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1. INTRODUCTION AND ABSTRACT 

Companies subject to significant catastrophe losses are continually evaluating their appetite 

and tolerance for risk. A sound process of linking catastrophe models to financial output is 

critical to understanding the implications of risk management strategies. Therefore, dynamic 

financial models are playing an increasingly important role in evaluating risk transfer strategies. 

In this paper, we will use the example of Butterfly Insurance Company to illustrate the hurdles 

involved when incorporating catastrophe modeling in DFA and various methods of presenting 

results. We will also demonstrate how the buyer of a catastrophe reinsurance structure optimally 

selects the attachment and the limit using either a heuristic approach or a cost of capital 

approach. 

2. ASSUMPTIONS FOR BUTTERFLY INSURANCE COMPANY 

Our case study insurer is a Florida Homeowners writer with approximately $120M in gross 

written premium and $134 million in surplus. The model developed for this fictional company 

centers on the catastrophe risk to the insurer. While financial statements are included in the 

model, profitability statistics such as those found on an Income Statement or Balance Sheet are 

not typically the focus of an insurer when deciding on a catastrophe retention. The catastrophe 

exposure was modeled using the Catalyst catastrophe modeling software. Margins used in 
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pricing catastrophe layers in question are based on market knowledge at the time of  the writing 

of  this paper. Also in place is a 50% quote share with a 35% ceding commission. The 

catastrophe reinsurance structure inures to the benefit of  the quota share reinsurance. Because 

this company writes Florida residential business, the Florida Hurricane Catastrophe Fund 

(FHCF) applies. This is a semi-mandatory state catastrophe reinsurer. While we will not discuss 

the FHCF at length, listed below are a few features that need to be considered for accurate 

modeling. In particular, the FHCF excludes coverage D (loss of use and additional living 

expenses) and covers a maximum of 5% ALAE. Because of  this, losses need to be segregated 

into coverage D, ALAE, and all other. It is assumed that the company purchases 90% coverage 

and this coverage inures to the benefit of  the other catastrophe reinsurance. Table 1 shows the 

income statements for each of  the retentions that we will examine in this paper. The incurred 

loss scenario shown assumes the expected non-catastrophe loss ratio (30%) and no catastrophe 

losses. Listed below the income statement are assumptions for loss and loss adjustment expenses 

and reinsurance structures underlying the model. 
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3. WHY FOCUS ON CATASTROPHES 

This paper will only consider catastrophe reinsurance; all other forms of reinsurance and risk 

management are ignored. This may seem like a narrow-minded approach, and, particularly, an 

approach that flies in the face of traditional DFA, which attempts to consider every risk element 

at the same time. For many companies, however, catastrophe risk completely dominates all 

other risks associated with the company. In the example that we are presenting, the non-cat 

losses are assumed to have a mean loss ratio of 30%, and a coefficient of variation of 11%. With 

a subject premium of $124M the standard deviation from the non-cat losses alone would be $4M. 

However, the standard deviation of a single gross catastrophe loss is $121M. Even after the 

application of catastrophe reinsurance the net catastrophe losses are still likely to cause almost all 

of the variation in financial results. For example, with a $25M retention the standard deviation 

of a single retained losses is still $10M. The variation of the total net retained loss is much 

higher due to multiple events, reinstatement premiums, reinstatement limits, and losses over the 

reinsurance limit. The domination of catastrophe risk over all other risk is a common 

phenomenon for a Florida homeowners writer such as Butterfly Insurance Company. 

While this paper will only consider the risk of catastrophes, the methods employed can easily 

be extended to include non-catastrophe variation. For a general discussion of DFA models and 

other business risk see "Dynamic Financial Models" by the CAS subcommittee on Valuation and 

Financial Analysis [1]. 

4. BASICS OF CATASTROPHE MODELING AND DFA 

Since the early 1990"s there has been a revolution in the measurement of catastrophe risk. 

No longer do companies look solely at the last few decades of experience to gauge their risk. 
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Today the current exposure location and building costs are applied to sophisticated 

meteorological and seismic models to evaluate the risk of  losses of  all sizes. Berger et al gives a 

history of  the development of  these models [2]. There are several models commercially 

available (Catalyst, AIR, EQECAT, and IRAS are examples). The amount of  output given will 

vary greatly from company to company, model to model, and will often depend on your access to 

the model. A model retained in-house, allows you to get the greatest amount of  detail, while 

using third party software may limit the data set available to you. 

The ultimate goal o f  the modeling will be to consider the net retained catastrophe losses (for 

the ceding company), and to measure the total ceded losses (to price the reinsurance). To do this 

we will want to derive frequency and severity curves for the catastrophic events. 

The general forms of  catastrophe outputs in increasing order of desirability are: 

a) Probable Maximum Loss (PML): The probable maximum loss is the reciprocal of 

one minus the cumulative distribution function. For example, if a certain event 

represents the 99 th percentile of  the largest events for a year, then it is also the 100 

year PML. A list of  PML's  will generally only give you a few data points for 

probabilities o f  the largest single occurrence in a year, though annual aggregate 

PML's  are also possible. Since this is not sufficient information to accurately 

compute net retained catastrophe losses, in this case the best solution is to fit a more 

fully known curve from a company which contains similar risks to the limited data set 

given. 

b) X simulated years: Here you are presented with, say, 10,000 years of  simulated 

events. You may have the largest event for each year, the sum of all the events, or all 

the events for each year listed individually. If you have the first or the second, you 
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will still need to transform the data in order to get the aggregate ceded and retained 

losses. If you have the complete listing of the individual events, then you still have 

the problem of only a very small number of sample simulations from which to 

interpolate critical values, like the 99 th or 99.6 th percentiles. 

c) Simulated events, and associated probabilities: Here you are given a set of possible 

independent events (hurricanes, for example) with the probability of each event's 

occurrence, and the loss amount resulting for that event. If you are given the result of 

every event in the model's database, then you are in the best situation because you 

have all available data from the model. While 10,000 years of simulated events will 

give you only 100 events above the 100yr PML, an event set with 10,000 events and 

associated probabilities may have a much finer detail for large events in that 99 th 

percentile. 

T a b l e  2 

PML Table 
for Butterfly Insurance 

Return Loss 
Time (000's) 

2 266 
3 2,418 
4 9,982 
5 21,327 

10 105,523 
20 259,234 
25 297,024 
50 451,931 

100 626,631 
250 836,521 
500 1,049,959 

1,006 1,206,906 
10,000 1,886,538 with a catastrophe curve of 100 events. The 

"event rate" is the expected frequency of that event (Poisson distributed). The "normalized 

In all cases, it is important to know 

the underlying distributions of the data 

available. For example, if you have an event 

set with 10,000 events, and accompanying 

losses and probabilities, it is important to 

understand if the events are meant to be 

individual binomial probabilities, Poisson 

processes, or some other distribution. Our 

sample company, Butterfly Insurance, comes 
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Table  3 
Simplified Catastrophe Curve 

for Butterfly Insurance Company 

Normalized Coverage 
Event Rate Pro0ability Cat Loss D 

1 1.520E-01 1.946E-01 178,502 26% 
2 6.155E-O2 7.879E-02 390,485 21% 
3 4.089E-02 5.234E-G2 590,055 22% 
4 2.566E-02 3.285E-02 794,572 17% 
5 1.616E-02 2.325E-02 1,004,241 14% 
6 2.128E-02 2.725E-02 1,195,978 16% 
7 1.685E-02 2.157E-02 1,397,269 18% 
8 9.467E-03 1.212E*02 1,607,075 12% 
9 9.231E-03 1.182E-02 1,796,857 11% 

10 8.636E-03 1.106E-02 2,019,902 11% 
11 7.456E-O3 9.548E-03 2,223,565 11% 
12 6.433E-03 8.235E*03 2,392,359 11% 
13 4.176E-O3 5,346E*03 2,630,005 11% 
14 7.462E-09 9.552E-O3 2,823,358 9% 
15 1.046E-02 1.339E-02 3,059,936 8% 
16 8.209E-03 1.051E-02 3,274,813 7% 
17 6.033E-03 7.723E-03 3,588,905 6% 
18 6.712E-03 1.115E-02 3,894,129 9% 
19 8.552E-03 1.095E-02 4,238,908 7% 
20 7.528E-03 9.636E.03 4,571,688 7% 
21 7.865E-03 1.007E-02 4,984,386 9% 
22 7.794E-03 9.978E-03 5,333,774 8% 
23 6.014E-03 7.699E-03 5.777,618 6% 
24 6.093E-03 7.800E-03 6,262,585 6% 
25 6.912E-03 8.848Eo03 6.795,264 6% 
26 7.442E-03 9.527E-03 7,304,943 6% 
27 6.647E-03 8.510E-03 7.918,808 5% 
28 5.721E-03 7.324E-03 8,530,132 6% 
29 7,538E-03 9.650E-03 9,309,805 7% 
30 7.294E-03 9.337E-03 10,085,144 6% 
31 6.605E-03 8.455E-03 10,843,286 4% 
32 8.0G4E-03 1.025E-02 11,692,004 6% 
33 4.914E-03 6.291E-03 12,728,313 6% 
34 4.(X)4E-03 5.125E°03 13.711,989 5% 
35 6.191E-03 7.926E-03 14,806,624 5% 
36 7.852E-03 1.005E-02 16,039,499 5% 
37 5.128E-03 6.564E-03 17,385,348 4% 
38 4.904E-03 6.278E-03 18.740,026 5% 
39 6.857E-03 8.779E-03 20,458,132 4% 
40 7.405E-03 9.479E-03 21,951,996 4% 
41 6.792E-03 8.695E-03 23,864,749 4% 
42 3.951E-03 5.057E-03 26,067,076 5% 
43 5.003E-03 6.404E-03 27,652.466 3% 
44 4.502E-03 5.763E-03 29,692,537 3% 
45 5.251E-03 6.723E-03 32,599,499 4% 
46 5.513E-03 7.058E-03 35,119,089 4% 
47 6.754E-03 8.647E-03 38,179.107 4% 
48 4.288E*03 5.489E-03 41,250,272 4% 
49 7.239E-03 9.267E-03 44,426,313 4% 
50 6.714E-03 8.595E-03 48,236,955 3% 

Norrnalized Coverage 
Event Rate ProOability Cat Loss D 

51 5,416E-03 6.934E-03 51,707,787 4% 
52 4.164E-O3 5,331E-O3 56,085,706 3% 
53 6,535E-03 6.366E-O3 60,246,726 3% 
54 6.188E-03 7.921E-03 65,163,476 3% 
55 5.722E-03 7.325E-O3 70,282,382 3% 
56 5.119E-03 6.553E-O3 76,214,506 3% 
57 3,502E-03 4,484.E-03 82,092,842 3% 
58 3,926E-O3 5.026E-O3 88,361,550 3% 
59 5,184E-03 6,637E-03 96,503,098 3% 
60 6.144E-03 7.866E-03 102,599,443 3% 
61 4.795E-O3 6.139E-O3 I t  2,147,264 2% 
62 6,203E-03 7.941E-03 120,759,695 3% 
63 7.157E-03 9.162E-03 130,058,168 3% 
64 5.443E-03 6.968E-03 139,934,948 3% 
65 4.895E-Q3 6.266E-O3 152,103,474 3% 
66 4,821E-03 6,172E-03 162,714,089 3% 
67 4,186E-03 5.359E-03 176,917,196 3% 
68 4.480E-03 5.735E-03 191,529,679 3% 
69 4.498E-O3 5.758E-O3 206,254,266 2% 
70 5,392E-O3 6.902E-03 221,703,770 3% 
71 5.322E-O3 6.813E-03 240,667,973 3% 
72 4,573E-O3 5.854E-03 260,038,757 3% 
73 2.859E-03 3.659E-03 280,827,933 3% 
74 4.608E-O3 5.899E-O3 302,852,442 3% 
75 3,865E-O3 4,948E-03 324,138,441 3% 
76 2,268E-03 2.903E-03 351,215,455 3% 
77 2.812E-O3 3.600E-O3 380,944,918 3% 
76 3,201E-O3 4,098E-O3 499,922,431 3% 
79 2.554E-O3 3.269E-03 439,735,914 3% 
80 3.016E-O3 3.861E-03 476,197,173 3% 
81 3,015E-03 3,859E-O3 513,859,633 3% 
82 2.404E-03 3,077E-03 554,983,227 3% 
83 1,739E-O3 2.226E-03 600,634,629 3% 
84 1.333E.03 1.707E-03 651,101,592 3% 
85 1.107E-03 1.417E-O3 703,592,671 3% 
86 1.743E-03 2,232E-03 757,360,647 4% 
87 1,179E-O3 1.509E-03 827,054,722 3% 
88 9.167E-04 1.173E-O3 887,856,598 4% 
89 6,126E-04 7.843E-04 962,007,576 4% 
90 4.246E-04 5.435E-04 1,028,220,582 4% 
91 4,974E-04 6.368E-04 1,112,049,662 4% 
92 4,136E-04 5,294E-04 1,205,495,330 4% 
93 2,547E-O4 3.260E-04 1,303,775,508 4% 
94 2,346E-04 3.004E-04 1,412,856,253 4% 
95 2,791E-O4 3.573E-04 1,539,692,090 4% 
96 6,422E-O5 8.221E-O5 1,653,803,890 4% 
97 1,090E-O4 1.396E-O4 1,793,341,280 5% 
96 2.465E-O5 3.156E-05 1,929,988,396 4% 
99 1.486E-O5 1,802E-05 2,102,537,408 4% 

100 1,503E-05 1.924E-05 2,299,939,611 3% 

Lambda = 0.76115 AAL = 39,957,508 
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probability" will be used later. "Cat Loss" is the loss from that particular event, and the 

coverage D percentage is given so that recoveries from the FHCF can be correctly computed. 

It is convenient to use a discrete distribution for several reasons. First, it can be 

important to capture the relationship between Butterfly Insurance's cat loss and the industry cat 

loss since the industry cat loss will affect the availability and price of  future reinsurance. A large 

industry loss will also impact the amount of  available coverage under the FHCF in the 

subsequent season. In addition, a discrete distribution allows one to easily maintain the 

relationship between the event loss and the associated coverage D loss. This is important 

because the FHCF does not allow for recoveries on coverage D losses. 

5. CONVERSION OF INDIVIDUAL EVENTS TO F R E Q U E N C Y  AND SEVER ITY 

if catastrophe data is presented in the form of  many thousand independent catastrophe events, 

it is clearly impossible to simulate from the direct data - each simulated year would require 

several thousand random draws to create the catastrophe events. To make the computations 

manageable it is necessary to convert to separate frequency and severity curves. If data is 

presented in the form of  simulated years, it is still useful to make this conversion, since it allows 

"bootstrapping" from the limited data given, to a richer dataset. To make this conversion we use 

the fact that a sum of independent Poisson variables is Poisson where the sum of  the lambdas is 

equal to the mean (again lambda). Similarly, a sum of  binomials is approximately Poisson with 

lambda equal to the sum of the binomial probabilities. In our case the Poisson lambda is the sum 

of the rates shown in the second and seventh columns of  Table 3. The severity distribution is 

discrete with probabilities equal to the Poisson frequencies re-normalized to one. This is shown 
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in the third and eighth columns of Table 3. An outline of a proof of the equivalency of this 

model to the original model is shown in the appendix. 

6. ESTIMATION METHODS AND ADAPTIVE SAMPLING 

In this particular example, the annual frequency of catastrophe events is 0.78115. This 

means that in 46% of the simulated years there will be no catastrophe at all, in 82% of years 

there will be one or fewer, and in 96% of years there will be two or fewer. Of those events that 

occur, half will be relatively small: under $3,000,000. Since we are concerned with extreme 

events, for example the risk of ruin at the 99.6 th percentile (250 year return time), a traditional 

Monte Carlo simulation spends about half of the computing time on events that produce the 

exact same answer, and almost all of the computing time on events which have no chance of 

impacting the critical upper percentiles. To alleviate this situation we can supplement Monte 

Carlo simulation with a heuristic narrowing of the scope of the simulation. 

One alternative to Monte Carlo simulation is to numerically convolute the probability 

distribution through the fast Fourier transform (see [3]), or the Heckmen-Meyers algorithm (see 

[4]). This is faster than simulation, however, it requires that the claim severities be identically 

distributed. Because catastrophe contracts contain a mixture of aggregate and occurrence limits 

(generally expressed as a certain number of reinstatements, or multiples of the original limit), the 

nth catastrophe may have a different net severity distribution depending on the preceding 

catastrophes. In addition, since the FHCF contains special limits (on coverage D and ALAE) it 

is not clear how to adapt those algorithms to this situation. 

The method proposed to increase the efficiency of a simulation is over-sampling the areas of 

interest, and under-sampling areas that require fewer simulations to converge to the true 

distribution. In this example, we will break the catastrophe curve into two layers, claims over 
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$50M, and claims under $50M. We then perform separate simulations for each of  the frequency 

combinations with a probability greater than 1 in 100,000. The probability of  frequency 

combinations outside this range has been placed in the combination of three events over $50 

million and three events under $50 million (in italics). From a practical perspective, six or more 

catastrophes in a year in one state is bad enough, there is no need to generate scenarios worse 

than that. The case of no catastrophes need only be considered once, and the cases of  one or two 

catastrophes can be handled by exhausting the 100 or 2500 combinations of  events in our dataset. 

For the remainder, we perform 5,000 iterations for all the combinations with a probability greater 

than ! in 1,000, and 1000 iterations for all those with a probability less than 1 in 1,000. Using 

this "'adaptive sampling" we can generate a greater accuracy with 56,000 iterations than a Monte 

Carlo simulation with 1,000,000 iterations. 

Table 4 

Probabilil 
Number 

of 
Events 
under 
$50M 

Iterations 
Number 0 

of 1 
Events 2 
under 3 
$50M 4 

5 
6 
7 

4.579E-01 
2.866E-01 
8.969E-02 
1.871 E-02 
2.928E-03 
3.666E-04 
3.824E-05 I 
3.419E-06 

Number of Events over $50,000,000 
0 1 2 3 4 5 

7.108E-02 5.517E-03 2.855E-04 1.108E-05J 3.439E-07 
4.449E-02 3.453E-03 1.787E-04J 6.934E-06 2.153E-07 
1.392E-02 1.081E-03 5.592E-05 2.170E-06 6.737E-08 
2,905E-03 2,255E-04J 3.919E-05 4.528E-07 1A06E-08 
4.546E-04 3.52eE-051 1.826E-06 7.085E-08 2.200E-09 
5.690E-051 4.417E-06 2.285E-07 8.869E-09 2.754E-10 
5.936E-06 4.608E-07 2.384E-08 9.252E-10 2.872E-11 
5.308E-07 4,120E-08 2.132E-09 8.273E-11 2.568E-12 

Number of Events over $50,000,000 
0 1 2 3 4 5 
1 ~ 2 , ~  1 , ~  1 , ~  0 

2 , ~  5 , ~  1 , ~  0 0 
2 , ~  5 , ~  5 , ~  1 , ~  0 0 
5 , ~  5 , ~  1 , ~  1 , ~  0 0 
5 , ~  1 , ~  1 , ~  0 0 0 
1 , ~  1 , ~  0 0 0 0 
1 , ~  0 0 0 0 0 

0 0 0 0 0 0 
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7. SELECTION OF THE CATASTROPHE RETENTION AND LIMIT 

There are several common methods employed for selecting and evaluating reinsurance 

structures. 

a) Rules of thumb / Management decision criteria 

These are probably the most prevalent of the selection techniques. A possible rule 

would be for a company to purchase catastrophe reinsurance down to half of its 

surplus, or its 10 year PML. 

b) Regulatory or rating requirements 

A. M. Best requires that companies be able to withstand their 250 year earthquake 

PML, and their 100 year hurricane PML. In this example the limit will be set at the 

250 year PML. 

c) Risk of ruin / Expected policyholder deficit 

The previous examples are very similar to a risk of ruin standard. In our case the 

capital required to support the catastrophe risk will be defined as the 99.6 th percentile 

aggregate retained catastrophe loss with reinstatement premiums ($86 million in the 

case of a $25 million retention). 

d) Standard deviation 

While most companies do not set explicit standard deviation targets they will want to 

keep the standard deviation (or some other statistical measure of the variability) of 

their results to a minimum. 

e) Cost of capital needed to retain the risk 

When deciding whether to retain or cede a particular risk the company needs to 

consider the cost of retaining that risk. The company should purchase reinsurance 
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wherever the cost of reinsurance is cheaper than the cost of holding (or obtaining) 

sufficient capital to absorb a potential loss. 

8. SELECTION OF THE CATASTROPHE RETENTION AND LIMIT - 
HEURISTIC APPROACH 

Typical DFA statistics such as loss ratio, combined ratio, and ROE focus on the profitability 

of the entire company. The presentation of these statistics tends to focus on a "reasonable range 

of results." Presentation of the range can take the form of confidence intervals (90% range of 

results for the Net Loss & ALAE Ratio[Exhibit 1]), risk/reward plots (the probability that the 

company combined ratio is greater than X% versus the mean combined ratio for each alternative 

strategy [Exhibit 2]), or cumulative distribution functions [Exhibit 3] to name a few. However, 

these profitability statistics combined with the described presentation methods do not address the 

real concerns of the company in terms of optimizing their catastrophe reinsurance retention. 

The traditional presentation of catastrophe exposure has revolved around the probable 

maximum loss. A common question is "What is my 100 or 250-year PML?" In terms of 

probability, these PML's convert to the 99th and the 99.6th percentiles respectively. The 90% 

confidence interval of the net loss & ALAE ratio, as shown in Exhibit 1, excludes these points. 

The upper bound of a 90% confidence interval translates to only the 20-year PML; a far smaller 

event than the 100 or 250 year events that catastrophe reinsurance is protecting against. Also, 

from this graph, one might assume that the $75M retention, which produces the lowest mean net 

loss ratio, would be the optimal retention. However, we will show in future exhibits that the 

$25M retention is actually optimal given this company's risk and financial constraints. 
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Exhibit 2 shows a risk/reward plot of  the combined ratio. This also fails to address 

catastrophe exposure sufficiently since it ignores the severity of  a large PML event. From a 

risk/reward plot, one can determine that the probability that the combined ratio exceeds a 120% 

combined ratio under the $25M retention structure is 23.8%. However,  it does not address the 

extent to which 120% is surpassed in the large PML events. A 100 year event may produce a 

combined ratio of  150% (survivable) or 500% (instant death). 

A cumulat ive distribution function does address the large PML values in that it plots all 

points on the curve up to the 100 th percentile, as shown in Exhibit 3. The net loss & ALAE ratio 

associated with the 100 year event  is found on the graph, however, the scale makes it impossible 

to see the difference between the three retentions. 

Profitability statistics and graphs such as those described above are appropriate to show the 

relative position of  the company after the buying decision has been made, but what is needed to 

optimally select a retention is a comparison of  cost incurred and protection provided when events 

o c c u r .  
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Exhibit 1 

N o t  L O l l S  & A L A E  R a t i o  

S l a t l s t l c a l  S u m  m a r y  
C l l g n d l r  Y e l l  2001 

(SOOO) 

H i g h  
M e a n  
L o w  

1 2 9 M  
R i l t a n t l o n  

1 2 2 . 3 %  
7 2 . 1 %  
4 0 . 9 %  

$ 3 0 M  
R e l e n t l o n  

1 3 4 . 4 %  
6 9 . 7 %  
3 7 . 8 %  

$ 7 5 M  
R e t e n t i o n  

1 4 3 . 6 %  
6 7 . 0 %  
3 5 . 4 %  

140% 

120% 

I 00'% 
9 
~ 8 0 %  

~ 0 0 %  

4 0 %  

/ 
80% C o n f i d e n c e  I n f e r v a l  

Exhibit 2 

C o m p l r l | o n  of  A l t o r n a t t v e l  
C o m b i n e d  RIIIIo R I s k / a e w l r d  A n l l y l l !  

~4o% 

129"~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
m 

J 12o,4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

919% . . . . . . . . . . . . . .  - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - . . . . . . . . . . . . .  
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Is o~ 19 o~ 2o o".- 21 o~. 22 o~ 23 o~ 24 o'~ 2s o'~. 
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Exhibit 3 

I 

1 O% 2O% 3O% 40% 5O% 60% 

Culmullal '~ Probability 

i $ 2 5 M  Retention 1 5 5 ~  Relenl)on 

80% 90% 100% 

- - $ 7 5 M  Retenlion 

As an alternative to DFA, one could choose to stick to the widely accepted method of 

presenting results in the form of a PML curve. Net retained catastrophe losses and reinstatement 

premiums would be calculated on individual loss events and ranked by their associated return 

times. However, this method also fails to properly address the company's true catastrophe 

exposure. By calculating retained loss and reinstatement premiums for individual loss events 

only, the impact of multiple events on ceded loss and reinstatement premium is ignored• In 

general, the results produced by the financial model improve on the "PML curve" type analysis 

by considering annual aggregate results. 

In the following discussion, we will present several statistics and methods for presenting 

results that attempt to correct for the shortcomings of the methods listed above. 
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Net Cost/Benefit of  Reinsurance Contract 

Catastrophe reinsurers charge a high margin for coverage (typically somewhere between 1.5 

and 5 times the expected loss to the layer). This is reasonable given the low probability of loss, 

but high potential severity. This means that on an expected value basis, the company's 

profitability will be better the less cat reinsurance they buy. However, they may be taking on 

risk that they cannot handle. The purpose of the net cost/benefit statistic is to provide a cost 

versus coverage comparison between varying retentions and limits. Reducing cost also reduces 

benefit. The cedant needs to decide the retention where the marginal benefit of the reduced cost 

is outweighed by the marginal increase in retained losses. When we are considering net results 

the smaller the standard deviation the better (the more stable the results), however, because we 

are measuring recoveries, a larger standard deviations means larger potential benefit to the 

reinsured. 
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Exhibit 4 

Net Bene f i t  / (Cost) of Catastrophe Reinsurance Program prior to Quota Share 
Statistical Summary-Annual Aggregate Loss 

($000) 

28M Retention 5OM Retention 75M Retention 
Minimum (in 20,000 Years) (46,171) (39,931) (33,838) 
100 Year Return Time 610,041 573,908 541,151 
150 Year Return Time 681,883 669,361 636,610 
200 Year Return Time 681,883 669,361 640,966 
250 Year Return Time 681,883 669,361 645,742 
500 Year Return Time 687,422 669,361 656,549 
1000 Yea r Return Time 719,719 680,173 656,549 
Maximum (in 20,000 Years) 1,156,883 1,119,361 1,081,549 

Standard Deviation 110,868 102,591 94,693 

99% Range of Outcomes 
99.5 Percentile 681,883 669,361 640,966 

Mean (13,768) (12,099) (10,029) 
0.5 Percentile (46,171) (39,931) (33,838) 

750,000 

550,000 

1~ 350,000 
,R 
~, 150,000 

-50,000 

/ 
99% Range of Outcomes 

/ / 
Net Retained Catastrophes 

All companies must retain a portion of their catastrophe exposure, but only the largest 

companies can retain all of it. The question usually revolves around how much volatility the 

company can absorb. Obviously, the lower the retention, the lower the variability of the net 

results. 
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Exhibit 5 

N e t  R e t a i n e d  C a t a s t r o p h e  L o s s  p r i o r  to Q u o t a  S h a r e  
Statistical Summary- Annual Aggregate Loss 

($ooo) 

Minimum (in 20.000 Years) 
100 Year Return Time 
150 Year Return Time 
200 Year Return Time 
250 Year Return Time 
500 Year Return Time 
1000 Year Return Time 
Maximum (in 20,000 Years) 

Standard Deviation 

99% Range of Outcomes 
99.5th Percentile 

Mean 
0.5th Percentile 

250,000 

i 200,000 

150,000 

100 ,000  

j 50,000 

o 

25M Retention 50M Retention 75M Retention 
0 0 0 

55,171 101,222 150,000 
74,225 120,185 163,929 

127,251 178,001 227,945 
173,570 222,730 272,186 
410,748 460,748 507,788 
505,759 550,316 598,367 

2,652,434 2,702,434 2,752,434 

36,847 43,173 48,925 

127,251 178,001 227,945 
9,532 14,086 16,939 

99% Range o lOutcomea 

/ / / 
Net Loss & ALAE to Prior Year End Surplus 

Many companies define their risk appetite for retaining loss in terms of the ratio of net loss 

& ALAE to surplus. Our example company uses the rule of thumb that net loss and ALAE (after 

cat and quota share reinsurance) must be less than or equal to one-half of surplus at the 100 year 

return time. According to this criteria, the $25M retention is the optimal retention for this 

company. 
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Exhibit  6 
N e t  L o s s  & A L A E  to Pr io r  Y e a r  E n d  S u r p l u s  

Statistical Summary-Annual Aggregate Loss 
($000) 

Minimum (in 20,000 Years) 

100 Year  Return Time 
150 Year Return Time 
200 Year Return Time 
250 Year Return Time 
500 Year Return Time 
1000 Year Return Time 
Maximum (in 20,000 Years) 

Standard Deviation 

99% Range of Oulcomes 
99.5 Percentile 

Mean 
0.5 Percentile 

200% ] 

150% 

100% 

50% ! 
f 

0% ' 

25M Retention 50M Retention 75M Retention 
8.9% 9.6% 9,3% 

52.7% 72,0% 91.1% 
99.2% 1 15.9% 132.0% 

130,2% 148 2 %  165.4% 
155,2% 172,2% 189.6% 
239.5% 258 7 %  274.6% 

275.8% 2 9 3 8 %  312.0% 
162.6% 179.4% 197 8 %  

19,0% 21,3% 23,6% 

/ 

130.2% 148.2% 165.4% 
17.9% 19.6% 2 0 9 %  
10.4% 10.4% 10,3% 

99% Range of Outcomes 

/ / 
9. S E L E C T I O N  OF THE C A T A S T R O P H E  R E T E N T I O N  AND LIMIT - 

COST OF C A P I T A L  A P P R O A C H  

The previous discussions have focused on subjective criteria for evaluating the attachment 

point for the catastrophe structure. While most companies make their decisions on this basis, an 

alternative method which considers the cost of  capital can give more concrete results. We have 

already determined that the point where the catastrophe reinsurance runs out will be the single 
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event 250 yr PML. We will also put the risk of ruin on the aggregate net retained losses (for the 

purposes of  calculating required capital) at the 99.6 th percentile. 

For this method, the company must  decide what cost of  capital to apply to catastrophe risk. 

There is agreement that it will be a higher cost of  capital than the standard insurance risk, due to 

the higher variability, but how much? There are several methods for determining the cost of  

capital on a specific investment,  none of  them entirely satisfactory. The two most popular 

methods are the capital asset pricing model (CAPM), and to base the required return on an 

investment ' s  variance. 

CAPM predicts that the required return on an investment is generated from its correlation 

with the "market," usually defined as a broad stock market index. Since catastrophe risk is not 

correlated with the stock market performance, C AP M  would require only the risk free rate of  

return for this investment. Since the funds supporting catastrophe risk are available for 

investment in risk free securities, no return at all would be required to support the catastrophe 

risk (ignoring taxes). This does not correspond with intuition or experience. 

If we base the required return on variance, then the catastrophes limited to $100M have a 

variance of about $1. I x 1015. The stock market gives returns of  around 15.3% with a variance 

of  around 2.6% (S&P total returns 1972-2000). If we assume that $150M of capital is needed to 

support this layer, then this amount  invested in the stock market would have a variance o f  about 

$5.85 x 10 la of  the dollars invested. This implies a return on capital supporting catastrophe risk 

of  29%. The variance, and the exact cost of  capital, would change depending on the layer 

considered, but, for simplicity, 29% is the required return that we will assume. 
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Exhibit 7 

250,000 

200,000 i 150,000 

100,000 

50,000 

Required Capital by Attachment Point 

25,000 

,. 20,000 

15,000 

$ 
10,000 ~ 

, ~ . = ~  _ ~.. 5,000 

0 20,000 40,000 60,000 80,000 100,000 

Attachment 

L _ . ~ T o t a l  Capital . . . . .  Marginal Capita! ~"  " 'Initial Premium " Expected Profit 

We have now fixed on a 29% cost for the capital used to support the catastrophe 

reinsurance. Let 's also presume that the company will not consider a catastrophe retention lower 

than $5 million or higher than $100 million (essentially the attachment of the FHCF). Since this 

is the only layer under consideration at this point, we will only consider the capital needed to 

retain the losses under $100 million per occurrence. Additional capital may be needed to cover 

losses above the catastrophe insurance, or non-catastrophe losses, but those will not impact the 

decision in this layer. 

Consider Exhibit 7. First we have plotted the 99.6 th percentile net retained loss including 

reinstatement premiums (labeled Total Capital, and Marginal Capital), and the cost of  
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reinsurance (premium minus average recovery, labeled Expected Profit). The marginal return on 

capital by retaining a layer of cat risk is: 

ACat Premium - ACat Recoveries 
Marginal Return on Capital at Risk = 

ARequired Capital 

Exhibit  8 

50.00% 

4500% 

40.00% 

35.00% 

30.00% 

25.00% 

20.00% 

15.00% 

10.00% 

Marginal and Total Return on Equity for Retaining Cat Risk 

0 10000 20000 30000 40000 80000 60000 70000 80000 90000 100000 

Attachment 

[""""--Marginal ROE ' " Total RoE 

The second graph (Exhibit 8) shows the marginal and total return on capital at risk for the 

retained amounts under $100 million per occurrence. In this case the optimal attachment is 
D 

around $27 million. To accommodate our natural bias towards multiples of $5million, we will  

select an attachment point of $25 million. 

175 



10. SUMMARY 

Catastrophe loss is the major risk facing many insurance companies. To better understand 

the management strategies used to control this risk, companies are turning to financial models. 

The standard outputs and analysis of DFA models are not helpful in selecting catastrophe 

retentions, and serve only to complicate the decision making. Specialized output exhibits are 

necessary to illustrate the extreme risks associated with catastrophes. A particularly valuable 

method for determining the optimal retention considers the return on allocated capital to support 

potential catastrophe losses. 
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A P P E N D I X  

O U T L I N E  O F  E Q U I V A L E N C E  O F  T H E  M O D E L  P R E S E N T E D  IN  S E C T I O N  F I V E  

W e  beg in  with a large n u m b e r  of  independent  b inomia l  r a n d o m  variables  (not necessar i ly  

identical ly dis tr ibuted) ,  wi th  probabil i t ies {pt, Pz . . . . .  p .  } (or expec ted  f requencies  in the case  o f  

Po i s son  events) ,  and associa ted  loss  va lues  {x i, xz . . . . .  x .  }. Define ~. = S" p, and cons ider  an 

al ternative mode l  where  the f r equency  of  non-zero  events  is dis t r ibuted Po isson  with parameter  

~.. and severi t ies  are chosen  based  on the weighted  average  o f  p~. To  show that  these  two mode l s  

are equivalent ,  cons ider  the probabi l i ty  o f  a specif ic  ou tcome:  

Pil Xpi2 X ' " X p i k  
P ( X l = x i  I , X 2 = x i  2 ..... X k = X l  k ) =  ) ] l ( l - - P i )  

(l -- pl I )(1 -- P'2 ).. .(i  -- pi k 

s ince e "(~-~pi) = FI (I - Pl ) and (1 - Pi] )(1 - P,z ) ' ' ' (I  - P'k ) = 1 we have  

= e~'~k Pit xP i z  X ' " × P i k  k! 

k! ( y p i ) k  

= P ( f r e q = k )  Pit ×Pi2 ×" 'XPik  k! 
( X p l )  k 

= P(freq = k) P(severi t ies  = x i i, x,:  ..... X ik ) 

In the case  o f  init ial ly Po i s son  events  we begin  with: 

P(X 1 = x,t ,X2 = Xiz ..... X k : Xik ) : 
p e-pil ~ ( -pi2 ~x x (  Pik 

i, ]xtpi2e ) . . .  t p, e /"'e-Pill 
(e-Pq)(e-P,2 )...(e-Pik ) 

and  the result  fo l lows  more  directly. 
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