A Note on Decomposing the Difference of Two Ratios

Daniel R. Corro

A Note on Decomposing the Difference of Two Ratios

Dan Corro Director of Claims Research National Council on Compensation Insurance, Inc.

August, 1999

Abstract

Consider a ratio statistic (e.g. the mean) built from observations assigned into classes. An example would be losses=L, claim counts=C, and exposures=E each aggregated by rating class with the applicable statistic being either case severity=L/C or case frequency=C/E. The note discusses comparing two observed values for such a statistic. The difference is expressed as a sum of two components. One component measures the change due to the change in class mix. The other measures the change "holding the class mix constant". It is shown that a T-test on each component can assess whether it represents a nonzero difference. A simple numeric example is presented and an Appendix provides a SAS routine to perform the calculations.

Introduction

One of the ongoing assignments of the claims research department at the National Council on Compensation Insurance, Inc. (NCCI) is to monitor the experience of states which have introduced reforms in their workers compensation (WC) systems. These state specific post reform monitor (PRM) reports analyze WC costs by breaking them down into their frequency and severity components. That experience is compared with a benchmark determined from the pooled experience of a collection of other states, selected from among states that did not undergo major changes in their WC systems over the time frame of the study. The time frame of the study is, in turn, broken down into two subsets, corresponding to the pre- and post-reform experience of the PRM state. This approach leads to a number of two-way comparisons: PRM state vs. benchmark states; pre- vs. post-reform time period.

A primary PRM data source is the NCCI unit record system (URS), used for WC ratemaking and experience rating. A key feature of URS data is its capture according to the job classification system used for pricing WC insurance. When comparing frequency and severity, over time or between jurisdictions, it is obviously important to be able to account for differences in exposure mix. This short note describes the technique developed specifically for the PRMs but which clearly has general application.

The Decomposition

The idea comes from simple arithmetic. Consider any paired comparison, indexed by $j \in \{1, 2\}$, in which a "numerator" $N_j = \sum_i n_{ji}$ and "denominator" $D_j = \sum_i d_{ji}$ are determined by summing over a common set of disjoint classes, indexed by i.

The difference of the ratios $\rho_j = \frac{N_j}{D_j}$ can be decomposed as:

 $\rho_2 - \rho_1 = \alpha + \beta$ where, letting $r_{ji} = \frac{n_{ji}}{d_{ji}}$,

$$\alpha = \sum_{i} r_{ii} \left(\frac{d_{2i}}{D_2} - \frac{d_{1i}}{D_1} \right) \text{ and } \beta = \sum_{i} \left(r_{2i} - r_{1i} \left(\frac{d_{2i}}{D_2} \right) \right)$$

The component α is referred to as the *class mix component* and β , which is a weighted sum of ratio differences by class, as the *matched difference component*. Observe that when the two denominators share a common class decomposition, i.e. $d_{2i} = a \cdot d_{1i}$ for some fixed number a, then $\alpha = 0$. By the same token, if the two ratios are the same for all classes ($r_{2i} = r_{1i}$ for all i) then $\beta = 0$.

Observe that the matched difference component

$$\beta = \sum_{i} \binom{n_{2i}}{d_{2i}} \cdot \binom{d_{2i}}{D_{2}} - \sum_{i} r_{1i} \cdot \binom{d_{2i}}{D_{2}} = \rho_{2} - \sum_{i} r_{1i} \binom{d_{2i}}{D_{2}} = \rho_{2} - \hat{\rho}_{1}$$

may be interpreted as the difference between ρ_2 and the result of reweighting the observed ratios $\{r_{ij}\}$, which yielded the first ratio ρ_1 , to match ρ_2 's denominator distribution $\{d_{2i}\}$.

Of course, the ratios ρ_1 and ρ_2 can be regarded as weighted means. Indeed, we will regard the d_{ji} both as individual observed "denominators" as well as weights. It is natural to consider testing whether the difference of means $\rho_2 - \rho_1 = \alpha + \beta$ is significantly different from 0. The usual test for this is the conventional T-test of mean difference. In its customary formulation, however, that test is not suited for weighted observations. For example, the SAS TTEST procedure does not support a weight variable, even though the SAS package is most accommodating of weighted data. It is well known, however, that the customary T-test of mean difference is a special case of the OLS regression calculation. Indeed, the coefficient parameters are routinely tested for significance using a T-test. The Appendix illustrates, using SAS, a simple and general way to test whether the difference $\rho_2 - \rho_1$ of weighted means is significantly different from 0, via weighted OLS.

In this regard, consider the set of matched pairs $\{(r_{1i}, r_{2i}) | 1 \le i \le n\}$ in which the paired observations are assigned weights according to the second denominator distribution $\{d_{2i}\}$. Those familiar with what the SAS documentation refers to as a "matched T-test" to determine whether the ratios are different, will note that it is in fact the matched difference component $\beta = \rho_2 - \hat{\rho}_1$ that is being tested. To see this, first recall that, unlike the conventional T-test of mean difference in PROC TTEST, SAS recommends the use of PROC MEANS to perform a matched T-test. The SAS PROC MEANS directly accommodates weighted data (although one has to choose a weight, here we chose the $\{d_{2i}\}$). The idea is to consider the set of matched differences $\{x_i = r_{2i} - r_{1i} | 1 \le i \le n\}$ to determine whether its mean is different from 0. The value being tested is thus the weighted mean:

$$\sum_{i} (x_i) \cdot \left(\frac{d_{2i}}{D_2}\right) = \sum_{i} (r_{2i} - r_{1i}) \cdot \left(\frac{d_{2i}}{D_2}\right) = \beta \text{, as claimed.}$$

A more formal statement of our result (which allows for nonnegative weights, rather than the strictly positive weights demanded by the $r_{ji} = \frac{n_{ji}}{d_{ji}}$ formulation) is provided below:

Proposition: Given any ordered set of 2N nonnegative real numbers:

$$\{r_{ji}, d_{ji} \mid j = 1, 2; 1 \le i \le N\}$$

Set

$$D_j = \sum_i d_{ji}, R_j = \sum_i r_{ji}$$
 and $\rho_j = \sum r_{ji} \left(\frac{d_{ji}}{D_j} \right)$

and assume $D_j > 0$ and $R_j > 0$, j = 1,2.

Define

$$\alpha = \sum_{i} r_{1i} \left(\frac{d_{2i}}{D_2} - \frac{d_{1i}}{D_1} \right) \quad and \quad \beta = \sum_{i} \left(r_{2i} - r_{1i} \right) \left(\frac{d_{2i}}{D_2} \right).$$

 α is referred to as the class mix component and β as the matched difference component.

Then:

(i)
$$\rho_2 - \rho_1 = \alpha + \beta$$
.

(ii) An appropriate test of the hypothesis $\alpha = 0$ is a matched T-test on the pairs

$$\{(\frac{d_{1i}}{D_1}, \frac{d_{2i}}{D_2}) | 1 \le i \le N\}$$
 using $\{r_{1i}\}$ as weights.

(iii) An appropriate test of the hypothesis $\beta = 0$ is a matched T-test on the pairs $\{(r_{1i}, r_{2i}) | 1 \le i \le N\}$ using $\{d_{2i}\}$ as weights.

Proof: Everything follows directly from earlier remarks except (ii) on testing the hypothesis $\alpha = 0$. In that regard, set

$$\hat{r}_{2i} = d_{2i}, \hat{r}_{1i} = d_{1i}, \hat{d}_{2i} = r_{1i} \text{ and } \hat{d}_{1i} = r_{2i}$$

and apply the established part of the proposition to the hatted numbers, noting that:

$$\alpha = R_1 \hat{\beta}.$$

Since a T-test is unaffected by multiplication by a positive constant, the result follows from (iii) as applied to $\hat{\beta}$. This establishes the proposition.

An (unmatched) T-test for the difference of means $\rho_2 - \rho_1$ involves

2N-2 = 2(N-1) degrees of freedom, which the proposition suggests can be split evenly between the two matched T-tests for α and β , each involving N-1 degrees of freedom.

A Numeric Example

This note concludes with a simple numeric example, designed to illustrate the calculation as well as the need to account for class mix when making comparisons. Think of the r-

values as a cost measure (frequency or severity) and the d-values as the exposure base (payrolls or cases). The Group 1 data is meant to suggest a starting point situation in which much of the exposure lies in high cost classes (I and J). This changes into the Group 2 situation with most of the exposure assumed to move into the lower cost classes (A. B and C). The cost within class is fairly similar between the two groups but note that for every class, the Group 2 cost equals or exceeds that for Group1. The Appendix provides a SASLOG and listing of the routine used to make the calculations.

		Data Tab	le		
Class	Gro	սթ 1	Group 2		
	r _l	dı	r ₂	d ₂	
A	95	2	98	30	
В	100	2	100	30	
С	105	1	106	20	
D	295	5	298	2	
E	300	10	300	5	
F	305	10	308	2	
G	310	10	310	2	
Н	495	10	500	1	
I	500	25	505	5	
J	505	25	505	3	

Decomposition of Ratio Difference							
Component	Value	T-Test	T-Value	P-Value			
α	-254.15	Matched	-1.9456	0.0836			
β	1.52	Matched	2.9135	0.0172			
ρ2-ρι	159.32	Unmatched	-4.409	0.0003			
	- 411.95						
	= - 252.63						

All of the decline in overall mean cost from Group 1 to Group 2 is attributed to the change in class mix component α . The matched difference component β works in the opposite direction, due to the higher class costs for Group 2. Observe that the overall

difference is the most statistically significant finding, as measured by the lowest P-value. It is interesting to note that the dominating component numerically, the change in the class mix, is of marginal statistical significance. On the other hand, the numerically smaller matched difference component reflects a statistically significant increase in the by class costs.

APPENDIX

.

SASLOG

************ 373 DATA ONE; 374 INPUT R1 D1 R2 D2; 375 CARDS; NOTE: The data set WORK.ONE has 10 observations and 4 variables. NOTE: The DATA statement used 3248K. 386 387 PROC PRINT DATA=ONE; NOTE: The PROCEDURE PRINT printed page 1. NOTE: The PROCEDURE PRINT used 3381K. 388 PROC SUMMARY DATA=ONE; 389 VAR D1 D2 R1 R2; ; OUTPUT OUT = SUMM SUM = SD1 SD2 SR1 SR2; 390 391 *DEFINE DIFFERENCES; NOTE: The data set WORK.SUMM has 1 observations and 6 variables. NOTE: The PROCEDURE SUMMARY used 3521K. 392 DATA ONE; 393 SET ONE; 394 KEEP R1 R2 D1 D2 R2 R1 D2 D1; 395 RETAIN SD1 SD2 SR1 SR2; 396 IF _N = 1 THEN SET SUMM; 397 $D2 \ \overline{D1} = (D2/SD2 - D1/SD1) + SR1;$ $R2^{-}R1 = R2 - R1;$ 398 NOTE: The data set WORK.ONE has 10 observations and 6 variables. NOTE: The DATA statement used 3558K. PROC MEANS DATA=ONE; 399 400 VAR R1; 401 WEIGHT D1; 402 . TITLE2 'WEIGHTED MEAN OF R1, WEIGHT D1'; NOTE: The PROCEDURE MEANS printed page 2. NOTE: The PROCEDURE MEANS used 3572K. 403 PROC MEANS DATA=ONE MEAN STDERR T PRT; 404 VAR R2 R2_R1; 405 WEIGHT D2; 406 TITLE2 'WEIGHTED MEAN OF R2 AND MATCHED T-TEST, WEIGHT D2'; NOTE: The standard error of the mean is computed as sqrt (weighted sample variance / sum of weights). NOTE: The PROCEDURE MEANS printed page 3. NOTE: The PROCEDURE MEANS used 3572K. 407 PROC MEANS DATA=ONE MEAN STDERR T PRT;

408 VAR D2 D1; 409 WEIGHT R1; TITLE2 ' MATCHED WEIGHTED T-TEST D2 - D1 MEANS WEIGHT R1'; 410 13 The SAS System 11:51 Monday, August 23, 1999 411 *SET UP TO DO WEIGHTED TTEST OF R1-R2 USING OLS'; NOTE: The standard error of the mean is computed as sqrt (weighted sample variance / sum of weights). NOTE: The PROCEDURE MEANS printed page 4. NOTE: The PROCEDURE MEANS used 3572K. 412 DATA TWO; SET ONE; 413 KEEP R D C; 414 R = R1; D = D1; C = 0; OUTPUT;415 R = R2; D = D2; C = 1; OUTPUT;NOTE: The data set WORK.TWO has 20 observations and 3 variables. NOTE: The DATA statement used 3572K. 416 PROC REG DATA=TWO; 417 MODEL R = C;418 WEIGHT D; 419 TITLE2 'UNMATCHED WEIGHTED T-TEST USING OLS'; NOTE: 20 observations read. NOTE: 20 observations used in computations. NOTE: The PROCEDURE REG printed page 5. NOTE: The PROCEDURE REG used 4071K. NOTE: The SAS session used 4071K. NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414

D	UT LIST							
Page OBS	1: R1	D1	R	2 D2 98 30 00 30 98 2 00 5 08 2 10 2 10 2 00 1 05 5 05 3				
1	95	5	2 9	98 30				
2	100	0	2 10	00 30				
3	105	5	1 10	06 20 09 7				
4	291	5 D 1	0 30	90 2 10 5				
6	305	5 1	.0 30	08 2	•			
7	310	01	0 33	10 2				
8	499	5 1	0 50	00 1				
9	500	2	:5 50	05 5				
10	50:	5 2	. כו	05 3)			
Page	2: WE1	IGHTED	MEAN (OF R1, W	EIGHT D1			
Ana:	lysis \	Variab	le : R	l Crd Do			Ma	
		mea 			v Mir	11mum 	Maximun	-
					1 95.000			
								-
					D MATCHED 1 d Error			۶Tu
	~							
R2		159.	3200000	0 41.	8235681 5217066	3.809335	4 0.00)42
R2_1	Rl	1.	520000	00.	5217066	2.913515	0 0.01	172

Page	4: MA1	TCHED	WEIGHT	ED T-TES	T D2 - D1 N			
Page	4: MA	TCHED	WEIGHT	ED T-TES	N 10 - 20 T	MEANS WEIG	HT R1	
Page Ana	4: MAS lysis V Me	TCHED Variab ean	WEIGHT le : D Std I	ED T-TES 2_D1 Error	T D2 - D1 N	MEANS WEIG F Prob>³T	HT R1	
Page Ana 	4: MA3 lysis V Me 4.15000	TCHED Variab ean 000	WEIGHT Die : Di Std I 130.629	ED T-TES 2_D1 Error 97110	T D2 - D1 N	MEANS WEIG	9 9	
Page Ana 	4: MA3 lysis V Me 4.15000	TCHED Variab ean 000	WEIGHT ble : D: Std I	ED T-TES 2_D1 Error 97110	T D2 - D1 N	MEANS WEIG	9 9	
Page Ana: -25- 	4: MA3 lysis V Me 4.1500(FCHED Variab ean 000	WEIGHT Dle : D Std I 130.629	ED T-TES 2_D1 Error 97110	T D2 - D1 N 	MEANS WEIG Prob>31 0.083	9 9	
Page Ana -25 Page	4: MA3 lysis V Me 4.1500(TCHED Variab ean 000 	WEIGHT Dle : D Std I 130.629	ED T-TES 2_D1 Error 97110	T D2 - D1 N	MEANS WEIG Prob>31 0.083	9 9	
Page Ana -25 Page Mode Depo	4: MA3 lysis V 4.15000 5:UNMA el: MOI endent	TCHED Variab 2000 ATCHED DEL1 Varia	WEIGHT Dle : D Std H 130.629 WEIGH	ED T-TES 2_D1 Error 97110 TED T-TE	T D2 - D1 N 	MEANS WEIG Prob>31 0.083	9 9	
Page Ana -25 Page Mode Depo	4: MA3 lysis V 4.15000 5:UNMA el: MOI endent	TCHED Variab 2000 ATCHED DEL1 Varia	WEIGHTH Dle : D Std I 130.629 WEIGH	ED T-TES 2_D1 Error 97110 TED T-TE	T D2 - D1 N 	1EANS WEIG Prob> ³ 	9 9	
Page Ana Page Mode Depe	4: MA3 lysis V 4.15000 5:UNMJ el: MOI endent lysis o	TCHED Variab ean 000 ATCHED DEL1 Varia of Var	WEIGHT ble : Di Std I 130.629 WEIGH ble: R iance	ED T-TES 2_D1 Error 97110 TED T-TE	T D2 - D1 N -1.9455756	MEANS WEIG Prob> ³ T 3 0.083 .5	HT R1 - 6 -	
Page Ana Page Mode Depe	4: MA3 lysis V 4.15000 5:UNMJ el: MOI endent lysis o	TCHED Variab ean 000 ATCHED DEL1 Varia of Var	WEIGHT ble : Di Std I 130.629 WEIGH ble: R iance	ED T-TES 2_D1 Error 97110 TED T-TE	T D2 - D1 N -1.9455756	MEANS WEIG Prob> ³ T 3 0.083 .5	HT R1 - 6 -	
Page Ana Page Mode Depe	4: MA3 lysis V 4.15000 5:UNMJ el: MOI endent lysis o	TCHED Variab ean 000 ATCHED DEL1 Varia of Var	WEIGHT ble : Di Std I 130.629 WEIGH ble: R iance	ED T-TES 2_D1 Error 97110 TED T-TE	T D2 - D1 N -1.9455756	MEANS WEIG Prob> ³ T 3 0.083 .5	HT R1 - 6 -	
Page Ana Page Mode Depe	4: MA3 lysis V 4.15000 5:UNMJ el: MOI endent lysis o	TCHED Variab ean 000 ATCHED DEL1 Varia of Var	WEIGHT ble : Di Std I 130.629 WEIGH ble: R iance	ED T-TES 2_D1 Error 97110 TED T-TE	T D2 - D1 N -1.9455756	MEANS WEIG Prob> ³ T 3 0.083 .5	HT R1 - 6 -	
Page Ana Page Mode Depe	4: MAY lysis V Me 4.15000 5:UNM/ el: MOI endent lysis o rce el or otal	TCHED Variab ean 000 ATCHED DEL1 Varia of Var	WEIGHT le : D Std 1 130.629 WEIGH ble: R iance DF 1 3 18 2 19 6	ED T-TES 2_D1 Error 97110 TED T-TE Sum Squar 191095.8 2955334. 146430.3	T D2 - D1 N -1.9455756 ST USING OI of es Sc 45 3191099 51 164185.2	MEANS WEIG Prob> ³ T 3 0.083 .5 .5 Mean juare 5.845 25056	HT R1 - 6 - F Value 19.436	
Page Ana Page Mode Depe	4: MAY lysis V Me 4.15000 5:UNM/ el: MOI endent lysis o rce el or otal	TCHED Variab ean 000 ATCHED DEL1 Varia of Var	WEIGHT le : D Std 1 130.629 WEIGH ble: R iance DF 1 3 18 2 19 6	ED T-TES 2_D1 Error 97110 TED T-TE Sum Squar 191095.8 2955334. 146430.3	T D2 - D1 N -1.9455756 ST USING OI of es Sc 45 3191099 51 164185.2	MEANS WEIG Prob> ³ T 3 0.083 .5 .5 Mean juare 5.845 25056	HT R1 - 6 - F Value 19.436	
Page Ana Page Mode Depe	4: MAY lysis V Me 4.15000 5:UNM/ el: MOI endent lysis o rce el or otal	TCHED Variab ean 000 ATCHED DEL1 Varia of Var	WEIGHT le : D Std 1 130.629 WEIGH ble: R iance DF 1 3 18 2 19 6	ED T-TES 2_D1 Error 97110 TED T-TE Sum Squar 191095.8 2955334. 146430.3	T D2 - D1 N -1.9455756 ST USING OI of es Sc 45 3191099 51 164185.2	MEANS WEIG Prob> ³ T 3 0.083 .5 .5 Mean juare 5.845 25056	HT R1 - 6 - F Value 19.436	
Page Ana 254 Page Mode Dep Ana Sou: Mode Erra C Ta	4: MAY lysis V Me 4.15000 5:UNM/ el: MOI endent lysis c rce el or or otal Root N Dep Me C.V.	TCHED Variab ean 000 ATCHED DEL1 Varia of Var MSE ean	WEIGHTM ble: D Std 1 Std 1 130.629 WEIGHM ble: R fiance DF 1 33 18 3 19 63 405.2 285.4 141.4	ED T-TES 2_D1 Error 97110 TED T-TE Sum Squar 191095.8 2955334. 146430.3	T D2 - D1 N -1.9455756	MEANS WEIG Prob> ³ T 3 0.083 .5 .5 Mean juare 5.845 25056	HT R1 - 6 - F Value 19.436	
Page Ana Page Mode Depe Ana Sou Mode Erre C Te	4: MAT lysis V Me 4.1500(s:UNM/ el: MO endent lysis o rce el or otal Root M Dep Me C.V.	TCHED Variab ean 000 ATCHED DEL1 Varia of Var MSE ean	WEIGHT le : D Std l 130.629 WEIGH ble: R iance DF 1 33 18 5 19 65 405.5 285.6 141.6 P	ED T-TES 2_D1 Error 97110 TED T-TE Sum Squar 191095.8 2955334. 146430.3 19779 63500 85859	T D2 - D1 N -1.9455756 ST USING OI of ces Sc 445 3191095 51 164185.2 55 R-square Adj R-sq	MEANS WEIG Prob> ³ T 3 0.083 .5 Mean Juare 5.845 25056 0.5 0.4	HT R1 - 6 - 19.436	Prob>F 0.0003
Page Ana Page Mode Depe Ana Sou Mode Erre C Te	4: MAT lysis V Me 4.1500(s:UNM/ el: MO endent lysis o rce el or otal Root M Dep Me C.V.	TCHED Variab ean 000 ATCHED DEL1 Varia of Var MSE ean	WEIGHT le : D Std l 130.629 WEIGH ble: R iance DF 1 33 18 5 19 65 405.5 285.6 141.6 P	ED T-TES 2_D1 Error 97110 TED T-TE Sum Squar 191095.8 2955334. 146430.3 19779 63500 85859	T D2 - D1 N -1.9455756 ST USING OI of ces Sc 445 3191095 51 164185.2 55 R-square Adj R-sq	MEANS WEIG Prob> ³ T 3 0.083 .5 Mean Juare 5.845 25056 0.5 0.4	HT R1 - 6 - 19.436	Prob>F 0.0003
Page Ana Page Mode Depe Ana Sou Mode Erre C Te	4: MAT lysis V Me 4.1500(s:UNM/ el: MO endent lysis o rce el or otal Root M Dep Me C.V.	TCHED Variab ean 000 ATCHED DEL1 Varia of Var MSE ean	WEIGHT le : D Std l 130.629 WEIGH ble: R iance DF 1 33 18 5 19 65 405.5 285.6 141.6 P	ED T-TES 2_D1 Error 97110 TED T-TE Sum Squar 191095.8 2955334. 146430.3 19779 63500 85859	T D2 - D1 N -1.9455756 ST USING OI of es Sc 45 3191099 51 164185.2	MEANS WEIG Prob> ³ T 3 0.083 .5 Mean Juare 5.845 25056 0.5 0.4	HT R1 - 6 - 19.436	Prob>F 0.0003