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ABSTRACT 

Harry W. Markowitz in the 1950’s developed mean-variance analysis, the theory of 
combining risky assets so as to minimize the variance of return (i.e., risk) at any desired 
mean return. The locus of optimal mean-variance combinations is called the efficient 
frontier, on which all rational investors desire to be positioned. 

Actuaries see diagrams of efficient frontiers in their finance readings. Perhaps they are 
aware that efficient frontiers are parabolic. However, no mathematics is ever presented, 
so actuaries would be at a loss to derive an efficient frontier for problems involving more 
than two assets. But the minimum-variance combination of assets as a function of 
expected return has a simple matrix formulation; and the derivation of this formula is 
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well within the grasp of actuaries. From this follows the formula for the efficient frontier. 

This paper will present the mathematical theory of the efficient frontier. Then the theory 
will be illustrated by deriving the efficient frontier of a portfolio of stocks, treasury 
bonds, and treasury bills, as discussed in Ibbotson’s Stocks, Bonds, Bills, and Injlation 
1994 Yearbook. Also shown will be how to determine the mix of annual statement items 
which minimizes risk-based capital. An appendix will delve into the theory more deeply. 

Mr. Halliwell is an Associate of the Casualty Actuarial Society and a member of the 
American Academy of Actuaries. Since April of 1993 he has been the Chief Actuary of 
the Louisiana Workers’ Compensation Corporation in Baton Rouge, LA. Prior to that he 
worked at the National Council on Compensation Insurance in Boca Raton, FL. 



1) PORTFOLIOS AS MATRICES 

We have a portfolio of n assets, the return of the iti asset, Ri, being a random variable 

with mean pi. We will let R denote the (n x 1) vector whose i” element is Ri. Similarly, 

M will denote the (n x 1) vector whose I .* element is pi = E(Ri ). Let X denote the 

symmetric (n x n) matrix whose (i, j)” element is qj = CoV(Ri , Rj ). In matrix terms, M 

= E(R), and C = Vat+(R) = E((R-M)(R-M)‘), where ’ is the symbol for transposition.’ We 

will write R - [M , C] as shorthand for ‘R is a random vector with mean M and variance 

C.’ We will not make any assumptions as to the probability distribution of R; in 

particular, R need not be multivariate normal. 

Our portfolio contains the assets in some proportion. Let Sz denote the (n x 1) vector 

whose elements represent the weights of the assets according to their market values; in 

other words, Q represents the allocation of the portfolio’s market value among its 

components. For Sz to be a true allocation vector its elements must sum to unity, or J,‘Q 

= 1, where Jn is an (n x 1) vector of ones. The elements of R are real numbers, whether 

positive or negative. Negative weights are feasible in that assets may be borrowed or sold 

short. 

The portfolio (R, Q) has overall return characteristics: its mean is E(alR) = SYM, and its 

variance is Var(iz’R) = E({Q’R - R’M)(R’R - R’M)‘) = E(nl(R - M){R - MJ’Q) = 

fi’E(m - M}{R - M}‘)S2 = R’CR. Therefore, R’R - [R’M , n’Z%Tj. Since the (1 x 1) 

matrix R’ZQ is a variance, it must be greater than or equal to 0, irrespective of Q. A 

symmetric matrix Z such that R’CQ is nonnegative for all R is said to be nonnegative 

definite. Every real-valued random vector with finite covariances must have a 

nonnegative definite variance. If C has the additional property that !XX? = 0 only if !2 = 

0, then C is said to be positive dejnite. If the variance of a random vector is positive 
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definite, then every non-zero linear combination of its elements has a positive variance. 

Therefore, if the variance of a group of assets is positive definite, then no allocation 

among them will be risk-free. 

2) THE EFFICIENT FRONTIER 

In general, without a utility function U(p, cr2) we cannot compare and rank various 

mean-variance combinations. However, among combinations having the same p, we 

would assign the greatest utility to combinations having the smallest 02, which 

combinations by definition lie on the efficient frontier. In the context of our portfolio, we 

want to identify the R’s which yield optimal mean-variance characteristics, i.e., points on 

the efficient frontier. We have our return vector R - [M , C], and we will assume that C 

is positive definite. So in our portfolio there is neither a riskless asset, nor a riskless 

combination of assets. It is a theorem of nonnegative definite matrices that they are also 

positive definite if and only if they can be inverted. Z is assumed to be positive definite, 

because in what follows C“ must exist. Another theorem is that the inverse of a positive 

definite matrix is itself positive definite.2 

First, let us find an allocation S& which yields the absolutely smallest og2 = L&‘X&. One 

such allocation is 00 = C-’ J, (J,‘X’ J,)‘. ?A” is qualified because it exists and is an 

allocation vector. Its existence depends on the existence of the (1 x 1) matrix (J,‘C-’ J,)“, 

which in turn exists if and only if J,‘c“ J, is non-zero. But this is certain because C-’ is 

positive definite, according to a theorem stated in the previous paragraph. Furthermore, 

R,, is an allocation vector because J,,‘Q, = J,‘C’ J, (J,‘C-’ J,)-’ = 1. 

The associated variance oc2 = S&Z!& = {(J,‘C-’ J,)-’ J,‘Z-‘}C c“ J, (J,‘X’ J,).’ = (J,‘Z-’ 

J,)-’ J,‘C-’ J, (J,‘X-’ J,)’ = (J,‘Z-’ J,)‘. We can show that crO* is the absolute minimum 
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by considering any other allocation vector R = Q0 + A. Since Sz is an allocation vector, 1 

= J,‘R = J,‘R, + J,‘A = 1 + J,‘A. Therefore, J,‘A = 0. 

o2 = Q’CR = (!2, + A)’ C (Q, + A) 
=Ro’CRo+SZo’CA+A’Cno+A’zA 
=!&‘I:Q, +2Q,‘CA+A’CA 
= S-Y&,’ I: l& + 2 { C-’ J, (J,‘c“ J”>“>’ CA + A’ X A 
= Q,’ C R. + 2 {(J,‘C-’ J,)-’ J,,‘Z-‘}C A + A’ C A 
= Q,’ C Q, + 2 (J,‘X’ J,)’ J,‘A + A’ C A 
= Q, C Cl, + 2 (J,‘C’ J,)-’ 0 + A’ Z A 
=SZ,‘ZQ, +A’CA 
= ao2 f A’ I: A 

Since C is positive definite, A’ Z A is greater than or equal to 0, with equality holding if 

and only if A = 0. Therefore, oc2 is the absolute minimum variance, and Ro is the only 

allocation vector which attains to it. 

Next, for any p, let us find an allocation C&(p) which yields the smallest o:(p) = 

C’&(p)‘X2&). C&(n) differs from R0 in that Qo(p)’ M = p. Let us define an (n x 2) 

matrix W as the matrix whose first column is J, and whose second column is M. The 

constraints on Q,(p) may be expressed as: 

In what follows we must assume that W is of full rank, i.e., that rank(W) = 2. According 

to one definition, the rank of a matrix is the largest dimension of a submatrix with a non- 

zero determinant. The rank of W must be less than min(n, 2), where n > 1. The rank will 

be two, if and only if there are at least two different elements of M; otherwise it will be 

one. It is not restrictive to assume that at least two of the returns differ, and this assures 

that there will be a no(p) for each real-valued p.3 According to a theorem of matrix 

algebra, if rank(W) = 2, then the (2 x 2) matrix WC” W is positive definite, and hence 

invertible. 
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Let C&(p) = C-’ W(W’C-’ W)’ There is no problem with existence, since 

according to the assumptions of the previous paragraph WC- W has an inverse, 

Moreover, the constraints are satisfied, since 

WQ,(p)= w’c-‘w(w’pw)-’ 1 = l [I [I . As for the variance: 
P P 

%*(P) = Qo(CL)‘~%(P) 

= [I ~~w’c-‘w)-‘w’c-‘cc-‘w(w’c-‘w)-’ 

= [1 +Vc-‘Vv-’ w’pw(w’~-‘w)-l 

= [l ).ll(w’c-‘w)-’ 
1 [I P 

r* 

Similarly to the case of uo2, we can show that ao2(p) is the minimum by considering any 

other allocation vector Q(p) = Q,(p) + A. Because of the constraint, W’CQ) = W’Q&), 

so WA = 0: 

_. 

= PO(P) + A)’ C (Qo(1.0 + 4 
= Cl,(p) Z i-2,(p) + Q,(p)’ C A + A’ CC&,(p) + A’ C A 
= !A,(/# C L2,(p) + 2 Cl,(p)’ C A + A’ C A 
= n,(p)’ c Q,(p) + 2 { [l u] (WC-‘W)’ W’C-‘}C A + A’ YE A 
= Q,(p)’ C Cl,(p) + 2 [l /.I] (W’X-‘W)-’ w’ A + A’ Z A 
= Q,(p) C n,(p) + 2 [l p] (W’C-‘W)-’ 0 + A’ C A 
= sz,(p)’ C Q,(p) + A’ C A 
= ~~~(1-1) + A’ C A 

As before, since C is positive definite, A’ C A is greater than or equal to 0, with equality 

holding if and only if A = 0. Therefore, (ro2(p) is the minimum variance, and C&(p) is the 

only constrained allocation vector which attains to it. 
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Notice that the minimum variance ooz(p) = [I plWrZm'W)-' 
1 [I is quadratic in p. 
P 

Therefore, there exist constants a, b, and c such that oo2(~) = a p2 + b p + C. If a were 

equal to zero, then oo2(p) would be linear in p, which would imply that a unique absolute 

minimum does not exist. However, we saw above that an absolute minimum does exist, 

VIZ., CT0 ’ = (J,‘C-’ J,).‘. Therefore, a cannot be zero. Similarly, a cannot be negative. 

Hence, a must be positive, implying that the efficient frontier has the shape of a convex 

parabola. 

3) AN ILLUSTRATION OF CALCULATING AN EFFICIENT FRONTIER 

A discussion of the efficient frontier can be found in chapter 9 of Stocks, Bonds, Bills, 

and Icflntion 1994 Yeurhuok.4 There a portfolio is formed from three asset classes, large 

company stocks (the S&P 500), intermediate government bonds, and U.S. treasury bills. 
12.9% 

In that order. the expected return vector M = 

[ I 

5.3% . The standard deviations we will 

4.3% 

represent as a (3 x 3) matrix, A =r5% 6.5% 2.8x]; and the matrix of 

i 

100.0% 35.0% -4.0% 
correlation coefficients P = 35.0% 100.0% 16.0% . 

-4.0% 16.0% 100.0% 1 Our variance matrix,. C = 

0.0420 0.0047 -0.0002 
0.0003 . What is the efficient frontier of this portfolio? 

-0.0002 0.0003 0.0008 

At the vertex of the parabola: 

0.0420 0.0047 -' 
u o2 =(J;C-'J,)-' = 0.0047 0.0042 = [0.0007] 

-0.0002 0.0003 



0, =C-'J,(J;C-'J,)-I=~-'J,o," 

0.0420 0.0047 -0.0002 1 

-0.0002 0.0003 0.0008 III 1 
0.0047 0.0042 0.0003 1 [0.0007] 

12.9% 
j.l, = npf = [1.1% 9.8% 89.1% 5.3% =[4.5%] i 1 4.3% 

So we see that the closest thing to a risk-free portfolio is one with a variance of 0.0007, 

or with a standard deviation of 2.7%, which has an expected return of 4.5%. 

For other points on the efficient frontier one must use the formula 

A table of such values follows: 



P IDO’ IStd. Dev. 1 %W 
-5% 10.0534 123.1% -1.1049 0.2019 1.9030 
-4% 
-3% 
-2% 
-1% 
0% 
1% 
2% 
3% 
4% 0.0009 2.9% 
5% 0.0009 3.0% 
6% 0.0020 4.5% 
7% 0.0044 6.6% 
8% 0.0079 8.9% 
9% 0.0126 11.2% 
10% 0.0184 13.6% 
11% 0.0255 16.0% 
12% 0.0337 18.3% 
13% 0.0430 20.7% 
14% 0.0535 23.1% 
15% 0.0652 25.5% 
16% 0.0781 27.9% 
17% 0.0921 30.4% 
18% 0.1073 32.8% 
19% 0.1237 35.2% 
20% 0.1413 33.6% 
21% 0.1600 40.0% 
22% 0.1799 42.4% 
23% 0.2009 44.8% 

0.0429 20.7% I I 0.0338 18.3% 
0.0254 15.9% 
0.0184 13.6% 
0.0125 11.2% 
0.0079 8.9% 
0.0044 6.6% 
0.0020 4.5% 

-0.9873 0.1909 
-0.8698 0.1799 
-0.7522 0.1689 
-0.6346 0.1579 
-0.5171 0.1470 
-0.3995 0.1360 
-0.2820 0.1250 
-0.1644 0.1140 
-0.0469 0.1030 
0.0707 0.0921 
0.1882 0.0811 
0.3058 0.0701 
0.4234 0.0591 
0.5409 0.0481 
0.6585 0.0372 
0.7760 0.0262 
0.8936 0.0152 
1.0111 0.0042 
1.1287 -0.0068 
1.2462 -0.0177 
1.3638 -0.0287 
1.4814 -0.0397 
1.5989 -0.0507 
1.7165 -0.0617 
1.8340 -0.0726 
1.9516 -0.0838 
2.0691 -0.0946 
2.1867 -0.1056 
2.3043 -0.1166 

1.7964 
1.6899 
1.5833 
1.4767 
1.3701 
1.2636 
1.1570 
1.0504 
0.9438 
0.8373 
0.7307 
0.8241 
0.5175 
0.4109 
0.3044 
0.1978 
0.0912 

-0.0154 
-0.1219 
-0.2285 
-0.3351 
-0.4417 
-0.5482 
-0.6548 
-0.7614 
-0.8680 
-0.9745 
-1.0811 
-1.1877 

2.4218 -0.1275 -1.29431 

As expected, the higher the mean return, the more one must borrow, or short, the bol 

and the T-bills. A graph of the table follows: 
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Efficient Frontier 

This graph differs from those usually shown in finance texts in that the independent 

variable p is graphed on the x-axis, rather than on the y-axis. Moreover, the parabola is 

the variance curve; most texts graph an effkient frontier of standard deviation versus 

mean. 

,: 
.L 

4) OPTIMIZING A QUADRATIC FORM 

The mean-variance optimization presented above is a special instance of the general 

problem of optimizing a quadratic form. A quadratric form is an expression of the form = 

X’CX, where X is (n x 1) and C is (n x n). C need not be symmetric; however, the 

quadratic form is symmetric since it is a (1 x 1) matrix. Therefore, X%X = (X%X)’ = 

X’Z’X. So XXX = (1/2){x’CX + X’Z’X} = X’((C + z’)/2}X, where (C + Cl)/2 is 

symmetric. So without loss of generality we may assume C to be symmetric. 

.:I 

The general problem is to find the X which minimizes X’CX, subject to some constraint 

AX = B. Let us have m linear constraints, so A is (m x n) and B is (m x 1). If we choose 

the constraints so as to be independent of one another, then the rank of A will be m. 
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Provided that (AE’A’) -’ exists, the optimal X, = E’A (AC’A’) -’ B.5 The constraint is 

satisfied, since AX0 = AC’A’ (AC’A’) -’ B = B. To show optimality, consider any X = 

X0 + A, such that AX = B. Therefore, A A = 0, and: 

X’CX = (X0 + A)’ C (X0 + A) 
=Xo’CXo +GCA+A’CXo +A’T.A 
=Xo’CXO +2&‘CA+A’ZA 
=Xo’C& +2 { Z-‘A’(AC’A’)-‘B}‘CA+A’CA 
= X0’ Z X0 + 2 { B’ (AZ-IA’) -’ A C“ } Z A + A’ C A 
=Xo’CXo +2B’(AC-‘A’)“AA+A’CA 
=X;CXo +2B’(AC’A’)-‘O+A’CA 
=Xo’CXo +A’CA 

Therefore, if C is nonnegative definite, X0’ C X0 is a minimum; moreover, if C is 

positive definite, it is a unique minimum. If Z is not nonnegative definite, then X, will 

be an inflection point, which in the context of quadratic forms is a saddle point. This 

generalized solution will be applied in the next section. 

5) MINIMIZING RISK-BASED CAPITAL 

Robert P. Butsic6 presents an example of calculating the risk-based capital for a company 

whose balance sheet is: 

I Assets I Liabilities I 

Butsic shows that the risk-based capital required for any basic element is approximately 

proportional to the standard deviation of a unit amount of that element [ 1, p. 3431. Since 
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units of a basic element are perfectly correlated, it follows that the proper risk-based 

capital increases in proportion with the amount of the element. The basic elements of this 

example are stock, bonds, affiliated stock, loss reserve, and property UPR, and the 

proportionality constants expressed as a capital ratio (CR) vector are: 

CR= 

Stock 
Bonds 

Affiliates = 
Loss- Reserve 

Property- UPR 

0.30 

0.05 

0.30 

0.40 

0.10 

If we make CR a (5 x 5) diagonal matrix we can calculate the separate elements of risk- 

based capital: 

CR*X = 

0.30 200' 60 

0.05 1000 50 

0.30 100 = 30 

0.40 800 320 

0.10 100 10 

However, we want to compute the risk-based capital of the surplus, and for this we need 

to know the covariances between the five elements. More precisely, since the capital 

ratios already incorporate the standard deviations of their elements, we need to know the 

correlation coefficients. Butsic provides us with the rho matrix: 
‘1.0 0.2 1.0 
0.2 1.0 0.2 0.4 

P = 1.0 0.2 1.0 -1.0 
0.4 -1.0 1.0 

1.0 

The formula, therefore, for the risk-based capital of any (5 x 1) combination of elements 

X is: 
Rx? = (CR*X)‘P(CR * X) 

= X'(CR'*P*CR)X 

= X'(C)X 
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where 
0.30 1.0 0.2 

0.2 1.0 
I 1.0 0.2 

1.0 
0.05 0.2 0.4 

C= 0.30 1.0 
0.40 0.4 -1.0 

0.10 

-1.0 I 

030 
0.05 

0.30 
1.0 0.40 

1.0 O.l( 

0.09 0.003 0.09 
0.003 om25 0.003 0.008 

= 0.09 0.003 0.09 -0.12 
0.008 -0.12 0.16 

0.01 

1 

Butsic has estimated the covariances as if the liabilities were negative assets; therefore, 

200 
1000 

the $400 surplus is represented by X = 100 . Therefore, RBC2 = X’CX = 121,300, or 

-800 
-100 

RBC = $348.28. 

But we might wish to know the X which minimizes RBC’ = X’ZX, subject to some 

constraint AX = B. For example, we can attempt to minimize the risk-based capital of 

the surplus, given that the surplus is $400, or AX = [l 1 1 1 lp = [400]. (AC”A’y’ 

= [0.001998], and 

X, = C-‘A’(Az-‘A’)-‘B = -17 1 

322 
15 . At this combination, RBC* = GZXc = 3 19.704, or 

0 

80 1 

RISC = $17.88. 
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Now suppose that we do not have so much freedom in apportioning our $400 of surplus. 

Rather, our only choice is how to apportion the first $1,200 between stock and bonds: 

&;i ; ; 4 $=[;=lcB 

In this case, 

X, = Z-‘A’(AC-‘A’)-‘B = 

10 0 0 0 1J L-loo] 
0.002497 0.002497 

I 0.002497 0.002497 

0.008046 0 

(Ax-'A')-' 
-0.11195 0 

= 0.008046 -0.11195 0.15926 0 1 ' 

-182 
1382 
100 

-800 
-100 

10 0 0 O.OlJ 

, and RBC2 = XO’CXO = 108710, or RBC = $329.71. 

L 

Many with good reason suppose that risk-based capital standards will induce insurers to 

sell some of their stocks; however, it surprises this author that risk-based capital might 

induce them to short-sell stocks. This may be only a peculiarity of Butsic’s example; but 

the keepers of risk-based capital should test whether their parameters will lead to such 

undesirable results, if indeed this short-sale tendency be undesirable. Of course, short 

selling to minimize risk-based capital is countervailed by decreasing one’s expected 

return on invested assets. 

One more point needs to be made. There is a flaw in Butsic’s example unrelated to the 

short-sale peculiarity just mentioned, viz., that the optimization assumed that C is a 

nonnegative definite matrix. However, it turns out that this particular C is not. A 

theorem states that a matrix is nonnegative definite if and only if all its eigenvalues are 

nonnegative. Here the eigenvalues of Z are 0.2684, 0.1145, 0.0100, 0.0024, and -0.0428. 

This means that there are values of A for which A’ C A is negative, although they may not 

happen to be in the subspace in which A A = 0.’ In any event, the negative eigenvalue 
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originates in the correlation matrix P, and the keepers of risk-based capital should make 

sure that whatever P they use is at least nonnegative definite, and preferably positive 

deflnite.8 

6) CONCLUSION 

We have seen the power of mean-variance analysis, or more generally, quadratic-form 

optimization, in regard to risk diversification. One other application is to the problem of 

optimizing one’s mix of business. Not having the requisite statistics, the author did not 

give an example of this. However, if one had mean operating ratios by line of business 

and a matrix of their covariances, then it would be easy to calculate an efficient frontier 

and the associated premium allocation vectors. 

The essence of efficient diversification is to divide and conquer, i.e., to get one’s 

adversaries to fight among themselves before they come against oneself. The author is 

reminded of a story in the book of Judges, according to which Gideon with an army of 

three hundred defeated a vastly superior Midianite army. The stated reason for this 

unlikely victory is that God had sent a spirit of confusion among the Midianites, so that 

they rose up “every man’s sword against his fellow.” Comedian George Carlin perhaps 

expressed the same idea in his bombastic suggestion for a fresh good-bye: “May the 

forces of evil become confused on the way to your house.” In any event, actuaries 

should be employing mean-variance analysis in the construction of portofolios of risks. 



NOTES 

1 It is presumed that the reader has some familiarity with matrix algebra. Therefore, 
some of the steps in the derivations may involve the application of multiple matrix 
theorems. Some of the basic properties of matricies are stated here, and may be of help if 
the reader is puzzled by a derivation: 

A. Matrix multiplication is associative: A(BC)=(AB)C. 
B. Matrix multiplication is not commutative; however, (1 x 1) matrices commute. 
C. Matrix multiplication is distributive: A(B+C)=AB+AC. 
D. Transposition of a product behaves thus: (AB)’ = B’A’. 
E. Similarly, with matrix inversion, (AB)-*=B-*A-t, if A and B are nonsingular. 
F. By definition, A is symmetric if and only if A’=A. 
G. Every (1 x 1) matrix is symmetric. 
H. If A is nonsingular, then (A-1)’ = A. Also, (A-l)‘=(A)-‘. 

Judge [3] contains a seventy-five page appendix on matrix algebra that alone makes the 
book worth purchasing. 

* Cf. Judge [3], pp. 96Of., on definite matrices. 

3 A universe of assets all whose expected returns are the same is not realistic. However, 
the formula for the minimal variance q2 = (J,‘Z’ J,)-’ ’ is still valid. There is a problem 
related to this situation, viz.: given Xi, X2, , X,, all of which have the same mean, 
what is the best linear unbiased estimator (BLUE) of that mean? If we may assume a 
matrix of covariances, C, the best estimator is the weighting of the X’s according to R0 = 
X’J, (J,‘C-‘J,)-‘. A s a’ check, let us work through the familiar case in which the X’s are 
uncorrelated. but have different variances: 
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JT’J= [l 1 ‘.. 1 

iJ 

=;;; =[y] 

0-I “tl 
Therefore. 

This is a matrix expression of the well-known rule that independent observations should 
be weighted according to the reciprocals of their variances. 

4 Ibbotson [5], chapter 9, pp. 147-156. 

5 Appendix A shows how this solution was obtained. 

6 Butsic [ 11, pp. 345-347. 

’ Cf. Judge [3], pp. 951-953 on eigenvalues and eigenvectors. Also pp. 960f. Using the 
SAS IML routine EIGEN, the author decomposed C as V’AV, where V is the eigenvector 
matrix and A is the eigenvalue matrix: 

- 0.3200 -0.0104 0.6346 -0.7034 0 
0.7992 0.0670 0.2156 0.5570 0 

v= 0 0 0 0 1 
-0.0978 0.9933 0.0621 -0.0032 0 
-0.4993 -0.0940 0.7396 0.4414 0 

0.2684 0 0 0 0 
0 0.1145 0 0 0 

A= 0 0 0.0100 0 0 
0 0 0 0.0024 0 
0 0 0 0 -0.0428 

V is orthogonal, meaning that VV’ = V’V = I (the identity matrix). The problem of 
optimizing X%X, subject to AX = B can be transformed by a rotation of axes specified by 
v: x’cx = x’(vv)c(v’v)x = (X’V)(VCV’)(vx) = (vxy(vvAvv)(vx) = YyA)Y. 
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And B=AX=A(V'V)X=(AV')(VX) = (AV')Y=CY. So thetransformedproblemisto 
optimize: 

0.2684 0 0 0 0 Yl 
0 0.1145 0 0 0 Y2 

Y'AY = [Y, Y? Y, Y4 Ys I 0 0 0.0100 0 0 Y3 
0 0 0 0.0024 0 Y4 
0 0 0 0 -0.0428 ys 

subject to CY = (AV')Y = B. Let us consider the first constraint, viz., that the surplus 
could be apportioned in any manner so long as it totaled $400: 

YI 

CY=[O.2407 1.6388 1 0.9544 0.5878 y3 = 400 

1: 

y2 [ 1 
Y4 
Y5 

One very obvious choice for Y is for the first four elements to be zero, and for the fifth 
element to be 680.49. At this point RBC* = X’CX = Y’AY = t-19,799.92]. The 
corresponding value for X is: 

0.3200 0.7992 0 -0.0978 -0.4993 0 -339.75 
-0.0104 0.06696 0 0.9933 -0.0940 0 -63.94 

X=V'Y= 0.6346 0.2156 0 0.0621 0.7396 0 = 503.30 
-0.7034 0.5570 0 -0.0032 0.4414 0 300.39 
0 0 10 0 680.49 0 

In this situation the company has $503.30 in affiliates, has borrowed $43.94 in bonds, and 
is sold short $339.75 in stock. So far this is a plausible balance sheet. But the company 
would have to show ($300.39) in loss reserve, which is not realistic (sooner or later it 
may be possible with exotic reinsurance treaties or with insurance futures). However, the 
point is made that risk-based capital should use a positive definite matrix of correlations. 

8 After the body of this article was written the NAIC published the risk-based capital 
formula applicable to 12/3 l/94 balance sheets. Briefly, the NAIC simplified the 
covariance problem by assuming that off-diagonal covariances are zero. The author 
cannot guess how true-to-reality this simplification remains; however, it does insure that 
the variance matrix Z is positive definite. Cf. NAIC Proceedings 1993 1st Quarter, p. 
163. 
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APPENDIX A 

OPTIMIZATION OF A QUADRATIC FORM UNDER CONSTRAINTS 

In section 4 was presented the solution to the problem of finding the critical point of a 

quadratic form subject to constraints. In this appendix the solution will be derived. The 

derivation requires the use of what is known as a Lagrange multiplier. 

The probIem is to find the critical point of X’ZX subject to AX = B; where X is (n x I), C 

is symmetric (n x n), A is (m x n), and B is (m x 1). Let h be the (m x 1) Lagrangian 

vector. We form the Lagrangian h(X,h) = X’ZX + Zk’(AX - B) . According to the 

rules of matrix differentiation (cf. Judge [3], pp. 967-969): 

g=Z(AX-B) 

The critical values X, and h, are obtained by setting the derivatives to 0. Therefore: 

XX, +A%, = 0 

A-T =B 

where 0 in the first equation is an (n x 1) vector. We can combine these two equations 

into one partitioned-matrix equation: 

[: *03[::1=[:]. 

L 

.- 

E 

If the inverse exists, then the solution is: 
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If E is positive definite and rank(A) = m, then AZ-IA’ is a positive definite (m x m) 

matrix. Therefore, H = -(AE’A’)-’ exists, 

hnd[: :3 =[ 
Z-‘(I, + A’HAC-‘) -C-‘A’H -HAZ-’ H 1’ One can verify this last equation by 

multiplying both matrices, using the definition of H, and arriving at I,,,, the identity 

matrix of dimension n+m. Therefore, 

z-‘(I, +A’HAZ-‘) -C-‘A’H 0 

-HAZ-’ IL 1 H B 
,md 

X, = -C-‘A’HB = C-‘A’(AC-‘A’)-‘B . As shown in section 4, X, will be a minimum 

if Z is positive definite. 
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