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ABSTRACT

The paper presents a theoretical framework for measuring the
inherent statistical variability of the 1loss development
process. Chain ladder loss development factors are assumed to
follow a LogNormal, Log Gamma or Log Inverse Gaussian
distribution. From this, the conditional distribution of
ultimate losses for each accident year (conditional on the
amount reserved at the end of development year =zero) is
developed, and its parameters are estimated. By use of
simulation, the distribution for the usual loss development
triangle can also be calculated. Approximation formulae for the
tail behaviour of the distribution of ultimate losses of the
trapezium are presented.

In modelling the conditional distribution of ultimate losses,
one can obtain an unbiased estimate of the mean of the total
outstanding reserve, percentiles of the conditional distribution
of reserves, which are required for solvency issues, and
confidence intervals, which provide a measure of accuracy about
the point estimate. The use of asymptotic formulae allows for
statements about the probability of ruin without the need to
simulate the distribution of losses.
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INTRODUCTION

A paper by Hayne (1986) explored the properties of the lognormal distribution and its possible use as a
measure of statistical variation inherent in loss development factor models. This paper extends Hayne's
work in the calculation of the distribution of ultimate incurred claims using the traditional chain ladder
method with stochastic loss development factor models. Two other distributions; the loggamma (Hogg and
Klugman, 1984) and the log inverse Gaussian, possess characteristics similar to that of the lognormal. The
development of the stochastic loss development factor model under these distributional assumptions is also
considered.

This paper presents the framework of the stochastic loss development factor method, and the appropriate
data requirements, The basic properties of the three distributions are presented. These results are required
to calculate the distribution (and estimate its parameters) of ultimate claims and the sum of ultimate losses
over all relevant accident years. Further conclusions concerning the tail behaviour of these distributions
allow for the development of asymptotic formulae that estimate the upper percentiles of the distribution
of total ultimate losses over all years. Finally, some numerical work using the stochastic loss development
factor model is presented. One trapezium of data, a long tailed line presented by Zeknwirth (1989) and
Sundt (1989) is presented.

Contrary to current actuarial beliefs, I believe that percentiles provide a better estimate of uncertainty
concerning the loss reserving process than does the confidence interval about the mean expected ultimate
loss. The confidence interval about the mean, which varies inversely with the square root of the number of
observations, measures the precision about a point estimate. Given that the assumptions are correct, the
precision will increase as more data are available, The amount of data available however does not affect the
percentiles. Given that the process assumptions are valid the distribution characteristics of total claims are

the major force driving insolvencies.

MODEL

Given claims data for a particular line (or other homogeneous grouping) of insurance, the run-off triangle,

more correctly referred to as a trapezium can be represented as follows:

Acc’t Development Year
Yr 0 1 2 3 eee n—1 n
1 Z10 z11 z13 z13 ces Zin-1 Tin
2 T30 o 2% T3 e T2,n-1 Tan
r~n+1 2Ty n41,0 Zrontl,d Drontl,2 Trontld  o-- Trondla-l

r—n+2 Ty q420 Tr-nt2l Dront22 Troni2,3

r 20
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The xy;;} in this model usually are aggregate loss dollars, either paid or incurred. It is assumed that
development after n years is negligible. The data for the first » — n years are fully developed losses, there
is no expected change in the level reserved. Although the heading of the trapezium indicates that the data
are collected by accident year, the models developed in this paper can be applied data recorded by other
collection methods.

By dividing the elements of column k by the corresponding elements of column k — 1 of the trapesium,

it is possible to construct a trapesium of observed development factors, d;x from the original trapezium of

data.
Acc’t. Development between Years
Yr 0-1 1-2 2-3 v n2-n-1 nl-n
1 di diz dia v din-1 din
2 dn djz da3 .. d2;n-1 dan
r=n+1 diin41,1 droat1z drong1,3 oo depiin-1
r—n+2 dipnyz1 drnt22 dronszs
r—1 de_1,1
r

The stochastic loss development factor model assumes that the emergence of cumnlative ultimate losses

is represented by the following rectangle:

Acc’t. Development Year
Yr 0 1 vee n-1 n
1 Iy LDy N I Hgé; Du L H:k::] Dy
I I; Dy “ee L ITeZ; Das I [Tkz: Dax

-1

r—n+l Ir—n+1 Ir—n+1Dr—n+1,1 s Ir—n+l H:=1 Dr—ﬂ+1,hJ Ir—ﬂ+1 H::l Df-ﬂ+1,k
=T

r—n+2 IL_p4a Ir—n+2Dr-n+2,1 “en l Lrny2 n;;l:l Df—ﬂ+2,k I _ny2 H::l D’-’H-Z,k

r L l LDy ee L ITeZ: Do I TTk=1 Dr

Only the upper trapezium is observable at time . Let U; = I; ];_, Dix reptesent the ultimate claims
arising from accident year i. The total ultimate claims arising from the trapezium is given by S, = 3., Us.
If the original trapesium of data consists of paid data, then the outstanding future Liability is given by

r—n r
S, — (Z Zin + Z Tk r—k)-
k=1 k=r—n+1

I; is a random variable representing the initial reporting for accident year i, and D;; is also a random
variate which represents the growth in those claims assignable to accident year i between development years

jand j+1.
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I; is a function of several exogenous variables, including earned exposure, social inflation, regulatory and
legislative changes, residual or involuntary market mechanisms and written or earned premiums (Canadian
Institute of Actuaries, 1990). This model assumes that I; is determined outside of the model, and so it is
treated as a deterministic input. Implicit in this assumption is that the loss development factor process is
independent of the determination of the initial losses, I;. Obviously, this is a simplification.

This model attempts to account for the pure statistical variation inherent in the loss development process.
Since the D;; variates are sensitive to exogenous forces such as changes in the claims handling mechanism
of the company or reserve strengthening and deterioration, the assumption is made that there has not been
any alterations in these external influences. This restriction is not as limiting as it appears. Data can
be transformed to account for these changes, and the stochastic loss development factor procedure can be
applied to the transformed data. Berquist and Sherman (1977) discuss two such transformation techniques.

Let D;j, fori=1,...,r, be independently and identically distributed random variates with distribution
function F(d; 8;) where F(d;8;) is chosen in such a way that the distributions of the transformed variables
Y;; = In D;; are closed under convolution.

If the assumption is made that D;; is independent of Dy, then the calculation of the conditional distri-
bution of ultimate accident year claims U;|I; = L H;:':x D;y, is straightforward. The I; values are given by
the first column of the data trapezium, that is 20 = ;. For each column, the parameters 8; are estimated
by é,' (d1j,daj,...,dr_j ;), a function of the observed development factors.

What is ultimately required are estimates of the variates, Uy,...,U,, along the last column of the rect-
angle. The intermediate fitted values calculated for the upper trapezium can be used to assess the validity
of the assumptions and the fit of the model.

The total incurred loss S;|(I1, Iz, ..., L) = Y1, Uslls is also a random variable. Its distribution and
inherent variability reflect the uncertainty of the development process only. It is this variable that is used
for reserving purposes. The mean of this distribution less the amount paid-to-date is the expected liabilities
accruing to the company. The mean is easily calculated as B(S;|(I1, I3, ..., I;)) = 31, B(Uk | Ix).

Remaining characteristics of S.|(I1, Ia,...,I;), such as percentiles, tail behaviour and moments, are
not as easy to calculate; either simulation or approximation methods must be used to obtain the r-fold
convolution of the distributions of the variates I1|Uy,..., I |U,. Efron (1982) provides an overview on the
use of the parametric bootstrap. This can be used to produce the distribution of ultimate claims. Simulation

algorithms are outlined in Appendix B. Tail approximations are listed in this paper.

Ultimate Losses in the Lognormal Model

The lognormal distribution has been used to model many natural occurring events including entomological

phenomena, or the incubation period of diseases. Business applications modelled include insurance claim
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sige severities and random walk models for stock prices. A thorough treatment of the lognormal distribution
and its properties can be found in Crow and Shimizu (1988) and Johnson and Kotz (1970).
I X is a normal variate with mean p and variance o2, then ¥ = e¥ is said to have a lognormal distribution

with probability density function

1 ~(lny - p)?
10) = ey oo (o)

z>0. (1)

The r** moment of the lognormal distribution is calculated from the moment generating distribution of

the normal distribution, since
E(Y") = B((e¥)") = Mx(r) = exp[ru + %r’a’]. (2)

The lognormal distribution is closed under multiplication. This is a consequence of the additive property
of the normal distribution which states that if X;,..., X, are independent normal variates with mean p;
and variance o7, then the random variate T, = 37, (X; + bi) for b; € R is also normally distributed with
mean g = Y i, (i + bi) and variance 0 = 371, 0.
i Yy,...,Y, are independent lognormal variates such that ¥; = eXi then the distribution of P, =
3=1(a;Y5) for a; > 0 is lognormal with parameters
n n
u= Z([Jj +lno;) and o= ol (3)
j=t j=1
Hayne (1986) introduces a loss development model in which each column of development factors, D;; for
i=1,...,r, follows an independent lognormal distribution with parameters u; and orf. This assumption of
independence makes the estimation procedure tractable. From (3), the conditional distribution of ultimate
claims U;|L; = I; 1'[;.'=1 D;; is also lognormally distributed with parameters py = Inl; + E;‘;x p; and
¢t = X7=19;. Using this with (1), gives the following probability density function

1 (lns — k)
(2x)080y; 202
From (2), the expected conditional ultimate claims arising from accident year i is

o) = ) w20 ®

n 1 n
E(Ui|L) = Lexp(}_ u; + 3 pIA?
j=1 i=

Estimation in the lognormal case is straightforward. Assuming that the realization of the process produces
the loss development trapezium presented in the previous section, then under the independence assumption,
dj; fori=1,...,r — j represent a random sample from a lognormal distribution with parameters p; and a,?
forj=1,...,n.

Using maximum likelihood estimation, an estimate of u; is given by
1
Ay = T Zln dyj (5)
i=1
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and the maximum likelihood estimate of o7 is

- SS:
gt = =L

(6)

r—j
where §S; = $°7-(Ind;; — 4;)*. The maximum likelihood estimate of y; is unbiased, while the estimate
for o-} is asymptotically unbiased. These estimators are requited to calculate the estimated losses accruing

to the insurance company.

Theorem 1 The uniformly minimum variance unbiased estimator of E(Ui|L) is

By = zoexp(Y_ 45) [T oFu ('—’2 L (74?:1 3 Lss;)
i=1 j=1

where oF1(n;2) = Y eop ‘?; . FI(‘%);; is the generalized hypergeometric function.

Proof: See Appendix A.
In practice, each generalized hypergeometric function will converge within five or six terms.
Given fi(1), .-, fi(r) the expected ultimate losses from the trapezium is 3% = Y7 _, fix)- The simulation

algorithm, outlined in Appendix B, is used to calculate the other characteristics of the distribution.

Ultimate Losses in the Loggamma Model

In this model, assume that the loss development factors follow a loggamma distribution. This model along
with the log inverse Gaussian (IG) model, which are special cases of the log generalized gamma distribution,

do not share many of the favourable characteristics of the lognormal model.

¢ The support for these distributions is defined only for development factors greater than one. These
models can only be used with cumulative data where recoverables received do not exceed the amount
paid out at any age. It is possible to shift the observed development factors (d}; = 14d;;) so that these

models can be used with incremental data or with cumulative data displaying negative development.

¢ Since the closure of these models is subject to restrictions on one parameter, estimation procedures
that compute the parameter estimates for the whole trapezium simultaneously are required. In the

lognormal model, parameter estimates for each column can be calculated separately.

The loggamma distribution, as introduced in Hogg and Klugman (1984), is an artificial variate constructed
from the gamma distribution. The gamma distribution is used in life testing situations and to model
meteorological precipitation. Johnson and Kotz (1970) and Lawless (1982) both provide an overview of the
uses and characteristics of this distribution.

The probability distribution function of a gamma variate with parameters « and ) is
za—le—A:Aa

f(3)=—1\(&)— z>0 (M
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with moment generating function
Mx(0) = B(e) = [;2)" t<h ®)

From this it can be seen that the gamma distribution is closed under addition only if A is constant between
variates. Specifically, if Xy, X3,..., X, are independent random variates such that X; ~ gamma(a;, A) for
i=1,...,r then Z?=1 X; is also a gamma random variate with parameters a = E?ﬂ a; and A.

The gamma distribution is not closed under shifts of location, and so the loggamma is not closed under
multiplication by a scalar. If Z = X + 6, where X ~ gamma(a, A), then Z is said to have a shifted gamma
distribution with probability density function
(z — 6)“_18_’\(’_6)/\“

= > 9
h(z) T(a) z>6 (9)

and corresponding moment generating function
My(t) = M) <A (10)

-t
Y =¥, then Y is said to have a loggamma distribution with probability distribution function

_ (ln y)a—-ly-A— 1ya

o) = fny); = UL y21 (1)

For the loss development trapesium, assume each column of variables D;j, i = 1,...,r represent an
independent and identically distributed sample of loggamma variates with index parameter o; and scale
parameter A. Using (9) and (11) the distribution of I;{I; = I; H;.'=1 D;; is a shifted loggamma distribution
with probability density fanction

w721 (lny — InL)*" e
T(a)

g'-(ui) = w2k (12)

where a = }:;;1 aj.

From (10) and (12), the expected value of ultimate claims for the i** accident year is given by
B(UilE) = Kl 2" A> 1. (13)

If A < 1, then the mean of the distribution is undefined.
Estimation of the parameters of the model, ay, a3z, ..., ay and J is numerically intensive. From (11), the

log likelihood function for the trapezium of development factors is given by

n r—j

In L{agiy, A dgijy) = 3 Y [-Alndy; + (; — 1) In{ln diy) + ajIn A — InD(ay)).
j=1li=1

Maximizing this equation produces the following n + 1 equations

i = E?ﬂ(;'"“j)&j (14)

P(&;) = ln5«+¢i,- forj=1,...,n (15)
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where (2}, the digamma function, is d—“gﬂ, and

r—3 L. n r-j
J,,:Z-'%‘f(;“d—"-) and d.=3Y Ind;.
j=1i=%

These n + 1 values are sufficient for the parameters. The geometric mean of the j** column of the log values
of the development factors is given by eds.

Tables of exact values for the digamma function can be found in Abramowitz and Stegun (1965). Alter-
natively, using the asymptotic distribution of ¥(z),

11 1 1 1 1 691 1 255
¥(@) ~Inz = o — et ¥ 12027 25225 T 2402% ~ 132210 T 3276011 ~ T2zM T 2893658 T (16)

along with the relationship
1
Yz +1) =9(=) +, (17)

Bowman and Shenton (1984, p 32) give the following algorithm for calculating ¥{z) for values of = between
0.01 and 4000.

Range of z | Strategy
.01, 40| Use the first 10 terms of (16) with argument t = 40 + (z — [z]).
¥(z) can be derived from 1(t) by (17)

(40, 60] Use the first 10 terms of (16)

(60, 200] Use the first 8 terms of (16
200,500] | Use the first 6 terms of (16
500, 4000] | Use the first 5 terms of (16

Numeric methods are required to simultaneously estimate (&, &2, ..., &n, ) from (14) and (15). Kennedy
and Gentle (1980) provide many algorithms for solving non-linear systems of equations which do not require
the calculation of the derivatives of the system of equations. If good starting values for of the unknown
parameters can be found and the matrix of derivatives can be easily calculated, a Newton-Raphson procedure
(c.f. Burden and Faires, 1988) converges quickly.

Under the loggamma model, substituting for (14) into (15) produces the following vector of n functions:

F(&) = (£1(&), f2(&),.- ., fu(@))T
where X N
Fe(&) = ful@nrGa,. .., &n) = $&n) — ln[gzsl%‘_i)“il _d,
for k = 1,...,n. The matrix of derivatives is given by

1

M Ry
3=
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where

¥ (&) 0 0
0 P(as) ... 0
(@) = :
0 0 . P(é&n)
and
r-1 r-1 r—-1
r—-2 r-2 r—2
R=1] , .. .
r-n r—n ... r—-n

Values of the trigamma function, ¢'(z) = iﬂ.&;ﬁl, can be found by differentiating (16) and (17) and using
Bowman and Shenton’s algorithm.

The m?* iteration of the Newton-Raphson procedure yields the following vector of parameter estimates
(&l,ﬂn &Z,mt teey &n,m)‘r = (&l,m—h &2,1»—1' reny &n,m—l)T - F(am—l) N Jul(&m—l)-

Good initial values for &;, for j = 1,...,n are often difficult to find. Using the method of moments for
each column j, gives the following values
. (2.3 Ind;;)?
ajo = 3 _ r—3 3°
V(YN s T

In practice, the final parameter estimates from the log IG model may provide better initial values. This is not

surprising since the gamma and the IG distributions are both members of the same family of distributions,
and possess many similar characteristics.
Once convergence has been obtained, ) can be calculated from (14). An estimate of the expected uliimate

losses for the trapesium is given by
n
At = [———-]‘5il Zz.o where &= z&j.

Since this estimate is almost certain to be biased, a better estimate is given by the sample mean of the
simulation results. That is, if S}, S}, ..., S}ooo are the observations generated (see Appendix B for details),

then 4P€ 0100 ’1‘0010 Sp.

Ultimate Losses in the Log Inverse Gaussian Model

The IG distribution is the law governing the time to passage for a particle subject to Brownian motion. Wald
(1947) showed that the distribution is the limiting form of the sample size in certain sequential probability
tests. A detailed analysis of the distribution is contained in Chhikara and Folks (1989), Johnson and Kotz

(1970) contains an overview of the distribution and its properties. Like the loggamma distribution, the
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log IG distribution is an artificial variate constructed to take advantage of the additive nature of the IG
distribution.

If X is an IG random variate, the probability density function of X is given by

)2
fle) = s (205 o0 e PEZ B e 20, (19)
The corresponding moment generating function is
Mx(t) = expluf - b1 - S0P e<b (19)

which is found by rewriting the integral [;° e'% f(z)dz in terms of an IG variate with parameters §' = §— 2t
and 4’ = p(1— -—t)° -5, By (19), it can be shown that the IG distribution is closed under addition if 5 remains
constant between variates.
The distribution is not closed under shifts of location. If Z = X + §, for § > 0, and X ~ IG(y, ) then
Z is said to have a shifted IG distribution with probability density function
W) =1 (L% (o= 7 expl B =Sty 226 (20)

and moment generating function
2
Mz(t) = exp[uB +t6 — uB(1 - —ﬁ-t)""]- (21)

Using (21), if X1,..., X, are IG variates with parameters p; and 8 then the distribution of T, =
Sp1(Xx + &) is a shifted IG variate with parameters u = Y ;_, s and § and threshold parameter

§= E::l 6"
Let Y = eX. Then Y is a log IG random variate with probability density function
1 B \os ~15 , (1 Bu?
= fllny)- =u(==)"* (1 : (14+0.58) — >1. 22
g(¥) = flng)o = u (007 (o)™ y explu — 53] vz (22)
Assume that each column of development factors D;j, i = 1,.. ., r follows an independent log IG distri-

bution with parameters u; and 5. From (20) and (22) the distribution of U;|L; = I; H;=1 D;;j is a shifted log
1G distribution with probability density function

dony ¢ B o5 r05p ] \—1.5 _ —(140.58) Bu? o
gi(w) = # (57)°° P (nw L) ™° o] PG ~ STy w>L  (23)

where 4 =Y 0, px-

From (21) and (23), the mean of ultimate losses for accident year i is given by
2 n
E(Ui|L) = Lexpl8(1 — (1 - Zi—)‘”’) 3wl (24)
k=1

This is defined for 8 > 2.
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As in the loggamma model, estimation of the parameters is numerically intensive. Assuming that the

development factors dy;;) are realized, using {22) the log likelihood function for the trapezium is

n r~j

1 1, (Ind;; — p5)?
In L{pg;y, Bidigy) = EZ[‘“#} +3lnB- Eﬁ%j‘—’)—]-
j=14=1

Maximum likelihood estimation yields the following n + 1 equations

1_ Tia T (ndy ~ 4)/lndy] (25)
8 rn— 0.5n(n + 1)
and foreach 5 =1,...,n
nz'z-f. 1 - _--\__"_j (26)
8l Silndy =) = g

These n 4 1 equations can be solved iteratively. Let pjo = % E:{ Ind;;, which is the uniformly
minimum variance unbiased estimate of u in the single sample case. For m = 1,..., N, where N is the
number of iterations until convergence, the following two-step algorithm will provide values for the maximum

likelihood estimates.

1. Using {25) calculate 3, as a function of (Brm-ts s Bnmet)
2. Let fijm, for j =1,...,n, be the admissible root of (26) calculated using S, then
Bim = (r=J +[(r—3)(r—J + 465" TIZ{(ndiy) ")) (2 i  (ndi) 1)1
Using (24) an estimate of the expected lability for the trapezium is given by

n

r
. N 2 . N
AbIe = z zi0 + exp{Ai(1 — {1 — -5)0'5)] where i = E i
i=1 =1

Since the estimates are not unbiased, it is recommended that the expected ultimate losses for the trapez-

tum be calculated from the sample mean of the simulation outlined in Appendix B.

TAIL APPROXIMATIONS FOR ULTIMATE LOSSES

Upper percentiles of the distribution of ultimate claims, which are used to estimate the probability of ruin,
can be calculated numerically using the simulation techniques discussed in Appendix B, or by approximations
based on the tail characteristics of the distributions of claims for each accident year.

Embrechts and Veraverbeke (1982) have defined a system which classifies continuous distributions ac-
cording to their behaviour in the tail. Distributions are defined to be light tailed, medium tailed or heavy
tailed, which is also known as subexponential. Embrechts, Goldie and Veraverbeke (1979) and Embrechis
and Goldie (1980) provide asymptotic formulae for the tail behaviour of sums of random variables possessing
subexponential distributions. These results will be used to approximate the tail behaviour of the distribution
of ultimate claims, S,{(I1, I3, ..., Ir) = ¥i_, UilL; under the three distributional assumptions.

This first requires proving that the conditional total claims for a given accident year follow a subexpo-
nential distribution. Under the assumption of lognormal development factors, the distribution of U;|I; is

also lognormal, which is a subexponential distribution as shown by Embrechts and Veraverbeke.
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Willmot (1986) proves that if Y is a random variate such that ¥ = X where X has a density function
F(z) characterized by
- ~ P etz
1- F(z) .o, Cafe 27

for C,6 > 0 and B € R, then the distribution of ¥ is subexponential. A(z) o B{z) is defined as
im0 %{3 =1

Under the loggamma assumption, the distribution of U;|I; is a shifted loggamma distribution, and so
Xi =InUi|L is distributed as a shifted gamma variate. Using L’Hépital’s rule with (9) gives

A . FE®
zllon;o 1~ F‘(z) - zlinulo —f'-(z) -
Therefore as z — 00,
a—1 I‘A

1— Fy(z) ~ éi,(T'-(z: —InL)o~1le™=

for & = }7_, a;, which is of the form (27), since lim;_.co h(z) = limy—oo k(2 — c) for any constant c.
Therefore U;|I; has a subexponential distribution.

Under the log IG distribution, U;]L;, i = 1, ..., r follows a shifted log IG distribution, and so X; = InU;|L;
is a shifted IG variate with probability distribution function as defined by (20). The tail behaviour of X is
given by

¢ —Ink) - p)?
1-Fi(z) ~p (Bz;)"'5 (= —lnI;)—"sexp[%lfL]

for p= 7, pj, since
CB® . ) _P
:11"20 1- F,»(z) - zll.w ~f.-(z) - 2’

As z — oo, 1 — Fy(z) is of the same form as (27), and so the distribution of U;|I; under the IG model is

subexponential.
Some terminology common to the analysis of tail behaviour is required for proofs for the approximations.
o A distribution is said to dominate another distribution in the tail if 1 — F(y) = o(1 - G(y)) as y — oo,
where o(h) is defined as limp_o 3(,?) =0.

o Two distributions F and G will have the same tail behaviour, denoted by (1 — F(y)) ~ (1 — G(v)) as
y — oo if limy o =5 = 1.
e F and G are tail equivalent, written (1 — F(y)) ~ ¢(1 — G(y)) as y — oo for some finite ¢ > 0 if

limy .o :%g—g; = ¢. The previous definition is simply a special case of tail equivalence.

e And finally, two distributions F and G are said to be maz sum equivalent, written F ~p¢ G, if

1-(FxG)(y) ~ (1- F(y))+(1—G(y)) as y — oo, where » denotes the convolution of two distributions

functions.
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The behaviour of the tail of the distribution of S, |(I3, L4, ..., I;) under the lognormal assumption requires

the following two lemmas.

Lemma 1 (Embrechts, Goldie and Veraverbeke, 1879) Lei F and G be two subezponential distribu-
tions with supporty > 0, and H = FxG. If 1—F(y) = o(1—-G(y)) as y — oo, then H is also subezponential
and (1-H{y)} ~(1-G(y)) asy —00.

Lemma 2 {Embrechts, Goldie and Veraverbeke, 1878) If G is ¢ subezponential distribution, then for
every positive integer n, Himy o I_I_%(});(P = n, where G®)(y) is the n-fold convolution of G with itself.

Theorem 2 Let Iy represent the unigque largest initial reporting of losses. Under the lognormal model, the

tail behaviour of S [(I1, Iz, ..., I, ) is given by

1{lns, —Inly — u)?
2

2
1~ H,(s,) ~ (%;)‘”’(lns, —InIn — )"t exp| =

] (28)
for s, — oo wherea® = 337 of and p=30_, py.

Proof: From Embrechts, Goldie and Veraverbeke, the tail behaviour of a random variate with probability
density function (4) is given by

1(lny—InL —pu)?
2 o2

1-Gily) ~ (%—i )*¥(ny —InI; — )~ exp[— 1

= t(y) ¥ — 00

where 0 =377, oF and p = T7; 45
Let G; be the cumulative distribution function associated with U;{L; with corresponding tail behaviour

t; as defined above. Fori # M

1-Gi(y) . 1-Gi(y) tal(y) ()

m ———% = i

v T~ Gu(y) ~ 9= 4 1-GCu() ()
. tily)

= lim 2L

)

o ny—Inly —u

- vlg{-lo[lny—lnIg—p

= & lim 4 7=1n1x)/o"]  for ome comstant &
y—00

]exp[—-ml,—z((lny ~InL - p)® — (lny —Inly — w)?)

= 0.

Therefore I — G;(y) = o(1 — Gar(y)) for every i, as y — o0. Using Lemma 1 inductively, it is easy to see
that if Ins is the unique maximum, then it will dominate the r-fold convolution of variates U;[I;. Therefore

the tail behaviour of H, is the same as the tail behaviour of Gy, and so

1—H(8:) ~1—Garlas) ~ tar(sr) 8 — 0O,
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Q.E.D.

If Ins is not unique, say there exists k accident years all with initial reporting 5, then combining Lemma
2 with (28) yields

1(Ins —InIy — p)?

3
1—- Hy(s;) ~ k(%)""“(ln s —In Iy — p) " exp[—3 = ]

3 — 0

where 0> = Y7, 0 and p = ¥7_, pj.

For the loggamma and the log IG models, the following two lemmas are required.

Lemma 8 (Embrechts and Goldie, 1980) Let F and G be two subezponential distributions which are

tail equivalent, then H = F x G, is also subezponential.

Lemma 4 (Embrechts and Goldie, 1980) If F and G are both subezponential disiributions, and H =

F % G, then the following three statements are equivalent:
1. H is subezponential.
2. F~p G.
3. pF + (1 — p)G is subezponential for 0 <p < 1.
Theorem 8 Under the loggamma model, the tail behaviour of S, |(I1, Ly, ..., L) 1s given by
1-H,(s,) ~ I‘_(la—) ?;:l(;—;)'x(ln 8 —Inl )" tya-t 8, — 00 (29)
where a = Y7_; @j.

Proof: The tail behaviour of a shifted loggamma distzibution is given by

y I Mny ~InL}e-1ae-t

where a = 37, a;.
To show this, note that from (12)
voe(®) o 9:(9) +yei(y)
y—oo 1~ Gi(y) y=oo  —gi(y)
. a—-1
= m gy
= A

Therefore ti(y) = Lgx(¥).

Trivially, if r = 1, then (29) is true. For r = 2, note that G; and G; are tail equivalent because

1-Gy(y) . ti(y) . Ray-Inn}=' I,
=~ I = lim S—"———— = (=)
v 1= Galy) ~ v ta(y)  voeo I} Iny — Infplo? )
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Since Gy and G are subexponential and tail equivalent, by Lemma 3, H2 = G1*G: is also subexponential.
By Lemma 4,

1-Hy(y) = 1—{(Gi+G)y)
e (1= Gl + (1= Galy))

g (¥) Haly)

y—kku—l 2

= TSN RMiny -l L} ! y — oo.
I{a) g k

Therefore the theorem holds true for r = 2.
Assume that (29) holds true for »r = m—1. That is H,,; is subexponential with tail behaviour given by

y_'\Ac-l =y A a1
1- Hoa(y) o ; Ry~ L}t

To extend to r = m, first note that H,,.; and G,, are tail equivalent because

. 1—Hu-a(y) _ L Iny —la k)t _
vli-oo 1-Gn(y) lingo I*[lny InI,)o-t Z(

Since H,,_3 and G,, are tail equivalent, then by Lemmas 3 and 4

1-Hn(y) = 1—(Hu-1*Gm)y)
v (1= Hmox(®)) + (1~ Gem(y))
-Aya-1 ™
o % ?_::l],‘} oy ~In )™

Therefore by mathematical induction, (29) holds true for r = 1,2,3,....
Q.E.D.

Theorem 4 Under the log IG assumption, the tail behaviour of S;|(I1, Fs,...,I.) is given by

- ~ ; S8, 2 05 _ -18 _ _ﬁl‘z___
1 Eufer) ~ L ) ner ) el - B (50
where p = E;"=1 Bj 68 8, — co.

Proof: The proof for (30) precedes in the same manner as the proof for (29). Using (23), it can be
shown that the tail behaviour of a shifted log IG variate is

2
1-Gy) v, ()

- ¥y-2.2 0 -1 Bu?
= ‘“(I;,) (ﬁw)”(lny—lnI,,) lsﬂpluﬁ—m]
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as y— oo for p= Y 0_; pix.
Tail equival

Q.E.D.

e follows b

1-H,_1(y)

ylﬂgo 1—-G.{y)

i1 ly P (iny — Infy) 1S exp[—~(Bu?)/(AIny ~ In 1y))]
y—w  [P%(ny -1l )15 exp[(Bu?)/(2(lny — In L))

Tvosp Iny—Ink _q Bu?/(nl, —Inl)
Z( ) v—ooo(lny—lnI) exl)[2(lny—-lnI,,)(lny—InI,)]

- Sk

Combining equations (28), (29) and (30) with their corresponding parameter estimates allows for estima-

tion of tail probabilities of S, |I;, I3, .. ., I, for specific values of s, under the three distributional assumptions.

Since these equations are asymptotic approximations, their accuracy improves further out into the tail.

NUMERICAL EXAMPLE

This trapezium of data is from Zehnwirth (1989) and discussed by Sundt (1989). The line which generated
this data is automobile bodily injury liability, which is a relatively long tailed distribution.

Acc't

Yr
71
72
73
74
75
T
77
78
79

0
568 891
428753
458 252
355229
282419
267600
560 307
360171
445 545

1
2148049
1399393
1447324
1304036

970751
1312390
1500309
1371944

Development Year

2 3 4 5 6 7 8
3425871 4160541 4840910 5058131 5205931 5263030 5327859
2355291 3451062 3961134 4452987 4695982 4995827
2864930 3818152 4699285 4978063 5175219
2596936 3344939 3892227 4166594
2129544 3032994 3662977
2528827 3367532
2686208

This trapesium produces the following set of observed development factors. The assumption is made

that the losses are fully developed at the end of the eighth year.

Accident

Year 1 2
1971 3.7759 1.5949
1972 3.2639 1.6831
1973 3.1584 1.9795
1974 3.7610 1.9915
1975 3.4373 2.1937
1976 4.9043 1.9269
1977 2,6777 1.7904
1978 3.8091

Development Year

3 4 5 6 7 8
1.2144 1.1635 1.0449 1.0292 1.0110 1.0123
1.4652 1.1478 1.1242 1.0546 1.0639
1.3327 1.2308 1.0593 1.0396
1.2880 1.1636 1.0705
1.4242 1.2077
1.3317

Using the algorithms presented in the previous section produces the following parameter estimates.
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Development{ Lognormal Loggamma Log IG
Period #; o} o X i 8
0-1 1.2636 0.2155]94.2400 74.8081]1.2567 69.7551

1-2 0.6262 0.0719)46.7075 74.8081]0.6230 69.7551

2-3 0.2928 0.0230|21.8887 74.8081(0.2925 69.7551

3—4 0.1674 0.0035|12.8737 74.8081{0.1768 69.7551

4-5 0.0717 0.0030| 5.5049 74.8081}0.0752 69.7551

5-86

8T

7-8

0.0403 0.0003| 3.4054 74.8081)0.0489 69.7551
0.0364 0.0013| 2.4230  74.8081/0.0280 69.7551
0.0122 0.0013]| 1.3745 74.8081{0.0207 69.7551

Since there exists only one observation in the last development year, it is not possible to measure &3 for
the lognormal model, Instead 57 is used as an estimate of o3, The parameter estimates of fir, fis and 87 are
extremely unstable due to the scarcity of data in the latest development years. Because of this, the model
is very sensitive to fluctuations in the most developed data.

Estimation in the loggamma and the log IG model requires the use of iterative algorithms. In both
models, convergence was reached in less than ten iterations.

To test the validity of the three models, the empirical cumulative distribution functions of the observed
development factors are compared to the cumulative distribution functions of the three fitted models. Ap-
plying the Kolmogorov-Smirnov test (c.f. Silvey, 1975) along the first four columns of the development factor
trapezium, yields the following statistics.

Development | # Elements| Lognormal | Loggamma|Log IG
Period n D, D, D,
0-1 8 0.2417 0.1434 0.2228
1-2 7 0.2317 0.2229 | 0.2657
2-3 6 0.3295 0.1742 0.2578
3—4 5 0.6000 0.2517 0.3809

The lognormal model would be rejected for the 3—4 development period. For this development period,
the log IG is not significant at the 1% level, but it is at the 5% level. From this it can be seen that the
loggamma distribution provides the consistently best fit of the observed loss development factors over the
first 4 development years. The log IG model generally outperforms the lognormal model.

Figure 1 displays the quantile plots for the first two years of observed loss development factors under the
three distributional assumptions, With so few data points, it is conceivable that other models may also fit
the data. There does not appear to be any evidence suggesting that the models are inappropriate. As with
the Kolmogorov-Smirnov test, it would seem that the loggamma model provides a better fit to the data than
both the lognormal and the log IG models.

The parameters calculated give the following expected ultimate losses for each accident year. As a
benchmark, two chain ladder estimates are given. Chain Ladder 1 is calculated by applying the age-to-age
development factors to the first column of data. Chain Ladder 2 is the traditional chain ladder algorithm
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Figure 1: QQ Plots for the First Two Columns of Loss Development Factors Under the Three Distributional

Assumptions
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where the age-to-age development factors are applied to the latest diagonal of data. The age-to-age factors

used are the mean loss development factors calculated for each column of the trapesium of data.

Acc't Chain Chain Lognormal | Loggamma | Log IG
Year Ladder 1 Ladder 2
1971 7159109 | 5327859 7157330 7182137 | 7215595
1972 5395567 5057258 5394226 5412922 | 5438138
1973 5766792| 5435070 | 5765359 | 5785341 | 5812292
1974 4470317 | 4556012 | 4469206 | 4484696 4 505588
1974 3554052 4304386 3553169 | 3565484 3582094
1976 3367565| 4680189 | 3366728} 3378397 3394136
1977 7051085 | 5012683 | 7049333 7073765 7106719
1978 4532509 | 4813100 4531382 4547088 4 568 271
1979 5606883 5607066 5605489 | 5624918 5651122
TOTAL| 46 903 879 44 793 623| 46 892 222 47 054 748| 47 273 955

The levels of ultimate incurred losses for the three stochastic loss development models are less than the
amount calculated by the traditional chain ladder model for four of the accident years, and greater than the
chain ladder results for four of the years. Only for the most recent accident year is the traditional chain
ladder estimate within the range of the stochastic loss development factor model results. This is not a fair
comparison in that the Chain Ladder 2 estimate makes use of more data, since it estimates ultimate losses
from the latest diagonal of the trapesium. The marked differences between this model and the remaining
models suggest that perhaps the age-to-age development factors are not random samples within each column,
but follow some pattern. Independence may not exist between the columns of the loss reserving matrix. On
examination of the observed loss development factors, it is difficult to judge whether any patterns exist.

Once the parameter estimates are calculated, the distribution of ultimate claims under the three assump-
tions can be simulated. The loggamma model produced the least varying data set, as can be seen in Figure
2. The box-and-whisker plot graphically compares the mean and variability of the simulated distributions.

The sum of the accident year expected values for the lognormal distribution was lower than the simulated
mean for the sum, but within one-half standard deviation of the mean for the simulation. The two calculated
values for the loggamma were remarkably close - within $5000 of each other. The log IG performed poorly.
The sum of the accident year calculated expected values was approximately two standard deviations larger
than the mean of the simulated distribution.

The upper percentiles of the distributions can be used to build a provision for adverse deviation into the
loss reserves. Since the loggamma model appears to have provided the best fit of the observed development
factors, it is reasonable to use the percentiles from this distribution. Based on the degree of conservatism
desired by the actnary, the company may decide to set the level of estimated ultimate loss at $49 500 000,
$51 000 000 or $54 500 000 for this line of insurance instead of the expected value of $47 000 000. These
amounts correspond to the 80%%, 90°* and 95** percentiles of the distribution of ultimate claims respectively.

The loss reserve would be then calculated as the estimated ultimate loss minus the amount paid-to-date.
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Figure 2: Mean and Standard Deviation from Simulation of Three Models

The upper percentiles of all three distributions are required to assess the accuracy of the asymptotic tail
approximations. The asymptotic formulae in the previous section provide estimates of the upper percentiles
of ultimate claims. Numerically, these are casy to apply once the parameter estimates have been calculated.
In practice, the usefulness of such formulae depends upon whether accuracy is realised for moderate values
of the random variate. This accuracy depends upon the functional form of g;(z) and the corresponding
parameter estimates. Since all three distributions are unimodal, it is reasonable to expect that the formulae
should be useful for moderate values of S, and that the accuracy will be a function of the parameter values.
Por further discussion, see Willmot (1989).

Therefore it is extremely difficult to measure the usefulness of the tail approximations without first
evaluating the entire distribution of S,. Comparing the tail probabilities of the simulation, 1 — H,(s,) to
the asymptotic formulae t.(s,) under all three distributions shows that the approximations are less than
satisfactory for the estimates of the parameter values. For example in the lognormal model, the following
results based on a simulation sise of 2000 are realised.

Lognormal Model
L 1- Hr('r) tf!‘_f)
59 858 058 0.1 0.000079
63 803 376 0.05 0.000050
64 488 708 0.02 0.000029
71 257 439 0.01 0.000021

Simulated tail values corresponding to 1— H,(s,) = 0.1,0.05,0.02 and 0.01 under both the loggamma and
log IG assumptions were compared to the corresponding tail formulae. The approximations performed less

favourably than the lognormal model. All calculated values of 1, (s,) were less than 10~!% for both models.
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CONCLUDING REMARKS

This paper provides a framework for measuring the variation inherent in the loss development process.
Like every model, its usefulness is limited to the the extent that the underlying assumptions are valid.
Further development of the stochastic loss development factor model can be roughly divided into two groups:
theoretical considerations and practical improvements, of which the former is much more imposing.

Paramount of the theoretical difficulties is the assumption of independence between development years. In
a trapesium of paid data this assumption is questionable at best, and for incurred losses, it is not reasonable
to assume that this year’s development on claims is independent of last year’s development. However to build
a dependent structure into a development projection method would destroy the simplicity of the model, which
is its main advantage. Given the general scarcity of data in loss reserving trapeziums, adding a dependence
structure could introduce identifiability problems.

A second flaw is that these models still contain too many parameters given the amount of data available,
andbtlms are extremely sensitive to fluctnations in data. It is difficult to differentiate between competing
distributional models because of the large number of parameters compared to the size of the data sets.
Except for cases of extreme poor fit, goodness-of-fit tests will offer little information about the validity of
the model.

This framework is not resistant to changes in exogenous forces. A necessary step to improve the perfor-
mance of the models is to adjust the data first for known and measurable external influences

The intermediate values of the loss development trapezium have not been used directly to measure the
appropriateness of the stochastic loss development models. Comparing the observed values to the fitted
values under the three models would provide insight as to where the underlying assumptions are violated.

From the previous section, it is clear that the tail approximations performed poorly for the calculated
parameter values. Further investigation is needed to discover the parameter values for which the asymptotic
formulae are useful. Willmot (1989) discusses considerations for the IG distribution within a compound
mixture framework.

I believe the ability to simulate the distribntion of ultimate claims and the approximations for upper
probabilities of the distributions are the most relevant contributions of this framework. Increasing concern
about solvency issues makes it imperative that actuaries draw guantitative as well as gualitative conclusions

about the sufficiency of loss reserves to cover future losses.
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APPENDIX A

Proof Of Theorem 1:

For each D;;, (fix, SSi) are independent and completely and jointly sufficient. Since each of the D;; is
also assumed independent, it follows that (E;.'=1 &, 2;3:1 S8;) are independent and completely and jointly
sufficient for the parameters of H;=1 D;;.

Assume that there exists an unbiased estimator g(3°7_; 4, 37, 55;) of the mean of Us|L;. Then by
the Lehmann-Scheffé theorem, if E(U;|I;) admits an unbiased estimator, then it must also be the uniformly
minimum variance unbiased estimator.

3

From normal theory, for each j#, ji; is lognormally distributed with parameters u; and ;};, and s_,s’,_
3

follows a x? distribution with r—j—1 degrees of freedom.
» n »~
E[J; - D Py = I"E[H e®s) = I, ODLVELS -5 iH
J=1
Using the technique discussed in Crow and Shimiru (1988, p 29), assume that there exists a function
R(T7_, S5;) such that g(F7_, 4y, 0y 58;) = L - Xim B h(ST_, $5,). Since (20, A5, Ty SS;)
is unbiased,

E[J; - e2oim B . h(‘i 554)] E(U;|L)
i=1

» X 2
I. FODMILL ]

L - e2eim TR E[(h(i 555)))

j=1

Therefore, using the MacLaurin series expansion,

E[h(f:ss,.)] = LD
j=1
’ n ("_1!" 2 k
- 1o Gty (31)
=1 k=0

Now for each j,

vgim (-0.8.23)
oo (%)(MTL)_‘._I)‘e 3

2%y 295
= )
kr(k 4 {e=iicly
r(=4=)
Rearranging the terms, gives
b I(k+ =24
E(5S;) = 2*(e})* IR (32)

Suppose that h(3°7_, 557) is of the form
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- ,_" (= J)-l(" J)

then taking the expectation of both sides yields

B ss) = i o ;’ oDt
= I_IEg((r A-lss, r(si(ii—_—!?i);.u‘
And from (32),
E(h(gssj» - Hir(i(u_ﬁ)) ety r(k(“g,__‘;f’zk(ﬁ)*}

15

Since the expectation of A(3 7., 5S;) equals (31), and given that under this model zio = I, therefore

u(-)=z.oexp(z,u,)H OFI((T ;) L e j);)lssj)‘
=1 =1

Q.E.D
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APPENDIX B
Simulation Algorithm for the Lognormal Model

1. Generate U; and Uy, two uniform [0, 1] variates.

2. Using the Box-Muller transformation (Hogg and Craig, 1978) calculate two independent standard

normal variates

Zy = (—-2InU;)*%cos(2402) and  Z; = (~21n Uy)%®sin(22073).

3. Two independent lognormal variates with parameters 4 and &% are given by

Yi=exp(6-Z1+4) and Yr=exp(6-2Z;+5).

4. For each accident year k, k = 1,...,r, repeat steps 1 — 3, 500 times to generate 1000 conditional

observations, Uy, Ugy, - -+, Uy 1000s fOr

n
ﬁ:lnzgo+zﬁj and &2=E&;‘7
i=1 i=1

where fi; and &; are calculated by (5) and (6) respectively.

5. This gives 1000 sample elements from the conditional distribution of
r
Sf’(Ils IZ: ey Ir) = E UkIIk,
k=1
call them S}, S3,..., S{go Where S; =331, Uy .

6. These 1000 observations are then used to construct the empirical c.d.f of S, |(I3, I, . . ., I,), from which

various statistics, such as the mean of ultimate claims and percentiles of ultimate claims, are calculated.
Simulation Algorithm for the Loggamma Model

1. Uniformly fast rejection algorithms which will generate a gamma random variate, X, with parameters
& and X = 1 are listed in Devroye. Separate algorithms are required for @ < 1 and & > 1 since
the shape of the distribution changes radically for values of . For & > 1, Best’s rejection algorithm
(Devroye, 1986) is fast and simple to program. A modified version of Vaduva’s algorithm (Devroye,
1986) is suitable for values of & < 1.

2. A shifted loggamma variate with parameters & and X and threshold § is given by

Y =exp [%X + 6.
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3.

4.

5.

For each accident year k, k = 1,...,r, repeat steps 1 — 3, 1000 times to generate 1000 conditional
observations, U, Ugy, -+, Uy 1000 for § = Inzyo, where landa = 2;=1&j are calculated by the

loggamma algorithm.
This will produce 1000 sample elements from the conditional distribution of
r
Sl Iay oo ) =3 Uil
k=1
call them S}, S3,..., Sfogo Where S} =Y, Uf ..

These 1000 observations are then used to construct the empirical c.d.f of S;|(I1, I, ..., I,), from which

various statistics, such as the mean of ultimate claims and percentiles of ultimate claims, are calculated.

Simulation Algorithm for the Log IG Model

This algorithm for generating an IG variate can be found in Chhikara and Folks (1989) and Devroye (1986).

1.

Generate Uy and Uz, two uniform [0, 1] variates.

. Using the Box-Muller transformation generate two independent x?l) variates.

Zy = (210 U,)%% cos{2xU2))®>  and  Z3 = ((—2n U;)%® sin(2xUs))2.

. Foreach Z;,let X; = p + Mi’;_él}ﬂf_'_
. For each X;, generate U, a uniform [0, 1] variate.

CHU, < e

let ¥; = exp [X; + 8}
else
letY.-:exp[ﬁ—: +8].

Y;is a shifted log IG variate with parameters 2 and {3 and threshold 5.

. For each accident year k, k = 1,...,r, repeat steps 1 — 5, 500 times to generate 1000 conditional

observations, U, Ugy, -+, U§ 1000 Where & = Inzyg and Band = E;‘=1 fij are calculated by the log
IG algorithm.

. This gives 1000 sample elements from the conditional distribution of

r
sr‘(Ilv 121 .. -vIr) = EUhIIb
k=1

call them 53, 53,..., Sjoog Where S} = 35 _, UL ..

. These 1000 observations are then used to construct the empirical c.d.f of S;|(I3, I3, ..., I}, from which

various statistics, such as the mean of ultimate claims and percentiles of ultimate claims, are calculated.
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