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The paper presents a theoretical framework for measuring the 
inherent statistical variability of the loss development 
process. Chain ladder loss development factors are assumed to 
follow 
distribution. 

LogNormal, Log Gamma or Log Inverse Gaussian 
From this, the conditional distribution of 

ultimate losses for each accident year (conditional on the 
amount reserved at 

its 
the end of development year zero) is 

developed, and parameters are estimated. By use of 
simulation, the distribution for the usual loss development 
triangle can also be calculated. Approximation formulae for the 
tail behaviour of the distribution of ultimate losses of the 
trapezium are presented. 

In modelling the conditional distribution of ultimate losses, 
one can obtain an unbiased estimate of the mean of the total 
outstanding reserve, percentiles of the conditional distribution 
of reserves, which are 
confidence intervals, 

reouired for solvency issues, and 

the point estimate. 
which p%ovide a measure of-accuracy'about 

The use of asymptotic formulae allows for 
statements about the probability of ruin without the need to 
simulate the distribution of losses. 
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INTRODUCTION 

A paper by Hayne (1986) explored the properties of the lognormal distribution and its possible use as a 

measure of statistical variation inherent in loss development factor models. This paper extends Hayne’s 

work in the calculation of the distribution of ultimate incurred claims using the traditional chain ladder 

method with stochastic loss development factor models. Two other distributions; the loggamma (Hogg and 

Klugman, 1984) and the log inverse Gaussian, possess characteristics similar to that of the lognormal. The 

development of the stochastic loss development factor model under these distributional assumptions is also 

considered. 

This paper presents the framework of the stochastic loss development factor method, and the appropriate 

data requirements. The basic properties of the three distributions are presented. These results are required 

to calculate the distribution (and estimate its parameters) of ultimate claims and the sum of ultimate losses 

over all relevant accident years. Fkrther conclusions concerning the tail behaviour of these distributions 

allow for the development of asymptotic formulae that estimate the upper percentiles of the distribution 

of total ultimate losses over all years. Finally, some numerical work using the stochastic loss development 

factor model is presented. One trapesium of data, a long tailed line presented by Zehnwirth (1989) and 

Sundt (1989) is presented. 

Contrary to current actuarial beliefs, I believe that percentiles provide a better estimate of uncertainty 

concerning the loss reserving process than does the confidence interval about the mean expected ultimate 

loss. The confidence interval about the mean, which varies inversely with the square root of the number of 

observations, measures the precision about a point estimate. Given that the assumptions are correct, the 

precision will increase as more data are available. The amount of data available however does not affect the 

percentiles. Given that the process assumptions are valid the distribution characteristics of total claims are 

the major force driving insolvencies. 

MODEL 

Given claims data for a particular line (or other homogeneous grouping) of insurance, the run-off triangle, 

more correctly referred to as a trapezium can be represented as follows: 

Acc’t 
Yr 
1 
2 

0 

210 

220 

1 

111 

121 

Development Year 
2 3 . . . n-l n 

212 2213 . . . 21,7&-l +1n 

222 aJ23 . . . ra,n-1 al 
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The xiii1 in this model usually are aggregate loss dollars, either paid or incurred. It is assumed that 

development after n years is negligible. The data for the first P - n years are fully developed losses, there 

is no expected change in the level reserved. Although the heading of the trapedum indicates that the data 

are collected by accident year, the models developed in this paper can be applied data recorded by other 

collection methods. 

By dividing the elements of column k by the corresponding elements of column k - 1 of the trapezium, 

it is possible to construct a trapesium of observed development factors, c&k from the original trapezium of 

data. 

Acc’t. Development between Years 

Yr o-1 l-2 2-3 . . . n-2-n-l n-l-n 
1 41 42 d13 . . . &,,a-1 4, 
2 41 das d,, . . da,.+1 &a 

r--t;+1 4-c+lJ dr-ntlJ dr-ntl,b . . . 4-nt1,n-1 

r-n+2 d-+2,1 4-nt2,2 dr-w,3 . . . 

7-l h-1,1 
P 

The stochastic loss development factor model assumes that the emergence of cumulative ultimate losses 

is represented by the following rectangle: 

Acc’t. 
Yt 

1 

2 

Development Year 
. . . l-b-1 n 

. . . 11 n;=, Dir 11 n;:; Dlk 

. . . 4 n;:, Dar, Za n;=i Das 

r - n + 1 Zr-nti I,-,+D,r-n+l,l . . . Zr-n+l n;,: Dr-ntv Zr-n+l n;=, Dr-n+i,k 

flL!:D+-ntz,k Lntzn~=lD+-ntv 

Only the upper trapezium is observable at time r. Let Vi = Zi fli=, Dik represent the ultimate claims 

arising from accident year i. The total ultimate claims arising from the trapesium is given by S, = CT=, Vi. 

If the original trapesium of data consists of paid data, then the outstanding future liability is given by 

r--n 

s, -(&kn+ & XL,,-k)- 
k=l k=r-ntl 

Zi is a random variable representing the initial reporting for accident year i, and Dij is also a random 

variate which represents the growth in those claims assignable to accident year i between development years 

j and j-i-1. 
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Zi is a function of several exogenous variables, including earned exposure, social inflation, regulatory and 

legislative changes, residnal or involuntary market mechanisms and written or earned premiums (Canadian 

Institute of Actuaries, 1990). This model assumes that Zi is determined outside of the model, and so it is 

treated as a deterministic input. Implicit in this assumption is that the loss development factor process is 

independent of the determination of the initial losses, Zi. Obviously, this is a simplification. 

This model attempts to account for the pure statistical variation inherent in the loss development process. 

Since the Dij variates are sensitive to exogenous forces such as changes in the claims handling mechanism 

of the company or reserve strengthening and deterioration, the assumption is made that there has not been 

any alterations in these external influences. This restriction is not as limiting as it appears. Data can 

be transformed to account for these changes, and the stochastic loss development factor procedure can be 

applied to the transformed data. Betquist and Sherman (1977) discuss two such transformation techniques. 

Let Dij, for i = I,..., r, be independently and identically distributed random variates with distribution 

function F(d; 0j) where F(d; 0,) is chosen in such a way that the distributions of the transformed variables 

xj = In Dij are closed under convolution. 

If the assumption is made that Dij is independent of Dir, then the calculation of the conditional distri- 

bution of ultimate accident year claims Uil& = Ii nr=, Dir is straightforward. The Zi values are given by 

the first column of the data trapesium, that is wis = Zi. For each column, the parameters Bi are estimated 

by ij(dljl &jt * * *t &-j,j)l a function of the observed development factors. 

What is ultimately required are estimates of the variates, Vi,, . . , U,, along the last column of the rect- 

angle. The intermediate fitted values calculated for the upper traperium can be used to assess the validity 

of the assumptions and the fit of the model. 

The total incurred loss S,l(Zr, 4, . . ., Z,) = c;=i &lZk is also a random variable. Its distribution and 

inherent variability reflect the uncertainty of the development process only. It is this variable that is used 

for reserving purposes. The mean of this distribution less the amount paid-to-date is the expected liabilities 

accruing to the company. The mean is easily calculated as E(S, I(Il, Zz, . . . , I,)) = c;.l E(Uk Irk). 

Remaining characteristics of S,l(Zi, Zs, . . . , I,), such as percentiles, tail behaviour and moments, are 

not as easy to calculate; either simulation or approximation methods must be used to obtain the r-fold 

convolution of the distributions of the variates ZllU,, . . . , ZrlUr. Efron (1982) provides an overview on the 

use of the parametric bootstrap. This can be used to produce the distribution of ultimate claims. Simulation 

algorithms are outlined in Appendix B. Tail approximations are listed in this paper. 

Ultimate Losses in the Lognormal Model 

The lognormal distribution has been used to model many natural occurring events including entomological 

phenomena, or the incubation period of diseases. Business applications modelled include insurance claim 
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size severities and random walk models for stock prices. A thorough treatment of the lognormal distribution 

and its properties can be found in Crow and Shimisu (1988) and Johnson and Kots (1970). 

If X is a normal variate with mean p and variance ue, then Y = ex is said to have a lognormal distribution 

with probability density function 

f(y) = (2*):.suy -p( 
-on Y - PI2 ) 

zol (1) 

The r” moment of the lognormal distribution is calculated from the moment generating distribution of 

the normal distribution, since 

E(Y*) = E((ex)‘) = A&(r) = exp[rp + ~vsoe]. (2) 

The lognormal distribution is closed under multiplication. This is a consequence of the additive property 

of the normal distribution which states that if Xl,. . . , X, are independent normal variates with mean fi 

and variance oi, then the random variate TB = cr=‘=,(Xi + b;) for bi E W is also normally distributed with 

mean p = gzl(w + bi) and varim~e or = z=, uj. 

If fit . +. , Y, are independent lognormal variates such that Yi = eXi then the distribution of Z’s = 

E=l(OjYj) for oj 2 0 is lognormal with parameters 

l% Bl 
p=x(pj+lnoj) and u”=C~;. (3) 

j=l j=l 

Hayne (1986) introduces a loss development model in which each column of development factors, Ddj for 

i=l , . . . , I, follows an independent lognormal distribution with parameters ~j and $. This assumption of 

independence makes the estimation procedure tractable. From (y), the conditional distribution of ultimate 

claims Q 14 = 4 K=r Dij is also lognormally distributed with parameters c(i) = In Zi + Cy==, pj and 

0’ = ~~=I 4:. Using this with (l), gives the following probability density function 

(4) 

From (2) the expected conditional nltimate claims arising from accident year i is 

Estimation in the lognormal case is straightforward. Assuming that the realixation of the process produces 

the loss development trapezium presented in the previous section, then under the independence assumption, 

~jfOIi=l,... , r - j represent a random sample from a lognormal distribution with parameters /+ and ui 

forj=l,...,n. 

Using maximum likelihood estimation, an estimate of w is given by 



and the maximum likelihood estimate of uj” is 

-a SSj 
uj=- 

r-j 

where SSj = C~~{(ln&j - fij)‘. The mazimum Iikelihood estimate of pj is unbiased, while the estimate 

for U] is asymptotically unbiased. These estimators are required to calculate the estimated losses accruing 

to the insurance company. 

Theorem 1 The unifwmly minimum variance unbiased estimator of E(Ui IZi) is 

dwe oFl(rl; 2) = C;“=, % ‘-PI r v+t t.s the genemlized hypergeomettic function. 

Proof: See Appendix A. 

In practice, each generalized hypergeometric function will converge within five or six terms. 

Given P(l), . . . , P(,) the expected ultimate losses from the trapezium is PLN = C;=r fi(.t). The simulation 

algorithm, outlined in Appendix B, is used to calculate the other characteristics of the distribution. 

Ultimate Losses in the Loggamma Model 

In this model, assume that the loss development factors follow a loggamma distribution. This model along 

with the log inverse Gaussian (IG) model, which are special cases of the log generalized gamma distribution, 

do not share many of the favourable characteristics of the lognormal model. 

l The support for these distributions is defined only for development factors greater than one. These 

models can only be used with cumulative data where recoverables received do not exceed the amount 

paid out at any age. It is possible to shift the observed development factors (dij = 1 +dij) so that these 

models can be used with incremental data or with cumulative data displaying negative development. 

l Since the closure of these models is subject to restrictions on one parameter, estimation procedures 

that compute the parameter estimates for the whole trapezium simultaneously are required. In the 

lognormal model, parameter estimates for each column can be calculated separately. 

The loggamma distribution, as introduced in Hogg and Klugman (1984), is an artificial variate constructed 

from the gamma distribution. The gamma distribution is used in life testing situations and to model 

meteorological precipitation. Johnson and Kotz (1970) and Lawless (1982) both provide an overview of the 

uses and characteristics of this distribution. 

The probability distribution function of a gamma variate with parameters a and X is 

f(z) = 
t"-le-XZ~~ 

r(a) 
220 (7) 
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with moment generating function 

Mx(t) = E(etX) = [&la (8) 

From this it can be seen that the gamma distribution is closed under addition only if A is constant between 

variates. Specifically, if X1, Xz, . . . , X,, are independent random variates such that Xi - gamma(ai, A) for 

i=l , . . . , P then CL1 Xi is also a gamma random variate with parameters a = s=r oi and X. 

The gamma distribution is not closed under shifts of location, and so the loggamma is not closed under 

multiplication by a scalar. If 2 = X + 6, where X - gamma(cr, A), then 2 is said to have a shifted gamma 

distribution with probability density function 

h(z) = (2 - 6)Q-‘e-+J)P 

W 
226 (9) 

and corresponding moment generating function 

(10) 

If Y = ex, then Y is said to have a loggamma distribution with probability distribution function 

g(y) = f(lny$ = (lny)‘&‘-‘X’ Y L 1. 01) 

For the loss development trapezium, assume each column of variables Dij, i = 1,. . . , r represent an 

independent and identically distributed sample of loggamma variates with index parameter oj and scale 

parameter A. Using (9) and (11) the distribution of UilZi = Zi ny=, Dij is a shifted loggamma distribution 

with probability density function 

where Q = x7=, oj. 

From (IO) and (12), the expected value of ultimate claims for the tih accident year is given by 

If X 6 1, then the mean of the distribution is undefined. 

Estimation of the parameters of the model, or, or,. . . , a, and X is numerically intensive. From (ll), the 

log likelihood function for the trapezium of development factors is given by 

,, r-j 
lnZ(aijl,X;d(ijl) = CC[-Aln&j + (oj - l)ln(ln&j) +ojlnX -lnI’(oj)]. 

j=l i=l 

Maximizing this equation produces the following n + 1 equations 

fi = C~=‘=,C~-j)$ 
d.. 

4(&j) = llli+cij forj=l,...,n 

(14) 

(15) 
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where $(z), the digamma function, is q,and 

and d.. = C Clnhj. 
j=l kl 

These n + 1 values are sufficient for the parameters. The geometric mean of the j’h column of the log values 

of the development factors is given by e If . 

Tables of enact values for the digamma function can be found in Abramowitr and Stegun (1965). AIter- 

natively, using the asymptotic distribution of 4(z), 

~(z)~lnz----+--- 1 1 1 1 1 1 691 1 255 
22 12rl 1202' 252~~ 

+--- 
240~~ 132~'~ + 

---+-++... (16) 
32760~11 12~'~ 28 936ds 

along with the relationship 

(17) 

Bowman and Shenton (1984, p 32) give the following algorithm for cahzulating $(z) for values of z between 

0.01 and 4000. 

Range of 0 Strategy 
[.01,40] Use the first 10 terms of (16) with argument t = 40 + (z - [z]). 

qb(z) can be derived from 4(t) by (17) 

(40,601 Use the first 10 terms of (16) 
(60,200] Use the first 8 terms of (16) 
(200,500] Use the first 6 terms of (16) 
1500.40001 Use the first 5 terms of (16) f 

Numeric methods are required to simultaneously estimate (61, 61, . . . , &,, 1) from (14) and (15). Kennedy 

and Gentle (1980) provide many algorithms for solving non-linear systems of equations which do not require 

the cahxiation of the derivatives of the system of equations. If good starting values for of the unknown 

parameters can be found and the matrix of derivatives can be easily calculated, a Newton-Kaphson procedure 

(c.f. Burden and F&es, 1988) converges quickly. 

Under the loggamma model, substituting for (14) into (15) produces the following vector of n functions: 

F(h) = (fi@h fz@), . . . , f%(h)) T 

where 

for 6 = 1 , . . . , n. The matrix of derivatives is given by 
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and 

#(ii) = 

R= 

%wl) 0 . . . 0 

0 $'(hp) . . . 0 
I 

: ..* 

0 0 i ! . . . $qh,) 

r-l r-l . . . r-l\ 

r-2 r-2 . . . r-2 

: : *-. . : . . 

P--n r-n . . . ?-?I I 

Valuee of the trigamma function, 4’(z) = *, can be found by differentiating (16) and (17) and using 

Bowman and Shenton’s algorithm. 

The tn** iteration of the Newton-Ftaphson procedure yieids the following vector of parameter estimates 

(&,m,&,m,. . .,b,,,)= = (&,,,,-I, &,,,+I,. . .,cL,m-s)= - F(L-I) . J-l(&+~)- 

Good initial values for hj, for j = 1, . . . , n are often difficult to find. Using the method of moments for 

each column j, gives the following values 

In practice, the final parameter estimates from the log IG model may provide better initial values. This is not 

surprising since the gamma and the IG distributions are both members of the same family of distributions, 

and possess many similar characteristics. 

Once couvezgence hes been obtained, i can be calculated from (14). An estimate of the expected ultimate 

losses for the trapesium is given by 

where 

Since this estimate is almost certain to be biased, a better estimate is given by the sample mean of the 

simulation resnlts. That is, if Si, Si, . . ., sfooe are the observations generated (see Appendix B for details), 

then fiLG = E$isLGzsi. 

Ultimate Losses in the Log Inverse Gaussian Model 

The IG distribution is the law governing the time to passage for a particle subject to Brownian motion. WaId 

(1947) showed that the distribution is the limiting form of the sample size in certain sequential probability 

tests. A detailed analysis of the distribution is contained in Chhikara and Folks (1989), Johnson and Kotr 

(1970) contains an overview of the distribution and its properties. Like the loggamma distribution, the 
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log IG distribution is an artificial variate constructed to take advantage of the additive nature of the IG 

distribution. 

If X is an IG random variate, the probability density function of X is given by 

f(2) = p (g)‘.’ 2-l.l exp[+(;; ‘)‘I 2 1 0. (181 

The corresponding moment generating function is 

MX (t) = erp[lrp - p@( 1 - 3)‘].“] 
P 

t<Tj 09) 

which is found by rewriting the integral lo” e’“f( )d z z in terms of an IG variate with parameters p’ = p - 2t 

and h’ = ~(1 - $t)0.5. By (19), it can be shown that the IG distribution is closed under addition if p remains 

constant between variates. 

The distribution is not closed under shifts of location. If 2 = X + 6, for 6 2 0, and X M IG(b,P) then 

Z is said to have a shifted IG distribution with probability density function 

h(z) = p (-&)O.’ (z - cS)-~.~ exp[ -“‘2;, 6, ‘)‘I 226 (20) 

and moment generating function 

Mz(t) = exp[@ + t6 - ~@(l - $t)0.5]. (21) 

Using (21), if X1,. . . , X, are IG variates with parameters & and Z3 then the distribution of T,, = 

C%l(Xs + 6k) is a shifted IG variate with parameters p = CIzl~s and /3 and threshold parameter 

6 = C;=, 6,. 

Let Y = ex. Then Y is a log IG random variate with probability density function 

g(y) = f(ln y)i = ~4 ($)O,’ (lny)-‘.5 Y-(‘+o.5B) exP[P/3 - s] Y11. WI 

Assume that each column of development factors Dij, i = 1,. . . , r follows an independent log IG distri- 

bution with parameters pj and p. From (20) and (22) the distribution of Ui]Z; = fi )I;=, Dij is a shifted log 

IG distribution with probability density function 

gi(u+) = p ($0.5 QJ@(lnui -In&)-‘.5 u;(‘+o.5@)wrp~p _ BP2 
2(lnq - lnZi)l 

ui L Zi (23) 

where P = c;=, pk. 

h’rom (21) and (23) the mean of ultimate losses for accident year i is given by 

E(Ui I&) = Zi exp[D(l - (1 - p)““) 2 ps]. 
k=l 

(24) 

This is defined for p > 2. 
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As in the loggamma model, estimation of the parameters is numerically intensive. Assuming that the 

development factors dfij) are realized, using (22) the log likelihood function for the traperium is 

Maximum likelihood estimation yields the following u + 1 equations 

i = Cj"=~C~:'@ndij -fijf'/hdrj] 
P m - 0.5n(n + 1) 

andforeachj=l,...,n 
r-j 

$Ci-(,-j)fij=~+ 
i=l In f% 

05) 

These n + 1 equations can be solved iteratively. Let pjo = & CiGi In c&j, which is the uniformly 

minimum variance unbiased estimate of p in the single sample case. For m = 1,. . . , N, where N is the 

number of iterations until convergence, the following twostep algorithm will provide values for the maximum 

likelihood estimates. 

1. 

c 

Using (25) calculate &, as a function of (fil,,,+r,. . . , A,,+r). 
2. Let i(j,,* for j = l,..., n, be the admissible root of (26) calculated using A, then 

fij,m = (r-j + [(r-j)(r-j + 4bi’ C~~~(ln~j)-*)]0’s)(2~~~~n~j)-“)-1 . 

Using (24) an estimate of the expected liabiity for the trapesium is given by 

7 

P 
2 05 ^l’G=COio.erp~P(l-(l-r).)] 
P 

where ii = &j. 
i=l j=l 

Since the estimates are not unbiased, it is recommended that the expected ultimate losses for the trapes- 

ium be calculated from the sample mean of the simulation outlined in Appendix B. 

TAIL APPROXIMATIONS FOR ULTIMATE LOSSES 

Upper percentiles of the distribution of ultimate claims, which are used to estimate the probability of ruin, 

can be calculated numerically using the simulation techniques discussed in Appendix B, or by approximations 

based on the tail characteristics of the distributions of claims for each accident year. 

Embrechts and Veraverbeke (1982) have defined a system which classifies continuous distributions ac- 

cording to their behaviour in the tail. Distributions are defined to be light tailed, medium tailed or heavy 

tailed, which is also known as subexponential. Embrechts, Goldie and Veraverbeke (1979) and Embrechts 

and Goldie (1980) provide asymptotic formulae for the tail behaviour of sums of random variables possessing 

subexponential distributions. These results will be used to approximate the tail behaviour of the distribution 

of ultrmate clams, Srl(ZI,Zr, I . . . , I,) = CiC1 Vi 14 under the three distributional assumptions. 

This first requires proving that the conditional total claims for a given accident year follow a subexpo 

nential distribution. Under the assumption of lognormal development factors, the distribution of UilIi is 

also lognormal, which is a subexponential distribution as shown by Embrechts and Veraverbeke. 
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WiiImot (1986) proves that if Y is a random variate such that Y = ex where X has a density function 

F(2) characterised by 

1 - F(z) =r;b, Cs?e-” (27) 

for C,6 > 0 and p E RR, then the distribution of Y is subexponential. A(z) .z- B(z) is defined as 

li%,, gj = 1. 

Under the loggamma assumption, the distribution of Ui]Zi is a shifted loggamma distribution, and so 

Xi = In UilZi is distributed as a shifted gamma variate. Using L’HGpitai’s rule with (9) gives 

fiiz) _ fi’b) _ ~- Iim --A. 
Zk% 1 - Fi(Z) I-00 -fi(Z) 

Therefore as z + co, 

1 - F;(r) u ?gt2 - lnz;)a-le-~= 

for a = cTzloj, which is of the form (27), since Iim,,, h(z) = Ii-,, h(z - c) for any constant c. 

Therefore UilZi has a subexponential distribution. 

Under the log IG distribution, UilZi, i = 1,. . . , r follows a shifted log IG distribution, and so Xi = In Vi IZi 

is a shifted IG variate with probability distribution function as defined by (20). The tail behaviour of Xi is 

given by 

for p = CT=, /.bj, since 

fit21 _ fi’b) _ P -- Iim -_-. 
Ik% 1 - Fj(2) 2+CO -f;(Z) 2 

As z + 00, 1 - F;(u) is of the same form as (27), and so the distribution of UilZi under the IG model is 

subexponential. 

Some terminology common to the analysis of tail behaviour is required for proofs for the approximations. 

l A distribution is said to dominate another distribution in the tail if 1 -F(y) = o(1 - G(y)) as y + co, 

where o(h) is defined as iims,o 9 = 0. 

l Two distributions F and G wiII have the same tail behaviour, denoted by (1 -F(y)) - (1 - G(y)) as 

y+ooiflirx+,~=l. 

l F and G are tail equivalent, written (1 - F(y)) - e(1 - G(y)) as y -b co for some finite e > 0 if 

m+.m +gg = c. The previous definition is simply a special case of tail equivalence. 

l And finally, two distributions F and G are said to be moz sum equivalent, written F -M G, if 

l-@*G)(Y) - tl-Ft~))+tl-Gt~)) as Y + co, where * denotes the convolution of two distributions 

functions. 
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The behaviour of the tail of the distribution of S,l(l~, I,, . . . , II) under the lognormal assumption requires 

the following two lemmas. 

Lemma 1 (Embrechts, Goldie and Veraverbeke, 1079) Lel F and G be two subezponential disltibu- 

lions with support y > 0, and H = F*G. If l-F(y) = o(1 -G(y)) a8 y + 00, then a in a180 subezponen~iai 

and (1 -H(y)) - (1 -G(y)) 48 ye 03 . 

Lemma 2 (Embrechts, Gcddie and Veraverbeke, 1979) IfG b a subezponential distribulion, then for 

ewry positive integer n, I&,,, me = n, where G@)(y) C the n-fold conaolulion of G with itself. 

Theorem 2 Let 1~ represent the unique largest initial repotiing of losses. Under the lognormal model, the 

lail behatiour of S, /(Ii, Iz, . . . , I,) is given by 

up 1 (ln a, - In I& - /A)? 
1 - If&,) - (Z;)oQls’ -Ill& - p)-‘exp[-2 

u’ 1 

for a7 + co where oa = & rj’ and p = cj”=, N. 

Proof: From Embrechts, Goldie and Veraverbeke, the tail behaviour of a random variate with probability 

density function (4) is given by 

1 -G(Y) - 
up l(lny-Inli-/I)a 

(2;;)Oe5(lny - ln1; - cc)-‘exp[-Z 
02 1 

= ti(Y) Y-too 

where U’ = Cy==, u: and p = CT=, pj+ 

Let Gi be the cumulative distribution function associated with UifZi with corresponding tail behaviour 

ti as defined above. For i # M 

. 1 -G(Y) 
~5% 1 - G&y) = ~5% 

l-G(y) tM(Y) ti(y) 
ti(y) 1 -GM(Y) tM(y) 

= lin. ti(Y) 
y-m h(Y) 

= $!![lny-InI.-p 
1ny-‘nf-p]exp[-~((lny-ln~i-~)2-(lay-lnI~-~)2)] 

= n Lrn p h-~ r,)/21 for some constant n 
y-00 

= 0. 

Therefore I -G<(y) = o(1 - G&y)) f or every i, as y -+ 00. Using Lemma 1 inductively, it is easy to set 

that if IM is the unique maximum, then it will dominate the r-fold convolution of variates UiJ&, Therefore 

the tail behavionr of I& is the same 85 the tail behaviour of GM, and so 

1 - f&) - 1 -G&s,) e+ tM(+) a,--rco. 
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Q.E.D. 

If IM is not unique, say there exists It accident years all with initial reporting IM, then combining Lemma 

2 with (28) yield8 

l-&(8,) ++ k($“.5(ln8. -In& -p)-‘cxp[-~(ln8~-l~~M -q 

where u’ = Cy==, u,? and p = cTz1 Fj. 

For the loggamma and the log IG models, the following two lemmas are required. 

Lemma S (Embrecbts and Gold& lBS0) Let F and G k two subesponentiaI distributions which are 

tail equivalent, then i7 = F * G, is also sukzponential. 

Lemma 4 (Embrecbts and Goldie, lBS0) If F and G ore both subezponential distributiona, and R = 

F *G, then the following three statements are equivalent: 

1. H is subezponeniial. 

2. F ffM G. 

9. pF + (1 - p)G is aubezponedial for 0 < p < 1. 

Theorem 9 Under the loggamma model, the tail khaviout of S, ((II, 4,. . . , I,) is given by 

’ - W87) - +j g(z)-*&a, -lnI~)“-lX”-’ a1 --+ 00 
f 

where Q = Cy=, *j 

Proof: The tail behaviour of a shifted loggamma distribution is given by 

tkb) = 
ymAIk@ny -lnIk]“-lXa-l 

w-4 
Y+m 

where a = cy=, aj. 

To show this, note that from (12) 

Sk(Y) + !&b) 
-gk(?d 

= pi/l-[ 
a-1 

-----X-l] 
hy-ln& 

= A. 

Therefore tk(y) = $gk(y). 

Trivially, if + = 1, then (29) is true. For T = 2, note that Gr and Gr are tail equivalent because 

(29) 

. ~-G(Y) 
ykrnw i=-qg = 

um h(y) _ um 1: Pny-lnW-' 
y..+oo t2(y) Y-W 1; pny - lnLI”-’ 

= ($,? 



Since Gr and Gs are subexponential and tail equivalent, by Lemma 3, If* = Gr*Gr is also subexponential. 

By Lemma 4, 

1 -Hz(Y) = 1 - (Gl *G)(Y) 

yzm (1 - WY)) + (1 - Go) 

yzm h(Y) +tdy) 

y-+00. 

Therefore the theorem holds true for P = 2. 

Assume that (29) holds true for r = m-l. That is H-1 is subexponential with tail bthaviour given by 

To extend to r = m, first note that iT ,,+I and G,,, are tail equivalent because 

Since H,,,-1 and Gm are tall equivalent, then by Lemmas 3 and 4 

l- Ii,(Y) = I- (&.-I *G.)(Y) 

yzm (I- L-~(Y)) + (l- ‘L.(Y)) 

Therefore by mathematical induction, (29) holds true for r = 1,2,3,. . I 

Q.E.D. 

Theorem 4 Under the log IG asrumption, the tail behaoiour of S,l(ll, 12,. . . , Ir) is given by 

(30) 

Proof: The proof for (30) precedes in the same manner as the proof for (29). Using (23), it can be 

shown that the tail bthaviour of a shifted log IG variate is 

1 -WY) y-“- ;Y~(Y) 
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aS Y + Qo for ,A = c;=, Pk. 

Tail equivalence follows because 

. 1-&-1(Y) 

,k 1 - G,(y) 

= lim c;:: pqny - lnZ$ 1.5=P[-(PCc’)l(2(lnY - la))1 
9-m *‘@(ln y - lnZr)-1.5 up[(j3~z)/(2(lny - lnZr))] 

Q.E.D. 

Combining equations (28), (29) and (30) with their corresponding parameter estimates allows for estima- 

tion of tail probabilities of S, IZl, 4,. . . , Z, for specific values of s, under the three distributional assumptions. 

Since these equations are asymptotic approximations, their accuracy improves further out into the tail. 

NUMERICAL EXAMPLE 

This trapesinm of data is from Zehnwirth (1989) and discussed by Sundt (1989). The line which generated 

this data is automobile bodily injury liability, which is a relatively long tailed distribution. 

Acc’t Development Year 
YI 0 1 2 3 4 5 6 7 a 
71 568891 2 148049 3425871 4 160541 4840910 5058 131 5205931 5263030 5327859 
72 428753 1399393 2355291 3451062 3961134 4452987 4695982 4995827 
73 458252 1447324 2864930 3818152 4699285 4978063 5175219 
74 355229 1304036 2596936 3344939 3892227 4 166594 
75 282419 970751 2 129544 3032994 3662977 
76 267 600 1312 390 2 528 827 3 367 532 
77 560 307 1500 309 2 686 208 
78 360 171 1371944 
79 445 545 

This ttapesium produces the following set of observed development factors. The assumption is made 

that the losses are fully developed at the end of the eighth year. 

Accident Development Year 
Year 1 2 3 4 5 6 7 8 
1971 3.7759 1.5949 1.2144 1.1635 1.0449 1.0292 1.0110 1.0123 
1972 3.2639 1.6831 1.4652 1.1476 1.1242 1.0546 1.0639 
1973 3.1584 1.9795 1.3327 1.2308 1.0593 1.0396 
1974 3.7610 1.9915 1.2880 1.1636 1.0705 
1975 3.4373 2.1937 1.4242 1.2077 
1976 4.9043 1.9269 1.3317 
1977 2.6777 1.7904 
1978 3.8091 

Using the algorithms presented in the previous section produces the following parameter estimates. 
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Development 1 Lognormal 1 Loggamma 1 Log IG 
Period 1 pj C+ Qj x 1 Pj P 

O-l Il.2636 0.2155194.2400 74.808111.2567 69.7551 

Since there exists only one observation in the last development year, it is not possible to measure &i for 

2 the lognormal model. Instead 8; is used 88 an estimate of 0s. The parameter estimates of 67, fis and 8: are 

extremely unstable due to the scarcity of data in the latest development years. Because of this, the model 

is very sensitive to fluctuations in the most developed data. 

Estimation in the loggamma and the log IG model requires the use of iterative algorithms. In both 

models, convergence was reached in less than ten iterations. 

To test the validity of the three models, the empirical cumulative distribution functions of the observed 

development factors are compared to the cumulative distribution functions of the three fitted models. Ap- 

plying the Kolmogorov-Smirnov test (cf. Siivey, 1975) along the first four columns of the development factor 

trapuium, yields the following statistics. 

Development # Elements Lognormal Loggamma e 
The lognormal model would be rejected for the 3-4 development period. For this development period, 

the log IG is not significant at the 1% level, but it is at the 5% level. From this it can be seen that the 

loggamma distribution provides the consistently beat fit of the observed loss development factors over the 

first 4 development years. The log IG model generally outperforms the lognormal model. 

Figure 1 displays the quantile plots for the first two years of observed loss development factors under the 

three distributional assumptions. With so few data points, it is conceivable that other models may also fit 

the data. There does not appear to be any evidence suggesting that the models are inappropriate. As with 

the Kolmogorov-Smirnov test, it would seem that the loggammamodel provides a better fit to the data than 

both the lognormal and the log IG models. 

The parameters calculated give the following expected ultimate losses for each accident year. As a 

benchmark, two chain ladder estimates are given. Chain &adder 1 is calculated by applying the age-t-age 

development factors to the first column of data. C&C Ladder 2 is the traditional chain ladder algorithm 
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Figure 1: QQ Plots for the First Two Columns of Loss Development Factors Under the Three Distributional 
Assumptions 
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where the age&-age development factors are applied to the latest diagonal of data. The age-to-age factors 

used are the mean loss development factors calculated for each column of the trapesium of data. 

Acc’t Chain Chain 
Year Ladder 1 Ladder 2 
1971 7 159 109 5 327 859 
1972 5 395 567 5 057 258 

1973 5 766 792 5 435 070 
1974 4 470 317 4 556 012 
1974 3 554 052 4 304 386 
1976 3 367 565 4 680 189 
1977 7 051 085 5 012 683 
1978 4 532 509 4 813 100 

;ognormat 
7 157 330 
5 394 226 
5 765 359 
4 469 206 
3 553 169 
3 366 728 
7 049 333 
4 531 382 

1 

I 
Lqgamma Log IG 

7 182 137 7 215 595 
5 412 922 5 438 138 
5 785 341 5 812 292 
4 484 696 4 505 588 
3 565 484 3 582 094 
3 378 397 3 394 136 
7 073 765 7 106 719 
4 547 088 4 568 271 

1979 ) 5 606 883 1 5 607 066 1 5 605 489 1 5 624 918 1 5 651 122 
rOTAL 469038791 447936231 468922221 47054748147273955 

The levels of ultimate incurred losses for the three stochastic loss development models are less than the 

amount calculated by the traditional chain ladder model for four of the accident years, and greater than the 

chain ladder results for four of the years. Only for the most recent accident year is the traditional chain 

ladder estimate within the range of the stochastic loss development factor model results. This is not a fair 

comparison in that the Chain Ladder 2 estimate makes use of more data, since it estimates ultimate losses 

from the latest diagonal of the trapesium. The marked differences between this model and the remaining 

models suggest that perhaps the age-to-age development factors are not random samples within each column, 

but follow some pattern. Independence may not exist between the columns of the loss reserving matrix. On 

examination of the observed loss development factors, it is difficult to judge whether any patterns exist. 

Once the parameter estimates are calculated, the distribution of ultimate claims under the three assump- 

tions can be simulated. The loggamma model produced the least varying data set, as can be seen in Figure 

2. The box-and-whisker plot graphically compares the mean and variability of the simulated distributions. 

The sum of the accident year expected values for the lognormal distribution was lower than the simulated 

mean for the sum, but within one-half standard deviation of the mean for the simulation. The two calculated 

values for the loggamma were remarkably close - within $5000 of each other. The log IG performed poorly. 

The sum of the accident year calculated expected values was approximately two standard deviations larger 

than the mean of the simulated distribution. 

The upper percentiles of the distributions can be used to build a provision for adverse deviation into the 

loss reserves. Since the loggamma model appears to have provided the best fit of the observed development 

factors, it is reasonable to use the percentiles from this distribution. Based on the degree of conservatism 

desired by the actuary, the company may decide to set the level of estimated ultimate loss at $49 500 000, 

$51 000 000 or $54 500 000 for this line of insurance instead of the expected value of $47 000 000. These 

amounts correspond to the 80 ‘*, 90’* and 95:” percentiles of the distribution of ultimate claims respectively. 

The loss reserve would be then calculated as the estimated ultimate loss minus the amount paid-to-date. 
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Figure 2: Mean and Standard Deviation from Simulation of Three Models 

The upper percentila of all three distributions are rqulred to assess the accuracy of the asymptotic tall 

approximations. The asymptotic formulae in the previous section provide atimata of the upper percentila 

of ultimak claims. Numerically, these are e-as, to apply once the parameter atimata have been calculakd. 

In practice, the usefulness of such formulae depends upon whether accuracy is reallsed for moderate values 

of the random variate. This accuracy depends upon the functiond form of gi(t) and the corresponding 

paramekr atimata. Since all three distdbutionr are unimodd, it is reasonable to expect that the formulae 

should be useful for moderak valua of S, and that the accuracy will be a function of the parameter valua. 

For further discussion, see Wiimot (1989). 

Therefore it is extremely difficd~ to mwure the usefulness of the tail approximations without firat 

evaluating the entire distribution of S,. Comparing the kil probabiitia of the dmalation, 1 - &(s,) to 

the asymptotic formulae f,(s,) under all three distributions shows that the approximations are less than 

satisfactory for the estimata of the parameter vdua. For example in the lognormd model, the following 

results based on a simulation sire of 2000 are redised. 

Simulated tail vdua corresponding to 1- H,(r,) = 0.1,0.05,0.02 and 0.01 under both the loggamma and 

log ID assumptions were compared to the corraponding tail formulae. The approximations performed less 

favourably than the lognormd model. All calculated vdum of tJr,) were less than lo-l6 for both models. 
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CONCLUDING REMARKS 

This paper provides a framework for measuring the variation inherent in the loss development process. 

Like every model, its usefulness is limited to the the extent that the underlying assumptions are valid. 

Further development of the stochastic loss development factor model can be roughly divided into two groups: 

theoretical considerations and practical improvements, of which the former is much more imposing. 

Paramount of the theoretical difliculties is the assumption ofindependence between development years. In 

a traperium of pald data this assumption is questionable at best, and for incurred losses, it is not reasonable 

to assume that this year’s development on claims is independent of last year’s development. However to build 

a dependent structure into a development projection method would destroy the simplicity of the model, which 

is its main advantage. Given the general scarcity of data in loss reserving trapeziums, adding a dependence 

structure could introduce identifiability problems. 

A second flaw is that these models still contain too many parameters given the amount of data available, 

and thus are extremely sensitive to &actuations in data. It is difficult to differentiate between competing 

distributional models because of the large number of parameters compared to the size of the data sets. 

Except for cases of extreme poor fit, goodness-of-fit tests will offer little information about the validity of 

the model. 

This framework is not resistant to changes in exogenous forces. A necessary step to improve the perfor- 

mance of the models is to adjust the data first for known and measurable external influences 

The intermediate values of the loss development trapezium have not been used directly to measure the 

appropriateness of the stochastic loss development models. Comparing the observed values to the fitted 

values under the three models would provide insight as to where the underlying assumptions are violated. 

Prom the previous section, it is clear that the tail approximations performed poorly for the calculated 

parameter values. Further investigation is needed to discover the parameter values for which the asymptotic 

formulae are nseful. Wiimot (1989) discusses considerations for the IG distribution within a compound 

mixture framework. 

I believe the ability to simulate the distribution of ultimate claims and the approximations for upper 

probabilities of the distributions are the most relevant contributions of this framework. Increasing concern 

about solvency issues makes it imperative that actuaries draw quantitative as well as qualitative conclusions 

about the sufliciency of loss reserves to cover future losses. 
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APPENDIX A 

Proof Of Theorem 1: 

For each Dit, (fit, S&) are independent and completely and jointly sufficient. Since each of the Dit is 

also assumed independent, it follows that (~~zI fij, CT=, SSj) are independent and completely and jointly 

sufficient for the parameters of & Dij . 

Assume that there exists an unbiased estimator g(CT=, 81 CT=, SSj) of the mean of Vii&. Then by 

the Lehmann-ScheffC theorem, if E(UiJZi) admits an unbiased estimator, then it must also be the uniformly 

minimum variance unbiased estimator. 

From normal theory, for each i, fij is lognormally distributed with parameters pj and 3, and 3 
2 

follows a x’ distribution with r-j-l degrees of freedom. 

Using the technique discussed in Crow and Shimisu (1988, p 29), assume that there exists a function 

h(xy=r SSj) such that S(Ci”,r fij, ~~=I SSj) = Ii * e’Z=l ‘j) . /I(~~=, SSj). Since 9(~~=, jij, Cy=, SSj) 

is unbiased, 

E[& . ,%a pj . h (ksS,)l = E(Uilli) 
j=l 

j=l 

Therefore, using the MacLaurin series expansion, 

E[h(e SSj)] = 
jzl 

Now for each j, 

= 
2t Iyk + 9) 

++z2) * 

Rearranging the terms, gives 

E(SS;) = 2t(u;)r ‘(;;tiy). 

a 

(31) 

(32) 

Suppose that h(xTzI SSI) is of the form 
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h(eSsj)= fi Ofi( 
(r-j)-l;t~-j)-~ssj), 

j=l j=l 
2 

4(7 - 3 

then taking the expectation of both sides yields 

And from (32), 

Since the expectation of h(Cjn_l SSj) equals (31), and go ‘ven that under this model xi0 = Ii, therefore 

Q.E.D 
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APPENDIX B 

Simulation Algorithm for the Lognormal Model 

1. 

2. 

3. 

4. 

5. 

6. 

Generate Ur and Ur, two uniform [0, I] variates. 

Using the Box-Muller transformation (Hogg and Craig, 1978) calculate two independent standard 

normal variates 

21 = (-21nU~)“.“cos(2vUr) and Zr = (-2 In UI)‘.~ sin(2xUr). 

Two independent lognormal variates with parameters fi and # are given by 

Y~=exp(B.Zr+/i) and Ys=exp(b.Zr+fi). 

For each accldent year k, k = 1,. , . , f, repeat steps 1 - 3, 500 times to generate 1000 conditional 

observations, U;r, Ui2, . . . , U; lm, for 

fi=lnzto+kfij and 
j=l 

62 =p; 

where fij and &j are calculated by (5) and (6) respectively. 

This gives 1000 sample elements from the conditional distribution of 

S,l(h,~z, . . ..I.)= &rt, 
t=1 

call them S* S’ 1, lr...r.%o where SJ = CL=, Ui,j. 

These 1000 observations are then used to construct the empirical c.d.f of S, ](Ii, 12, . . . , I,), from which 

various statistics, such as the mean of ultimate claims and percentiles of ultimate claims, are calculated. 

Simulation Algorithm for the Loggamma Model 

1. Uniformly fast rejection algorithms which will generate a gamma random variate, X, with parameters 

L and X = 1 are listed in Devroye. Separate algorithms are required for & < 1 and ai 2 1 since 

the shape of the distribution changes radically for values of Q. For d 2 1, Best’s rejection algorithm 

(Devroye, 1986) is fast and simple to program. A modified version of Vaduva’s algorithm (Devroye, 

1986) is suitable for values of 8 < 1. 

2. A shifted loggamma variate with parameters h and x and threshold 6 is given by 

Y = exp [;X + 61. 
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3. For each accident year k, k = 1,. . ., r, repeat steps I - 3, 1000 times to generate 1000 conditional 

observations, U~f,U&,.-.,U&OOO, for 6 = lnzko, where 3 and (j, = cT=,&j are calculated by the 

loggamma algorithm. 

4. This will produce 1000 sample elements from the conditional distribution of 

SrI(Z1,Zz,..., I,) = &t14, 
t=i 

callthemSf,S; ,..., Sim~hereS~=~~=lU~j. 

5. These 1000 observations are then used to construct the empirical c.d.f of S,](Ir, Ir, . . ., I,), from which 

various statistics, such as the mean of ultimate claims and percentiles of ultimate claims, are calculated. 

Simulation Algorithm for the Log IG Model 

This algorithm for generating an IG variate can be found in Chhihara and Folks (1989) and Devroye (1986). 

1. Generate lT1 and Us, two uniform [0, I] variates. 

2. Using the Box-Muller transformation generate two independent $r, variates. 

Zl = ((-21u U~)"~5cos(2~U~))a and Zr = ((-21nUi)“.ssin(2rUr))2. 

3. For each Zi, let Xi = p + 2‘-(2~+4&i2p 
w . 

4. For each Xi, generate U, a uniform [0, I] variate. 

5. If u, I & 

letK=eXp[Xi+6] 

elze 

letK=exp[g++]. 

Y&s a shifted log IG variate with parameters fi and fi and threshold 6. 

6. For each accident year k, k = 1,. . ., 7, repeat steps 1 - 5, 500 times to generate 1000 conditional 

observations, U~l,U;lr~~~rU;fm, where 6 = In n&o and /? and $ = CT=, $j are calculated by the log 

IG algorithm. 

7. This gives 1000 sample elements from the conditional distribution of 

S,I(~l,Za,*.*, I,) = &lh, 
k=i 

call them Sit Si,. . . , Si, where S; = C;=i Vi j. 

8. These 1000 observations are then used to construct the empirical c.d.f of S, ](Ii, Ir, . . . , II), from which 

various statistics, such as the mean of ultimate claims and percentiles of ultimate claims, are calculated. 
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