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Abstract 

Risk measurement provides fundamental support to decision making within the insurance industry.  In 
spite of this, the limitations of the common measures are not well appreciated and there is little non-
specialist awareness of the more powerful techniques.   
The published material on risk measurement is strong and has developed significantly in recent years.  
However, it is fragmented and is not always in a form that is accessible to many industry practitioners.   
Also, notwithstanding the theoretical merits or otherwise of different techniques, many practical 
attempts to measure risk can be compromised by inappropriate use and interpretation. 
This paper aims to give an accessible overview of the full range of risk measurement and allocation 
techniques, critiquing both technical properties and practical considerations.  A simple example is used 
throughout the paper to help illustrate the various measures and methods, with values being calculated 
using stochastic simulation. 
Keywords. Risk Measurement; Capital Allocation; Dynamic Financial Analysis. 

1. INTRODUCTION 

Risk measurement is fundamental to the insurance industry, from the pricing of 
individual contracts to the management of insurance and reinsurance companies to the 
overall regulation of the industry.   Putting aside the inherent complexities of risk modelling 
and quantification, there is a more fundamental issue: are the common risk measurement 
techniques adopted in the industry appropriate for the purpose for which they are being 
used?  Also, are the more recent developments in risk measurement (and risk/capital 
allocation) thinking and their potential benefits well understood within the industry? 

• Common risk measures, such as the outcome at specific percentiles (e.g. the 1 in 100 
loss exceedence is X) and standard deviation, are often misinterpreted and abused – 
partly due to some fundamental limitations in the ability of these measures to 
describe ‘risk’ 

• More sophisticated techniques typically require a more complete articulation of the 
probability distribution of outcomes – such as might be provided from a stochastic 
model.  However, these methods are often technically more robust, are often not as 
intimidating as they first sound, and have the potential to gain much wider 
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acceptance and use. 

There is a risk that any discussion on risk measurement (and related issues such as capital 
allocation) can become very academic and technical in nature.  This is because, particularly at 
its more exotic extremes, the topic can involve relatively advanced mathematical thinking 
with all the associated perils of inaccessibility to non-academic mortals – mathematical 
notation and jargon, the presumption of prior understanding of background topics, and a 
limited focus on the perennial ‘so what?’ challenge (beyond the inevitable ‘academic 
interest’). 

This paper attempts to give a simplified guide through the maze – the commercial need 
for risk measurement, the methods available and their relative pros and cons, including the 
con of incomprehensibility, and, finally, a practical illustration using a case study with some 
real numbers.  The extent to which it succeeds is for the reader to judge and any comments 
to help improve the presentation of ideas would be welcome. 

Where possible, attempts are made to give credit to the original thinking behind the 
methods and concepts covered.  However, there is a risk that this in itself can add to the 
confusion.  It is apparent that a number of ideas have their groundings in more than one 
area, be it traditional statistics, game theory, operational research, financial pricing theory, 
corporate finance and, of course, insurance-related actuarial science.  Many methods have 
gained names, in some cases more than one (or at least several different names for similar 
variants).  In general the approach taken is to focus primarily on what the methods and 
concepts are about, occasionally at the inevitable expense of misrepresenting a name and/or 
the true originators of the thinking.  Apologies are given where proper recognition is 
possibly misstated, or is omitted – efforts will be made to correct any oversights in later 
versions. 

Note that this paper is limited to taking a relatively purist ‘economic value’ perspective of 
risk.  In practice, when considering topics such as capital adequacy, issues arise over the 
foibles of the pragmatic compromises made by rating agencies and regulatory authorities.  
The resultant anomalies form an important and interesting topic in its own right – but one 
that is too large to cover here adequately. 
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2. THE CHALLENGE 

Consider a company ABC with the following distribution of financial outcomes: 

• How might the dynamics of this uncertainty be changed: business strategy, 
reinsurance strategy, general risk management, asset allocation, capital management 
etc? 

In all cases we are looking for some kind of quantification of risk to provide decision 
support to the relevant stakeholder (management, investor, underwriter, rating agency etc).  
Note that it is common to look at risk in organisations in terms of the capital required to 
support a given exposure.  However using the term ‘capital’ for certain risk measurement 
problems can be unhelpful.  Capital is necessary as a buffer against extreme scenarios – but 
not all problems/stakeholders are concerned with remote organisation-threatening 
occurrences.  In certain situations it is valuable to look at risk in a more abstract way – as 
illustrated in Mango’s concept of a ‘concentrati

What business questions might we ask regarding this uncertainty? 

• Likelihood of going bust?  How much capital is required to support this business? 

• Likelihood of failing to meet one or more near term performance objectives? 

• Contribution of each sub-portfolio to overall ABC risk? 

• What minimum profitability margin should be targeted for each risk underwritten in 
order to deliver an acceptable individual and overall return on capital?   

on charge’[1] for catastrophe pricing.  The 
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use of risk measurement for both capital and other more abstract risk based decision support 
challenges will be considered as part of the evaluation of the various methods discussed in 
this paper. 

To maximise the decision support provided, the risk quantification will need to satisfy a 
number of requirements: 

• Different stakeholders have different levels of interest in different parts of the 
distribution – the perspective of the decision-maker is important.  Regulators and 
rating agencies will be focused on the extreme downside where the very existence of 
the company is in doubt.  On the other hand, management and investors will have a 
greater interest in more near-term scenarios towards the middle of the distribution 
and will focus on the likelihood of making a profit as well as a loss.    

• The approach taken to measure risk needs to be suitable for the purpose for which it 
is being used.  This refers to both the properties of the risk measure selected as well 
as the risk tolerance(s) selected for a given measure.  For example, risk is commonly 
measured by looking at the result for a specific return period.  What are the 
limitations in using such a measure?  In what circumstances will such limitations 
come to the fore?  Which return periods might be considered for the 
stakeholder/question (e.g. 1 in 10 or 1 in 100 risk or both)? 

• Is the risk measure understood by the decision-maker?  A detailed technical 
understanding may not be essential if there is a good appreciation of how the 
measure should be used and its values interpreted.  However, the complexity of 
more sophisticated measures may create a barrier for a decision-maker when it 
comes to the critical stage of making softer judgements alongside the hard 
quantitative results of the risk analysis.  

So the challenge… 

What alternatives are there for measuring risk? 

What alternatives are there for allocating a given risk measurement value 
across sub-portfolios? 

Which methods work well? 

Which methods are more appropriate in which circumstances? 
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How can risk measurement be made as comprehensible as possible, 
particularly for non-technical decision makers?  

The two graphs shown at the beginning of this section come from a simple stochastic 
simulation model built to illustrate the concepts and methods discussed in this paper.  
Company ABC is made up of three sub-portfolios, A, B and C.  Each has non-variable 
income of 100 less 25% expenses and losses distributed LogNormally with a mean of 65 and 
a standard deviation of 20.  The losses for A and B are highly correlated while those for C 
are totally uncorrelated with A or B.   The results shown in this paper are based on a 
stochastic simulation of 100,000 trials. 

The concepts and methods covered in this paper can be applied to the simplest and most 
sophisticated of risk models.  The model used for illustration is obviously somewhat simple 
but that does not mean it could not be readily expanded to include, or be deemed to include, 
more complex features.  For example, ‘losses’ might be considered to include all aspects of 
uncertainty including asset and reserving risk etc.  In addition investment income, whilst not 
explicitly recognised here, might be viewed as having been reflected within the income figure 
and by the losses being parameterised on a present value basis.  Similarly, issues over single- 
and multi-year uncertainties are not specifically considered – the results are notionally for a 
single year.  However, but this does not preclude multi-year thinking being incorporated 
within the parameterisation.   

3. DESIRABLE TECHNICAL PROPERTIES 

Aside from the issues of comprehensibility and application, we should consider the basic 
properties we might expect of something that purports to measure risk.  The concept of 
coherence is introduced both for risk measures (Artzner et al [2]) and risk allocation 
methodologies (Denault [3]) in 3.1 and 3.2.  These represent a basic set of common sense 
rules, the failure to comply with which must put into question a method’s suitability for 
measuring or allocating risk. 

3.1 Risk Measures 
A risk measure shall be deemed to be Coherent if it satisfies the following properties: 
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• SUB-ADDITIVITY 

Combining two portfolios should not create more risk.  When portfolios of risk are 
brought together, there may or may not be some risk diversification benefit.  
However, it would be counterintuitive to get an anti-diversification ‘benefit’! 

Risk(A+B) <= Risk(A) + Risk(B) 

• MONOTONICITY 

If a portfolio is always worth more than another, it cannot be riskier.  Consider 
company ABC – if one strategy gave modeled financial results better than another 
for any given return period, the risk, as measured by a coherent risk measure, must 
be better.  

Risk(A) <= Risk (B) if A >=B 

• POSITIVE HOMOGENEITY 

Scaling a portfolio by a constant will change the risk by the same proportion.  For 
example changing the currency being used or buying a quota share should change the 
risk by the exchange rate and quota share retention respectively.  This also equates to 
a specific case of the sub-additivity condition: when combining two perfectly 
correlated portfolios, the total risk should be the sum of the risk of the parts.   

Risk(kA) = kRisk(A), for any constant k 

• TRANSLATION INVARIANCE 

Adding a risk free portfolio to an existing portfolio creates no change in risk.  For 
example, when focusing on capital adequacy, adding additional capital to a company 
will not change the portfolio’s volatility (although it will reduce the risk to 
policyholders).  Similarly, with the company ABC example, where the underwriting 
result is being measured, adding additional non-variable income (e.g. premium from 
a rating increase), the financial result will be improved by this amount in all 
outcomes.   

Risk(A+k) = Risk(A) + k ,for any constant k 
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3.1 Risk/Capital Allocation 
It is usual to refer to capital allocation methods.  However, the same principles apply if a 

risk tolerance is used that does not come close to equating to a capital value – the 
measurement may be more abstract but this does not necessarily limit the potential benefit 
to decision support problems. 

A capital (or risk) allocation methodology shall be deemed to be Coherent if it satisfies 
the following properties: 

• NO UNDERCUT 

The allocation for a sub-portfolio (or coalition of sub-portfolios) should be no 
greater than if it was considered separately.  A sub-portfolio’s allocation should be 
no more than its standalone capital requirement and, similarly, a sub-portfolio’s 
allocation should be at least as great as its marginal (last in) allocation, i.e. the other 
portfolios shouldn’t be better off without the sub-portfolio.   This is a key property 
which encourages individual behaviour to be in a group’s interests. 

• SYMMETRY 

If the risk of two sub-portfolios is the same (as measured by the risk measure), the 
allocation should be the same for each  

• RISKLESS ALLOCATION 

Cash in a sub-portfolio reduces allocation accordingly.  This is akin to the translation 
invariance property for a risk measure. 

A crucial point to note, also, is that an allocation method will not be coherent unless the 
risk measure chosen is coherent  

4. RISK MEASUREMENT ALTERNATIVES 

Rather than give a long list of every conceivable risk measure, an attempt has been made 
to group those which have similar characteristics.  Also, for comparative purposes, the way 
in which each measure might produce a value approximately equal to the 1 in 100 downside 
result is shown for company ABC. 

It may be that the risk measurement value is used as a benchmark for capital adequacy.   
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ABC Financial Result - frequency distribution 
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Where this is the case it should be noted that, as in the case of the company ABC, any 
financial loss is after allowing for any income (i.e. 75 net of expenses).  For more near-term 
risk tolerances, it is quite possible for the risk measurement not to represent a net loss 
scenario (or set of such scenarios), e.g. ABC still makes a profit at the 1 in 4 downside result.  
In such cases the ‘risk’ from the losses is not greater than the premium.  This is not 
necessarily an unreasonable result but can create some confusion and anomalies when using 
risk measurement values in certain practical situations. 

4.1 Point Measures 
The value of a distribution of outcomes at a single point.  This point might be defined 

using a given percentile (this is akin to Value at Risk (VaR), which is commonly used in the 
banking sector) or the probability of an outcome being worse than a given monetary 
threshold (e.g. probability of ruin). 

 

 

 

 

 

 

 

 

 

 

The result for company ABC is forecast to be a loss of -98.4 or worse every 100 years  

4.1.1 Technical Evaluation 

This risk measure only focuses on a single point of the distribution.  It captures no 
information for the decision-maker regarding how the tail of the distribution behaves (nor 
any other part of the distribution for that matter).  Unless there is an overriding purpose that 
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may justify such a narrow perspective of the ‘risk’, there is a serious danger that such a 
metric can lead to a decision-maker making inappropriate inferences regarding the behaviour 
of other parts of the distribution. 

Such measures are not coherent as they fail the sub-additivity requirement.   This can be 
illustrated using a simple example of two similar uncorrelated portfolios.  There is a 99.1% 
chance that each portfolio will produce a profit of 10 and a 0.9% chance of a loss of 100.  
The 1 in 100 result for each is a profit of 10 – added together gives a total profit of 20.  
However, when considered as a single combined portfolio the 1 in 100 result is a loss of 90, 
one of the original portfolios making a profit, the other a loss. 

It might be thought that this sub-additivity issue is only material for fairly contrived 
distributions and it is certainly true that anomalies do come to the fore for relatively ‘chunky’ 
distributions (e.g. recoveries to excess of loss reinsurance contracts).  However, this issue of 
the sum of the risk of the parts being greater than the whole has been observed with cat 
modelling results with the cat modelling company concerned citing this phenomenon as the 
cause – the effect was material. 

4.1.2 Practical Evaluation 

For all its technical limitations, the point value is the most widely used risk measure (or 
set of risk measures) in the insurance industry and is likely to remain so: 

• Everyone understands it (or at least thinks they do) 

• It is intuitively easy – ‘what is the chance of that happening?’ 

• You don’t need to know (or be able to estimate) more than a single point of a 
probability distribution.  For decision-makers, such as regulators, who require their 
measures to be adopted industry-wide, this makes this a very persuasive argument in 
favour of this form of risk metric. 

But what about the technical limitations?  These can in part be overcome by considering 
more than one value using this measure – looking at two or more points on the distribution.  
However, the sub-additivity issue remains at best a trap for the unwary and at worst a 
fundamental flaw for certain applications.  In particular the use of point values is not a 
recommended for detailed pricing techniques nor as the basis for capital allocation exercises 
(as the measure itself is not coherent, neither will the allocation). 
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Standard Deviation (and Higher Moments) 
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Standard deviation is a statistical measure of the spread of a distribution and is the square 
root of the variance, which is also known as the 2nd central moment.  The variance is 
perhaps simply described in words as a probability-weighted sum of the squares of the 
deviation from the mean for all potential outcomes.  

As a descriptor of the shape of a distribution, standard deviation is limited.  It is possible 
to construct starkly different distributions which have the same standard deviation but 
would elicit strong variations in views regarding perceived ‘risk’.  The description of a 
distribution can be enhanced by looking at higher moments – the third and fourth moments 
are used to define skewness and kurtosis (peakiness).  Insurance distributions are typically 
highly skewed making such additional metrics very relevant.   

If standard deviation was to be used as a risk measure to set capital for ABC then 2.87 
times the standard deviation (44.7) from the mean would give the equivalent of our 
previously used 1 in 100 figure. 
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It should be noted that the factor applied to the standard deviation will give different 
numbers for different distributions.  For example, if ABC’s financial outcome was normally 
distributed, the 1 in 100 result would equate to 2.33 standard deviations.  For more extreme, 
highly skewed distributions (e.g. individual risks or ABC without reinsurance), the equivalent 
standard deviation multiple would be much higher.   

4.2.1 Technical Evaluation 

As outlined above, standard deviation is limited to giving a measure of spread.  Fuller 
descriptions of the risk behaviour, such as the degree of skewness of a distribution, require 
reference to higher moments and the immediate elegance of a single metric is lost. 

On the plus side, standard deviation does take into account the entire distribution, 
usefully giving a greater influence to more extreme outcomes.  However, this is a take it or 
leave it situation – the decision-maker who is only interested in part of the curve has no 
choice. 

There is also an issue that the processes of squaring, cubing or whatever makes such 
measures harder to manage algebraically and introduces corrupting features not present in 
more direct measures.  One of the fallouts from this is that standard deviation fails the 
monotonicity requirement and is therefore not coherent. This can be illustrated in the 
following simple example: 

Consider 2 businesses with the following sets of financial outcomes: 

A: Equal likelihood of a loss or profit of 100 (mean 0, standard deviation = 141) 

B: Always a loss of 100 (mean -100, standard deviation 0) 

This suggests that not only is A more volatile, if capital were to be allocated based on the 
mean plus a factor of more than 0.7 of the standard deviation, it would attract more capital 
than B.  

Another related unhelpful feature that there is nothing to stop a ‘capital’ value derived in 
such a way from exceeding a physical constraint such as the sum insured. 

4.2.2 Practical Evaluation 

As the school textbook measure of volatility, standard deviation is a widely used risk 
measure – non-technical decision makers do not feel overly intimidated despite its relatively 
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technical persona.  One aspect of false confidence, which has particularly helped its 
popularity in the banking/investment sector, is the association with the normal distribution, 
i.e. if you know the standard deviation then you know the value at any given percentile.  The 
assumption of normality has received some bad press in the banking/investment sector and 
is demonstrably inappropriate for the highly skewed distributions typically found in 
insurance. 

For many users a standard deviation is somewhat abstract – it doesn’t tend to garner the 
same strength of feeling of, say, a 1 in 100 result estimate.  Its abstract nature can also lead to 
inappropriate estimates being accepted without proper challenge.  One particularly common 
but poorly recognised phenomenon is that the Coefficient of Variation (COV – standard 
deviation divided by mean) will be higher for small sample sizes, i.e. a small premium 
portfolio will typically have a much higher relative standard deviation than will a large 
premium portfolio.  

However, it does give a measure that takes in the whole of a distribution and it is fairly 
easy to calculate using spreadsheets and other computer software.  These ‘quick and dirty’ 
benefits make it hard to ignore but it is dangerous if it ends up in ill-informed hands and/or 
is the only measure of risk used.  Its limitations also make it a poor choice for use as a basis 
for more advanced decision support applications, such as capital/risk allocation. 

4.3 Expected Exceedence Measures 
These are a family of measures based on the expected result given the result is beyond a 

given threshold, i.e. the average of all the values beyond a given point of the distribution.  
Names include Tail Conditional Expectation (TCE), Tail Value at Risk (TVaR) and the 
related measure, Expected Shortfall (ES). 

A key issue is how the threshold is defined and whether or not the distribution concerned 
is continuous.  There is no problem with a percentile (or return period etc) but there can be 
ambiguities if a monetary value is used – if the cumulative distribution is flat for the selected 
monetary threshold, should all, none or part of the percentile range be included or excluded 
from the expected value calculation?  Note that this problem also arises if a percentile is used 
to obtain a monetary value which in turn is used for the expected exceedence calculation.   

In order to clarify the difference between measures of this form and using a single point 
on a distribution (4.1), it is worth comparing the interpretation of a 1 in 100 
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percentile/threshold.  With the percentile approach the measure implies the value will be 
exceeded every 100 years whereas the expected exceedence measures give the expected result 
every 100 years, the latter being greater as it is influenced by the outcomes of more remote 
return periods than 1 in 100.  This can be illustrated further by considering the exceedence 
threshold necessary for company ABC to give a result equivalent to the original 1 in 100 
exceedence: 

ABC Financial Result - frequency distribution 

-200 -150 -100 -50 0 50 100 150

Distribution Mean Threshold (1 in 37) Expected Exceedence

 

 

 

 

 

 

 

 

 

 

 

The expected result every 37 years (the average of scenarios with a result of -70 or worse) 
is equal to the 1 in 100 result exceedence.  Obviously the return period threshold that gives 
an expected exceedence to match, say, a 1 in 100 exceedence, will vary according to the 
shape of the distribution. 

A further specific example of this form of measure is Excess Tail Value at Risk (XTVaR) 
where the threshold is defined by the mean. 

Expected Shortfall (ES) is similar but with a key difference – it represents the expected 
amount of the shortfall beyond the threshold, i.e. in the chart above, the Expected 
Exceedence less the Threshold.  Expected Policyholder Deficit (EPD) is a specific case of 
the Expected Shortfall measure where the threshold is the company’s surplus capital. 
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4.3.1 Technical Evaluation 

This family of risk measures has strong technical properties and satisfies all the coherence 
criteria.  The only note of caution is that of ensuring the measure is well defined if the 
threshold is expressed at a monetary value.  

By definition the measure focuses on a single tail of the distribution.  By focusing on 
more than a single point it gives a much richer description of ‘risk’ than the percentile 
measure.  However, unlike some other measures, such as standard deviation, only part of the 
distribution influences the risk value – the upside characteristics, however good or bad, have 
no impact.   

4.3.2 Practical Evaluation 

Aside from their technical strengths, these measures are intuitively appealing – the 
expected result every x years (or beyond a given threshold) is little more difficult to 
understand than the omni-present return period exceedence measure.  Indeed it might be 
suggested that this additional perspective helps challenge people’s understanding of what 
they mean when referring to a ‘1 in x’ result.   

Its focus only on the tail of a distribution may limit applications where a more 
sophisticated capture of upside risk behaviour is considered desirable.  However, for certain 
decision support requirements this is less of an issue as they are very much downside 
focused, e.g. capital adequacy, cat pricing etc. 

One practical issue is the calculation of these values.  A more complete view of the 
distribution of outcomes, or at the very least the tail, is required.  This is an issue for anyone 
who cannot express the tail of the distribution of results either algebraically or through using 
computer simulation.  At least one regulator has indicated an interest in using the Expected 
Shortfall measure and it will be interesting to see how companies with less sophisticated 
modelling capabilities cope with calculating such a measure.  For those working with 
probability distributions and good computer software, deriving values based on these 
measures is relatively straightforward. 

4.4 Transform Measures 
In its most generic form this type of measure involves applying adjustments to different 

parts of the original distribution to form a new, transformed, distribution.  Upside or 
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downside outcomes that are considered to be particularly critical to a particular decision or 
application are given much greater weight.  The mean of the resultant transformed 
distribution is calculated and its difference from the original mean gives a measure of risk.  

From a practical calculation perspective the weightings can be affected by transforming 
the original percentiles (leaving the outcome values unchanged) or by being applied to the 
outcome values (leaving the percentiles unaltered).  Where weightings are applied to the 
outcome values they may be standardised in order to give a mean weighting of 1.  

Consider approaches involving transforming the original percentiles.  Proportional 
Hazards Transform (Wang/Christofides) is one well-known example.  This involves 
raising the cumulative distribution by a selected power.  The following shows the transform 
undergone for company ABC using a power of approximately one fifth (the new mean 

sophisticated when deriving a Concentration 

 The Wang transform is slightly more complex, being based on a shift of the inverse 
Normal (0,1) transform of the distribution.  A more recent version incorporates an 
adjustment for parameter uncertainty and has been shown to match closely the risk margins 
observed in catastrophe bond pricing [4].  

Mango’s Concentration Charge [1] showcases the related approach of applying 
weightings to different outcome values depending on how much influence it is felt each 
should have on the risk measurement.  It is possible to be relatively crude or extremely 

Charge measure.  At the same time the 

Casualty Actuarial Society Discussion Paper Program, 2005  15 
 



Risk Measurement in Insurance 
 

weightings rule can be easily understandable and accessible to the ultimate decision-maker or 
left as a somewhat abstract measure of ‘risk’. 

To illustrate the approach, consider an example using company ABC.  We do not wish to 
dismiss any outcomes entirely so we start with a default weighting of 1 for all.  Let us say 
that outcomes which involve losing money are considered highly undesirable – a decision is 
made to give these a weighting of 8.  At the same time there is an interest in encouraging 
high upside outcomes (the appeal of the lottery effect), albeit not to the same extent as 
discouraging downside results – outcomes of greater than 100 are given a weighting of 4.   

 
ABC Financial Result - cumulative distribution 
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The resultant mean of the Concentration Charge can be scaled in order to equate to any 
particular less abstract risk value, in this case our 1 in 100 ‘capital’ charge.  Note that the 
scaling can be carried out on the absolute Concentration Charge value or relative to, say, the 
mean, the latter being more appropriate as a basis for risk/capital allocation – see later.  

Note that the Concentration Charge is totally flexible in the way it is defined.  For 
example it might be completely downside (or upside) focused, or attempt to introduce some 
sort of targeted balance between good and bad outcomes. 

The expected exceedence measures are in fact related examples of this type of measure.  
For example with Tail Conditional Expectation / Tail Value at Risk, all outcomes beyond 
the prescribed threshold are given an equal positive weighting, all others a zero weighting – 
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albeit the zero outcomes are not included in the subsequent mean calculation (i.e. measures 
represent the expected result given the threshold is exceeded).    

4.4.1 Technical Evaluation 

This form of measure satisfies all the coherence properties with the potential exception of 
Translation Invariance.  This limitation is not an issue for full distribution transforms (e.g. 
PHT) but may need to be considered where values have been scaled beyond the 
transformation of the distribution (e.g. when using non-standardised weights for the 
Concentration Charge).  However, it is likely to be relatively easy to manage this limitation 
by taking care over how a measure is used. 

The form of the transform/weights is effectively unlimited but the generic properties still 
hold in all cases.   

4.4.2 Practical Evaluation 

The flexibility of measures of this form is a huge benefit but also comes with the 
challenge of how to come up with appropriate weights for a given application.  However, 
there is an argument that the process of thinking through what ‘risk’ really means in a given 
circumstance is important and is easily overlooked with more ‘off the shelf’ metrics.   

There are the usual benefits of not making matters unnecessarily complicated and it is 
undoubtedly possible for such measures to become too abstract and intimidating for many 
non-technical decision makers. 

Mango’s as yet unpublished ‘shared asset’ concept is one way of introducing a rational 
basis to a tiered structure of ‘concentration charges’.  Beyond a basic capital exposure charge, 
a higher weight may be given to scenarios which result in capital actually being destroyed.  
The weight applied is increased further where capital beyond that originally notionally 
allocated is required.  

These measures are very well suited to calculation using scenario-based simulation, 
particularly the clear weightings of outcomes used in a Concentration Charge.  A key benefit 
is the notion that each outcome makes an explicit contribution towards the final 
measurement.  This provides an elegant transparency that helps overcome user 
apprehensiveness and is similarly advantageous when such measures are used as the basis for 
risk/capital allocation. 
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4.5 Performance Measures 
Performance ratios are perhaps the odd ones out in the company of the other measures 

covered in this paper in that they relate more to performance than to pure risk.  As well as 
embodying something relating to capital (or at least some measure of downside risk) they 
incorporate some measure of upside performance.  The typical form is to give the upside 
performance per unit of risk accepted, i.e. a risk adjusted measure of return. 

The traditional such measure used in investment theory is known as the Sharpe Ratio 
(introduced by Professor William Sharpe in 1966).  This is calculated by dividing the average 
return in excess of the risk free return by the standard deviation of the return.  This gives a 
simple, albeit imperfect, metric by which the performance of different assets can be 
compared. 

Clearly similar measures can be constructed for insurance applications but it is important 
to be mindful of the strengths and limitations of the component parts – as highlighted in this 
paper.   The Sharpe Ratio for insurance equates to the gradient on a mean / standard 
deviation risk reward chart – for any given point on the chart how much additional profit 
can be made for accepting a small amount of extra risk?  

Given the earlier comments regarding the limitations in using standard deviation to 
measure risk what alternatives exist? 

One worth noting is Ruhm’s Risk Coverage Ratio (RCR) [5] (also known as R2R – 
Reward To Risk).  The return (on a present value basis) is as for Sharpe but the 
denominator is replaced by the expected downside result multiplied by the probability of a 
downside result (note downside in this context refers to any negative outcome - the 
denominator is in effect a measure of the contingent use of capital).  The ratio’s intuitive 
meaning is how many times the risk is “covered” by the expected return, hence the name. 

Another performance ratio worth looking at is Keating and Shadwicks’ Omega function 
[6].  This is simply, for a given threshold, the expected upside (i.e. the expected result given it 
is better than the threshold) divided by the expected downside.  Put another way the 
numerator can be thought of as the chance of winning multiplied by the expected amount of 
a win once it happens.  Likewise the denominator, as for the Risk Coverage Ratio, is the 
chance of losing multiplied by the expected loss in such a scenario. 

So what does Omega look like in practice and how should it be interpreted?  A key issue 
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ABC Financial Result - frequency distribution 
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is what threshold to select.  This could be achieving plan, making a profit or be related to 
some other specific objective, and is likely to vary according to the application / decision 
being made.  The Omega value will always be positive (numerator and denominator are 
based on deviations away from the threshold) and will be greater or less than 1 depending on 
whether the threshold is worse or better than the mean.  This can be illustrated by looking at 
the full range of Omega values (plotted on a separate log scale) for company ABC based on 
all possible threshold values:  

 

 

 

 

 

 

 

 

 

 

Note that the x axis represents the threshold for the plot of the Omega value ‘curve’. 

These values are somewhat abstract when looking for an immediate interpretation for a 
given threshold.  However, they become more meaningful when it comes to comparing 
alternative risks / strategies.  An alternative strategy might be considered for ABC which has 
a higher profit expectation (mean losses for each of A, B and C reduced by 2.5) but is more 
volatile (each of the three loss standard deviations increased by 5).  The additional statistics 
(dashed) are included in the following chart: 
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ABC Financial Result - frequency distribution 

0 .0 %

2 .0 %

4 .0 %

6 .0 %

8 .0 %

1 0 .0 %

-200 -150 -100 -50 0 50 100 150

0.001

0.01

0.1

1

10

100

1000

O
m

eg
a 

va
lu

e 
(l

o
g

 s
ca

le
)

Distribution(1) Mean(1) 1 in 100(1)

Distribution(2) Mean(2) 1 in 100(2)

Omega(1) Omega(2)

 

 

 

 

 

 

 

 

 

 

 

The new distribution has a higher mean but a significantly poorer 1 in 100 result.  We can 
see how the Omega measure interprets these differences.  The lines cross just above the 
break even point (1.33) and if the selected threshold is below this level, the original 
distribution gives higher Omega values and is therefore valued as being preferable.  
Alternatively, for higher thresholds the new strategy is viewed as more appealing.  

It should be noted that by plotting the full range of Omega values it is possible to achieve 
a more balanced view of the perspectives of different stakeholders.  It is too simplistic to 
suggest, for example, that a regulator’s sole interest is in the probability of ruin or that 
management is only concerned with nearer term bonus or career risk type return periods.  
The Omega measure gives a perspective of the entire distribution of outcomes based on any 
number of selected threshold view points. 

As a way of bringing together the implications from the full range of values of the Omega 
function, the Financial Development Centre has developed ‘Omega metrics’.  These 
incorporate the slope of the log of the Omega function and balance the right or left bias of 
the distribution, thereby penalising fat downside tails and rewarding fat upside tails.  This 
captures an important natural risk aversion dynamic within a single statistic.   
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4.5.1 Technical Evaluation 

The technical properties of any given ratio will depend on its construct and the purposes 
for which it might be used.   

Both the Risk Coverage Ratio and Omega function are constructed from measures which 
themselves have robust characteristics.  They reflect both upside and downside behaviours 
in a single value, with the Omega measure having the additional flexibility as to the threshold 
by which ‘upside’ and ‘downside’ are defined.   

Considering ratios in the context of the coherence properties outlined in section 3 is 
probably inappropriate as these are inherently performance rather than risk measures. 
However, they can still be used as a basis for capital allocation – see 5.6.    

4.5.2 Practical Evaluation 

Despite their relatively simple foundations, ratios are typically more complex to explain 
than other measures.  The value of the measure does not directly represent a loss or profit 
amount, but rather a semi-abstract hybrid.  However, they bring together the upside and 
downside characteristics of distributions in an elegant and neat way, and have a valuable role 
to play in the ongoing challenge of adequately evaluating risk reward tradeoffs. 

Again these measures are very well suited to calculation using scenario-based simulation. 

4.6 Other Measures 
Other measures probably fall into two categories. 

The first would be specific and/or hybrid versions from the five main categories 
highlighted above.  For example there might a very specific transform or ratio which is 
viewed as meeting the requirements of a particular decision support application.  Alternative 
different risk measurement concepts might be combined – perhaps the expected exceedence 
of a transformed distribution? 

It is inappropriate to attempt to identify every conceivable form that an actual risk 
measure might take.  However, it is suggested that it will be based on one or more of the 
main risk measurement concepts outlined, and thereby share the corresponding strengths 
and limitations.  

The second category might not be considered risk measures at all but for the fact they 
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are, on occasion, used to measure risk.  They might better be classified as ‘measures’ without 
the ‘risk’ prefix.  The quantification of anything can subsequently end up being associated 
with risk – weight, size, length, speed, power etc. 

In insurance it is common to see real world items such as premium, sum insured, 
wageroll etc all being used a proxies for exposure and hence risk.  Such measures do have an 
important role but their limitations in terms of risk measurement can be considerable.   

5. RISK / CAPITAL ALLOCATION ALTERNATIVES 

This section considers ways of allocating the risk measurement values derived from 
section 4 across contributing sub-portfolios.  If a risk measurement value happens to equate 
to some form of capital value then these can be considered to be capital allocation methods.   

The methods are again illustrated using company ABC.  A number of the risk measures 
are used in each case (all equating to the 1 in 100 return period benchmark used throughout 
section 4).  For illustrative purposes we will attempt to allocate the 128.4 shortfall below the 
mean rather than the absolute loss of 98.4.  Note that any attempt to allocate the shortfall 
below an absolute value encounters a further difficulty, as to what threshold to use for each 
sub-portfolio (less of a problem if 0 used).  Allocating the overall threshold between 
portfolios can be as awkward as the main allocation challenge. 

A recap of the measures and tolerances used follows: 

• 1st percentile 

• Standard Deviation * 2.8706  

• TCE2.728% (expected result beyond 2.728%ile) 

• PHT5.1375 (Proportional Hazards Transform with power 5.1375) 

• Scaled Concentration Charge (relative weights: less than 0 = 8, over 100 = 4, 
otherwise 1)  

As was highlighted at the end of section 3, an allocation method can only be coherent if 
the risk measure used for the allocation is coherent.  This that means certain of these risk 
measures will be a poor choice in practice. 

It should be noted that there is no guarantee of avoiding one or more sub-portfolios 
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getting a negative risk allocation, i.e. an allocation with a different sign to the overall risk 
measurement.  Consider our company ABC example where we are modelling the overall 
financial result.  It may be that one particular sub-segment is relatively small, highly 
profitable, not overly volatile and non-correlating with the overall company risk.  In such 
circumstances it is possible that the premium may be more than likely an adequate buffer 
against any adverse claims behaviour.  Would a negative allocation be unreasonable in such 
circumstances?  The key issue is not that it can occur but how this phenomenon should be 
managed in the context of a particular decision support application.  

The recommended approach is the Aumann-Shapley method which is covered in 5.4.  
However, the preceding methods highlight some of the common weakness and illustrated 
how the thinking behind Aumann-Shapley values evolved. 

The Covariance Share method (5.5) is also worth noting as is the potential to use 
performance ratios, mentioned in 5.6. 

5.1 Independent “First In” 
The independent method estimates the risk for each sub-portfolio as if it were a stand-

alone business unit.  In practice the sub-portfolios are unlikely to be perfectly correlated so 
there should be some diversification benefit at the overall portfolio level (i.e. the sum of the 
parts is likely to be greater than the whole).  This diversification benefit is shared pro-rata 
according to the independent risk values. 

The following table shows the calculations based on the 1st percentile risk measure for 
ABC: 

 

1st percentile Actual % Scaled 

A 60.1 33.3% 42.8 

B 60.1 33.3% 42.8 

C 60.1 33.3% 42.8 

Total 180.3 100.0% 128.4 
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Note that the sum of the parts is significantly higher than the 128.4 value for ABC as a 
whole but the standalone values are scaled accordingly to give our first allocation candidate.  
This approach can be repeated using other risk measures: 

 

2.87 * Std Dev Actual % Scaled 

A 57.4 33.3% 42.8 

B 57.4 33.3% 42.8 

C 57.4 33.3% 42.8 

Total 172.3 100.0% 128.4 

 

TCE2.728%ile Actual % Scaled 

A 60.0 33.3% 42.8 

B 60.0 33.3% 42.8 

C 60.0 33.3% 42.8 

Total 179.9 100.0% 128.4 

 

This is equivalent to allocating risk as a fixed premium percentage – it is the simplest 
approach, is easy to understand, and always generates positive capital requirements for every 
business line.  However it does not penalise highly correlated portfolios nor reward those 
which give rise to an overall diversification effect.  This is not a coherent allocation method 
(failing the ‘no undercut’ criterion) and is not recommended. 

5.2 Marginal “Last In” 
The marginal method considers the risk of a portfolio, with and without each sub-

portfolio, for which the allocation is to be undertaken – the difference being the ‘marginal’ 
risk.  The sum of the marginal risk values will be less than the overall value unless all risks 
are perfectly correlated – the marginal values can be scaled accordingly. 

The calculations for ABC are as follows: 
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1st percentile Excluding 
portfolio 

Marginal 
impact 

% Scaled

A 79.6 (BC) 48.8 (ABC-BC) 46.1% 59.2 

B 79.7 (AC) 48.7 (ABC-AC) 46.1% 59.2 

C 120.2 (AB) 8.2 (ABC-AB) 7.8% 10.0 

Total   105.8  100.0% 128.4 

 

2.87 * Std Dev Excluding 
portfolio 

Marginal 
impact 

% Scaled

A 81.2 (BC) 47.2 (ABC-BC) 43.2% 56.1 

B 81.2 (BC) 47.2 (ABC-AC) 43.2% 56.1 

C 114.8 (AB) 13.6 (ABC-AB) 12.6% 16.2 

Total   107.9  100.0% 128.4 

 

TCE2.728%ile Excluding 
portfolio 

Marginal 
impact 

% Scaled

A 79.2 (BC) 49.2 (ABC-BC) 46.0% 59.1 

B 79.2 (BC) 49.2 (ABC-AC) 46.0% 59.1 

C 119.9 (AB) 8.5 (ABC-AB) 7.9% 10.2 

Total   106.8  100.0% 128.4 

 

This approach goes to the other extreme.  Uncorrelated sub-portfolios are over rewarded, 
leaving a relatively harsh allocation for correlating sub-portfolios.  Again this is not a 
coherent allocation method (again failing the ‘no undercut’ criterion) and is not 
recommended. 

The following methods give rise to more equitable allocations which lie between the 
extremes of the independent and marginal approaches. 
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5.3 Shapley 
Game Theory is a relatively young branch of mathematical analysis (foundations in the 

1940s) developed to study decision-making in conflict situations.  Practical applications can 
be found in many fields including economics and finance.  The relevance to risk allocation is 
obvious – a sub-portfolio benefits from being part of a larger diversified portfolio but, at the 
same time gives a diversifying benefit to other portfolios.  The inherent tension in this set up 
gives rise to the challenge of finding an equitable and stable way of sharing the overall 
diversification benefit across each sub-portfolio. 

Denault [3] considered how Game Theory concepts could be applied to this problem, in 
particular Shapley and Aumann-Shapley values (see 5.4).   

Lloyd Shapley introduced the concept of the "Shapley Value" in 1953 [7] as a stable 
solution to coalitional games involving any number of players.  The key limitation in 
applying this to risk allocation problems is the issue of having a whole number of players, i.e. 
a sub-portfolio is treated as a whole – more on this later. 

The calculation of Shapley values is a natural extension of the independent and marginal 
methods already discussed, and is based on the average of the “1st in”, last in” and all the 
intermediate “ins”  This is best illustrated by looking at the calculations for ABC where the 
“2nd in” is the only intermediate value to consider: 

 

1st percentile "1st in" Average 
"2nd in"

"Last in" Average "2nd in" calculations 

A 60.1 39.8 48.8 49.6  60.1 (AB-B) 19.6 (AC-C)

B 60.1 39.8 48.7 49.6  60.1 (AB-A) 19.5 (BC-C) 

C 60.1 19.5 8.2 29.3  19.6 (AC-A) 19.5 (BC-B) 

Total 180.3 99.2 105.8 128.4      
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2.87 * Std Dev "1st in" Average 
"2nd in"

"Last in" Average "2nd in" calculations 

A 57.4 40.6 47.2 57.4  57.4 (AB-B) 23.8 (AC-C)

B 57.4 40.6 47.2 57.4  57.4 (AB-A) 23.8 (BC-C) 

C 57.4 23.8 13.6 31.6  23.8 (AC-A) 23.8 (BC-B) 

Total 172.3 105.0 107.9 128.4      

      

TCE2.728%ile "1st in" Average 
"2nd in"

"Last in" Average "2nd in" calculations 

A 60.0 39.6 49.2 49.6  59.9 (AB-B) 19.3 (AC-C)

B 60.0 39.6 49.2 49.6  60.0 (AB-A) 19.3 (BC-C) 

C 60.0 19.2 8.5 29.2  19.2 (AC-A) 19.2 (BC-B) 

Total 179.9 98.5 106.8 128.4      

  

No scaling is required – the parts naturally add up to match the whole.  So long as the 
risk measure used is strongly sub-additive (see Denault) in addition to satisfying the general 
coherence properties (as outlined in 3.1), then this method of allocation is coherent (3.2).   
Note that only the latter measure, TCE2.728%ile, is coherent amongst the examples shown. 

Shapley values are undoubtedly elegant but have two important practical failings. 

First, they are computationally challenging – an allocation based on 4 sub-portfolios 
requires calculations for 15 combinations and 5 requires 31 combinations etc.  This quickly 
becomes impractical.   

Second, we have the issue regarding whole number of players.  If, say, A was split into 
two and the above calculations were performed on the 4 sub-portfolios, the Shapley values 
for B and C would change!  This is a poor property and the next method moves on to 
looking at games involving fractional players. 

Note that Covariance Share (see 5.5) is related to Shapley Values.  This uses variance as 
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the underlying risk measure (note not coherent) but overcomes the computational problems 
highlighted above.   

5.4 Aumann-Shapley 
Aumann and Shapley extended the concept of Shapley values to non-atomic (fractional) 

games in their original book [8] published in 1974. The result was called the Aumann-
Shapley value.  In words, the Aumann-Shapley value represents the rate of increase in the 
risk /capital allocation, i.e. how much additional overall risk comes from a sub-portfolio, for 
a tiny increase in size. 

It is interesting to note that a number of academics and practitioners have come 
separately to the same conclusion – that this is the most appropriate and, as we will see, 
practical method for risk allocation.  The Myers-Read methodology is in effect based on 
calculating Aumann-Shapley values using a probability of ruin risk measure.  

Aumann-Shapley values are particularly easy to calculate using simulation techniques.  
This has been formalised by the Ruhm-Mango-Kreps algorithm (RMK) [9].  This considers 
the selected risk measure in the form of a weight applied to the outcome for each trial (as 
explicitly happens for Mango’s concentration charge).  It is then possible to calculate the 
risk-weighted average, see how much it differs from the original average and, most 
importantly, see what contribution was made to this difference by each sub-portfolio. 

Allocations have been calculated for ABC based on four of the risk measures covered in 
section 4: 

 

 1st percentile 
(0.57%-1.5%) 

TCE2.728%ile PHT5.1375 
Concentration 

Charge 
A 54.7 54.7 58.9 63.3 

B 54.8 54.7 58.3 63.3 

C 19.0 19.0 11.2 1.8 

Total 128.4 128.4 128.4 128.4 

 

The 1st percentile calculation follows the approach taken by Ruhm and Mango in their 
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paper on implementing Myers-Read using simulation [10].  A collar is taken round the point 
estimate so as to capture a reasonable number of trials from which to base the calculation of 
the contribution made by A, B and C to the overall measure.  This collar might simply be 
+/- 0.5% (the odd range here is somewhat pedantic and used in order to ensure an exact 
match up with the 1 in 100 figure). 

The Tail Conditional Expectation and Proportional Hazards Transform measures are 
both coherent and using these with the Aumann-Shapley values ensures a coherent 
allocation.  The TCE measure is particularly intuitively appealing when used with Aumann-
Shapley: what is the expected downside result every x years and, when things go wrong, 
whom do we expect to have caused it?  

The Concentration Charge results are interesting and illustrate the importance of thinking 
through the weights carefully, and understanding the subsequent results.  The average 
weighted outcome for C is little different from the original mean.  As C is uncorrelated with 
A and B, the large downside weights applied at ABC level presumably come from scenarios 
dominated by A and B.  In such circumstances C is having as many upside outcomes as 
downside – the weighting effect is therefore largely averaged out. 

5.5 Covariance Share 
Mango’s 1998 paper ‘An application of Game Theory: Property Catastrophe Risk Load’ 

[11] examines the use of standard deviation and variance in calculating risk loads for 
property catastrophe risks. In considering the additivity problems associated with these 
measures Mango turns to Game Theory and, in particular, Shapley values.  He notes that the 
computational complexity of calculating Shapley values is overcome when using variance.   

In the case of company ABC, the Shapley value for A is simply the variance of the 
outcomes for A plus the covariance of the outcomes for A and BC (i.e. ABC excluding A).   

Note that the increase in the variance cause by adding A to BC (the marginal variance) is 
the variance for A plus twice the covariance of A and ABC excluding A.  However when you 
add the marginal variance for A to the marginal variance for BC this overshoots the overall 
variance of ABC by twice the covariance of A and BC: 

 Overall variance of ABC Var(A) + Var(BC) + 2*Cov(A,BC)  

 Marginal variance of A  Var(A) + 2*Cov(A,BC) 
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Marginal variance of BC Var(BC) + 2*Cov(A,BC) 

The Shapley value effectively shares the ‘2*Cov(A,BC)’ term equally between A and BC.   
Applying this approach to company ABC gives the following results: 

 

 Variance 
Covariance 
with rest 

Variance + 
Covariance 

Scaled 
Total 

A 400.2 400.0 800.2 51.4 

B 400.3 400.1 800.3 51.4 

C 399.9 0.5 400.4 25.7 

Sum A, B, C 1,200.3 800.5 2,000.9 128.4 

ABC 2,000.9    

  

However, the relative contribution to the covariance term may be far from equal, 
suggesting a more equitable sharing may be appropriate.  The Covariance Share method 
gives a more generic approach to sharing the covariance term.  Mango’s paper focuses on 
catastrophe events and suggests the overall share is based on each sub-portfolio’s share of 
the overall loss for each event.   

Note that the limitations of using variance as a risk measure will be an issue in certain 
practical situations (the measure is not coherent, being super-additive rather the sub-
additive).  Perhaps at least as important is the fact that variance (and covariance) will be a 
relatively abstract concept for many end users which may prove a barrier to acceptance.  
However the computational elegance makes Covariance Share an interesting method to 
consider where full Aumann-Shapley calculations are not feasible. 

5.5 Others 
Performance ratios can be used as a basis for capital allocation, as illustrated by the 

‘Constant R2R’ or ‘Constant Risk Coverage Ratio’ method (see 4.5).  This involves 
adjusting the profit margin in each sub-portfolio until the R2R ratios are equivalent.  This 
results in an allocation of the required profit margin.  A similar principle can be used with 
Omega values (for a given threshold).  
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Also worth reviewing is Lemaire’s paper on applying Game Theory to cost allocation 
problems [12].  This may not be an immediately obvious place to look for risk allocation 
alternatives.  However, cost and risk allocation problems have a lot in common and Lemaire 
gives an eloquent explanation of why many of the more obvious allocation possibilities are 
inadequate.  Examples include (taking insurance equivalents): 

• Premium 

• Policy count 

• Sub-portfolio count 

Beyond methods covered already in this paper, more exotic concepts include: 

• The Nucleolus (David Schmeidler, 1969) 

• The Proportional Nucleolus (Young et al, 1980) 

• The Disruptive Nucleolus (Littlechild and Vmdya, 1976, and Michener, Yuen and 
Sakuraz, 1981) 

These are all optimisation methods with variations in the way the constraints are 
articulated.    The difficulties in computing solutions for these methods limit their practical 
value.  For the enthusiast, the Proportional Nucleolus is the pick of the bunch! 

6. RISK MEASUREMENT IN PRACTICE 

Some of the measures and methods described have been derived with specific 
applications in mind, ranging from enterprise-wide financial modelling to individual 
insurance/reinsurance pricing.  It is useful not to pigeonhole any particular concept into a 
single application and form, as this can discourage thinking as to how similar ideas might be 
applied in other areas. 

It is important to consider all the methods illustrated as being part of a risk measurement 
tool kit.  Sometimes a single simple metric will do; other times a more exotic combination of 
ideas may be appropriate.  The issue of what risk tolerance levels, thresholds, weightings etc 
to use with each of the concepts shown, and in what circumstances, has deliberately not 
been commented upon as this requires a full appreciation of the circumstances in which each 
risk measure is being used.   
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Selecting the right tools and ensuring they are appropriately calibrated for the purpose for 
which they are being used is a critical part of the implementation process.  Likewise it is 
essential that, for all the great theory, intelligent judgements are made regarding how such 
metrics influence decisions: 

• How well does the measure reflect the risk/performance in the context of the 
decision being made? 

• Do the decision-makers / interpreters of the risk measurements understand the 
information presented?  

• What about limitations in the underlying risk model, either risk behaviours poorly 
captured or not included in the model in the first place?!   
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Abbreviations and notations 
EPD, Expected Policyholder Deficit ES, Expected Shortfall 
PHT, Proportional Hazards Transform R2R, Reward to Risk 
RCR, Risk Coverage Ratio TCE, Tail Conditional Expectation 
TVaR, Tail Value at Risk (= TCE) VaR, Value at Risk 
XTVaR, Excess Tail Value at Risk  
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