation was constructed with a seasonal component and outliers. 

Therefore, it is not surprising that the manual intervention method that excludes 

the outliers and includes quarterly indicator variables produces good results. 

47 



Table 5 - Comparison of Methods (based on 10,000 simulations) 

Percentage of Estimates 

Within 75% 

of Actual 

54.1% 

490% 

486% 

49 3% 

Within 1% Average t 

of Actual a 2 

669% 74 

625% 34 ' 

61 3% ~75 

620% .~_~ 
67.6% 

r 

Average Average 

Trend Absolute Above Within 5% 

Method Estimate Difference Actual of Actual 

12 MM 3.52% 0.82% 5 0 . 7 %  37.7% 

Quarterly 333% 0.91% 44.1% 34.5% 

Annual 351% 0.93% 502% 33.6% 
Indicator 

3.51% 092% 5 0 . 4 %  34.4% 
Variables 
Manual 

3.50% 0.81% 49.4% 37.7% 
Adjustment 

539% 

A similar process can be used to simulate frequency data which include the 

probabil ity of loss events that produce large numbers of claims. 

Other Simulation Results 

Four other simulations were performed. The first compares results when no 

shocks are present. The second simulation included only data when shock 

values were present. The third simulation included shocks early in the time 

series only. The final simulation included shocks only late in the time series. 

N o  SHOCKS 

Method 

12 MM 

Quarterly 

Annual 

Indicator 
Variables 
Manual 
Adjustment 

Table 6 - Comparison of Methods (based on 10,000 simulations) 

w 

Average Average 

Trend Absolute Above 

__Estimate Difference Actual 

3.50% 0.69% 50.0% 

3.33% 0.78% 43 2% 

3.51% 0]8% 50.7% 

3.51% 078% 508% 

3,51% i 0 .78% 50.8% 
~__ 

Percentage of Estimates 

Within .5% Within 75% 

of Actual of Actual 

43.2% 607% 

392% 55.8% 

390% 554% 

39.2% 55 4% 

39.2% 554% 

Within 1% Ave~rage 

of Actual 

. 75 0%0 

. 68 9% 

.__688% 

68 9% ~ _  
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The results of this simulation show that there is little 

traditional regression techniques and regression using 

variables for seasonality. 

ALL SHOCKED 

difference between 

qualitative predictor 

Method 

12 MM 

Quarterly 

Annual 

Indicator 
Variables 
Manual 
Adjustment 

Table 7 - Comparison of Methods (based on 10,000 simulations) 

Percentage of Estimates 

Average i Average 

Trend Absolute Above 

Estimate i Difference Actual 

3.52% i 0 .89% 49.9% 

3.35% 0.97% 44.7% 

3.53% 1.01% 50.5% 

3.53% 0.98% 50.6% 

3.51% i 081% 49.7% 

Within 5% Within .75% Within 1% 

of Actual of Actual of Actual 

35.2% I 50.0% 63.0% 
r 

31.9% 46.3% 58.9% 

30.5% : 44.6% 57.3% 

31.4% 45.5% 58.6% 

37.9% 54.0% 67.2% 

Avemge 
R 2 

.70 

31 

~72 

.45 

54 

The results of the simulation using only data with shocks illustrate the increased 

accuracy of the manual adjustment method described previously under these 

circumstances. 

SHOCKED EARLY 

Method 

12 MM 

Quarterly 

Annual 

Indicator 
Variables 
Manual 
Adjustment 

table 8 - Comparison of Methods (based on 10,000 simulations) 

Average Average 
I 

Trend Absolute Above 

Estimate i Difference Actual 

1.68% 1.88% 6.7% 

1.87% 1,78%, 11.9% 

1.93% 1.77% 14.1% 

2.05% 1,66% 15~1% 
I 

3.50% 0,84% 49.9% 

Percentage of Estimates 

Within .5% Within .75% 

of Actual of Actual 

126% 19.3% 

15.4% 23.2% 

15.8% , 23.5% 

17.4% 25.5% 

36.6% 52.1% 

Within 1% 

of Actual 

26.4% 

30.5% 

31.6% 

34.9% 

65.6% 

Average 
R z 

.35 

.16 

.46 

.33 

53 
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This simulation illustrates the understatement of trend estimates by traditional 

methods when shock vaiues occur early in the time series. While proper 

elimination of the shocks may be difficult, this simulation shows the value of the 

proper identification. 

SHOCKED LATE 

Method 

Table 9 - Comparison of Methods (based on 10,000 simulations) 
. . . .  

Average Average 

' Trend L Absolute 

Estimate| Difference 
t- 

12MM ~ 5.37% 193% 
/ 

Quarterly ! 5.23% 1.85% 

Annual 2.22% ! 
Indicator 
Variables t ~  207% 

Manual 0.~5%--! 
A d j u s t m e n t  I__ 3 52°~ 

Percentage of Estimates 

Above VV~thin .5% 

Actual of Actual 

933% 124% 

89.5% 15.5% 

935% 106% 

2 0 ~  121% 

371% 

Within .75% Within1% Average 

of Actual I of Actual R 2 _  

.79 191% .6% _. 

231% I 31.3% -39 1 
168% ~2_27% 8 0 -  

52 3°/,, [ 6 5  1% 

This simulation illustrates the overstatement of trend estimates by traditional 

regression techniques when shocks occur late in the time series. 

Conclusion 

The regression concepts discussed here are not new to actuaries. Nor are the 

characteristics of insured loss data. Actuaries are familiar with the stochastic 

nature of claim frequency and severity. Actuaries are also keenly aware of the 

potential for loss events, be they weather events that generate an extraordinary 

number of "normal" sized claims, or single claims with extraordinary severity, that 

do not fit the assumptions of basic regression analysis. 

While outlier identification techniques are described in section four, they have not 

been applied to the industry data. The evaluation of these techniques is a 

subject worthy of further research. In addition, the authors would welcome 

development of techniques to discriminate between random noise and 
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seasonality, to identify turning points in the trend and to distinguish between 

outliers and discrete but "jumps" in the level of frequency and severity. 

Hopefully, the authors have presented some additional tools for ratemaking and 

stimulated interest in developing trend estimation techniques that recognize the 

unique characteristics of insured losses. 
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Nevada Bodily Injury 
Insurance Industry Loss Data 

Q/fly Paid Qtrly Paid 
YY/Q Frequency Severity 
94/1 2.018 8,836.39 
94/2 2.042 8,634.60 
94/3 2,100 9, 021.44 
94/4 2.186 8,310.44 
95/1 2.108 8,000.58 
95/2 2.140 8,040,02 
95/3 1.967 8.786.99 
95/4 2.064 9,415.44 
9611 1 95,4 7,993.37 
96/2 1.842 9,213,77 
96/3 1.751 9,124.03 
96/4 1.757 9,084.54 
9711 1,739 8,371.74 
97/2 1.861 9,572,92 
97/3 1.837 8,560.24 
97/4 1.831 9,103.45 
98/1 1.770 11,106,61 
98/2 1,999 9,743.20 
98/3 1,778 8,651.21 
98/4 1.749 9,552.60 
9911 1 799 9,594,95 
99/2 1,830 9,205,35 
99/3 1.755 9,79976 

Four Qtr Four Qtr 
Ending Paid Ending Paid 
Fmauencv ~;evedty 

94/1 
94/2 
94/3 
94/4 2.087 8,694.21 
95/1 2.110 8,486.04 
95/2 2134 8,338+22 
95•3 2.100 8,277.70 
95/4 2.070 8,557.51 
96/1 2.031 8,560.77 
96/2 1,956 8,855.56 
9613 1.901 8,935,94 
96/4 1.826 8.840.39 
97/1 1.772 8,950.26 
97/2 1,778 9,049.11 
97/3 1 799 8,904.48 
97•4 1,817 8,912.80 
98/1 1,824 9,574,94 
98/2 1 859 9,621,17 
98[3 1,844 9,642.72 
9814 1,823 9,753,45 
99/1 1.830 9.396.03 
99/2 1.789 9,252.20 
99/3 1,783 9,535.72 

Includes copyrbg~ed material of Insurance $e~K:es 
Offlce, Irtc with ;ls pefmiss~ Copyright, Insurance 
Ser~c~ Off~e 1999 
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New York Collision 
I n s u r a n c e  I n d u s t r y  L o s s  Da ta  

Qtrly Paid Qtrly Paid 
Frequen(;y Severity 

94/1 10085 1,96988 
94/2 7458 1.753.67 
94/3 7 359 1,946 69 
g4/4 7 586 2,073 42 
95/1 7 951 2,150 86 
95/2 6858 2,02218 
95/3 7 067 2,106 83 
95•4 7692 2,21401 
9611 9 326 2,230 18 
96/2 6.993 2,037 11 
96/3 6 948 2,113 95 
96/4 7 575 2,27575 
97/1 7 792 2,46061 
97/2 6 860 2,18590 
97/3 7023 2,226 98 
97/4 7 235 2,301 27 
98/1 7 423 2,349 35 
98•2 6 635 21112 72 
98/3 6 889 2,225 14 
98/4 6 982 2,268 54 
99/1 8103 2,392 75 
99/2 6821 2,196.11 
99/3 7000 2.29t 83 

Four Qtr Four Qtr 
Ending Paid Ending Paid 

Y Y ~  Frequency Severit3 
94/1 
94/2 
94/3 
94/4 8 117 1,93910 
95/1 7 588 1,984 33 
95/2 7437 2,050.69 
95/3 7 363 2,090 35 
95/4 7 391 2.12697 
96/1 7 738 2,15211 
96/2 7 768 2,154 42 
96/3 7734 2,155 9'5 
96/4 7704 2,171 35 
97/1 7328 2,230 23 
97/2 7 292 2,265 26 
97/3 7 309 2,291 61 
97/4 7225 2,29813 
98/1 7 137 2,26821 
98/2 7 128 2,249 98 
98/3 7 094 2,24949 
98/4 7031 2,241 10 
99/1 7 200 2,255 85 
99/2 7 198 2,275 84 
99/3 7226 2,291 96 

includes copynghted rnateriai of Insurance Sent~c~ 
Off~e. bnc with ~s pen~nissio~ Copyright, ins~mc, e 
Servk~s Off~e 1999 
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O r e g o n  H o m e o w n e r  

I nsu rance  I ndus t r y  Loss  Data 

Qtrly Paid Qtrly Paid 
Frequency Sevedtv 

94/1 6.167 2,365.18 
94/2 5.778 2,228.85 
94/3 6.194 2,224.27 
94/4 7.3t9 2,227,28 
95/1 7,573 2,477,43 
95•2 6,665 2,436,19 
95•3 8.076 2,700.68 
95/4 8.613 2,209,63 
96/1 24861 1,97335 
96/2 8456 2,620,94 
9613 7,006 2.832,13 
9614 6.555 3,070.97 
97/1 9.303 2,353.67 
97/2 6.053 2,535,58 
97/3 5.906 2,747.17 
97•4 5.778 2,556,34 
9811 7300 2,689,08 
98/2 5301 2,569,03 
98/3 5,592 3,034.36 
98/4 5.986 2,730 10 
9911 8539 3.12660 
99/2 5,463 3,313,96 
99•3 4.965 3,625.18 

Four Qtr Four Qtr 
Ending Paid Ending Paid 
Freouencv Sevedty 

94/1 
94/2 
94/3 
94/4 6.366 2,259.55 
95/1 6.715 2,297.02 
95/2 6,935 2,344,92 
95/3 7,409 2,468,28 
95/4 7.734 2,452,25 
96/1 12069 2,200,97 
96/2 12.493 2,241.76 
96/3 12,196 2,252.52 
96/4 11 856 2,376 12 
9711 7,827 2,683,58 
97/2 7.222 2,670.32 
9713 6.942 2,646.38 
97/4 6.744 2,525.25 
98/1 6,258 2,635,14 
98/2 6.066 2,645,05 
98/3 5984 2,713,38 
98/4 6035 2,754 39 
99/1 6,353 2,897 10 
99/2 6.384 3.054,73 
99/3 6, 220 3,175,16 

Includes copyrighted material of InSu rar.ce Services 
Of~e. Ir~c w~th its pemlission Copyright, Insurwlce 
Setvicel Office 1999~ 
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C~ 

o f l m m t  ~ 
~ | I  R~ l ress lon  with I nd i ca t~  Vadab le t  On Quarterty Frequency 

~P.u=-~=~,~ ~ Qtdy~mq_ ;~ D2 [33 D4 

1 94/4 6 17 0 O0 0 0 ! 
2 95/1 5 78 O 28 0 0 6 
3 98/2 6 19 0 50 1 0 0 
4 95/3 7 32 0 75 0 1 0 
5 95/4 757  1 00 0 0 1 
6 96/1 6 66 1 25 0 0 0 

7 96/2 8 08 1 50 1 0 O 

8 95/3 861 1 75 0 1 0 
6 96/4 24  86 2 00 0 0 1 
10 97/1 8 46 2 25 O O 0 
11 87/2 7 01 2 50 1 0 0 

12 97/3 6 55 275  0 1 0 
13 97/4 8 30 3 00 0 0 1 
14 98/1 6 05 3 25 0 0 0 

15 88/2 5 81 3 50 1 0 O 
16 98/3 5 78 3 75 0 1 0 
17 9814 7 30 4 00 0 0 1 

18 89/1 5 30 4 28 0 0 9 
19 9912 5 59 4 80 1 0 0 
20 8813 5 99 4 75 0 1 0 

O r e g o n  H o m e o w n e r s  F r e q u e n c y  
2s0 
240 . . . .  ¢ 

120 . . . . . . . .  

YYtQ 

, D ~ r n - W a t ~ a  

I 820 2 387 -o 4875 0 24 10 08 
1 754 1 903 -8 t465 0 02 O 11 6 71 
1 823 1 824 -0 1007 0 01 0 00 6 85 
1 991 1 @68 00248 000  002  7 14 

2 024 2 281 "O 2869 0 07 0 08 8 79 
1 896 1 877 0 0193 0 00 0 08 8 53 
2 089 1 886 0 1818 O 04 0 03 6 67 
2 153 1 940 0 2133 0 05 0 00 6 96 
3 213 2 255 0 9583 0 92 0 55 9 54 
2 135 1 651 02846 008  0 4 5  836  
1 947 1 871 0 0759 0 01 0 04 650  

1 879 1 813 -0 0340 0 60 0 01 8 78 
2 230 2 229 0 0011 0 00 0 00 9 29 
1 800 1 825 -0 0246 0 00 0 00 6 20 

1 777 1 845 -6 0~87 0 00 0 O0 6 33 
1 754 1 887 -0 1330 002  0O0 6 6 0  
1 988 2 203 -O 2150 0 05 0 01 9 05 

1 668 1 799 -0 1308 0 02 0 01 6 04 
1 721 1 819 -0 0983 001 000  6 17 
1 790 1 861 .0 0712 001 080  643  

SUm 1 53 1 41 

O 0.82 

Number of X 4 O0 
Observations 20 00 

dv at 05 1 83 

OL at 05 0 90 

T e l t  iS Incor lc lu l l ve  

du at 01 1 57 

dE at 01 0 68 

Test is Inconclus ive 

R e s i d u a l  P l o t  

l o 0  t 
0 ~  
o6O 
o447 
020 ,t ¢ • 

~20 $ • • 

R e Q r e s e i o n  O u t . o u t  

~ .A~n~ l ih /  ~acto~ 
Trend -2 58% 1st Qtr 1 O00 

R ? g 27 2ha Qtr 1 028 
Obs 20 3rd Qtr 1 078 

41h QtT 1 488 



"--3 

O f lgOn  Homec*wmm 
Exponen t l | l  Regrlmsk>n on  Quarter ly Frequency 

1 9414 6 17 0 00 
2 95/1 5 75 0 26 
3 95/2 618  050  
4 95/3 7.32 075  

5 95/4 7.57 1 0 0  
6 96/1 666  1 2 5  
7 S6/2 808  1 50  
8 96/3 8 61 1 7 5  
9 96/4 24.86 2 00 
10 97/1 846  2 25 
11 97/2 7.01 250  

12 97/3 65~  2 75 
13 97/4 0 30 3~00 
14 98/1 6 05 325  

15 98/2 5 9 t  3 50 
16 98/3 5.78 375  
17 98/4 7.30 4.00 
18 99/1 5.30 4,25 
19 99/2 5.59 4,50 
20 9913 5 99 4.75 

O r e g o n  H o m e o w n e r s  F r e q u e n c y  
zs0 . . . . . .  ~ - - -  , - , 
240 ~ ~ • ~ . . . . . . . .  
200 . . . . .  ~ . . . . . . . . . . . . . .  

u~ 160 

, , I = ~ . .  • = + ~ I '  , . 

1 820 2 068 -0 2485 
1 754 2 058 -0 3037 
1 823 2048 -0 2251 
1 991 2.038 °00474 

2 024 2 028 -0 0038 
1 8 9 6  2 018 -0 1218 

2089 2008 0.0815 
2 1 5 3  1 g 9 8  0 1551 
3213 1 988 1 2255 
2135 1978 0 1577 
1 947 1 9~8 -0 0203 

1 879  1 958  -0 0781 
2 230 1 948 02825 
1800 1 837 -0 1374 

1777 1,927 -01508 
1754 1.917 -0.1630 
1 988 1.907 0.0805 
1668 1 897 - 0 2 2 ~  
1 721 1 587 -0.1663 
1 790 1 877 -0.0871 

Sum 

D 
Number of X 
Observations 

du at .05 

dL at 05  

Uncoml la ted  

du at .01 

dL at .01 

Uncomdated  

Dumir~W~qn 
2 2 

00~ 791 
009  0 0 0  783 
0 0 5  001 7 75 
0 0 0  003  7.68 
000  000  760  
001 001 7 52 
001 004  745  
002  0 01 7 37 
1,50 115  730  
002  114 723  
000  003  715  

001 000  7.08 
008  013  701 
002  0.18 694  

0.02 0 00 6.87 
003  0 O0 6.80 
0 01 006  6 74 
0105 010  667  
0.03 000  660  
0,01 001 8 54 

203  290  
1.43 

100  
2000  

1.41 

1 2 0  

115  

0 95 

R e s i d u a l  P l o t  

O5O 

1 3 5 7 9 11 13 15 17 19 

Trend 
R 2 

Obs 

R e ( i r e s s i o n  O u t p u t  

-394% 

0.03 
2O 



OO 

Orllgon H ~  
Expo~ecdt~ Regmslk:m on 4QE F~uecvcy 

1 94/4 6 37 0 O0 

2 8511 6 72 0 25 
3 95/2 5 93 0 50 
4 95/3 7 41 0 75 

, 0 , ,4  lOO 
5 96/! 1207 1 25 

7 96/2 1249 1 bO 
8 ~ / 3  12 20 1 75 
9 9614 11 66 2 00 
10 97/1 7 83 2 25 

11 9712 7 22 2 50 

12 97/3 6 94 2 75 
13 9714 6 74 3 00 
14 88/1 8 26 3 25 

15 98/2 6 07 3 50 
18 98/3 5 98 3 75 
17 98/4 6 04 4 O0 
18 99/1 6 35 4 25 
19 99/2 6 38 4 50 
20 99/3 6 22 4 75 

O r e g o n  H o m e o w n e r s  F r e q u e n c y  
150 

~20 ' • ' 6 ,  

40 

@ Qtdy ~req ~ i i , i ¢ , . ~ 3  r r~ ~ y¥'Q 

Du~ i r~Wat~on  
f 2 

1 852 2 187 (13355 011 801 
1 905 2 169 02641 007 001 875 
1 936 2 151 -0 2155 005 000 860 
2 003 2 133 -0 1306 0 02 0 01 8 44 

2 045 2 115 -0 0705 0 00 0 00 8 29 
2 491 2 096 0 3930 0 15 0 21 8 15 

2 525 2 080 0 4450 0 20 0 O0 8 O0 

2 501 2 062 0 4394 0 19 0 00 7 86 
2 456 2 044 0 4120 0 17 0 O0 7 72 
2 058 2 026 9 0316 0 00 0 14 7 59 

1 977 2 008 -0 0316 0 0O 0 00 7 45 

1 937 1 991 -0 0533 0 0(3 0 O0 7 32 
1 908 1 973 -0 0£~47 O 00 0 O0 7 19 
1 834 1 955 01207 001 000 706 

1 803 1 937 0 1337 0 02 0 O0 6 94 
1 788 1 919 -0 1307 002 000 682 
1 798 I 901 -0 1029 O 01 0 00 6 69 
1 848 1 883 -0 0350 0 00 0 00 6 58 
1 853 1 866 -0 0124 000 000 846 
1 828 1 848 -0 0199 0 O0 0 O0 6 35 

Sum 1 04 0 40 

D 0.38 

Number of X 1 O0 
Observabc~s 20 O0 

du at 05 1 41 

0~ at 05 I 20 

First Order Auto~Con'elated 

3,.at 01 ~ 15 

dL at 01 0 95 

First Order Auto'Correlated 

0 60 

0 40 

0 20 

O 00 

-0 20 

-0 40 

R e s i d u a l  P lo t  

4 

e l , •  
] 
L 

e e e e e e e e e e # i  

3 5 7 9 11 13 15 17 19 

Reqression Output 

Trend -6 88% 

R z 0 17 
Obs 20 



Homeown4m= 
Exponent ia l  Reg re l s l on  4QE FnKlUerlcy, Annua l  Ob l le rva t lon l  

n l - , ,u~=t~f  ~ 4 ~  Fmq x i  

1 95/3 741 000  
2 g6/3 12.20 100 
3 g7/3 6.94 200  
4 g8/3 5 88 3 00 

5 99/3 822  4.00 

O r e g o n  H o m e o w n e m  F r e q u e n c y  
1oo 7 T ~ • 

~ r  e o ~  - -  ~ ~ ' 

s o  

2003 2224 -0.2213 
2.501 2 118 0 3836 
1.937 2 012 -0 0742 
1 788 1 905 -01168 

1 828 1 799  0 0288 

Sum 
O 

Number of X 
Observations 

dU at 05 
dL at 0 5  

dU at 01 
dL at 01 

Durt~in-Wat~pn 

005  9.25 
0 15 0.37 8.31 
0.01 0.21 7 47 
001 0 00 8 72 

000  0.02 6,04 

0.22 060  
2.77 
1.00 
500  

na 
na 

na 
na 

R e s i d u a l  P l o t  

0 3 0  

0 2 0  " 

0 1 0  

O ~  

4~ 1 0  • 

- 0 2 0  

- 0 , 3 0  

1 2 3 4 5 



Orison Homeownei's 
ManUally AdJu l t ld  Exponential RI~r ls I iO~ Wtth l l~l lc l l t l~ V l r i l b l l l  On Q~Jidlldy Frequency 

~ h ~ = t i ~  ~ ( ~  nttty Fr l~ y~[ D2 D3 D~ Ln(Frl=~} EittPat Frw=q ~.~Jtt,,=lq 

1 94/4 6 17 0 O0 0 0 1 1 820 2 068 -0 2479 
2 95/1 5 78 0 25 0 0 0 1 754 1 903 -0 1485 
3 95/2 6 19 0 50 1 0 O 1 823 1 924 -0 1007 
4 95/3 7 32 0 75 0 1 0 1 991 1966 0 0248 

5 95/4 7 57 1 00 0 0 1 2 024 2042 0 0173 
6 96/1 6 66 1 25 0 0 0 1 896 1 877 0 0193 

7 96J2 8 08 1 50 1 O 0 2 088 I 898 C 1918 
8 96/3 8 81 1 75 0 1 0 2 153 1 940 0 2133 
10 97/1 8 46 2 25 0 0 0 2 135 1 851 0 2846 
11 97/2 7 01 2 50 1 0 0 1 947 1 871 0 0759 

12 9713 6 55 2 75 0 1 0 1 879 1 913 O 0340 

13 0 0 ! 2 230 1 999 0 2407 
14 0 0 0 1 800 1 825 -0 Q246 
15 1 0 O 1 777 1 845 -00687 

97/4 9 30 3 O0 
98/1 6 05 3 25 
98/2 5 91 3 50 

16 98/3 5 78 3 75 O 1 O 1 754 1 887 -0 1330 
17 9814 7 30 4 O0 0 O 1 1 988 1 963 0 0246 
18 99/1 5 30 4 25 0 O 0 1 668 1 799 0 1308 

19 99/2 5 59 4 50 1 0 O 1 721 1 819 0 0983 
20 99/3 5 99 4 75 0 1 0 1 790 1 861 0 0712 

O r e g o n  H o m e o w n e r s  F r e q u e n c y  
~eo 

cr 

2 

4o 

• Qm~ F,e9 - - m ~ F , . ~  ~,eq, yy'Q 

ou,O/n-Wet~,o~ 

006 7 81 
0 02 00 l  6 71 
0 01 0 O0 6 85 
0 O0 0 02 7 14 

0 00 0 00 7 70 
0 00 0 00 6 53 

0 04 0 03 6 67 
005 000 696 
0 08 0 01 0(3O 
0 01 0 04 536 

0 00 0 01 6 50 

006 0 08 6 78 
0 O0 0 07 7 31 
0 00 0 00 6 20 

0 02 000 6 33 
0 O0 0 02 6 60 
0 02 0 02 7 12 

0 01 0 O0 604 
0 01 0 O0 6 17 

6 43 

Sum 0 38 

0 0.86 
Number of X 4 00 
Observations 19 O0 

d jar  05 1 85 

d, at 05 0 86 

FirSt Order Auto-Correlated 

032 

d at 01 1 58 

d. at Q1 055 

Test is Inconclusive 

Re~pdual PLot 

040 ~ . . . . . .  

030 • • • * ! 

o20 I I 

010 • '~ • • • 
0 20 

-0 30 J 

1 3 5 7 9 11 13 15 17 19 

R e o r e s s i o n  O u t p u t  

Trend 2 58% 

R ~ 0 
Obs 1~ 

~ a C ~ . C L C S  
ls tQtr  1 003 

2nd Qtr 1 028 
3rd Q1~ 1 078 
4th Qtr 1 171 


