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Abstract

This paper presents a simple procedure for quantifying the effect of the historically limited
meteorological record on insurance losses calculated by hurricane catastrophe simulation models. Using a
standard actuarial approach, the uncertainty in the historical record can be decomposed into uncertainty in
the mean annual hurricane frequency, and uncertainty in the severity, where the severity corresponds to the
distribution of insurance losses resulting from a single random hurricane event. Uncertainty in the mean
annual frequency can be estimated directly from the historical data. Uncertainty in the severity is more
difficult to evaluate, but can be approximated using a parametric bootstrap method which captures the
effects of the finite historical record. Confidence intervals on the insurance loss as a function of return
period are calculated for several different portfolios. These results are placed in the context of a recent
insurance-linked securitization transaction, and are found to be consistent with other independent
measurements of pricing uncertainties in similar instruments. The historical volatility of one-year corporate
bond default rates is also compared to the magnitude of the uncertainty in the hurricane simulation models.
This comparison suggests that volatility of one-year corporate bond default rates is greater than uncertainty
in the hurricane models.

I. Introduction

Hurricane catastrophe simulation (CAT) models represent an attempt to apply a climatological
pattern of hurricane activity to an existing insurance inventory.[Friedman,1984] These models typically
assume a stationary climate consistent with the average historical record as the basis for stochastic
hurricane simulation. Because hurricane records in the Atlantic basin span only the past 100 years, any
simulation of hurricane activity in this region will ultimately be limited by this finite number of historically
observed hurricane events. In particular, the sampling variability associated with developing the
meteorological hazard component of a CAT model from the finite number of historical hurricane
observations represents a fundamental, epistemological source of uncertainty in the estimation of insurance
losses.

The inability to predict an outcome can be decomposed into two sources: Randomness and
uncertainty. Randomness, or process risk, is due to the fluctuating nature of the modeled phenomenon, and
may be accurately accounted for by stochastic simulation models. Uncertainty, on the other hand, is due to
limited modeling knowledge and data, and in general is not implicitly accounted for by stochastic
simulation models. For example, the randomness associated with each roll of a pair of dice is conceptually
distinct from the uncertainty associated with not knowing whether the dice are 'fair'. While this distinction
can be difficult to make in some situations, conflating uncertainty with randomness in stochastic simulation
models may have serious implications for bias.[Major,1998]

The effect of uncertainty within a given model can further be specified in terms of model
specification error, reflecting uncertainty in the results due to the potentially incorrect choice of probability
distribution family, and parameter risk, associated with the incorrect choice of parameters given the correct
family. The goal of this paper is to quantify the uncertainty associated with the historically limited
meteorological record. While there are many sources of uncertainty in CAT models, the finite number of
historical hurricane observations underlies sources of both model specification error as well as of parameter



risk. Analysis of the effects of the finite historical record on estimating insurance losses will therefore
provide a lower bound estimate for uncertainty in hurricane CAT models.

Using a standard actuarial approach, the uncertainty in the historical record can be decomposed
into uncertainty in the mean annual hurricane frequency, and uncertainty in the severity, where the severity
corresponds to the distribution of insurance losses resulting from a single (random) hypothetical hurricane
event. Decomposition into frequency and severity components is made under the assumption that the
severity is independent of frequency. Uncertainty in the mean annual frequency is estimated directly from
the historical data. Uncertainty in the severity is more difficult to evaluate, but can be approximated using a
parametric bootstrap method which captures the effects of the finite historical record. Using this technique,
confidence intervals on the exceedance probability distributions produced by hurricane CAT simulation
models are calculated for three different portfolios. Although a particular CAT model is used in part of this
analysis, this uncertainty analysis technique may be applied to any CAT model. Regardless of
computational details, all CAT models rely on the 100 year historical record and are therefore subject to the
uncertainty resulting from this limited dataset.

There has been much recent attention given to insurance-linked securitizations, or so-called
'catastrophe bonds.'[Buckley and Orr, 1998] These instruments provide a mechanism for catastrophe risk
transfer as an alternative to traditional reinsurance. In order to place the analysis of uncertainty in hurricane
catastrophe simulation models within the context of these instruments, three comparisons are made. First,
the procedure for evaluating confidence intervals on the exceedance probability distributions developed
here is placed in the context of rating CAT bonds. Second, the results of this analysis are compared with an
independent analysis of uncertainties in pricing CAT securities.[Moore, 1998] Third, the magnitude of the
volatility in historical one-year corporate bond default rates is compared to an equivalent measure of
uncertainty in CAT bond default rates. This comparison is motivated by a desire to gain an understanding
of how investors might compare the new CAT bonds with more traditional investment vehicles.

II. Hurricane Catastrophe Simulation Models

Approximately1 210 hurricanes have made landfall in the eastern US during the past 100 years,
resulting in a mean annual frequency of 2.1 landfalling hurricanes per year. The relative paucity of
hurricane events, along with the complications brought about by rapidly changing demographics, are the
primary reasons that catastrophe simulation models are required for accurate forecasting of hurricane
losses. Traditional trend-and-develop approaches for extrapolating the probabilities of insurance losses
resulting from hurricanes are replaced by simulation models, which attempt to separately model the
underlying meteorology.

Hurricane simulation models have three major components: A hazard component, an engineering
component and an insurance component. The hazard component is used to generate the distribution of
hurricane wind speeds at each geographical site in the portfolio that are produced by a particular storm or
set of storms. The engineering component takes these wind fields, along with site specific information
pertaining to all structures in the insurance inventory, and calculates damage rates at each physical location
in the portfolio and for each structure and coverage type within the policy. The insurance component
applies deductibles and limits to the site specific damages calculated by the engineering component. Policy
specific deductibles and limits, along with all remaining insurance structure, are then applied to the realized
losses, and aggregated over all policies for each simulated event.

The simulation model can be run in either a scenario or in a probabilistic mode. In the scenario
mode, the hurricane wind field resulting from a single hurricane event is simulated by the hazard
component. The simulated event may be based on an historically-observed hurricane event, or may be some
hypothetical event. In the probabilistic mode, the hazard module simulates wind fields corresponding to the
climatological ensemble of possible hurricane events, of which the historical events are considered a
random sample.

                                                          
1 This lack of precision is a function of definitional questions surrounding the term ‘landfall.’



The output of the probabilistic mode of the hurricane CAT simulation model can be represented
by the per-occurrence exceedance probability curve (EP)  for a given portfolio. This represents the
exceedance distribution of the maximal loss occurrence in the course of the year for the given portfolio, or

EP (l) = P{A loss greater than l will occur during the year}. (1)

Using a standard actuarial approach, the distribution of losses which are simulated by the hurricane CAT
model and which are represented by the EP curve can be decomposed into separate frequency and severity
components. [Hogg, 1984] The frequency corresponds to the distribution of the number of hurricanes
occurring within a one year period. The severity corresponds to the distribution of losses conditional on the
occurrence of a single, random hurricane. The cumulative distribution function (CDF) corresponding to the
severity is defined as

FS (l) =P{Given that a hurricane occurs, the loss will not exceed l }. (2)

Typically, the Poisson distribution is used to model event frequency. If the mean frequency is λ, and
frequency is independent of severity, then the number of events occurring within the course of a year with
loss greater than an amount l is also Poisson with mean equal to λ ( 1 – FS (l) ). The per-occurrence
exceedance probability can then be written as

EP(l) = 1 – Exp[– λ ( 1 – FS (l) )]. (3)

The EP curve represents the effects of the climatological ensemble of hurricanes on a given
portfolio.  The ensemble, of course, is not known, but rather is estimated from the historically observed
hurricanes. If a single hurricane event can be specified by a vector θ of storm parameters, then the set of
historically observed hurricane events can be represented as ΘHistorical = (θ1, θ2 …θN) , where N is the
number of hurricane observations which have occurred over the past 100 years. Each vector θi contains the
complete list of parameters used to describe the physical properties of the ith  historical hurricane, for
example, landfall location, initial pressure drop, translation speed, etc.. The dependence of the exceedance
probability on the historical storms can then be written as

EP(l , A | ΘHistorical) = 1 – Exp[– λ(ΘHistorical)  ( 1 – FS (l , A | ΘHistorical ) )], (4)

where the dependence of the EP on the particular choice of portfolio A is also included. The matrix A
contains all relevant information on the particular portfolio of interest, including site locations, structural
information, total insured value as well as all relevant insurance information.

The mean annual frequency λ(ΘHistorical) can simply be calculated as the total number of hurricanes
in the historical record, N, divided by the number of years in the historical record, n. In contrast, the exact
dependence of FS (l , A | ΘHistorical) on ΘHistorical is considerably more complicated. In general, FS is

constructed in such a way as to reproduce the meteorological variability of the observed historical hurricane
events while at the same time minimizing the sampling variance associated with the finite number of
historical hurricane events. For example, a typical hurricane CAT model will not simulate just the 210 or so
historically occurring hurricane events, but will rather simulate a much larger number of hurricane events,
providing a more smoothly varying geographical and intensity coverage. The implementation of this
procedure is highly model dependent, and forms the ‘art’ of CAT modeling.

III. Estimating confidence intervals on the exceedance probability

The EP curve produced by the CAT simulation model is generated, ultimately, from the historical
hurricane parameters as specified by ΘHistorical. Implicit in FS (l , A | ΘHistorical ) is the inclusion of

randomness related to the storm parameters as well as to vulnerability (engineering) response. In general, it
will not include the effects of model specification uncertainty.  It may or may not reflect parameter



uncertainty, depending on the modeler’s ‘art.’  We will assume here that EP incorporates only randomness,
and not uncertainty.

From Eq. 4, it can be seen that uncertainty in the EP curve is related to uncertainty in the mean
annual hurricane frequency compounded with uncertainty in the severity component. In this section,
uncertainty in the frequency and severity components resulting from the finite historical record is
estimated. Uncertainty in the EP curve, in the form of confidence intervals on the base-case EP curve, is
then calculated from the frequency and severity uncertainties. The base-case refers to the EP curve defined
by Eq. 3 using the historical mean annual hurricane frequency λ and the empirically-driven severity
distribution FS (l , A | ΘHistorical ) that is simulated by the CAT model for a given portfolio A. In the

bootstrap literature,[Efron, 1993]  the base-case is referred to as the plug-in EP curve, denoted EP
 ^

 (l).

 Uncertainty in the mean annual hurricane frequency is represented by the standard error of the
mean, which is determined directly from the historical data as
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where n is the number of years in the historical record, and xi is the number of hurricanes occurring in year
i. It is assumed that the hurricane frequency is time independent, i.e., that the {xi}are independent and

identically distributed (iid). This assumption is independently confirmed. For n = 96, x¯   = 2.07 and 
x

σ  =

0.159. This is in agreement with the theoretical standard error (se) on the mean calculated by assuming
Poisson statistics with mean frequency λ = x̄ ,  yielding  an se = (λ/n)1/2 = 0.147. A t-distribution is used to
model the sampling distribution of mean frequencies. Figure 1 shows the results of a bootstrap simulation
of the historical data {xi} with 500 replications, along with the t-distribution calculated with the empirical

value for
x

σ . The agreement between the t-distribution and the bootstrap simulation is good.

The bootstrap technique [Efron, 1993] can be used to estimate uncertainty in the severity
distribution due to the finite number of historical hurricane observations. The dependence of the severity
distribution on the historical record is represented as FS (l , A | ΘHistorical) . The bootstrap technique makes

the assumption that the observed dataset, namely ΘHistorical, is a representative subset of potential outcomes
from some underlying distribution, so that random subsamples from the observed dataset, namely ΘHistorical,
are themselves representative subsets of potential outcomes. Assuming a stationary climate, the underlying
distribution can be thought of as the distribution of hurricane parameters representative of an infinitely long
hypothetical historical record. Each bootstrap replication represents an equivalent realization of the
historical record, and consists of random draw, with replacement, of N hurricanes from the observed record
of ΘHistorical = (θ1, θ2 …θN). Each bootstrap replication can be represented as  Θ* b = (θ1*

b, θ2*
b …θN* b )

with b = 1...B and B = 500. Specifically, each θi*
b is drawn randomly from the collection ΘHistorical = (θ1, θ2

…θN). Confidence intervals on the severity can then be determined from the B bootstrap replication of
FS* b (l , A | Θ* b

 ). For example, at each value of the loss l there are B bootstrap values of the severity, from

which percentiles on FS can easily be created by a simple sorting of the values. The resulting confidence

intervals on the severity reflect the uncertainty in the EP curve due to the limited number of historical
events.

Unfortunately, this procedure is prohibitively time consuming. In particular, the need to create
FS* b (l , A | Θ* b

 ) for each bootstrap replication, depending as it does on the CAT model-building ‘art,’

makes this approach impractical. Essentially, each FS* b(l , A | Θ* b
 ) represents a new CAT simulation

model, created as if the observed historical event set had been Θ* b instead of ΘHistorical – surely an involved
process. Therefore, an alternate approach is taken, which utilizes the parametric bootstrap technique. In this
approach, a severity distribution FS (l , A | ΘHistorical) is calculated for a given portfolio using a particular

choice of CAT model. This empirical severity distribution FSE( l) is then fit to a (simpler) parametric



model, with the best-fit to the parametric model defined as FSP( l). The parametric model is chosen based

on its ability to fit the empirical severity distribution. Once FSP( l) is specified, a Monte Carlo algorithm is

used to simulate 210 points from this parametric distribution. The number of points used in the simulation
corresponds to the number of historical hurricanes N. B = 500 Monte Carlo replications of 210 points each
are created in the analysis. For each collection of 210 points, the parametric model is used to find a new
best-fit, resulting in a new parametric severity distribution FSP*

b ( l) for each replication b. The resulting

parametric severity distributions are approximations to the FS* b (l), and confidence intervals on the severity

can be created as described above.

The parametric bootstrap calculation provides a reasonable approximation to the ideal bootstrap
calculation described above. The simulation of 210 severity points in each of the parametric bootstrap
replications is analogous to bootstrapping the historical storm elements. The advantage of the parametric
technique is the reduction in computational load resulting from elimination of the need to create a new
severity FS* b (l , A | Θ* b

 ) (a new CAT model!) for each bootstrap replication.

Confidence intervals on the severity are calculated for three different portfolios A using the
parametric bootstrap technique. A commercially available hurricane CAT simulation model is used to
simulate losses for each portfolio. The resulting empirical severity distributions FSE( l) simulated by the
CAT models for the three different portfolios are displayed in Fig. 2 as the thick solid lines. The portfolios
correspond to (a) personal,  (b) commercial and (c) specialty lines exposure, respectively. Note that all
insurance portfolios are geographically distributed over a large area of the US.

The four parameter transformed beta distribution, with an additional zero-mass term, is used to fit
the empirical severity distributions as well as each of the parametric bootstrap replications. This parametric
model is given by
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where FSP
TB(x) is the parametric severity CDF described by the transformed beta function with zero mass

term. The quantity (1 – w) corresponds to the zero mass, or the probability of having zero loss to the
portfolio given the occurrence of a hurricane event, and β is the incomplete Beta function. The best-fit to
the empirical severity distributions, FSP( l), is displayed as the respective thick dashed lines in Fig. 2. The

thin dotted lines in Fig. 2 correspond to the parametric bootstrap replication severity distributions FSP*
b ( l)

plotted for every 10th bootstrap replication. A total of B = 500 replications are made for each portfolio. For
all portfolios, the transformed beta distribution was able to fit the empirical severities to a 1% significance,
as measured by the Kolmogorov-Smirnov statistic.

Plug-in (base case) EP curves EP
 ^

 (l) for the three portfolios are shown in Fig. 3 as the middle solid
lines, where the exceedance probability EP has been transformed into a return period, with the return period
T = 1/EP. In this figure the EP curve is represented by a log-log plot of loss in dollars versus return period
in years. For example, an annual exceedance probability of 1% corresponds to a 100 year return period.

Confidence intervals on the plug-in EP
 ^

 (l) curve resulting from compounding uncertainty in the
mean annual frequency and severity can be determined in the following way: First, tabulate evenly spaced
percentiles on the mean annual frequency distribution, λ(p), where for example p = 5%, 10%, ... 95%. Next,
at each value of the loss l, calculate the percentile severity curves FS

(p') (l) at p' = 5%, 10%, ... 95% from the

B = 500 sorted values of FSP*
b( l) as depicted in Fig. 2. Now the argument to the exponential in Eq. 3 is

just the product of λ and ( 1 – FS (l) ), so combining the 19 mean annual frequency percentiles λ(p) with the

19 percentile severity curves FS
(p') (l) results in 361 = 192 curves corresponding to the product λ(p) ( 1 –

FS
(p') (l) ). Said another way, there are 361 values of the exceedance probability EPk(l) at each value of the

loss l, where k = 1...361. Because the resulting 361 curves for EPk(l) may cross, confidence intervals on the



EP curve must be determined from the sorted values of the EPk(l)  for each value of the loss l. In this way,
percentile exceedance probability curves EP(p) (l) can be formed.

Percentile EP curves are shown in Fig. 3 as a log-log plot of loss versus return period along with
the plug-in EP curves. The upper solid lines corresponds to the 95th percentile curve EP(.95) (l) and the lower
solid lines corresponds to the 5th percentile curve EP(.05) (l). The 90% confidence intervals for the EP curve
determined in this way are based on the uncertainty in the mean annual frequency and in the severity
resulting from the limited historical dataset. The dashed lines in Fig. 3 correspond to the case where only
uncertainty in the mean annual frequency is used to determine a 90% confidence interval for the EP curve.
Calculating confidence intervals on the EP curve based only on uncertainty in the severity produces curves
virtually identical to the curves corresponding to the inclusion of both frequency and severity uncertainty.
This result indicates that uncertainty in the mean annual frequency is relatively insignificant compared to
uncertainty in the severity.

The confidence interval shown in Fig. 3 can be represented in another way by normalizing the
percentile EP curves to the plug-in EP curve. In Fig. 4, the ratio L

(p)/ L^ versus return period is plotted for the
three portfolios (a) through (c). The quantity L

(p) is the loss percentile for percentile p, and L
^ is the plug-in

estimate for the loss at the respective return period, obtained from the plug-in EP curve EP
 ^

 (l). The ratios
which are greater than 1 correspond to the percentile p = 95% and the ratios which are less than 1
correspond to p = 5%. The solid, dashed and dotted lines correspond to portfolios (a), (b) and (c),
respectively. The area between the two curves for each portfolio represents the 90% confidence interval on
the normalized loss as a function of return period.

There are several interesting features in this plot. At very low return periods (< 10 years) the 95th

percentile ratio diverges and the 5th percentile ratio goes to zero. This is due to the fact that L
^, the plug-in

estimate for the loss, is going to zero, while the numerators in the ratio L
(p)/ L^ are going to zero at a slower

or faster rate than the denominator, respectively, for p = 95% and p = 5%. In addition, for all curves, there
appears to be some feature near a return period of ~ 10 years. Perhaps most interestingly, all three of the
ratios are approximately constant for return periods greater than ~ 80 years. For all portfolios, the
normalized 5th and 95th percentile loss curves are approximately 0.5 and 2.5 times the base case,
respectively, between return periods of 80 to 1000 years.

There is a simple argument that can be used to support the magnitude of the confidence intervals
observed in Fig. 4. Imagine trying to evaluate the damage to a single site somewhere along the US coast. In
the past 100 years, there have been approximately 210 hurricanes that have made landfall along the entire
coastline. Consider that only those historical hurricane tracks passing within a window of about 200
nautical miles (nmi) have any chance of causing damage at any given site. With a total coastal length of
approximately 3100 nmi (from the Mexico-US border to the US-Canada border), on average 14 of those
210 storms would have passed within a 200 nautical mile window of this site. The average number of
storms affecting the site is therefore µ =  0.14 per year. Using Poisson statistics to determine the standard
error (se) of the number of events affecting the site leads to se = (0.14/100)1/2 = 0.04. The resulting
coefficient of variation CoV = se/µ = 30%. Assuming a normal distribution for the number of events
affecting the site, and assuming that the uncertainty in the severity is due solely to the uncertainty in the
number of events affecting the site, then the 90 percent confidence interval for the loss is given by ±
(1.65)(30%) = ± 50%. This is consistent with results of Fig. 4. Additional sources of uncertainty will tend
to increase the width of this 90 percent confidence interval.



IV. Implications for uncertainty in CAT bond pricing

The implications of uncertainty in CAT simulation models on the rating and pricing of CAT bonds
are explored here by placing the results of the previous section within the context of a recent CAT bond
rating.  The specific case to be examined is the United Services Automobile Association (USAA) /
Residential Re contract, which provided 80% coverage of $500m in losses in excess of USAA's $1b
retention. The bond side of this transaction was rated by Duff & Phelps Credit Rating Company (DCR)
with Applied Insurance Research (AIR) as the model consultant.[Buckley and Orr, 1998]

DCR rates CAT bonds based on the values of three statistics: probability of first dollar of loss
(FL), probability of depletion (last dollar of) loss (DL), and the expected loss (EL), where EL is normalized
to the layer size. The quantities FL$, DL$ and EL$ represent the actual dollar values of the lower limit,
upper limit and expected loss of the CAT bond layer, respectively. The normalized expected loss can be
expressed as EL = EL$ /(DL$ - FL$). FL and DL are the exceedance probabilities associated with respective
loss to the portfolio. Assuming that the EP curve is available from a CAT model simulation of the portfolio
losses, then FL = EP(FL$) and DL = EP(DL$). EL can be calculated using a standard actuarial expression,
as
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The function f(x) is the probability density function (pdf) corresponding to the exceedance probability
curve EP(x) determined, in this case, from AIR’s hurricane CAT simulation model. Using the EP curve
determined by AIR's CAT model analysis of the USAA portfolio and taking FL$ = $1b and DL$ = $1.5b
leads to FL = 1.35%, DL = 0.55% and EL = 0.72%.

The three portfolios (a) - (c) used in the EP confidence level analysis in this paper clearly have
different exposures than the USAA portfolio rated by DCR both in total insured value (TIV) as well as in
geographical distribution. However, the exposure in each of these three portfolios can be qualitatively
'normalized' to the USAA portfolio by calculating an FL$ and DL$ for each of these portfolios based on the
respective portfolio's EP curve and the USAA FL = 1.35% and DL = 0.55% values. Values of EL
calculated for each of the portfolios (a) - (c) using Eq. 7 should then be comparable to the value of EL
calculated for the USAA transaction. This comparison is shown in Table 1. Results of the USAA/Res Re
analysis are given in the first row of the table; the corresponding results for portfolios (a) - (c) are given
below that. Values for FL$ and DL$ in the table are in billions of dollars; values for EL are in percent.

Values for EL are denoted by EL
 ^

  since they are calculated from the respective plug-in (base case) EP
curve. As can be seen from the table, the values of FL$ and DL$ for portfolio (a) are similar in size to the
corresponding values for the USAA portfolio, indicating that these two portfolios probably contain similar
TIV. In contrast, values of FL$ and DL$ for portfolio (c) are much smaller. Despite these differences in the
values of FL$ and DL$, values of EL for portfolios (a) – (c) are very similar to the USAA portfolio result.

Values of EL calculated in Table 1 are based on the respective portfolio's plug-in EP curve, and
therefore reflect randomness associated with the meteorological variability and the vulnerability response.
However, these values of EL do not include the effects of model specification or parameter uncertainty.
Confidence intervals on EL can be calculated from the parametric bootstrap analysis described in the
previous section. Specifically, the B = 500 bootstrap replications of the severity distributions FS* b(l)

created for each of the portfolios (a) - (c) are combined with the 19 mean annual frequency percentiles λ(p)

resulting in 9,500 = (19)(500) equiprobable EPcurves. This collection of EP curves is used to determine
confidence intervals on EL. For each portfolio, each of the 9,500 bootstrap EP curves is numerically
integrated over the range specified by the respective values of FL$ and  DL$. The 99th percentile EL value is
then calculated from the sorted results and can be expressed as a difference, normalized to the plug-in EL
value as
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The statistic ∆(.99) is a measure of pricing uncertainty, or more specifically, uncertainty of the expected loss
calculated for a particular CAT bond transaction. This statistic is closely related to uncertainty in CAT
bond default rates. Default rates for CAT bonds may be defined as the attachment probability, or
probability of first loss (FL), and uncertainty of FL is similar in magnitude to uncertainty of EL.

Values of ∆(.99) calculated for portfolios (a) - (c) are provided in Table 1. Unfortunately, there is no
corresponding estimate of ∆(.99) from the AIR analysis. Recall that the values of ∆(.99)  in Table 1 reflect
uncertainty in the CAT simulation model due to the finite number of historical storms. While a 99%
‘confidence level’ for EL is reported within the DCR rating of the USAA/Res Re transaction,[Buckley and
Orr, 1998] this confidence level reflects process risk only.[Buckley, 1998] This can be understood in the
following way: Assuming that the CAT model simulates 10,000 years, then a 1.35% attachment point (e.g.,
FL)  implies that the contract attaches in 135 of the 10,000 years. The Monte Carlo process of having years
fall over the attachment point may be modeled as a binomial distribution. Therefore N=10,000, p=1.35%,
Np =135 and the coefficient of variation CoV =  σ/µ = (Npq)1/2/ (NP) = 8.5%. On the other hand, an
equivalent CoV can be calculated directly from the quoted values of EL reported for the USAA/Res Re
transaction. The value of the 99% confidence level for EL reported by DCR is at 18 basis points above the
base case. So CoV = σ/µ =  (0.18/2.33)/0.72 = 11%, roughly consistent with the CoV calculated using the
binomial assumption. The factor of 2.33 corresponds to the 99th percentile of the unit normal distribution.
Values of ∆(.99) calculated for portfolios (a) through (c) range from 1.9 to 2.3. As comparison, the value of
∆(.99)  calculated using the EL(.99) process risk only value is ∆(.99)  = 0.25, implying that confidence intervals
reflecting uncertainty due to the finite number of historically observed hurricanes is almost an order of
magnitude larger than the magnitude of process risk reported for this transaction.

Both climatological uncertainty and estimation process risk represent sources of imprecision in
evaluating EL, or equivalently, CAT bond default rates. A key distinction, however, is that the process risk
component arises from and can easily be modified by human intervention, such as changing the number of
simulation cycles.  Since the standard error of a binomial estimate follows a “square-root of N” law, more
(or fewer) simulation cycles will produce greater (or lesser) accuracy.  Specifically, if 10,000 simulated
years imply a process risk only ∆(.99)  of 0.25, then 40,000 simulated years will imply ∆(.99)  = 0.125 and
2,500 years will imply ∆(.99)  = 0.5. On the other hand, achieving a halving of the climatological uncertainty
∆(.99) would require a quadrupling of the historical data – a very difficult, if not impossible, task.

These results can also be compared to a study by Moore [1998], who has analyzed uncertainty in
the pricing of three CAT related securities. A jacknife technique[Efron, 1993] is applied to the PCS
adjusted historic loss ratios for the years 1956 – 1994. The three analyzed securities are a pure CAT call
option (or excess-of-loss contract), an excess-of-loss layer, and a knock-in CAT call. Five different
distributions are used in the jacknife technique to parametrize the losses.  The results are summarized in
Table 2 expressed as the normalized difference between the plug-in estimate and the 99th percentile, given
by ∆(.99) as defined by Eq. 8. For comparison, values of ∆(.99)  for portfolios (a) through (c) from Table 1 are
reproduced in this table. While values of ∆(.99)  calculated by Moore are somewhat smaller than those
calculated here, the agreement between Moore’s results and this work is good. Note that the values of ∆(.99)

calculated both by Moore and in this work reflect the epistemological uncertainty due to the limited
historical record. Moore's analysis is based directly on the historical PCS loss data, while the analysis of the
present work is based on the effects of the meteorological record on those losses.

V. Comparison  to Corporate Bond Volatility

The discussions presented so far reflect an attempt to evaluate uncertainty in hurricane CAT
models and to evaluate its effect on CAT securities pricing. But what is the investor to make of this?  How



does uncertainty in CAT models compare with uncertainty in more traditional securities? A simple proxy
for uncertainty in traditional securities is the volatility of one-year corporate bond default rates. This
volatility can be calculated from historical default rates and directly compared to the statistic ∆(.99)

calculated in the previous section. The statistic ∆(.99)  is interpreted here as a measure of uncertainty in CAT
bond default rates.

Table 3 contains a summary of historical one-year corporate bond default rates for investment
grade, speculative grade and all corporate bonds for the years 1970 – 1997.[Keenan, 1998]. Rmean and Rsdev

correspond to the mean and standard deviation of the default rate, respectively, as determined from a
lognormal best fit to the historical data. A truncated lognormal distribution is used to fit the investment
grade data since some of the yearly default rates are equal to zero. In analogy to Eq. 8, volatility of one-
year corporate bond default rates can be characterized by the statistic ∆R

(.99) , where ∆R
(.99)  =  (R(.99) – Rmean)

/ Rmean. The quantity R(.99) is the 99th percentile of the default rate distribution as determined by the
lognormal fit to the data. In the case of the investment grade data, the 99th percentile is calculated from
Rmean and Rsdev assuming a normal distribution. The statistic ∆R

(.99) is given in Table 3 for the three bond
classes. Values of Rmean, Rsdev and ∆R

(.99) for all bond classes were also calculated assuming normally
distributed data; although not shown here, those results are similar to those in Table 3. Values of ∆R

(.99)

range from 3.6 to 4.6, while the equivalent values of ∆(.99) from Tables 1 and 2 range from 1.9 to 2.3. This
comparison indicates that uncertainty in corporate bonds, as measured by volatility of one-year default
rates, is greater than the uncertainty in CAT models resulting from the historically limited meteorological
data.

Most CAT bonds (and all rated CAT bonds) come with model-based default probability estimates.
In the 1997 to early 1998 period, CAT bond excess yields (rate of return less risk free rate less expected
loss rate) typically ranged from 300 to 500 basis points (bp), whereas comparable corporate bonds traded
with excess yields around 100 bp. At the time, this discrepancy was attributed to a combination of the
novelty of CAT bonds (hence limited marketability) and to the uncertainty surrounding the risk assessment,
so that this spread should diminish in time.[Lane, 1998] DCR’s use of a 99th percentile (process risk) level
for rating the Residential Re bond does not have a counterpart in the rating of corporate bonds. This
asymmetry is attributed to the novelty of CAT bonds.[Buckley, October 1998]  Indeed, the “zero-beta”
argument from CAPM theory suggests that the excess yields of CAT bonds should converge to zero, given
sufficient liquidity.[Froot,1995] In the latter half of 1998, CAT bond and corporate bond yields did indeed
move closer together. However, this was a result of the turmoil and “flight to quality” in bond markets
raising the spreads on corporates, and not on any change in CAT bond excess yields, which remained
relatively unaffected. [Sandor, 1998]

VI. Conclusions

A simple technique is introduced for developing confidence intervals on the exceedance
probability curves produced by hurricane catastrophe simulation models. Confidence intervals calculated
with this technique reflect uncertainty resulting from the limited number of historically observed
hurricanes. Because this source of uncertainty underlies all hurricane CAT simulation models, this
technique will be applicable to all CAT models. Uncertainty in the mean annual hurricane frequency is
estimated directly from the historical data. Uncertainty in the severity is estimated from a parametric
bootstrap calculation applied to simulated losses. The magnitude of confidence intervals on the EP curve is
dominated by uncertainty in the severity. This can be understood by considering that, compared to the
uncertainty on the severity as calculated by the parametric bootstrap method, the mean annual hurricane
frequency is relatively well defined by the past 100 years of observations.

This technique is used to calculate confidence intervals on the EP curve for three different
portfolios. When normalized to the respective base-case EP curves, confidence intervals calculated for the
three different portfolios are quite similar, and appear to be roughly constant for return periods greater than
approximately 80 years. Values for the 95th percentile of the normalized EP curves range from
approximately 1.9 to 2.8.



The results of the parametric bootstrap calculation are placed in the context of a recent CAT bond
transaction, and used to calculate uncertainty of the expected loss. The uncertainty of the expected loss is
measured as a normalized difference to the base-case EL by the statistic ∆(.99), and reflects pricing
uncertainty of CAT bonds. The statistic ∆(.99) is also used a measure of uncertainty in CAT bond default
rates. The magnitude of ∆(.99) calculated for three different portfolios is in good agreement with the results
of Moore [1998], in which uncertainty in the pricing of CAT securities is calculated from historical PCS
insurance losses. In contrast, the magnitude of ∆(.99) calculated using the results of the parametric bootstrap
technique is almost an order of magnitude larger than an equivalent measure of the process risk component
calculated in an actual CAT bond transaction.

In order to develop an understanding of how investors might compare the new CAT bonds with
more traditional investment vehicles, the volatility in one-year corporate bond default rates is compared to
the magnitude of uncertainty in hurricane CAT simulation models. Uncertainty in CAT simulation models
is measured as the volatility of CAT bond default rates, represented by the statistic ∆(.99), calculated using
the results of the parametric bootstrap analysis. The results of this comparison suggest that uncertainty in
corporate bonds, as measured by the volatility in one-year corporate bond default rates, is greater than an
equivalent measure of volatility in CAT bond default rates. While the “zero-beta” argument from CAPM
theory suggests that CAT bond excess yields should converge to zero, (as opposed to corporate bonds
which must bear a systematic risk premium)[Froot,1995] recent CAT bond excess yields have been even
larger than excess yields for comparably rated corporate bonds. The analysis presented in this paper
suggests that, CAPM aside, if investors impose risk premia for the uncertainty of bond returns, then
corporate bonds and CAT bonds deserve comparable treatment.

The author would like to gratefully acknowledge John Major for his invaluable guidance in this
work; and Daniel BarYaacov and Maya Belubekian for their helpful feedback.
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Figure Captions

Figure 1: Results of a bootstrap calculation for the mean annual hurricane frequency with n = 500.
The histogram represents the results of the binned bootstrap calculation, and the solid line is a t-distribution
corresponding to the empirical mean and variance as defined in the text.

Figure 2: The empirical severity distributions FSE( l) determined by a CAT simulation model for

three different portfolios (thick solid lines) corresponding to (a) personal,  (b) commercial and (c) specialty
lines exposure, respectively. Also shown are the best-fits to the empirical severity, FSP( l) (thick dashed

lines), as well as the parametric bootstrap replication severity distributions FSP* b( l) plotted for every 10th

bootstrap replication (dotted lines).

Figure 3: Plug-in EP curves for the three portfolios (a), (b) and (c) represented as a log-log plot of
loss (in dollars) versus return period (in years) (middle solid lines), where return period T = 1/EP. Also
shown are percentile EP curves based on the uncertainty in the mean annual frequency and in the severity
resulting from the limited historical dataset. The upper solid lines correspond to the 95th percentile curve
EP(.95) (l) and the lower solid lines corresponds to the 5th percentile curve EP(.05) (l). The dashed lines in Fig.
3 correspond to the case where only uncertainty in the mean annual frequency is used to determine a 90%
confidence intervals on the EP curve. Calculating confidence intervals on the EP curve based only on
uncertainty in the severity produces curves virtually identical to the curves corresponding to the inclusion
of both frequency and severity uncertainty

Figure 4: The ratio L(p)/ L^  versus return period, where L(p) is the loss percentile and L^  is the plug-in
estimate for the loss at the respective return period for percentiles p = 95% (>1) and p = 5% (<1) for the
three portfolios (a) through (c).



Tables

FL$ ($b) DL$ ($b) EL
 ^

 (%) ∆(.99)

1.35% 0.55%

USAA/Res Re 1 1.5 0.72 –

Portfolio (a) 0.54 1.40 0.88 1.91

Portfolio (b) 0.46 0.85 0.96 1.94

Portfolio (c) 0.08 0.21 0.83 2.34

Table 1: Values of the First Loss (FL), Depletion Loss (DL) and Expected Loss (EL) calculated
for portfolios (a) through (c) within the context of the USAA/Res Re transaction as described in the text.
Details of the USAA/Res Re transaction and modeling results are given for comparison. Also shown is
∆(.99) , a normalized measure of the 99th percentile EL value as determined from a parametric bootstrap
analysis.

Calculation ∆(.99)

Portfolio (a) 1.91

This work: Portfolio (b) 1.94

Portfolio (c) 2.34

Call 1.708

Moore: Spread 1.252

Knockin 1.827

Table 2: Comparison of ∆(.99)  calculated in this work for portfolios (a) through (c) along with the
results of Moore [1998]. The parameter ∆(.99)  is a measure of the normalized 99th percentile Expected Loss
(EL), and is calculated in this work using a parametric bootstrap calculation, and by Moore using a
jacknkife technique on historic PCS loss data for three different insurance linked securities.

        Corporate Bond Default Rates (%), 1970 – 1997
Investment grade Speculative grade All corporates

Rmean 0.05 3.41 1.07
Rsdev 0.10 3.15 1.24

∆R
 (.99) 4.43 3.57 4.62

 Table 3: Volatility of one-year corporate bond default rates for investment grade, speculative
grade and all corporate bonds.[Keenan, 1998] The mean and standard deviation of each bond class is given
by Rmean and Rsdev, respectively. Default rate volatility is quantified by the statistic ∆R

 (.99)  as defined in the
text.
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Figure 1: Results of a bootstrap calculation for the mean annual hurricane frequency
with n = 500. The histogram represents the results of the binned bootstrap calculation,
and the solid line is a t-distribution corresponding to the empirical mean and variance as
defined in the text.
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Figure 2: The empirical severity distributions FSE( l) determ ined by a CAT
simulation model for three different portfolios (thick solid lines) corresponding to (a)
personal,  (b) commercial and (c) specialty lines exposure, respectively. Also shown are
the best-fits to the empirical severity, FSP( l) (thick dashed lines), as well as the
parametric bootstrap replication severity distributions FSP*b( l) plotted for every 10th

bootstrap replication (dotted lines).
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Figure 3: Plug-in EP curves for the three portfolios (a), (b) and (c) represented as a log-log plot
of loss (in dollars) versus return period (in years) (middle solid lines), where return period T = 1/EP.
Also shown are percentile EP curves based on the uncertainty in the mean annual frequency and in
the severity resulting from the limited historical dataset. The upper solid lines correspond to the 95th

percentile curve EP(.95) (l) and the lower solid lines corresponds to the 5th percentile curve EP(.05) (l).
The dashed lines in Fig. 3 correspond to the case where only uncertainty in the mean annual
frequency is used to determine a 90% confidence intervals on the EP curve. Calculating confidence
intervals on the EP curve based only on uncertainty in the severity produces curves virtually identical
to the curves corresponding to the inclusion of both frequency and severity uncertainty.
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Figure 4: The ratio L(p)/ L^  versus return period, where L(p) is the loss percentile and
L^  is the plug-in estimate for the loss at the respective return period for percentiles p =
95% (>1) and p = 5% (<1) for the three portfolios (a) through (c).


