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Abstract; 

The recent insolvency of Executive Life Insurance Company has motivated increased concern 
about the quality of  insurance company assets and the risks associated with those assets. Junk 
bonds are an asset which was believed by some to provide a relatively high return with 
minimal risk. Since junk bonds played a significant role in the insolvency of Executive Life, 
the risks of owning junk bonds currently are of greater concern to regulators. 

In this paper, some of the prior research on junk bonds is reviewed. Then statistical models 
are developed which can be used to predict junk bond default rates. Finally, procedures for 
incorporating the statistical mode~ into a comprehensive simulation of insurance company 
performance are described. 
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Overview 

The recent demise of Executive Life Insurance Company illustrates the crucial role that high 

yield bonds, also known as junk bonds, can play in the solvency of  insurance companies. This 

insolvency has generated new interest among regulator/~ in the asset side of  the insurance 

company balance sheet. 

Not  very many years ago high yield bonds were proclaimed the ideal investment with low risk 

and high return. It was claimed that because of a relatively modest annual default rate of  

between 1% and 2% per year the losses from defaulted junk bonds were far less than the 

excess return for this investment. Thus, for an investor who held a diverse portfolio of high 

yield bonds, the risk adjusted rate of  return should exceed that of  other investment categories. 

This anomaly, it was claimed, was due to inefficiencies in the market place and a 

misperception of the true risk to investors by bond rating agencies. Although some analysts 

were skeptical about these assertions, the claims about high yield bonds were supported by 

much of the research which appeared in the 80's. 

The experience of more recent years has shown that junk bonds can be very risky investments. 

Since before the start of  the current recession a number of highly publicized defaults of  junk 

bonds have occurred. 

Publications have appeared more recently which have pointed out some flaws in the earlier 
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research and presented methodologies which have addressed those flaws. In this paper some 

of the more recent studies on junk bond default risks will be reviewed. Two of the most 

widely recognized of these studies are research on corporate bond mortality rates by Altman' 

and an investigation by Asquith, Mullins and WolfP of age as a factor in junk bond defaults. 

The data contained in these papers will be used to develop statistical procedures for predicting 

default rates. 

A method which has been successfi.xlly applied to modelling the variability of  insurance losses 

is simulation. This technique can also be used to study the variability of  assets as well as 

losses. Using simulation the interaction of many factors impacting the solvency of insurance 

companies can be studied. Data from prior research on junk bonds will be used to develop 

models which can be used to study the risks associated with investments in high yield bonds. 

Models will be described which can be incorporated into a simulation. Thus, the risks 

associated with bond ownership can be used as part of  a more comprehensive model of 

insurance company performance. 

Altman's Study of Corporate Bond Mortality Rates 

In his paper "Measuring Corporate Bond Mortality and Performance", Edward Airman ~ shows 

that following the default experience of a group of bonds as they age results in higher default 

rates than observed in prior studies where the age of bonds is ignored. 

The practice in calculating annual bond default rates has been to divide the number of  bonds 
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defaulting during a given year by the number of bonds outstanding at the beginning of that 

year. Similarly, the value of bonds defaulting is computed as the dollar amount of  losses to 

investors from defaulting bonds divided by the value of bonds outstanding at the beginning 

of the year. In calculating an overall bond default rate, an average of the default rates over 

a number of  years is taken. If  the default rate for bonds increases as bonds age or if the 

population of bonds changes over time, then the default rate estimated by the traditional 

procedure may be below the true default rate. 

Altman' suggested that an "actuarial" approach analogous to that used by life actuaries in the 

evaluation of population mortality be applied to the estimation of bond default rates. That 

is, the cohort of  bonds issued in the same year is followed over time and the mortality of  the 

bonds at each age is computed. Altman computed the mortality rate for each year (marginal 

mortality rate) as: 

MMR(t) ~ = total value of defaulted debt in year (t) 

total value of the population of bonds at the start of  year 

(t) 

where t represents the age since issuance of the bond. 

The population of bonds at the start of  a year was adjusted for defaults, exchanges, sinking 

fimds and calls. Thus, the marginal mortality rate is greater than the rate computed by 
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dividing the value of  defaulting debt in year (t) by the value of  the population o f  bonds at 

the start o f  year (0). An average is computed of  the mortality rates for each age using the 

data from a number of  issue years. 

The cumulative mortality rate is then computed as follows: 

SR(t) '  = Survival rate for period t = 1 - MMR(t)  

c 

CMR(t)  = Cumulative mortality rate at time t = 1 - ~-x S R ( i )  

Airman measured yearly mortality and cumulative mortality by bond rating category. 

Exhibit 1 summarizes the results o f  Airman's research. As expected, the default rate for 

investment grade bonds (AAA through BBB) is much lower than the default rate for non- 

investment grade bonds (BB through CCC). 

Altman's results suggest that cumulative default rates are relatively low for the first few years 

after a bond is issued. These rates increase as the bonds age. The 5-year cumulative default 

rates for B and CCC rated bonds were 11.53% and 31.17% respectively. The default rates 

for these classes of  bonds at one year were 1.98% and 2.99%. 

955 



Ad jus t i ng  Mor ta l i t y  Rates by  Or ig ina l  S&P Bond  Rat ing Cove r ing  
Defau l ts  and Issues  f rom 1971 to 1987 

MonaJzy rates are ac~usled lot delaults and reclemp~on. 

Exhibit I 

Years After Issuance 
2 3 4 5 6 7 8 9 10 S&P Bond Rating 1 

¢j'= 

AAA 
Yearly 
Cumulative 

AA 
Yearly 
Cumulative 

A 
Yearly 
Cumulative 

BBB 
Yearly 
Cumulative 

BB 
Yearly 
Cumulative 

B 
Yeady 
Cumulative 

CCC 
Yearly 
Cumulative 

0.00% 0.00% 0.00% 0.00% 0.00% 0.13% 0.00% 0.00% 0.00% 0.00% 
0.00% 0.00% 0.00% 0.00% 0.00% 0.13% 0.13% 0.13% 0.13% 0.13% 

0.00% 0.00% 1.81% 0.39% 0.14% 0.00% 0.00% 0.00% 0.13% 0.00% 
0.00% 0.00% 1.81% 2.20% 2.33% 2.33% 2.33% 2.33% 2.46% 2.46% 

0.00% 0.31% 0.39% 0.00% 0.00% 0.06% 0.12% 0.00% 0.04% 0.00% 
0.00% 0.31% 0.71% 0.71% 0.71% 0.77% 0.89% 0.89% 0.93% 0.93% 

0.04% 0.25% 0.17% 0.00% 0.45% 0.00% 0.17% 0.00% 0.23% 0.84% 
0.04% 0.29% 0.46% 0.46% 0.91% 0.91% 1.07% 1.07% 1.30% 2.12% 

0.00% 0.62% 0.64% 0.31% 0.29% 4.88% 0.00% 0.00% 0.00% 0.00% 
0.00% 0.62% 1.25% 1.56% 1.84% 6.64% 6.64% 6.64% 6.64% 6.64% 

1.98% 0.92% 0.74% 4.24% 4.16% 4.98% 3.62% 4.03% 8.47% 4.33% 
1.98% 2.88% 3.60% 7.69% 11.53% 15.94% 18.98% 22.24% 28.83% 31.91% 

2.99% 2.88% 3.97% 22.87% 1.37% NA NA NA NA NA 
2.99% 5.78% 9.52% 30.22% 31.17% NA NA NA NA NA 



Thus, when the volume of new issues is growing as in the 1980's, the average age of the 

outstanding debt will be low and the default rate calculated from the immature bonds may 

not be indicative of the rate that will be experienced later. In addition, if the volume of debt 

issued in the lowest non-investment grade categories (like CCC or B) is growing relative to 

the volume of debt in higher non-investment grade categories, historical default rates based 

on a different mix of  bond classes will underestimate the default rate of new issues. 

A Statistical Model of Mortality Rates Fit to Altman's Data 

The data presented in Airman's analysis can be used to model the default probabilities of both 

investment grade and non-investment grade corporate bond debt. In this paper, statistical 

models will be developed for studying bond default risks. Because of the small sample of 

bonds used in his study, and the immaturity of those bonds, mortality probabilities are not 

available for CCC bonds after 5 years of maturity. By fitting a curve to Altman's data, 

mortality probabilities can be projected beyond five years. Also, the analyst may wish to 

smooth the observed mortality probabilities for the other bond categories. 

The WeibuU distribution has frequently been applied to modelling mortality data. This 

distribution is also convenient for such applications because its parameters can be estimated 

using ordinary linear regression. If it is believed that cumulative mortality probabilities for 

CCC bonds follow the Weibull distribution, one could estimate the parameters of the Weibull 

distribution using the following procedure: 
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Let F(x) = 1 - e *^' denote the Weibull distribution where c, t > 0 are the WeibuU 

distribution parameters and X is the age o f  the bonds. 

Then regress In (-In (1-F(x))) on In (x). The parameter c is the exponential o f  the fitted 

constant from the regression and the parameter t is the fitted coefficient. 

Due to the small number o f  observations in the sample and the extreme variability o f  the 

observations, any curve fit to the observed data will exhibit large deviations between observed 

and fitted values. This is iUustrated on Exhibit 2. In addition, extrapolation o f  the curve 

beyond the range o f  the observations involves considerable uncertainty, not only because of  

uncertainty about the estimated parameters, but because the actual cumulative survival 

distribution may not be Weibull. 

In addition to estimating the parameters of  an incomplete mortality distribution, curve fitting 

can be used to develop a parametric model for the mortality rates for all categories o f  bonds. 

The parameterized model can then be used in simulation. 

In the example above, a Weibull distribution was fit to cumulative survival probabilities. 

Because o f  Altman's definition o f  annual mortality rates as conditional rates, adjusted for exits 

from the population, annual rates cannot be derived by differencing the cumulative mortality 

rates. Therefore it may be preferable to fit a curve to annual, rather than cumulative mortality 

rates. 
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Exhibit 2 

Bond Cumulative Mortality Distribution 
for CCC Bonds 

Age Actual Estimated 
In Mortality Mortality 

Years Distribution Distribution Error 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

2.99% 
5.78% 
9.52% 

30.22% 
31.17% 

2.40% 
7.41% 

14.02% 
21.63% 
29.76% 
38.02% 
46.10% 
53.78% 
60.89% 
67.33% 

-0.59% 
1.63% 
4.50% 

-8.59% 
-1.41% 
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To illustrate the statistical modeling o f  mortality rates, the double lognormal distribution is 

used because o f  its tractability. The double Iognormal distribution is defined for X, where X 

is a random variable with values between 0 and 1. It has the following form 7 

f(x)- 1 exp(- 1 (in(_in(x))_/.~) 2 

~--27r)0 x in(x) 2a2 

X therefore equals e *< .... ~, where z is Normal (0,1) random variable. X has median e ~c,, 

This distribution can have a variety or shapes and thus can be used to model a variety o f  data 

which are defined on the interval (0,1). The properties o f  the double lognormal distribution 

are described in more detail by Meinhold and Singpurwalla 8 and Holland and AhsanuUaht 

I f  the random variable p is defined as the annual mortality rate for corporate bonds, then 

define 

Y = In (-In(p)) 

If  Y is regressed on X, where X is a vector o f  independent variables (such as age and bond 

rating category), f will be normally distributed with mean ~ = E(Y/X) and variance o: equal 

to the standard error o f  the regression. That is: 
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( y _ ~ 2  
0 2  -- 

1 7n'- - ' - i  

where k is the number of  independent variables in the regression. In simulation this error 

must be adjusted for the variance o f  the estimated parameters using the formula for the 

standard error o f  the forecast or ° f :  

o l  = °~ (z + x0 x ' x ) ) %  

where X is a matrix of  independent variables, X' denotes the transpose of  X, X ~ denotes the 

matrix inverse of  X and x0 is a vector of  actual values for the independent variables. 

The ability to use linear regression makes the double lognormal distribution particularly 

convenient for modeling dependent variables with values between 0 and 1. 

To  model the mortality rates, a curve could be fit to the data from each bond rating category 

separately. However,  for some of  the categories, only a small number of  bonds were included 

in the sample, thus the observed default rates are not fully credible. In addition, some of  the 

observed results appear to be counterintuitive. For instance, mortality rates for the AA 

category exceed mortality rates for the lower A and BBB categories. There may in fact be no 

statistically significant difference between mortality rates by age for the categories which 

include investment grade bonds. Regression analysis can be used to assess the statistical 

significance of  the relationship between bond rating class and bond mortality. 
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The model used to fit mortality rates will relate the dependent variable, Y = In (-In ( 

mortality rate)) to the age of the bond. Examination of  the data suggests that the 

relationship between Y and age may be nonlinear. That is, as age increases, the value of  Y 

appears to increase, then level off, and even decrease. This effect is more evident for the non 

investment grade bonds than for investment grade bonds. Therefore, Y will be modeled as 

a quadratic function of  age. The regression will be 

Y = a + b l  age + b2 age 2 +b3 Dummy1 + b4 Dummy1 age + 

b3 D u m m m y l  age :. 

where Dummy1 is a indicator variable which is 0 if the bond is investment grade and one if 

the bond is below investment grade. The use of  an indicator variables in the equation shown 

above is equivalent to fitting a separate regression to the investment grade and noninvestrnent 

grade data. The results o f  fitting a regression to Airman's data are presented in Exhibit 3. 

The coefficients o f  age and age 2 were not significant therefore those variables were eliminated 

from the regression. The coefficient o f  the dummy variable was significant indicating that the 

bond's status as investment grade or non investment grade significantly impacts the mean 

probability of  default. The results of  the regression also suggest that age may be related to 

the mortality rate for junk bonds but not for investment grade bonds. 

The regression analysis described above can be extended to investigate additional parameters 
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which can be used to predict bonds mortality rates. If  all bond rating categories are 

significant in predicting probabilities of default the following regression would be fit to the 

data: 

Y = a + b l  age+b2 age~+b3 Dummyl+b4  Dummy1 age+b5 Dummyl  age 2 

+...b15 dummy6+bl6  Dummy6 age+b17 Dummy6 age~ 

where a dummy indicator variable, Dummyi is used to denote a bond in rating group i+1. 

For each rating group an interaction terms, Dummyi*age and Dummyi~-age ~ are created to 

model the effect of  the bond rating group on the coefficients of  age and age ~. No dummy 

variable or interaction term is created for bonds in the AAA category as one category of bonds 

becomes a reference group against which the other categories are measured. Although the 

reference category need not be the AAA group, there must be one category for which a 

dummy variable is not created. 

The model with dummy variables and interaction terms for all bond rating categories has 18 

parameters. Since the model is fit to data with only 65 observations, it is unlikely that all the 

parameters will be significant. Therefore stepwise regression was used to search for a subset 

of  significant variables for predicting bond mortality rates. A stepwise procedure uses a 

statistical algorithm to select the variables one at a time to enter the regression. At each step 

the algorithm selects the independent variable which has the strongest relationship to the 

dependant variable. 
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The stepwise regression procedure resulted in the following equation for predicting default 

probabilities: 

Y = 2.1 + .28 Dummy1 + 1.22 Dummy2 - .91 Dummy3 - 

.32 Dummy2 age +.04 Dummy2 age 2 

where Dummy1 = 1 if the bond is rated AAA 

Dummy2 = 1 if the bond is rated BB 

Dummy3 = 1 if the bond is a junk bond (BB or lower) 

The statistics for this regression are shown on Exhibit 4. Note that variables which are 

associated with lower default probabilities have positive coefficient and variables which are 

associated with higher default probabilities have negative coefficients. This is caused by the 

relationship between Y and p. When Y decreases, p increases. 

The double lognormal distribution and the regression procedure used to model bond default 

rates is one of  a number of  possible procedures which can be used to model default 

probabilities. Other possibilities include logit regression and nonlinear regression. Logit 

regression will be described in more detail below where it is used to model the frequency' o f  

junk bond defaults. Nonlinear regression which is available with most of  the widely used 

statistical software packages, can be used to model mortality probability functions which 

cannot be transformed into a form suitable for estimating linear regression parameters. 
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Exhibit 4 

Regression Results 
Mortality Rate Analysis 

Variable Coefficient 

Constant 

Dummy1 

Dummy2 

Dummy3 

Dummy2"age 

Dummy2°age^2 

2.1043 

0.2842 

1.2185 

-0.9122 

-0.3203 

0.0353 

36.048 

2.434 

3.165 

-9.022 

-2.039 

2.538 

9^2 = 
Adjusted R^2 
Standard Error 

Notes: 
Dummy1 = 1 
Dummy2 = 1 
Dummy3 = 1 

0.8189 
0.6427 
0.3197 

if bond is rated AAA 
if bond is rated BB 
if bond is non investment grade 
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Simulation of  Bond Mortality Rates 

Once a model has been fit to bond mortality data, it can be incorporated into a simulation 

which models the default experience of  an insurance company's bond assets. In order to 

perform this simulation, information about the composition of  the company's bond portfolio 

is needed. The distribution of  bonds by bond rating category and age within category is 

needed. Schedule D of  the statutory annual statement is a usefial source for this information 

although the bond quality classes used by the NAIC do not correspond exactly to the bond 

ratings given by the rating agencies. The simulation is performed as follows: 

1) Generate a Normal (0,1) random variable, z. 

2) Compute i~,~,, the estimate of  Y at time t for bonds of  age a in class c, using the 

fitted regression parameters. 

s) Compute p,,, the probability o f  default for bonds o f  age a in class c at time t as 

p,~= 1/exp(exp( i~+ zar)) 

where af is the forecast standard error of  the regression. 

4) Use the following formula to compute the value of  bonds defaulting at time t, 

D,~, and the amount of  the company's assets invested at time t in bonds of  age a 

and class c, ~¢,. 

A,~ =.A,.~,,,(1-p,~) + CF,.,ri,~-~.,re,~ 
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where CF, is the net cash flow at time t for the company, ri~ is the proportion o f  cash flow 

invested in bonds o f  class c and age a and re~ is the proportion o f  bonds o f  class c and age 

a which are sold, mature, or are called. This procedure is repeated for T future years from 

the time of  origin, where T is judgementally selected. It may be o f  little interest to the 

analyst to follow mortality experience into the distant future, therefore a T o f  10 years or less 

may be reasonable. However, if the analyst is modelling the probability that assets supporting 

an insurance company liabilities will be sufficient to pay for the liabilities and the company 

writes very long tail business, a longer period o f  observation may be desirable. 

To illustrate the use o f  the regression model in simulation, a simple scenario in which all 

future cash flows are 0 and no bonds are called was performed. The distribution o f  bonds by 

age and bond class are shown on Exhibits 5 and 6. For the first scenario only a small 

percentage o f  bond assets are invested in below investment grade bonds. This bond 

distribution is a typical one for the property casualty industry. According to the 1990 Bests 

Aggregates and Averages ~°, less than 2.5% of industry assets invested in bonds were invested 

in below investment grade bonds in 1990. Note that the assumed average age for non 

investment grade bonds is lower than the average age for investment grade bonds since the 

low grade bonds are a more recent financial instrument. A probability distribution of  default 

rates derived from the simulation is shown on Exhibit 8. This distribution indicates that if 

there is no net cash flow into or out of  the company there is a 10% probability that assets will 

decline by more than 11.87% in a 10 year period as a result o f  defaults. 
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Exhibit 5 

Bond Age Distribution Assumptions 

Years Investment 
After Grade Junk 
Issue Bonds Bonds 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

10.5% 7.0%1 
9.6% 
8.7% 
7.9% 

16.0% 
20.0% 
20.0% 

7.2% 
6.5% 
5.9% 
5.4% 
4.9% 
4.5% 
4.1% 
3.7% 
3.3% 
3.0% 
2.8% 
2.5% 
2.3% 
2.1% 
1.9% 
1.7% 
1.6% 

15.0% 
8.0% 
6.0% 
3.0% 
1.5% 
1.0% 
1.0% 
0.5% 
0.5% 
0.5% 
0.0% 
0.0% 
0.0% 
0.0% 
0.0% 
0.0% 
0.0% 

100.0% 100.0% 
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Exhibil 6 

S i m u l a t i o n  Assumptions 
L o w  J u n k  B o n d  P e r c e n t a g e  Scena r i o  

Class 

Percent of 
Bonds in 

Class 
Maturity in Years 

1 2-5 5-10 10-20 > 20 
AAA 
AA 

A/B 

BB 
B 

CCC 

40.0% 
20.0% 

14.0% 

2.0% 
0.5O/o 

0.5% 

28.0% 25.0% 22.0% 13.0% 12.0~/o ~ 
19.0% 27.0% 31.0% 14.0% 9.0% 

9.0% 33.0% 37.0% 9.0% 12.0% 

4.0% 15.0% 44.0% 31.0% 6.0% 
6.0% 25.0% 46.0% 19.0% 4.0% 

29.0% 12.0% 16.0% 5.0% 38,0% 

77.0% 25.2% 25.6% 24.5% 13.5% 11.2% 

Note: 23% of the bonds are assumed to be Government bonds with no default risk 



Exhibit 7 

Simulation Assumptions 
High Junk Bond Percentage Scenario 

Class 

Percent of 
Bonds in 

Class 
Maturity in Years 

1 2-5 5-10 10-20 • 20 
AAA 
AA 

A/BBB 
BB 
B 

CCC 

20.0% I 28.0% 25.0% 22.0% 13°0% 12.0% 
12.0% I 19.0% 27.0% 31.0% 14.0% 9.0% 
50.0% I 9.0% 33.0% 37.0% 9.0% 12.0% 

4.0% I 4.0% 15.0% 44.0% 31.0% 6.0% 
11.0% 6.0% 25.0% 46.0% 19.0% 4,0% 
3.0% 10.0% 15.0% 30.0% 20.0% 22.0% 

100.0% 25.2% 25.6% 24.5% 13.5% 11.2% 



Percentile 

Distrbut ion of Bond Morta l i ty  Values 

Annual Default Rates 
(Percent of Initial Value) 

3 4 5 6 7 8 10 

Exhibit 8 

Cumulative 
Default 
Rate 

5 1 .22% 0 . 4 2 %  0,30% 
10 1 .27% 0 .46% 0.35% 
15 1 .32% 0 .51% 0.37% 
20 1 .35% 0 .54% 0.40% 
25 137% 0.57'% 0.42% 
30 1 .40% 0 .60% 0.44% 
35 1 .43% 0 .63% 0.47% 
40 1 .46% 0 .68% 0.50% 
45 1 .49% 0 .69% 0.53% 
50 1 .52% 0 .73% 0.56% 
55 1 .56% 0 .76% 0.6O% 
60 1.60% 0.81% 0.64% 
65 1 .64% 0 .86% 0.68% 
70 1 .71% 0 .93% 0.75% 
75 1 .78% 1.01% 0.65% 
80 1.89% 1.13% 1.00% 
95 2 . 0 7 %  1 .30% 1.24% 
90 2 .41% 1 .60% 1.59% 
95 3 .04% 2 .15% 2.29% 
98 4 .19% ~93% 3.65% 
99 5 .46% 4 .57% 6.94% 

0.19% 0.11% 0.10% 0.10% 0.10% 0.10% 0.09% 4.48% 
0.22% 0 . 1 3 %  0 . 1 3 %  0 .12% 0 .12% 0 .12% 0 . 1 1 %  4.82% 
0.23% 0 . 1 5 %  0 .14% 0 .14% 0 .13% 0 .13% 0.12% 5.20% 
0.25% 0 . 1 6 %  0.16°/o 0 .16% 0 .15% 0 .15% 0.14% 5,45% 
0.27% 0 ,18% 0 .18% 0 .18% 0 .16% 0 .16% 0.16% 5.74% 
0.29% 0 . 2 0 %  0 .19% 0 .20% 0 .18% 0 .18% 0.18% 5.96% 
0.31% 0 . 2 2 %  0 .21% 0 .22% 0 .20% 0 .21% 0 . 2 0 %  6.25% 
0.33% 0 .24% 0 .24% 0 .24% 0 .22% 0 .23% 0 . 2 2 %  6.45% 
0.36% 0 . 2 6 %  0 . 2 6 %  0 .27% 0 .25% 0 .26% 0 . 2 4 %  6.72% 
0.39% 0 .29% 0 .30% 0 .31% 0 .29% 0 .28% 0.27% 7.05% 
0.42% 0 . 3 4 %  0 .33% 0.3,5% 0 .33% 0 .31% 0.32% 7.34% 
0.47% 0 . 3 8 %  0 . 3 9 %  0 .41% 0 .37% 0 .35% 0.36% 7.59% 
0.52% 0 .42% 0 .44% 0 .48% 0 .45% 0 .42% 0.43% 7.97% 
0.59% 0 . 4 8 %  0 .50% 0 .58% 0 .52% 0 .48% 0 . 5 1 %  8.33% 
0.66% 0 .57% 0 .61% 0 .69% 0 .64% 0 .57% 0 . 5 8 %  8.80% 
0.80% 0 . 6 6 %  0 .71% 0 .82% 0 .75% 0 .69% 0 . 7 2 %  9.47% 
0.95% 0 .89% 0 . 9 0 %  1.02% 0 .95% 0 .90% 0 .93% 10.38% 
1.28% 1 .13% 1 .14% 1 .42% 1 .31% 1.36% 1.28% 11.87% 
1.94% 1 .87% 1 .80% 2 .16% 1.96% 2 .07% 2.29% 14.55% 
2.91% 3 .18% 3 .22% 3 .43% 2 .82% 3 .21% 3.95% 18.82% 
3.80% 5 .17% 4 .91% 5 .16% 3 .73% 4.(X)% 5.76% 21.87% 



Dis t rbu t ion  of  B o n d  Mor ta l i t y  Va lues  

Annual Mortality Rates 
(Percent of Initial Bond Value) 

Percentile 1 2 3 4 5 6 7 8 9 

Exhibit 9 

Cumulative 
Mortality 

10 Rate 
5 2.90% 1 . 2 4 %  0.94% 0.72% 0.52% 0.51% 0.48% 0.43% 0.43% 0.39% 

10 3.01% 1 . 3 9 %  1 . 0 7 %  0.82% 0.62% 0.58% 0.56% 0.50% 0.50% 0.46% 
15 3.10% 1 . 4 8 %  1 . 1 6 %  0 . 8 7 %  0.68% 0 . 6 4 %  0.62% 0.50% 0.55% 0.51% 
20 3.16% 1 . 5 5 %  1 . 2 2 %  0.92% 0.73% 0 . 6 8 %  0.67% 0.61% 0.59% 0.56% 
25 3.25% 1 . 6 3 %  1 . 2 9 %  0.97% 0 . 7 8 %  0.73% 0.71% 0.68% 0.64% 0.60% 
30 3.32% 1 . 6 9 %  1 . 3 5 %  1 . 0 1 %  0.81% 0.76% 0.76% 0.70% 0.68% 0.64% 
35 3.38% 1 . 7 5 %  1 . 4 0 %  1 . 0 7 %  0.86% 0.81% 0 . 8 0 %  0.75% 0.72% 0.70% 
40 3.44% 1 . 8 2 %  1 . 4 6 %  1 . 1 1 %  0.90% 0.87% 0 . 8 6 %  0.80% 0.78% 0.74% 
45 3.52% 1 . 6 8 %  1 . 5 2 %  1 . 1 6 %  0.94% 0.92% 0.90% 0.8,5% 0.83% 0.80% 
50 3.58% 1 . 9 6 %  1 . 5 9 %  1 . 2 2 %  1 . 0 0 %  0.98% 0.95% 0.90% 0.87% 0.86% 
55 3.64% 2 . 9 4 %  1 . 6 6 %  1 . 2 8 %  1 . 0 6 %  1 . 0 3 %  1 . 0 3 %  0.97% 0.93% 0.92% 
60 3.71% 2 . 1 4 %  1 . 7 3 %  1 . 3 7 %  1 . 1 3 %  1 . 1 0 %  1 . 1 0 %  1 . 0 5 %  1 . 0 1 %  1.00% 
65 3.80% 2 . 2 3 %  1 . 8 0 %  1 . 4 6 %  1 . 2 2 %  1 . 1 9 %  1 . 2 3 %  1 . 1 7 %  1 . 1 0 %  1.11% 
70 3.93% 2 . 3 6 %  1 . 9 3 %  1 . 5 6 %  1 . 3 2 %  1 . 3 2 %  1 . 3 7 %  1 . 2 9 %  1 . 2 1 %  1.23% 
75 4.12% 2 . 5 1 %  2 . 0 8 %  1 . 7 0 %  1 . 4 4 %  1 . 4 9 %  1 . 5 6 %  1 . 4 7 %  1 . 3 5 %  1.40% 
80 4.35% 2 . 6 8 %  2 . 3 4 %  1 . 8 6 %  1 . 6 6 %  1 . 7 0 %  1 . 8 2 %  1 . 6 8 %  1 . 6 0 %  1.63% 
65 4.65% 3 . 1 1 %  2 . 6 6 %  2 . 2 4 %  1 . 9 8 %  2 . 2 0 %  2.37% 2 . 0 5 %  1 . 8 9 %  1.98% 
90 5.06% 3 . 6 9 %  3 . 6 4 %  2 . 7 8 %  2 . 4 9 %  3 . 1 0 %  3 . 1 5 %  2 . 6 7 %  2.76% 2.65% 
95 6.97% 5 . 3 4 %  5 . 9 0 %  4 . 4 7 %  4 . 2 4 %  4 . 2 4 %  4 . 7 8 %  4.45% 4.32% 4.05% 
98 11.27% 7 . 9 3 %  10.67% 8 . 5 8 %  7 . 5 8 %  7 . 1 5 %  7 . 7 5 %  7.40% 7.44% 8.47% 
99 15.37% 10.68% 16.38% 10.78% 12.10% 12.12% 11.08% 10.19% 11.42% 16.10% 

12.80% 
13.48% 
14.04% 
14.6.4% 
15.12% 
15.63% 
16.10% 
16.65% 
17.16% 
17.84% 
18.45% 
19.19% 
19.77% 
20.82% 
22.09% 
23.39% 
25.33% 
29.19% 
38.23% 
48.06% 
56.66% 



Although most property and casualty companies are not heavily invested in junk bonds some 

companies have a much higher percentage of their assets in low grade bonds than the average 

insurance company. Exhibit 9 presents the results of  a simulation in which 18% of a 

company's assets are invested in below investment grade bonds. For this scenario there is a 

10% probability that assets will decline by more than 29.19% in a 10 year period as a result 

of  defaults. 

Asquith's Study: Aging Analysis of  High Yield Bonds 

In his 1989 paper, Altman calculated mortality rates for a universe of  corporate bonds which 

included both investment grade and noninvestment grade bonds. Much of the research on 

default rates which is relevant to modelling default risk used data for low grade bonds only. 

In their paper "Original Issue High Yield Bonds: Aging Analysis of  Defaults, Exchanges and 

Calls", Asquith, Mullins and W o l f  I studied the relationship between bond default rates and 

bond age for high yield bonds. They note that the default rates estimated in many prior 

studies were biased downwards because of failure to properly account for exchanges as well 

as the bond's age. An exchange involves swapping the high yield bond for some other 

security such as equity shares or bonds with lower coupon payments. Many researchers 

eliminated exchanged bonds from their sample when calculating default rates. However, if 

an exchange occurs because a company is in a distressed situation, the default rate for the 

exchanged security may be greater than the default rate for nonexchanged securities. Thus, 

default rate studies need to follow the history of exchanged securities subsequent to the 

exchange. 
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The study by Asquith et. al. included a sample o f  731 bonds, beginning with bonds issued 

in 1977. Their sample was larger than Altman's sample and contained sufficient data to 

estimate default rates up to 12 years after bond issuance. The default or mortality 

probabilities were not conditional probabilities. That is, the value o f  bonds defaulting was 

divided by the value o f  bonds issued. Asquith et. al. observed long term default rates in excess 

o f  30% for the earliest years in their sample. The 12 year rate for bonds issued in 1977 was 

33.92% and the 11 year rate for bonds issued in 1978 was 34.26 ~2, indicating that the 

investor bears the risk that a large percentage o f  high yield bonds will default. Their study 

indicated that default rates increase as bonds age. Thus, default rates o f  between 0% and 3% 

were observed for bonds of  less than one year o f  maturity. 

The hypothesis that age is an important, if not the most important factor in predicting default 

rates has not gone unchallenged. In a recent paper Blume, Keim and PateP a suggest that 

economic factors, not age are the most important determinants o f  default rates. They noted 

that inspection o f  the data used by Asquith et. al. shows that high default rates are associated 

with particular calendar years. That is, bonds o f  all ages seem to have a higher propensity to 

default in some years. Blume et. al. note that after adjustment o f  Asquith, MuUins and 

Wolfl's data for economic effects the rank correlation between age and default rate decreases 

from .49 to .22 ~'. 
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Analysis o f  Asquith, Mullins and Wolff's Data 

In order to assess the effect o f  both economic variables and age in determining bond default 

rates, we applied a technique known as logistic regression to Asquith, MuUins and WolfI's 

data. Logistic regression can be utilized when a dependent variable can have only two 

possible values. This is the case for bond default rates since a bond either defaults or survives. 

When using logistic regression, the probability that an event occurs is defined as 

Prob(event) - 
exp(a + b x) 

(l+exp(a + b x)) 

where x is an independent variable, such as age (x can also be a vector o f  variables). It is 

convenient to think of  logistic regression as a procedure which relates the logit o f  a variable 

to one or more independent variables. The Iogit o f  a variable is defined as the log o f  the odds 

ratio for that event. The odds ratio is the probability that an event will occur divided by the 

probability that the event will not occur. Ifp~, is defined as the probability that a bond o f  age 

a will default in period t then the logit at age a o f  p~. is 

Y~. = logit(default rate)=ln(pJ(1-p~))=a+bx 

Logistic regression, like linear regression is a multivariate technique which can be used to 

investigate the simultaneous influence of  a number of  independent variables on the dependent 

variable. Most commonly used statistical packages include maximum likelihood routines for 

estimating the parameters o f  a logistic regression. For the analysis presented in this paper, the 

logistic regression procedure of  SPSS was applied to the default rate data. 
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The following economic variables were considered as possibly significant for predicting default 

rates: GNP (Percent Change in Gross National Product), S&_P (the percent change in the 

S&_P 500 index), UEP (the percent change in the unemployment rate), and MANUCAP 

(manufacturing capacity). 

Using the logistic regression procedure of  SPSS, and a stepwise method for selecting variables 

the following model was fit to Asquith, MuUins and WolfPs data: 

Y, = -4.4 + .5 In(age,) + 2.47 S&P,-  2.3 UEP, 

where Y, is the log of  the odds ratio at time t. This model indicates that an increase in age 

and in the S&P index are associated with increased default rates and an increase in the 

unemployment rate is associated with a decreased probability of  default. The signs on the 

S&P and UEP variables are the opposite of  what one would expect. However interactions 

among the independent variables can have a significant impact on the fitted coefficients. 

Interaction terms are frequently included in the logistic regression when the effect o f  an 

independent variable is believed to depend on the value of  other independent variables. An 

interaction term is generally expressed as the product o f  the two independent variables. A 

logistic regression was performed which included interaction terms for all the independent 

variables. The results are presented in Exhibit 10. The In(age) variable was dropped from 
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Exhibit 10 

Logistic Regression Results 
Default Rate Analysis 

Variable Coefficient Significance 

Constant 

S&P 

UEP 

In(age)*S&P 

In(age)'UEP 

S&P*UEP 

-3.5037 

-2.3400 

3.2207 

2.9200 

-2.6332 

-33.1674 

0.000 

0.049 

0.130 

0.001 

0.052 

0.007 
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the regression because after inclusion of  the interaction terms the probability that it was 

significant was only 34%. The coefficients o f  all variables now have the expected sign. An 

increase in the stock market index is associated with a decreased probability of  default and an 

increase in the unemployment rate is associated with an increased probability of  default. In 

addition, age impacts the probability of  default through its interaction with other variables. 

The signs on the coefficients o f  the intraction terms indicate that as age increases the impact 

of  S&P and UEP decreases? s That is, as the log of  age increases the magnitude of  the 

coefficient for UEP decreases and the magnitude of  the coefficient for S&P increases. 

Simulation of  Bond Default Rates 

According to Hosmer  and Lemeshow '6 i',, the logit of  the predicted default rate can be 

assumed to be normally distributed. Thus, the fitted model can be used to generate random 

default rates in a simulation and used to model the risks associated with junk bond ownership. 

One additional parameter is needed for the model, the variance of  I~,. For a regression of  the 

form 

f , = a +  b, X l , +  b~X2, 

The variance of  ¢, is equal to 17 

var(a) + var(b,)X1, 2 + var(b2) X2, 2 + 2 cov (b,, b~) X1, X2, 

Thus, the variance o f  f t  is equal to the sum o f  the variances plus twice the covariances of  the 

978 



terms in the regression equation above. The variances and covariances o f  the regression 

coefficients can be obtained as part o f  the standard logistic regression output. 

To simulate default rates using the logistic regression above, values are needed for the 

economic variables S&P and UEP. These variables can be simulated using simple statistical 

models. 

The change in the stock market index can be approximated using a white noise model. That 

is: 

S&_P,= ~,+ o,Z 

where ~. is the mean of  the economic series and o. is the standard deviation o f  the residual 

o f  the series and Z is a normally distributed random variable. Since it is reasonable to 

assume that stock market performance and the unemployment rate are related to each other, 

the following fianction can be used to model the unemployment rate: 

UEP, = tz~ + ¢,(S&_P,-a.) + o. Z 

where ~ is the mean unemployment rate and ou is the standard error of  the regression and 

Z is a standard normal random variable. The parameter ~ can be determined by regressing 

UEP, on S&P,. 

Default rates can be simulated as follows: 
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1) Simulate values for the independent variables S&P, and UEP, 

2) Compute l~ta, the estimated value of  the logit o f  the default rate, for bonds of  

age a 

3) Simulate a Normal (0,1) random variable, Z 

4) The simulated logit default rate S~.= X~,+Z sd where sd is the square root of  

the variance of  Yea 

5) Compute p,. the default probability for bonds aged a at time t as 

p~= 1/(l+exp(-S~)) 

6) Compute the number of  bonds defaulting at time as N~.p~., where N~ is the 

number of  bonds of  age a at time t. IfN~p~ is less than one do the following: 

a) generate a uniform (0,1) random variable, U 

b) I f  U is less then N~p~., one bond defaults, otherwise no bond defaults. 

On Exhibit 11, the results o f  a simulation of  bond default rates is presented. The default rates 

shown are for a simple scenario in which no new bonds are added to the portfolio after the 

initial time period. The initial distribution of  bonds by age used for this simulation was 

presented on Exhibit 5. 

The simulation results for the particular set of  assumptions incorporated into the model 

indicate that there is a significant risk of  default as the cohort o f  bonds ages. At the 90th 

percentile, the cumulative default rate after 5 years is 23% and at the 99th percentile it is 

29%. 

980 



Exhibit 11 

Probability Distribution for 
Cumultive Junk Bond Default Rates 

Number of Future Years Simulated 
Percentile 1 2 3 4 5 

5% 2.3% 5.2% 8.2% 11.1% 13.9% 
10% 2.5% 5.5% 8.6% 11.7% 14.6% 
15% 2.6% 5.7% 9.0% 12.1% 15.1% 
20% 2.7% 6.0% 9.3% 12.4% 15.6% 
25% 2.8% 6.2% 9.5% 12.8% 16.0% 
30% 3.0% 6.3% 9.8% 13.1% 16.3% 
35% 3.1% 6.6% 10.0% 13.3% 16.6% 
40% 3.2% 6.8% 10.2% 13.7% 16.9% 
45% 3.3% 7.0% 10.5% 14.0% 17,3% 
50% 3.4% 7.2% 10.8% 14.3% 17.6% 
55% 3.6% 7.4% 11.0% 14.6% 17.9% 
60% 3.7% 7.6% 11.4% 15.0% 18.4% 
65% 3.9% 7.9% 11.7% 15.3% 18.8% 
70% 4.1% 8.2% 12.1% 15.9% 19.3% 
75% 4.3% 8.4% 12.6% 18.4% 19.9% 
80% 4.6% 9.0% 13.1% 17.0% 20.6% 
85% 5.0% 9.7% 13.8% 17.7% 21.5% 
90% 5.6% 10.5% 14.8% 19.0% 23.0% 
95% 6.9% 12.4% 17.3% 21.2% 25.4% 
99% 11.2% 16.2% 20.5% 25.3% 28.7% 
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In the simulation described above it was assumed that the defaulting bonds have no value 

subsequent to the default. However this would be an unnecessarily conservative assumption. 

It was noted by Altman and Asquith et. al. that when bonds default they frequently do not 

lose their full market value. Thus we may wish to model the severity as well as the frequency 

of  bond default rates. The data in Asquith's paper cannot be used to develop a model for the 

severity of  defaults as the distribution of  bond losses once a default occurred was not studied 

by Asquith. 

With the information available default severity cannot be modelled without making basic 

assumptions about the underlying severity distribution. One procedure for deriving severity 

distribution parameters for use in simulation is suggested below. 

A model for the frequency and severity of  bond defaults is described in a paper by Spahr, 

Sunderman, and Amalu ~a. In their paper Spahr et. al. developed a procedure for pricing 

corporate bond insurance. The authors fit a model to the frequency and severity o f  default 

losses. It should be noted that Spahr et. al. did not take into account the age of  the bonds 

when computing the frequency or severity of  defaults. However this should not affect their 

evaluation o f  severity as Airman's research indicated that default severity does not vary with 

the age o f  bonds. Spahr et. al. measured the severity of  losses as the decline in market value 

from three months prior to the default to three months after the default. They estimated the 

mean loss in value as 89% of  the market value three months prior to default and the variance 
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of  the loss as 3% of  the value of  the bonds. It should be noted that other researchers, using 

a different definition of  default severity, estimated a lower average loss size. For instance, 

Altman notes that defaulting bonds on average sell at about forty percent o f  par '9 at the end 

of  the defaulting month. Thus, how default severity is defined will affect the mean default 

rate selected. 

In order to use this information within a simulation, a distribution must be assumed for bond 

severities. In their paper, Spahr et. al. used the normal distribution to model bond default 

pure premiums. Because the pure premium was an average value based on a large volume 

of  data, they felt justified in making such an assumption. However it is unlikely that the 

normality assumption is justified for the severity of  default losses. The double lognormal 

distribution was previously introduced for modelling a random variable with values between 

0 and 1 and it might be usefial for modelling default severity. However, because the moments 

of  the double lognormal distribution cannot be computed analytically, parameters for the 

double Iognormal cannot be derived without significant effort. A simpler method is to use 

the lognormal distribution to model default severity. I f  the coefficient o f  variation for the 

severity distribution is denoted CV, then the lognormal parameter o is equal to In(CV2+ 1) s 

and the lognormal parameter ~a equals the mean - .5 a 2, where the mean is the expected 

severity of  loss. Since the default severities are expressed as a percentage of  the bond's value, 

it is also necessary to develop a distribution of  bond values. An empirical distribution derived 

from an insurance company's actual portfolio can be constructed for use in generating bond 

values in the simulation. Bratley, Fox and Schrage 2° describe procedures for generating 

random variables from an empirical distribution. 
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To apply the frequency/severity model to simulating bond default rates use the following 

procedure. 

For each iteration of the simulation do the following for T years 

1) For each age category simulate N~., the number of  bonds of age a defaulting at 

time t, using the procedure already described 

2) For each defaulting bond simulate a bond value 

3) For each defaulting bond simulate a default severity from the Iognormal or 

other selected distribution 

4) Multiply the default severity times the bond's value 

5) Accumulate the value of the defaulting bonds for the T year period. 

A probability distribution of the amount of defaulting bonds and the ratio of  loss to issue 

value of the bonds can then be constructed. 

Call Risk 

The procedures described have presented methods for assessing default risk. However other 

risks to investors in junk bonds exist. One of these risks is call risk. That is, if interest rates 

decline and a bond is called, the investor will be reinvesting the income from the called bonds 

at a lower interest rate. 
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In Asquith, Mullins and Wolff's study, for bonds issued prior to 1983, between 24% and 

47% 21 of  bonds had been called as of  1988. Data is not available to model the relationship 

between call risk and the age o f  bonds or between call risk and economic variables, although 

call risk is related to both these variables. Because o f  call protection few bonds under five 

years o f  age will be called. In addition, bonds are much more likely to be called when interest 

rates decline. 

It seems reasonable to incorporate provisions for call risk into an analysis o f  junk bond risk. 

In the absence o f  more detailed information, judgmental call rates for bonds over 5 years old 

can be coded into the simulation. If  a variance for the call rate is selected, random call rates 

can be simulated from a selected distribution such as the normal distribution. Call rates can 

also be made to vary with interest rates. 

Interest Rate and Market Value Risk 

Junk bonds, like investment grade corporate bonds are subject to interest rate risk. Interest 

rates vary over time and the market value of  the bonds declines when interest rates rise. The 

procedures presented in this paper cannot be used to model the variability in the market value 

o f  bonds due to interest rate risk. However such risk must be considered. 

For a large portfolio o f  high yield bonds, the risk resulting from the default o f  bonds and the 

subsequent decline in market value, as well as the variability due to changes in interest rates 

and the calling o f  bonds can be observed in the overall variability o f  the portfolio's returns. 
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Using a series of  observed returns for high yield bonds, a procedure to model the variability 

of  the returns can be developed. 

Using data collected from low-grade mutual bond funds, Cornell and Green 2~ investigated 

several models of  junk bond volatility. The data on monthly bond returns collected spanned 

the period 1960 - 1989. Among the findings of  Cornell and Green were 

(1) Over the period 1960 - 1989, junk bond funds had a lower variance and higher 

average returns than investment grade bonds. 

(2) For the period 1960 - 1976, junk bond funds had a higher variance than 

investment grade bond fi.mds. During the period 1977 - 1989, low grade 

bond funds had a lower variance than investment grade bond funds. Cornell 

and Green noted that during the period 1976 - 1989 the variability of  

investment grade bond funds was significantly greater than dur ingthe  period 

1960 - 1976. The increased variability of  investment grade bonds partially 

explained the relative lower variability of  junk bonds during the 1976 - 1989 

period. 

(3) Junk bonds were found to be less sensitive to interest rate changes than 

investment grade bonds, but more sensitive to changes in the stock market. 

Using multiple regression, Cornell and Green modelled the influence of  interest rates and 

stock market returns on junk bond returns. The model they fit for the period 1960 - 1989 
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w a s :  

JB, = .051 - .009 TB,., + .278 TB, + .1 TB,., + .034 S&P,., + .355 S&P, + 

.037 S&.P, 

where JB t is the return for junk bonds at time t 

TB, is the return for treasury bonds at time t 

S&P, is the percentage change in the S&P 500 index 

The adjusted R 2 for this model was .664 suggesting that it explained a significant percentage 

o f  the variability in junk bond returns. Cornell and Green also split their data into the periods 

1960 - 1976 and 1977 - 1989 and fit separate regressions to the different time periods. 

No  attempt has been made by the author o f  this paper to construct an alternative model for 

low grade bond returns. These results are included in this paper for those who wish to model 

junk bond returns rather than junk bond default rates. Using CorneU and Green's model, 

junk bond rates of  return can be simulated as follows: 

1) Generate random treasury bond rates, TB,., TBt and TB,÷, A simple autoregressive 

model can be used to model the bond rates. The autoregressive model is denoted 

TB, = p,  + ¢, (TB,.a - P,b) + cr,b Z 

where Z is a standard normal variable P,b is the mean treasury bill rate, a,b is the 
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standard deviation of  the residuals o f  the model. 

2) Generate random stock market returns S&P,.~, S&P, and S&_P,÷~. Stock market 

returns can be modelled as a white noise process where the deviation of  returns 

from the average stock market returns is a normal random variable. 

3) Generate a Normal (0,1) random variable, z 

4) Compute JB, = 0~, + a,~ 

where 0~, is the estimate of  JB, using Cornell and Green's regression and % is the 

standard error o f  the regression (which was estimated by Cornel[ and Green equals 

to equal 1.44). 

5) Save the values ofTB,,  TB,÷,, S&P, and S&P,.~ for use in the future simulated time 

periods. 

Cornell and Green's research indicated that junk bonds are more sensitive to movements in 

interest rates during recessions. Their research also suggested that junk bonds perform more 

poorly in recessions than in a nonrecessionary environment. In addition, because the majority 

of  junk bonds were issued in the 80's during a relatively prosperous period, the impact o f  a 

severe recession on junk bond values is not known. Thus the behavior of  junk bonds during 

a recession is unlikely to be adequately reflected in the model. 

Having described a procedure for modelling junk bond returns, mention must be made about 

shortcomings o f  the data used in the study. The data used to model junk bond returns may 

reflect an inaccurate measurement o f  actual junk bond returns. 
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Junk bonds are a very illiquid security. Unlike investment grade corporate bonds or treasury 

bonds, there is not a large market for trading these bonds. Low grade bonds are not traded 

daily and frequently only one brokerage firm deals in a particular bond. On days in which a 

bond is not traded its market value must be estimated by the mutual fiand. Various strategies 

have been used by mutual fiands to estimate the market value of thinly traded bonds. 

According to Lisco ~, many of the estimation techniques used by mutual fimds result in an 

inflated market value for junk bonds. In fact, in a Barrons 2' article titled "Inflated Junk", 

Lisco stated "According to the former pricing agent, the quotes used for the vast majority of  

junk bonds have a high degree of fluff in them". 

Since the model for junk bond returns was fit to data from low grade bond mutual fiands, the 

results are affected by the pricing procedures used by the fiands managers. 

Despite its flaws, Cornell and Green's model is a step towards building a model for the 

volatility of  junk bond returns. 

Valuation of lunk Bonds 

The focus of this paper has been the development of  models for analyzing the risks of  junk 

bond ownership. It has been assumed throughout that the market values established by an 

insurance company for both its investment grade and noninvestment grade corporate bonds 

are the correct market value. Significant risk exists that the actual value differs from the stated 

989 



value. 

An estimation o f  the true value of  bonds can only be performed by a trained financial analyst. 

Such an evaluation is based upon an in depth analysis o f  the company issuing the debt. The 

factors which must be considered by the analyst are described by Howe 2s. These factors are: 

(1) competition; (2) asset quality and marketability; (3) leverage; (4) projections of  cash 

flows; (5) corporate structure; (6) management. Most o f  these factors are related to whether 

the company issuing the bonds can survive periods of  economic stress. In addition, the 

company must be positioned to profit in good economic times. 

It  should be noted that property and casualty insurance companies are required to state 

accurately the market value of  their bonds on the statutory annual statement. The Securities 

Valuation Office of  the NAIC provides an evaluation service for both publicly traded and 

privately placed bonds which can be used by companies to value their assets. However,  a 

valuation of  a bond is performed only if it is requested. 

Other Limitations of  |unk Bond Statistical Models 

In their paper on junk bond default rates Asquith et. al. note that simulation can be used to 

model the return variability or default experience of  junk bonds. They also present a long list 

o f  the limitations of  simulation models. Among the limitations noted are 1) uncertainties 

associated with inputs to a simulation kuch as bond calling assumptions 2) the difficulties o f  

realistically modelling asset selling and reinvestment strategies and 3) the use o f  very limited 
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data for developing models for default rates and return variability. All of  these limitations 

present difficulties in the development of  realistic models of bond volatility. 

Of  the items mentioned by Asquith et. al., the limitations of  the data are a matter of  serious 

concern. Since the junk bond market is a relatively new market, defaults rates based on only 

a few years of  historical experience may not be indicative of  fiatture default rates. Moreover, 

in the mid 80's, junk bonds began to be used for mergers and leveraged buyouts. The default 

experience of this new kind of bond may be different from the default experience of bonds 

purchased to finance a company's operations. 

Conclusion 

In this paper, three procedures for modelling junk bond variability have been presented. 

Using the first procedure, bond rating class and age are used to predict bond mortality rates. 

The double lognormal distribution is used to generate random mortality rates. The mortality 

rates represent the percentage of the bonds value lost to investors due to default of  the bonds. 

A second procedure separately modelled the frequency and severity of losses from junk bond 

defaults. Logistic regression is used to model the probability of default and the mean and 

variance of average default amounts are used to derive a model for default severity. 

The third procedure presented was a method for modelling the variability of  junk bond 

returns for a portfolio of junk bonds. 
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Using one or more of these models, the sensitivity of  an insurance company's surplus to junk 

bond variability can be assessed using simulation. 

Much of the prior research on junk bonds supported the conclusion that these securities 

provided investors with very attractive risk adjusted returns. However when economic 

variables and age are considered, junk bond default rates appear to be much higher than 

previously documented. Since the research cited in this paper did not include data from the 

current recession, junk bonds may be even riskier than these models indicate. 

The risk that junk bonds pose to insurer solvency is perceived to be greater in the life industry 

than in the P&C industry. This is because P&C companies in general, pay out their liabilities 

more quickly than life companies do and tend to invest more conservatively. While many 

P&C companies do not own junk bonds, some holding companies (of both P&C and Life 

companies) have pursued a more aggressive investment program and may have invested 

amounts of  between 15% and 20% of their bond portfolio in below investment grade bonds. 
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