Considerations in Estimating Loss Cost Trends

Kurt S. Dickmann, FCAS, MAAA and
James R. Merz, FCAS, MAAA

21



Abstract

The application of loss trends has long been a fundamental part of the
ratemaking process. Despite this, the actuarial literature is somewhat lacking in
the description of methods by which one can estimate the proper loss trend from
empirical data. Linear or exponential least squares regression is widely used in
this regard. However, there are problems with the use of least squares
regression when applied to insurance loss data.

In this paper, some common pitfalls of least squares regression, as it is
commonly applied to insured loss data, and two alternative methods of
evaluating loss trends will be illustrated. Both methods are based on simple least
squares regression, but include modifications designed to account for the
characteristics of insurance loss data.

The results of various methods are compared using industry loss data.
Stochastic simulation is also used as a means of evaluating various trend
estimation methods.

The concepts presented are not new. They are presented here in the context of
analyzing insured loss data to provide actuaries with additional tools for
estimating loss trends.
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Introduction

This paper is organized into eight sections. The first section will describe the
importance of estimating loss cost trends in Property/Casualty ratemaking. In
addition, it will introduce the common industry practices used to estimate the
underlying loss cost inflation rate.

The second section will provide a review of basic regression analysis since
regression is commonly utilized for estimating loss trends. It will also describe
other relevant statistical formulae.

The third section will describe some characteristics of insured loss data. This
section will describe how insured losses violate some of the basic assumptions of
the ordinary least squares model. It will also describe the complications that
resuit because of these violations.

The fourth section will describe several methods that can be utilized along with
informed judgement to identify outliers.

The fifth and sixth sections will describe two alternative methods that address the
shortcomings of ordinary least squares regression on insured loss data.

The seventh section applies the common method of exponential least squares
regression and the two alternative methods to industry loss data and compares
the results.

In the last section, the performance of exponential least squares regression and
the alternative methods will be evaluated using stochastic simulation of loss data
with a known underlying trend.

While the determination and use of credibility is an essential component of loss
trend determination, it is beyond the scope of this paper. However, the concepts
and methods presented here apply equally to the determination of the trend
assigned to the complement of credibility. The methods presented here are
designed to extract as much information about the underlying trend from the
available data. They are not intended to minimize the importance or use of
credibility.
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In addition to credibility, there are many other considerations that must be taken
into account when applying loss trends, such as the effect of limits and
deductibles. These issues are beyond the scope of this paper.

Section 1: Actuarial Literature and Industry Practice

In the ratemaking process, it is widely agreed that trend selection is the
component that requires the most judgement.’ According to the Actuanal
Standards of Practice, the application of the appropriate trending procedures is
essential to estimating future costs in the determination of rates?

Despite the importance of trending in ratemaking and the degree of judgment
required, there is little written specifically regarding the determination of loss
trends. Most ratemaking papers cite trending as an integral part of the process
and describe the author's selected approach. This is entirely appropriate as the
subject of these papers is ratemaking and not specifically trend estimation.

The actuarial literature is sparse on the process of selecting the type of data to
evaluate, preparing trend data, choosing the most appropriate model and
assessing the appropriateness of the selected trends.

There are papers addressing several of the important basic issues of trending.
These include the appropriate trending period and the overlap fallacy.> In
addition, the CAS examination syllabus addresses the permissibility of using
calendar year data to determine trends applied to accident year data* These
authors have well and fully addressed these topics and they need not be
revisited.

! David R. Chernick, “Private Passenger Auto — Physical Damage Ratemaking”, p. 6.
ZASP#13...

3 Chernick, ibid., Charles F. Cook, “Trend and Loss Development Factors’, CAS Proceedings,
Vol. LVII, p. 1 and McClenahan, Foundations of Casualty Actuarial Science, 2d. Ed., Casualty
Actuarial Society, Arlington, VA, 1990, Chapter 2.

* Cook, ibid.
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In much of the syllabus material, both past and present, there are considerable
differences between the types of data used for trending and the amount of
discussion dedicated to the selection of the trend. Generally, each paper selects
either calendar or accident year data and utilizes either the simple linear or
exponential regression model with little guidance regarding which is more
appropriate or discussion of the data to which the model is applied. These
omissions are understandable since the subject of the articles is ratemaking, of
which trend selection is only one component. There are acknowiedgements of a
need for better loss trending procedures contained in several papers.

A survey of rate filings was conducted to assess common industry practice.
From this review, it is difficult to know definitively the amount of analysis that
underlies the selection of trends. However, each company and the one rating
agency examined display four-quarter-ending calendar year data with either
simple linear or exponential regression results to support loss trend selections ®

As illustrated in both literature and practice, it is common in the Property &
Casualty industry to estimate loss cost trends using either linear or exponential
least squares regression. This is understandable since least squares regression
is familiar to both regulators and company management. Further, least squares
regression has been integrated into all commonly used electronic spreadsheet
packages.

The validity of using linear or exponential least squares regression, the basic
assumptions of regression analysis and the characteristics of loss data, in
evaluating ratemaking trends has not been widely addressed. When selecting a
model to estimate future trends, it is important to consider whether the data used
violates assumptions of the model.

Loss Data

An essential consideration in evaluating loss trend invoives the selection of the
type of loss statistics to analyze. It is often useful to analyze both paid and
incurred loss frequency and severity if available.

® Allstate, Nationwide, Progressive, State Farm and ISO
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For example, paid claim counts may include claims closed without payment.
Therefore, changes in claim handling procedures during the period under review
may affect the trend estimate. Likewise, changes in case reserving practices and
adjuster caseloads may affect incurred and/or paid severity amounts.

Analysis of both paid and incurred amounts, or amounts net versus gross of
salvage and subrogation, can assist in identifying changes in claims handling. In
any event, the loss statistics used should be defined consistently throughout the
experience period. For example, if the paid loss amounts are recorded gross of
salvage and subrogation for a portion of the time period, and net for the
remaining, the amounts should be restated to a consistent basis prior to analysis.

Section 2: Least Squares Regression Basics

L east squares regression is a general term that refers to an extensive family of
analytical methods. All of these methods share a common basic form.

Y = f(X,.B)+e,

where,
Y, is the /" observation of the response variable.
B, is a vector of model parameters to be estimated.
X, is a vector of the the independent variables.
&, is the random error term.

Regression models are designed to use empirical data to measure the
relationship between one or more independent variables and a dependent
variable assuming some functional relationship between the variables. The
functional relationship can be linear, quadratic, logarithmic, exponential or any
other form.

The important point is that the functional relationship, the model, is assumed
prior to calculation of the model parameters. Incorrect selection of the model is
an element of parameter risk.

In addition to selection of the model, regression analysis also involves
assumptions about the probability distributions of the observed data. This is
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essential in the development of statistical tests regarding the parameter
estimates and the performance of the selected model.

Simple Linear Regression
The most common form of regression analysis is simple linear regression. The
simple linear regression model has the following form.

Y, =F,+pX, +g,

where,
7, is the i" observation of the response variable.
B, and g, are the model parameters to be estimated.
X, is the i” value of the independent variable.

¢, is the random error term.

The parameters of the regression model are estimated from observed data using
the method of least squares. This method will not be described in detail here. It
is sufficient for our purpose to note that the least squares estimators, b,, have
the following characteristics:

1. They are unbiased. Thatis, £[b,]=5,.

2. They are efficient. The least squares estimators have the minimum
variance among all unbiased linear estimators.

3. The least squares estimators are the same as the maximum likelihood
estimators when the distributions of the error terms are assumed to be
independent and normally distributed with a mean of zero and a
variance of o*.

Because the normal distribution of the error terms is assumed, various statistical
inferences can be made. Hypothesis testing can be performed. For example,
the hypothesis that the trend is zero can be tested. Confidence intervals for the
regression parameters can be calculated. Also, confidence intervals for ¥ and a
confidence band for the regression line can be calculated. These very useful
results make simple linear regression appealing.
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Exponential Regression

While linear regression models are often satisfactory in many circumstances,
there are situations where non-linear models seem more appropriate. Loss cost
inflation is often assumed to be exponential. The exponential model assumes a
constant percentage increase over time rather than a constant dollar increase for
each time period.

The general form of the exponential regression model is given by

Y, =y, + 7le"~“\" + £

'

The parameter estimates of a non-linear regression model usually cannot be
described in closed form. Therefore, numerical methods are used to determine
parameter estimates using either the least squares or maximum likelihood
method. Often electronic spreadsheet software will include tools to estimate the
parameters for several non-linear regression models.

As with linear regression, statistical inferences such as confidence intervals for
the parameter estimates, hypothesis testing and a confidence band for the fitted
curve can be made.

The Exponential to Linear Transformation

in practice, the linear regression algorithm is often applied to the natural
logarithm of the observed data. This transformation of the observed data
simplifies the calculation of the regression parameters. However, in using this
approach the analyst has, perhaps unknowingly, assumed the error terms are
lognormally distributed rather than normally distributed.

The observed data is modeled using the equation,
Ln(Y))=p,+ 5 X +¢,

This transformation is equivalent to the model,

Y, = Ke?™" -[e" ] where K =e” and e is the error term.

and the trend is obtained from the linear least squared regression estimate of #,.



If the error term of the linear regression model, ¢,, is assumed to have a
N(0,o) distribution, it can be shown that the error term in the transformed model
is lognormal with expected value ¢°?. The error terms are positively skewed.
This distribution of the error terms in the linearized model may be preferable to
the normal distribution if the analyst believes it is more likely that observed
values are above the mean than below the mean. This certainly may be the case
with insured loss data.

Note that the lognormal distribution of the error term in the linearized model
affects the calculation of confidence intervals and test statistics for the model.
The familiar forms of the test statistics based on the normal distribution do not

apply.

The Coefficient of Determination, R?

Perhaps the most cited statistic derived from regression analysis is the coefficient
of determination, R2. R? can be interpreted as the reduction of total variation
about the mean that is explained by the selected model. When R? is closer to
one, the greater is the modeled relationship between X and Y, whether the mode!
is linear, exponential or some other form.

The Durbin-Watson Statistic

The Durbin-Watson statistic, D, is used to test for serial correlation of the
residual errors, ¢,. The value of D is calculated from the observed and fitted
values of Y, where ¢, = (¥, - ¥,).

i (e, —€ )2

D= 1=2

N 2
2
r=1

This value is compared to critical values, 4, and 4,,, calculated by Durbin and
Watson. The critical values define the lower and upper bounds of a range for
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which the test is inconclusive. When D>d,,, there is no serial correlation
present. When D <d, , there is some degree of serial correlation present.®

Section 3: Insured Loss Data

There are several distinct characteristics of insured ioss data that should be
recognized when selecting a regression model. In broad terms, one expects
data to be comprised of an underlying trend, a seasonality component, a possible
cyclical nature and a random portion.” These traits make the estimation of the
underlying trend more difficult and the rigid use of simple finear or exponential
regression imprudent.

Unusual Loss Occurrences

The nature of insured losses may violate the common assumptions of simple
linear or exponential least squares regression. For example, loss events that
cause widespread damage can generate extraordinarily high claim frequencies in
a given time period. The reverse, a time period with an extraordinarily low claim
frequency, is unlikely. A similar skewness can occur in severity data for small
portfolios or, almost certainly, in medium to large portfolios of liability risks due to
shock losses. Examples of these characteristics are evident in trend data
provided by the Insurance Services Office.

Widespread Loss Events

In the chart below of Homeowner claim frequencies as reported by the Insurance
Services Office for the state of Oregon, there is an obviously unusual occurrence
in the first quarter of 1996. The increase in claim frequency over the prior annual
period is over 50%.

® Neter, et. al., Applied Linear Statistical Models, 4™ ed., McGraw-Hill, Boston, 1996 p. 504.

7 Spyros Makridakis and Steven C. Wheelwright, Forecasting Methods for Management, 5™ Ed.,
John Wiley & Sons, New York, 1989, p. 96.
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Oregon Homeowners

98/1
99/1

Because the data is twelve-month-moving, the dramatic rise in frequency that
occurred in the first quarter of 1996 is transferred to the subsequent three
observations. Therefore, the error terms are not independently distributed, as
commonly assumed, due to the construction of the data.

A review of the severity data for the same time period shows a corresponding,
though less dramatic, drop in claim severity. This is typical of a high frequency,
low severity weather loss event. This drop in claim severity may go unnoticed if it
were not for the associated increase in frequency. Again, due to the twelve-
month moving organization of the data, the error terms are not independently
distributed.
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Oregon Homeowners

4QE Paid Severity i
| 35000 —
| ‘ !

30000 | |
25000 - 1 - .
2,0000 ‘ .
3 3 S 5 S 8
Yeoar/Qtr
Shock Losses

A high severity claim in a small portfolio may cause a distortion in the data and
affect the trend calculated by ordinary least squares methods if no adjustments
are made. A visual inspection of Nevada Private Passenger Auto Bodily Injury
severity data provided by the Insurance Services Office shows an unusual
occurrence in the first quarter of 1998.

The quarterly data shows the elevated severity in the first quarter of 1998 neatly
as one high point while the four quarter ending data exhibits this phenomena as
a four point plateau. This phenomenon occurs more often in smaller portfolios,
even when utilizing basic limit data.

Nevada PPA - Bodily Injury Liability
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Nevada PPA - Bodily Injury Liability
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Effects of Unusual Loss Occumences

While the cause of these events is dissimilar, the result on the data is the same.
One may expect the distribution of the error term for claim frequency and severity
to be positively skewed, rather than normally distributed as commonly assumed.
The lognormally distributed error terms of the transformed exponential regression
model may be more appropriate than the exponential model with normally
distributed errors.

As demonstrated above, insured loss frequency and severity data may exhibit
abnormally high random error. [f these errors occur early in the time series, the
resulting trend estimates from least squares regression will be understated.
Conversely, if the shock value occurs late in the time series, the trend estimate
will be overstated. The use of twelve-month-moving data compounds this effect
since the shock is propagated to three additional data points.

There are several methods available to identify outliers and measure their
influence on the regression results. These include Studentized Deleted
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Residuals, DFFITS, Cook’s Distance and DFBETAS.® The identification of such
occurrences is addressed in section four below.

Seasonality of Data

The nature of insurance coverage creates seasonal variation in claim frequency
and severity. For example, winter driving conditions may cause higher Collision
and Property Damage Liability claims in the first quarter. Similarly, lightning
claims may be more prevalent during the summer months in certain states. The
probability of severe house fires may be higher during the winter months. Auto
thefts may be more frequent in summer months causing elevated severity for
Comprehensive coverage.

When reviewing New York Private Passenger Auto data for Collision coverage
on a quarterly basis, one can see the seasonal nature of claim frequencies. This
seasonality can be illustrated by grouping like quarters together.

New York Collision
Qtrly Paid Frequency
1.0

100 ¢

< 3 g = hy =
3 2 3 5 S 3
Year/Qtr

Generally, the use of twelve-month-moving data is a convenient method for
adjusting the seasonal nature of insured losses. However, four-quarter-ending

8 Neter, et. al., ibid , and Edmund S. Scanlon, “Residuals and Influence in Regression”, CAS
Proceedings, Vol. LXXXL, p. 123.



data creates serially correlated errors when used in ordinary least squares
regression.

Senially Correlated Emor

Actuarial literature shows trend data organized in a variety of ways. Some
authors use twelve-month-moving calendar year data observed quarterly, others
use accident year data observed annually, still others use calendar quarter data
observed quarterly. Each format has advantages and disadvantages. It is
important to recognize the implications of the data organization on the regression
results.

Any organization of data that has overlapping time periods from one point to the
next, by its construction, results in serially correfated error terms. Serial
correlation of error terms occurs when the residual errors are not independent.
This result is shown for twelve-month-moving calendar year data in Exhibit 2
using the Durbin-Watson statistic.

Additionally, one can plot residuals to detect serial correlation. Below the
residual plot is displayed for twelve-month-moving New York Collision frequency.
As one can see, the errors for adjacent points are related. As noted above, the
independence of the error terms in ordinary least squares regression is generally
assumed and certain conclusions about the regression statistics are based on
this assumption.

New York Collision
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Residual Plot
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According to Neter, et. al., when this assumption is not met the following
consequences resuit.

1. The estimated regression coefficients are still unbiased, but they no longer
have the minimum variance property and may be quite inefficient.

2. Minimum Squared Error (MSE) may seriously underestimate the variance
of the error terms.

3. The standard deviation of the coefficients calculated according to ordinary
least squares procedures may seriously underestimate the true standard
deviation of the estimated regression coefficient.

4. Confidence intervals and tests using the t and F distributions are not
strictly applicable.

Remedial Measures

Each of the first two issues with the insured loss data, widespread loss events
and extraordinary claim payments, can be resolved by removing outlying points
before calculating the exponential or linear regression. The removal technique
must rely on statistical tests and actuarial judgment. This will be discussed in the
following section. Seasonality and serial correlation can be addressed using
regression with indicator variables on quarterly data. Regression with indicator
variables explicitly incorporates seasonality as a component of the model. The
use of quarterly data eliminates the serial correlation resulting from the use of
overlapping time periods.

Comments on Goodness-of-Fit
Estimating the underlying trend in a given dataset entails more than simply fitting
a line to a set of data. During the estimation process, it is important to determine



whether the underlying assumptions are met and whether the equation
accurately models the observed data.®

Many consider R?, the coefficient of determination, the most important statistic for
evaluating the goodness-of-fit. The coefficient of determination is the proportion
of the data’s variability over time that is explained by the fitted curve. However, it
is widely agreed that this is not sufficient.'® The coefficient of determination, by
itself, is a poor measure of goodness-of-fit.!!

To assume that a low R? implies a poor fit is not appropriate. It has been shown
that a low or zero trend, by its nature, has a low R value.'?> Also, whenever the
random variation is large compared to the underlying trend the R? will not be
sufficient to determine whether the fitted model is appropriate. One can illustrate
the low R° values associated with data exhibiting no trend over time. The scatter
plot below was generated from a simulation with an underlying trend of zero.
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® Scanlon, ibid.

% D. Lee Barclay, “A Statistical Note on Trend Factors: The Meaning of R-Squared”, CAS Forum,
Fall 1991, p. 7, and Ross Fonticella, “The Usefulness of the R? Statistic”, CAS Forum, Winter
1998, p. 55, and Scanlon, ibid. and Neter et. al., ibid.

" Barclay, ibid.

' Barclay, ibid.
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The residuals between the actual and fitted points are highly useful for studying
whether a given regression model is appropriate for the data being studied.”® It
is useful to graph the fitted data against the observed data to look for patterns.™
A random scattering of residuals occurs when the fit is proper.’® It is important
that the error term not appear systematically biased when compared to
neighboring points.

The use of the R? statistic or plots of the residuals may result in the decision that
the model is an appropriate fit to the data. This conclusion applies to the
historical period based on this analysis. Another consideration is the
extrapolation of the trend model into the future. As McClenahan illustrates with
the use of the 3" degree polynomial, a perfect fit within the data period does not
always result in the appropriate trend in the future.'® Extrapolation beyond the
data period should also be considered before the decision to proceed with the
model is undertaken.

Section 4: Identification of Outliers

This section describes methods by which one can identify extraordinary values
from observed loss data. These methods are designed to identify outliers from a
dataset on which regression is to be performed. An excellent reference on these
and other statistical methods is Applied Linear Statistical Models by Neter et. al.

Each of these methodologies cannot be applied without judgement. None of the
methods is so robust as to produce reliable results in all circumstances.

3 Neter, et. al., ibid, p. 25.
" Fonticello, ibid.
' Barclay, ibid.

'® McClenahan, ibid.

38



Therefore, the selected points should always be compared to the original
dataset.

The identification of the cause of the outlier is preferred. For example, if
possible, the claims department should be consulted if a single large claim or if a
widespread claims event, such as a catastrophe, appear to distort the data.

Visual Methods

When performing simple linear regression there are several visual methods
which can resuit in easy identification of outlying points. Among these graphs
are residual plots against the independent variable, box plots, stem-leaf plots and
scatter plots'’. While residual plots may lead to the proper inference regarding
outliers, there are instances when this is more difficult. When the outlier imposes
a great amount of leverage on the fitted regression line, the outlier may not be
readily identifiable due to the resulting reduction of the residual.

Studentized Residuals

There are several standard methods that can be utilized to assist with the
identification of outliers, each with advantages and disadvantages. The
studentized residual detects outliers based on the proportional difference of the
error term, e;, and the variance of these errors. The studentized residual is

defined:
e

i

" osle;) '
Where s{e,} is an estimate of the standard deviation of the residual. This
estimate is easily calculated as sfe,} = MSE(1-h,), where h,is the diagonal
element of the hat matrix H=X(XYX)™" X’. Interestingly, Y =HY and e=(1- H)Y.
The hat matrix will be used in future development of outlier identification for
simplification of the formulae.

This method has the same disadvantage as identification of outliers using
residual graphing. The varance of the errors includes the error of the i

' Neter, et. al, ibid.
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observation. In addition, there is no statistical test from which one can base a
decision regarding outliers.

Studentized Deleted Residuals

A significant improvement in identifying outliers uses the studentized deleted
residual. For the i”observation the deleted residual, d,, is the difference
between the i* observation, ¥,, and the fitted point when the fitted curve
includes all but the i" observation, Y,(,,. By excluding the i” observation one can
determine the influence of the observation on the fitted function. Fortunately, the
deleted residual can be computed relatively easily.

i = —ylghi =Y, —};;(/)
The deleted residual, d,, when studentized (divided by the estimated standard
deviation of 4,), follows the t(n-p-1) distribution. Therefore, each studentized
deleted residual can be tested using r(l»%n;n— p-1y. Fortunately, the
studentized deleted residuals, r,, can be computed without performing n

separate regressions. It can be shown that ,

d where A, is the diagonal from H.

“

[ = e, e n-p-1
©JMSE, (L-h,) | SSE(-h,)-¢

DFFITS

One measure of influence is the DFFITS statisticc. The DFFITS is the
standardized difference between the fitted regression with all points included and
with the i point omitted.

Y, -¥, b, |
DFFITS, = ) «x{ " }

[MSE B, ' |1-h

This represents the number of standard deviations ¥, increases or decreases
with inclusion of the i* observation. Note that the DFFITS statistic is a function
of the studentized deleted residual and can be computed without performing
multiple regressions. Observations are considered outliers if the DFFITS is
greater than one for medium datasets and 2JU%3 for large datasets.

40



Cook’s D

Another measure of influence is Cook’s Distance measure, D,. Scanlon utilizes
Cook’s D statistic to identify outliers.'® Cook’s D measures the influence of the
i* case on all fitted values.

-Zl(Yf—Yf(i))z
D=4
' p-MSE

The denominator standardizes the squared difference measure of the numerator.
Evaluation of Cook’s D is accomplished by utilizing the F(p, n-p) distribution. A
percentile value less than 10-20% shows little influence on the fitted values, while
a percentile value of 50% or more indicates significant influence.

Fortunately, Cook’s D can be calculated for each observation from a single
regression using the following relationship.

2
p-_ [ n
P MSE | i-h,)

As with all models good judgement is imperative and comparison to the original
data is advised. In addition to the methods described above, one can calculate a
confidence band around the fitted curve. Observations outside the confidence
band are candidates for removal.

Each of these methods is designed to identify a single outlier from the remaining
data. These techniques may not be sufficient to distinguish outliers when other
outliers are adjacent or nearby. Each of these methods is extendable to identify
multiple outliers from the remaining data. However, a discussion of these
extensions is beyond the scope of this paper.

'® Scanlon, ibid.
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Section 5: Manual Intervention - Deletion/Smoothing of Outliers

Manual Intervention

The identification of extraordinary values is certainly a matter of judgement. In
the analysis that follows, the determination of outliers is completed by use of
visual inspection.

In many cases a visual review of the twelve-month-moving data can identify
outliers. However, the occurrence of two ouliers within four quarters of each
other can be difficult to detect using twelve-month-moving data. For this analysis
the data is decomposed into the quarterly loss data shown below.

Table 1 — Quarterly Frequency — Oregon Homeowners
1¥ Quarter 2™ Quarter 3 Quarter 4" Quarter

1994 6.167 5778 6.194 7.319
1995 7.573 6.665 8.076 8613
1996 24.861 8.456 7.006 6555
1897 9.303 6.053 5.906 5778
1998 7.300 5.301 5.5892 5.986
1999 8.639 5463 4.965

The observed frequency in the first quarter of 1996 is identified as an outlier.

Treatment of Outliers

Once the outliers have been identified, one can proceed in several ways. First,
the analyst may simply remove the outlying point from consideration and
complete the analysis as if the observation did not occur. While this alternative
may seem appealing, it does not allow for the reconstruction of twelve-month-
moving data.

The second approach is to replace the outlier with the fitted point from the
regression after removal of the outlier. This removes the outlier from the
regression entirely, but allows reconstruction of the four-quarter-ending data.

The final approach is to replace the outlying point with the fitted point plus or
minus the width of a confidence interval, as appropriate. This choice mitigates
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the extent to which the outlier affects the regression resuits, without removing the
point entirely.

For simplicity, the authors have seiected the first approach for comparison
purposes but acknowledge that the other two procedures may be appropriate in
other circumstances.

Parameter Estimation

Estimation of the underlying trend in the data is completed through exponential
regression on the quarterly data, excluding the outliers, with indicator variables to
recognize any seasonality.

Section 6: Qualitative Predictor Variables for Seasonality

This method of least squares regression recognizes the seasonal nature of
insured losses through the use of qualitative predictor variables, or indicator
variables. Indicator variables are often used when regression analysis is applied
to time series data. Also, since the data used in this method is quarterly rather
than twelve-month-moving, first-order autocorrelation of the error terms is not
present. Hence, the issues that arise from such autocorrelation are eliminated.

The linearized form of the exponential regression model is given as
Ln(Y))= By + B X, + B, D, + ;D + B, D, +¢,
Where,

Y, is the dependent variable

X, is the independent variable (time)
D, =1, if second quarter, 0 otherwise
D, =1, if third quarter, 0 otherwise
D, =1, if fourth quarter, 0 otherwise
¢, is the random error term

The model above can be viewed as four regression models, one for each set of
quarterly data.
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The exponential equivalents, without error terms, are

First Quarter: Y =[e®] P

Second Quarter: Y, =¢”t .[e”]-e/"
Third Quarter: Y, =e” [eh]-eP"
Fourth Quarter: Y, = e . [ef]-eP"

One can think of ¢” as the trend component of the mode! and ¢, ¢ and ¢* as
the seasonal adjustments to e .

Essentially, the assumption is that the rate of change in frequency or severity
over time is constant for all quarters, but the level of frequency or severity differs
by quarter. This differs from multiple regression models, which assume separate
trends for each quarter. A single trend, rather than four different trends, is
intuitively appealing for ratemaking applications.

Section 7: Comparison of Results

This section compares trend estimates derived from five estimation methods
applied to industry data provided by The Insurance Services Office. The data is
displayed in Exhibit 1. Exponential least squares regression on twelve-month-
moving data, quarterly data and annual data are used as examples of common
industry practice. The resuits from the exponential regressions will be compared
to results derived from the alternative methods described above.

Detailed calculations using the Oregon Homeowners data are shown in the
attached exhibits. The results in the tables below show the annual trend derived
from each method and the associated R? value in parentheses.

Table 1 - Oregon Homeowners Frequency

# Years of Observations

Method 2yr. 3yr. 4yr Syr

12 MM -15% (06)  -13.9% (.53)  -17.0% (.62) 6.9% (17)
Quarterly -156% (.32)  -26.7% (45)  -13.2% (21) -3.9% (03)
Annual - -53% (50)  -192%(72)  -10.1% (.34)
Manual Adjustment - £8% (79)  -8.4% (.58) -2.6% (.20)
indicator Variables ~ -9.4% (.91)  -22.2% (.75)  -10.9% (.48) -2.6% (.27)



Table 2 - New York PPA Collision Frequency

# Years of Observations

Method 2yr. 3yr ayr. Syr.

12 MM 0.3% (.04) -1.7% (.43) -2.2% (.61) -1.9% (.58)
Quarterly -0.6% (.00) -1.6% (.07) 2.8% (17) -1.7% (.10)
Annual - -0.6% (.14) -2.3% (.66) -1.2% (.37)
Manual Adjustment - - -1.0% (.80) -0.8% (.84)
Indicator Variables 1.7% (.83) -0.6% (.80) -2.2% (.76) -1.2% (.74)

Table 3 - Nevada PPA Bodily Injury Severity

# Years of Observations

Method 2y 3yr ayr Syr

12 MM 1.2% (.06) 3.0%(52)  3.1%(72) 3.1% (.78)
Quarterly 4.9% (.10) 43%(20)  4.1%(31) 2.7% (.25)
Annual - 35% (63)  2.8%(71) 3.7% (.85)
Manual Adjustment - 1.2% (.85) 1.9% (.65) 1.4% (.41)
Indicator Variables ~ 9.4% (.57) 4.9% (36)  4.0%(37) 2.7% (.27)

The manual adjustment method and regression using indicator variables provide
additional estimates of the underlying loss trend to assist the actuary in selecting
appropriate adjustment for ratemaking.

Section 8: Evaluation of Methods Using Stochastic Simulation
In this section, a simulation is constructed to test the accuracy of each estimation

method. Each of the five methods above is applied to the simulated data.

Personal auto severity data is simulated using a known underlying trend, a
normally distributed random error term, a seasonal adjustment for each quarter
and a shock variable to simulate a single large claim payment.
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Simulation Parameter Estimation
Based on the Nevada PPA Bodily Injury severity analysis from the previous
section the following simulation parameters were selected.

Table § — PPA Bodily Injury Severity Simulation Parameters

Trend 35% e -1
Severity Variance  5.048 107 MSE | ¥}
Base Severity $8,700 e’ = HY,]
Seasonal Shock Shock
Quarter Adjustment Probability Magnitude
First 1.000 - 1123 20%
Second 1.013 e’ 1123 20%
Third 0.987 e” 1123 20%
Fourth 1.03 e’ 1123 20%

The shock probability and magnitude were chosen based on the observed data.
Of the 23 observations, only one observation appeared to have an extraordinarily
high severity. The magnitude of the shock is fixed at 20%. The simulation could
be further modified to include a stochastic variable for the shock magnitude.
Simulations for other states and lines of business would incorporate other
parameter values based on observed data.

The simulation function is given by,
Ln(Y,)=[fo + BX,+ B,D, + D, + B.D,1 W, +
where,

Pr{W, = (1+6))=1/23,

Pr[W, =1.00]=22/23,
and

&, is N(0,0%)
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The shock value of the natural logarithm of the severity, 1+ 5, , corresponding to
the shock value of the severity must be calculated. It can be shown that the
value of &, is given by

In(l +a)

Bo+B X, + 5,

, where a is the shock value for Y.

Likewise, the error variance, o, for In(y, ) is derived from the estimated
variance of 7, = MS% , according to the following relationship.
0
A/{SE =e” (e"2 ~1)
Y02

Simulation Results
Ten thousand simulated data sets were generated. The five estimation methods
were applied to each data set.

It is important to note that the application of the manual intervention method
assumed correct identification of the extraordinary observations in every
simulation. In practice, identification of extraordinary values depends on
judgement and statistical methods as described previously. Therefore, the
comparison that follows may overstate the accuracy of the manual intervention
method.

The table below summarizes the results of each regression method based on
10,000 simulations of twenty observations. Since the underlying trend in the
simulation is known, accuracy is measured using the absolute difference
between the estimated trend and the actual trend. The percentage of estimates
above the actual trends is also shown in order to detect upward bias in the
estimation method. Also, the percent of estimates within various neighborhoods
of the actual trend are calculated.

The simulation was constructed with a seasonal component and outliers.
Therefore, it is not surprising that the manual intervention method that excludes
the outliers and includes quarterly indicator variables produces good results.
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Table 5 -~ Comparison of Methods (based on 10,000 simulations)

Percentage of Estimates

Average Average
Trend Absolute | Above | Within .5% | Within 75% | Within 1% | Average

Method Estimate | Difference | Actual of Actual of Actual of Actual R?
12 MM 3.52% 0.82% 50.7% 37.7% 54.1% 66.9% 74
Quarterly 3.33% 0.91% 44 1% 34.5% 49.0% | 625% 34
Annual 3.51% 0.93% 502% 33.6% 48 GZ‘L, . 61.3% 75
tndicator

) 3.51% 0.92% 50.4% 34.4% 49.3% 62.0% 48
Variables
Manual

. 3.50% 0.81% 49.4% 37.7% 53.9% 67.6% 54
Adjustment

A similar process can be used to simulate frequency data which include the
probability of loss events that produce large numbers of claims.

Other Simulation Results

Four other simulations were performed. The first compares results when no

shocks are present.

values were present.
series only. The final simulation included shocks only late in the time series.

The second simulation included only data when shock
The third simulation included shocks early in the time

NO SHOCKS
Table 6 - Comparison of Methods (based on 10,000 simulations)
Percentage of Estimates :
Average | Average
Trend Absolute | Above | Within .5% | Within 76% | Within 1% | Average

Method Estimate | Difference | Actual of Actual of Actual of Actual R?

12 MM 3.50% 0.69% 50.0% 43.2% 60.7% 75.0% .80
Quarterly 3.33% 0.78% 43.2% 39.2% 55.6% 68.9% .40
Annual 3.51% 0.78% 50.7% 39.0% 55.4% 68.8% .81
Indicator

Variables 3.51% 0.78% 50.8% 39.2% 55.4% 68.9% 53
Ménual 351% 0.78% 50.8% 39.2% 55.4% 68.9% 53
Adjustment
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The results of this simulation show that there is little difference between
traditional regression techniques and regression using qualitative predictor

variables for seasonality.

ALL SHOCKED

Table 7 — Comparison of Methods (based on 10,000 simuiations)

Percentage of Estimates
Average Average
Trend Absolute | Above | Within .5% | Within .75% | Within 1% | Average

Method Estimate | Difference | Actual of Actual of Actual of Actual R?
12 MM 3.52% 0.89% 49.9% 35.2% 50.0% 63.0% 70
Quarterly 3.35% 0.97% 44.7% 31.9% 46.3% 58.9% .31
Annual 3.53% 1.01% 50.5% 30.5% 446% 57.3% 72
Indicator

. 3.53% 0.98% 50.6% 31.4% 45.5% 58.6% 45
Variables
Manual

i 3.51% 0.81% 49.7% 37.9% 54.0% 67.2% .54
Adjustment

The resuits of the simulation using only data with shocks illustrate the increased
accuracy of the manual adjustment method described previously under these

circumstances.
SHOCKED EARLY
Table 8 - Comparison of Methods (based on 10,000 simulations)
Percentage of Estimates
Average | Average
Trend Absolute | Above | Within 5% | Within .75% | Within 1% | Average
Method Estimate | Difference | Actual of Actual of Actual of Actual R?
12 MM 1.68% 1.88% 6.7% 12.6% 19.3% 26.4% .35
Quarterly 1.87% 1.78%. | 11.9% 15.4% 23.2% 30.5%" .16
Annual 1.93% 1.77% 14.1% 15.8% 23.5% 31.6% 46
Indicator
) 2.05% 1.66% 15¢1% 17.4% 25.5% 34.9% 33
Variables
Manual
) 3.50% 0.84% 49.9% 36.6% 52.1% 65.6% .53
Adjustment
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This simulation illustrates the understatement of trend estimates by traditional
methods when shock values occur early in the time series. While proper
elimination of the shocks may be difficult, this simulation shows the value of the
proper identification.

SHOCKED LATE

Table 9 — Comparison of Methods (based on 10,000 simulations)

Percentage of Estimates
Average | Average
Trend Absolute | Above | Within .56% | Within .75% | Within 1% | Average

Method Estimate | Difference | Actuai of Actual of Actual N _Ef Actual
12 MM 537% 1.93% 93.3% 12.4% 19.1% 26.6%
Quarterly I 523% 1.85% 89.5% 15.5% 23.1% 31.3%
Annual 5 66% 2 22% 93 5% 10.6% 716 8% 227%
Indicator

. 5.50% 2.07% 92 5% 12.1% 18.7% 25 5%
Variables ) A R B
Manual

. 352% 0.85% 50.3% 37.1% 52 3% 65 1%
Adjustment e R

This simulation illustrates the overstatement of trend estimates by traditional
regression techniques when shocks occur late in the time series.

Conclusion

The regression concepts discussed here are not new to actuaries. Nor are the
characteristics of insured loss data. Actuaries are familiar with the stochastic
nature of claim frequency and severity. Actuaries are also keenly aware of the
potential for loss events, be they weather events that generate an extraordinary
number of “normal” sized claims, or single claims with extraordinary severity, that
do not fit the assumptions of basic regression analysis.

While outlier identification techniques are described in section four, they have not
been applied to the industry data. The evaluation of these techniques is a
subject worthy of further research. In addition, the authors would welcome
development of techniques to discriminate between random noise and

50




seasonality, to identify turning points in the trend and to distinguish between
outliers and discrete but ‘jumps” in the level of frequency and severity.

Hopefully, the authors have presented some additional tocls for ratemaking and
stimulated interest in developing trend estimation techniques that recognize the
unique characteristics of insured losses.
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Nevada Bodily Injury
Insurance Industry Loss Data

Qtrly Pald Qtriy Paid
YY/Q  Frequency Severity
9411 2.018 8,835.39
94/2 2042 8,634.60
9413 2.100 9,021.44
94/4 2186 8,310.44
9541 2.108 8,000.58
9512 2.140 8,040.02
95/3 1.967 8,786.99
95/4 2,084 941544
96/1 1.954 7,993.37
96/2 1.842 921377
96/3 1.751 9,124.03
96/4 1.757 9,084.54
971 1.739 B8371.74
8712 1.861 957282
9713 1.837 8,560.24
97/4 1.831 9,103.45
9811 1.770 11,106.61
98/2 1.999 9,743.20
98/3 1778 8,651.21
98/4 1.749 9,552.60
99/1 1.799 9,594.95
99/2 1.830 9,205.35
99/3 1.755 979976
Four Qtr Four Qtr
Ending Pald Ending Paid
YymQ Frequency Severity
94N
94/2
94/3
94/4 2.087 8,694.21
9511 2110 8,486.04
9512 2134 8,338.22
9513 2100 8.277.70
95/4 2070 8,557.51
96N 2.031 8,560.77
96/2 1.956 8,855.56
96/3 1.801 8,93594
96/4 1.825 8,840.39
9711 1.772 8,950.26
97/2 1.778 9,049.11
9713 1.799 8,904.46
9714 1.817 891280
98/1 1.824 9,574.94
98/2 1.859 9.621.17
98/3 1.844 9,642.72
98/4 1.823 9.75345
g9/ 1.830 9,396.03
99/2 1.789 9,262.20
99/3 1.783 9,635.72

Includes copyrighted material of Insuranos Services
Office, inc. with 18 parmission. Copyright, Insurance
Services Office 1999,
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New York Collision
Insurance Industry Loss Data

Qtrly Paid Qtrly Paid
YYQ Frequency veri
9411 10.085 1,969.88
94/2 7.458 1,753.67
94/3 7.359 1,946 69
94/4 7.686 2,073.42
a9sn1 7.951 2,150.86
952 6.858 2,022.18
9613 7.067 2,106.83
95/4 7.692 2.214.01
961 9.326 2,230.18
96/2 6.993 2,037.11
96/3 6.948 211395
96/4 7.575 227575
971 7.792 246061
arn 6.860 2,185.90
9713 7.023 2,226.98
97/4 7.235 2,301.27
98/1 7423 2,349 35
98/2 6.835 211272
9873 6.889 2,225.14
98/4 6982 2,268.54
99/1 8103 239275
9972 6.821 2,196.11
9913 7.00Q 2.291 83
Four Qtr Four Qtr
Ending Paid Ending Paid

YY/IQ Frequency Severity
94/1

94/2

9473

94/4 8.117 1,939.10
asn 7.588 1,984.33
95/2 7.437 2,050.69
95/3 7.363 2,090.35
95/4 7391 2,126 .97
96/1 7.738 2152.11
9612 7.768 2,154 42
96/3 7734 2,155 96
96/4 7.704 2173.35
971 7328 223023
97/2 7.292 2,265.26
973 7.309 2,291.61
97/4 7.225 2,298.13
981 7137 2,268.21
9812 7128 2,249.98
98/3 7.094 2,249.49
98/4 7.031 2,241.10
9N 7.200 2,255 85
99/2 7198 2,275 84
99/3 7.226 2,291.96

inciudes copyrighted material of Insurance Services
Office. Inc. with s pemmissicn Copyright, insurance
Services Office 1999
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Oregon Homeowner
Insurance Industry Loss Data

Qtrly Paid Qtrty Pald
YYiQ Frequency Severity
9411 6.167 2,365.18
94/2 5.778 2,228.65
94/3 6.194 2,224.27
94/4 7.318 2,227.28
a51 7.573 2,477.43
95/2 6.665 2,436.19
95/3 8.076 2,700.68
95/4 8.613 2,209.83
961 24 861 1.973.35
96/2 8456 2,620.94
96/3 7.006 2,832.13
86/4 6.555 3,070.97
a7 9.303 2,353.67
97/2 6.053 2,535.58
73 5.906 2,747.17
97/4 5778 2,556.34
98/t 7.300 2,689.08
6872 5301 2,569.03
9813 5.592 3,034.36
98/4 5986 2,730.10
991 8.539 3.126.60
99/2 5463 3,313.96
99/3 4.965 3,625.18
Four Qtr Four Qtr
Ending Paid Ending Paid

YYiQ Frequency Severity
94/1

94/2

94/3

94/4 6.366 2,259.55
95/1 6.715 2,297.02
9512 6.935 2,344.92
95/3 7.409 2,468.28
95/4 7.734 2,452.25
96/1 12.069 2,200.97
9672 12.493 2.241.76
96/3 12.196 2,252.52
96/4 11.656 2,376.12
97N 7.827 2,683.58
9712 7.222 2,670.32
97/3 6.942 2,646.38
97/4 6.744 2,525.25
98/1 6.258 2,635.14
98/2 6.066 2,645.05
98/3 5984 2,713.38
98/4 6.035 2,754.39
991 6.353 2,897.10
99/2 6.384 3,054.73
99/3 6.220 3,175.16

Includes copyrighted material of Insurance Services
Office, Inc. with its permission. Copyright, Insurance
Services Office 1999,
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] 9671 6.66 128 0
7 96/2 808 1506 1
8 96/3 8861 175 0
10 a7 B 46 225 0
1 872 7.01 250 1
12 87/3 655 275 0
13 9774 930 300 0
14 981 605 325 Q
15 98/2 5901 350 1
18 98/3 578 375 Q
17 98/4 730 400 [
18 99/1 5.30 425 0
19 9972 559 4 50 1
20 99/3 599 475 0
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Residual Plot
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Variables on Quarnterty Frequency

Dg’bm- Watson

LniFreq) FEitted Freq Resduals e [CS
1820 2068 -0 2479 008 -
1754 1903 -0 1485 002 Qo1
1823 1924 -0.1007 001 000
1991 1966 00245 000 002
2024 2042 -0 0173 000 000
1896 1877 00193 000 000
2 088 1898 C 1918 004 003
2153 1940 02133 005 000
2135 1851 0 2846 008 001
1.947 1871 00759 001 004
1879 1913 -0 0340 000 001
2230 1989 02407 006 0ce
1.800 1825 -0 0246 Q00 007
1777 1845 -Q 0687 000 000
1.754 1887 -0 1330 002 000
1988 1963 00246 000 002
1668 1799 -0 1308 0.02 002
17 1819 -0 0983 o0t 0.00
1790 1861 -00712 001 goo

Sum 038 032
D 0.86
Number of X 400
Observations 1900
d,at 05 185
d, at ¢s 086

7 g 1 13

First Order Auto-Correlated

d_at o1 158
d_at C1 085
Test is inconclusive

Regression Output

Trend -2 58%
R? 020
Obs 19

Eitted Ecng.

7N
871
685
714
770
853
687
696
000
6 36
6.50
678
73
620
833
6.60
712
604
817
6.43

15t Qtr
2nd Qtr
3rd QU
4th Qi

1000
1028
1079
1174



