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EXTREME VALUE THEORY
AS A RISK MANAGEMENT TOOL*

Paul Embrechts,† Sidney I. Resnick,‡ and Gennady Samorodnitsky§

ABSTRACT

The financial industry, including banking and insurance, is undergoing major changes. The
(re)insurance industry is increasingly exposed to catastrophic losses for which the requested cover
is only just available. An increasing complexity of financial instruments calls for sophisticated risk
management tools. The securitization of risk and alternative risk transfer highlight the conver-
gence of finance and insurance at the product level. Extreme value theory plays an important
methodological role within risk management for insurance, reinsurance, and finance.

Table 1
California Earthquake Data

1971 17.4
1972 0.0
1973 0.6
1974 3.4
1975 0.0
1976 0.0
1977 0.7
1978 1.5

1979 2.2
1980 9.2
1981 0.9
1982 0.0
1983 2.9
1984 5.0
1985 1.3
1986 9.3

1987 22.8
1988 11.5
1989 129.8
1990 47.0
1991 17.2
1992 12.8
1993 3.2

1. INTRODUCTION
Consider the time series in Table 1 of loss ratios

(yearly data) for earthquake insurance in California

from 1971 through 1993. The data are taken from

Jaffe and Russell (1996).

On the basis of these data, who would have guessed

the 1994 value of 2272.7? Indeed, on the 17th of Jan-

uary of that year the 6.6-Richter-scale Northridge

earthquake hit California, causing an insured damage

of $10.4 billion and a total damage of $30 billion,

making 1994 the year with the third highest loss bur-

den (natural catastrophes and major losses) in the his-

tory of insurance. The front-runners are 1992 (the

year of hurricane Andrew) and 1990 (the year of the

winter storms Daria and Vivian). For details on these,

see Sigma (1995, 1997).

The reinsurance industry experienced a rise in both

intensity and magnitude of losses due to natural and
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man-made catastrophes. For the United States alone,

Canter, Cole, and Sandor (1996) estimate an approx-

imate $245 billion of capital in the insurance and re-

insurance industry to service a country that has $25–

30 trillion worth of property. It is no surprise that the

finance industry has seized upon this by offering (of-

ten in joint ventures with the (re)insurance world)

properly securitized products in the realm of catastro-

phe insurance. New products are being born at an in-

creasing pace. Some of them have only a short life,

others are reborn under a different shape, and some

do not survive. Examples include:

• Catastrophe (CAT) futures and PCS options (Chi-

cago Board of Trade). In these cases, securitization

is achieved through the construction of derivatives

written on a newly constructed industry-wide loss-

ratio index.

• Convertible CAT bonds. The Winterthur convertible

hail-bond is an example. This European-type con-

vertible has an extra coupon payment contingent on

the occurrence of a well-defined catastrophic (CAT)

event: an excessive number of cars in Winterthur’s
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Figure 2
Actuarial Credit Risk Accounting (ACRA)Figure 1

1987 Crash

Swiss portfolio damaged in a hail storm over a spe-

cific time period. For details, see Schmock (1997).

Further interesting new products are the multiline,

multiyear, high-layer (infrequent event) products,

credit lines, and the catastrophe risk exchange (CA-

TEX). For a brief review of some of these instruments,

see Punter (1997). Excellent overviews stressing the

financial engineering of such products are Doherty

(1997) and Tilley (1997). Alternative risk transfer and

securitization have become major areas of applied re-

search in both the banking and insurance industries.

Actuaries are actively taking part in some of the new

product development and therefore have to consider

the methodological issues underlying these and simi-

lar products.

Also, similar methods have recently been intro-

duced into the world of finance through the estima-

tion of value at risk (VaR) and the so-called shortfall;

see Bassi, Embrechts, and Kafetzaki (1998) and

Embrechts, Samorodnitsky, and Resnick (1998).

‘‘Value At Risk for End-Users’’ (1997) contains a re-

cent summary of some of the more applied issues.

More generally, extremes matter eminently within the

world of finance. It is no coincidence that Alan Green-

span, chairman of the U.S. Federal Reserve, remarked

at a research conference on risk measurement and

systemic risk (Washington, D.C., November 1995)

that ‘‘Work that characterizes the statistical distri-

bution of extreme events would be useful, as well.’’

For the general observer, extremes in the realm of

finance manifest themselves most clearly through

stock market crashes or industry losses. In Figure 1,

we have plotted the events leading up to and including

the 1987 crash for equity data (S&P). Extreme value

theory (EVT) yields methods for quantifying such

events and their consequences in a statistically opti-

mal way. (See McNeil 1998 for an interesting discus-

sion of the 1987 crash example.) For a general equity

book, for instance, a risk manager will be interested

in estimating the resulting down-side risk, which typ-

ically can be reformulated in terms of a quantile for a

profit-and-loss function.

EVT is also playing an increasingly important role

in credit risk management. The interested reader

may browse J.P. Morgan’s web site (http://www.

jpmorgan.com) for information on CreditMetrics. It is

no coincidence that big investment banks are looking

at actuarial methods for the sizing of reserves to guard

against future credit losses. Swiss Bank Corporation,

for instance, introduced actuarial credit risk account-

ing (ACRA) for credit risk management; see Figure 2.

In their risk measurement framework, they use the

following definitions:

• Expected loss: the losses that must be assumed to

arise on a continuing basis as a consequence of un-

dertaking particular business

• Unexpected loss: the unusual, though predictable,

losses that the bank should be able to absorb in the

normal course of its business

• Stress loss: the possible—although improbable—

extreme scenarios that the bank must be able to

survive.

EVT offers an important set of techniques for quan-

tifying the boundaries between these different loss

classes. Moreover, EVT provides a scientific language

for translating management guidelines on these
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boundaries into actual numbers. Finally, EVT helps in

the modeling of default probabilities and the estima-

tion of diversification factors in the management of

bond portfolios. Many more examples can be added.

It is our aim in this paper to review some of the

basic tools from EVT relevant for industry-wide inte-

grated risk management. Some examples toward the

end of this paper will give the reader a better idea of

the kind of answers EVT provides. Most of the material

covered here (and indeed much more) is found in Em-

brechts, Klüppelberg, and Mikosch (1997), which also

contains an extensive list of further references. For

reference to a specific result in this book, we will oc-

casionally identify it as ‘‘EKM.’’

2. THE BASIC THEORY
The statistical analysis of extremes is key to many of

the risk management problems related to insurance,

reinsurance, and finance. In order to review some of

the basic ideas underlying EVT, we discuss the most

important results under the simplifying iid assump-

tion: losses will be assumed to be independent and

identically distributed. Most of the results can be ex-

tended to much more general models. In Section 4.2

a first indication of such a generalization will be given.

Throughout this paper, losses will always be denoted

as positive; consequently we concentrate in our dis-

cussion below on one-sided distribution functions

(df’s) for positive random variables (rv’s).

Given basic loss data

X , X , . . . , X iid with df F, (1)1 2 n

we are interested in the random variables

X 5 min(X , . . . . , X ), X 5 max(X , . . . , X ).n,n 1 n 1,n 1 n

(2)

Or, indeed, using the full set of so-called order

statistics

X # X # z z z # X , (3)n,n n21,n 1,n

we may be interested in

k

h (X ) (4)O r r, n
r51

for certain functions hr , r 5 1, . . . , k, and k 5 k(n).

An important example corresponds to hr [ 1/k, r 5
1, . . . , k; that is, we average the k largest losses

X , . . . , X . Another important example would be1,n k,n

to take k 5 n, hr(x) 5 (x 2 u) where y 5 max(0,1 1

y), for a given level u . 0. In this case we sum all

excesses over u of losses larger than u. Typically we

would normalize this sum by the number of such ex-

ceedances yielding the so-called empirical mean ex-

cess function; see Section 4.1. Most of the standard

reinsurance treaties are of (or close to) the form (4).

The last example given corresponds to an excess-of-

loss (XL) treaty with priority u.

In ‘‘classical’’ probability theory and statistics most

of the results relevant for insurance and finance are

based on sums

n

S 5 X .On r
r51

Indeed, the laws of large numbers, the central limit

theorem (in its various degrees of complexity), refine-

ments like Berry-Esséen, Edgeworth, and saddle-point,

and normal-power approximations all start from Sn

theory. Therefore, we find in our toolkit for sums such

items as the normal distributions N(m, s2); the a-

stable distributions, 0 , a , 2; Brownian motion; and

a-stable processes, 0 , a , 2.

We are confident of our toolkit for sums when it

comes to modeling, pricing, and setting reserves of

random phenomena based on averages. Likewise we

are confident of statistical techniques based on these

tools when applied to estimating distribution tails

‘‘not too far’’ from the mean. Consider, however, the

following easy exercise.

Exercise

It is stated that, within a given portfolio, claims follow

an exponential df with mean 10 (thousand dollars,

say). We have now observed 100 such claims with larg-

est loss 50. Do we still believe in this model? What if

the largest loss would have been 100?

Solution

The basic assumption yields that

X , . . . , X are iid with df P(X # x)1 100 1

2x/105 1 2 e , x $ 0.

Therefore, for Mn 5 max(X1, . . . , Xn),

100P(M . x) 5 1 2 (P(X # x))100 1

2x/10 1005 1 2 (1 2 e ) .

From this, we immediately obtain

P(M $ 50) 5 0.4914,100

P(M $ 100) 5 0.00453.100
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Figure 3
Some Examples of Extreme Value Distributions

Hj ;0,1 for j 5 3/4 (Fréchet), j 5 0 (Gumbel),
and j 5 23/4 (Weibull)

However, rather than doing the (easy) exact calcula-

tions above, consider the following asymptotic argu-

ment. First, for all n $ 1 and x [ R,

MnP 2 log n # x 5 P(M # 10(x 1 log n))S D n10

n2xe
5 1 2 ,S D

n

so that

M 2xn 2elim P 2 log n # x 5 e [ L(x).S D
10n→`

Therefore, use the approximation

x
P(M # x) < L 2 log nS Dn 10

to obtain

P(M $ 50) < 0.4902,100

P(M $ 100) < 0.00453,100

very much in agreement with the exact calculations

above.

Suppose we were asked the same question but had

much less specific information on F(x) 5 P(X1 # x);

could we still proceed? This is exactly the point where

classical EVT enters. In the above exercise, we have

proved the following.

Proposition 1

Suppose X1, . . . , Xn are iid with df F , EXP(l), then

for x [ R:

lim P(lM 2 log n # x) 5 L(x).n
n→`

M

Here are the key questions:

Q1: What is special about L? Can we get other limits,

possibly for other df’s F?

Q2: How do we find the norming constants l and log

n in general—that is, find an and bn so that

M 2 bn nlim P # xS D
an→` n

exists?

Q3: Given a limit coming out of Q1, for which df’s F

and norming constants from Q2, do we have con-

vergence to that limit? Can one say something

about second order behavior, that is, speed of

convergence?

The solution to Q1 forms part of the famous Gne-

denko, Fisher-Tippett theorem.

Theorem 2 (EKM Theorem 3.2.3)

Suppose X1, . . . , Xn are iid with df F and (an), (bn)

are constants so that for some nondegenerate limit

distribution G,

M 2 bn nlim P # x 5 G(x), x [ R.S D
an→` n

Then G is of one of the following types:

—Type I (Fréchet):

0, x # 0
F (x) 5 a . 0Ha 2aexp{2x }, x . 0

—Type II (Weibull):

aexp{2(2x) }, x # 0
C (x) 5 a . 0Ha 1, x . 0

—Type III (Gumbel):

L(x) 5 exp{2e }, x [ R.2x M

G is of the type H means that for some a . 0, b [ R,

G(x) 5 H((x 2 b)/a), x [ R, and the distributions

of one of the above three types are called extreme

value distributions. Alternatively, any extreme value

distribution can be represented as

21/j
x 2 m

H (x) 5 exp 2 1 1 j , x [ R.H S D Jj ; m,s s
1

Here j [ R, m [ R, and s . 0. The case j . 0 (j ,
0) corresponds to the Fréchet (Weibull)-type df with

j 5 1/a (j 5 21/a), whereas by continuity j 5 0
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corresponds to the Gumbel, or double exponential-

type, df.

In Figure 3, some examples of the extreme value

distributions are given. Note that the Fréchet case

(the Weibull case) corresponds to a model with finite

lower (upper) bound; the Gumbel case is two-sided

unbounded.

Answering Q2 and Q3 is much more complicated.

Below we formulate a complete answer (due to Gne-

denko) for the Fréchet case. This case is the most

important for applications to (re)insurance and fi-

nance. For a general df F, we define the inverse of F

as:

←F (t) 5 inf{x [ R : F(x) $ t}, 0 , t , 1.

Using this notation, the p -quantile of F is defined as

←x 5 F (p), 0 , p , 1.p

Theorem 3 (EKM Theorem 3.3.7)

Suppose X1, . . . , Xn are iid with df F satisfying

1 2 F(tx)
2alim 5 x , x . 0, a . 0. (5)

1 2 F(t)t→`

Then for x . 0,

M 2 bn nlim P # x 5 F (x),S D aan→` n

where bn 5 0 and an 5 F (1 2 1/n). The converse←

of this result also holds true. M

A df F satisfying (5) is called regularly varying with

index 2a, denoted by 5 1 2 F [ R . An importantF 2a

consequence of the condition [ R is that for a rvF 2a

X with df F,

, ` for b , a,bEX (6)H5 ` for b . a.

In insurance applications, one often finds a-values in

the range (1, 2), whereas in finance (equity daily log-

returns, say) an interval (2, 5) is common. Theorem

3 is also reformulated thus: The maximal domain of

attraction of F is R , that is,a 2a

MDA(F ) 5 R .a 2a

Df’s belonging to R are for obvious reasons also2a

called Pareto type. Though we can calculate the norm-

ing constants, the calculation of an depends on the

tail of F, which in practice is unknown. The construc-

tion of MDA (Ca) is also fairly easy, the main differ-

ence being that for F [ MDA(Ca),

x [ sup{x [ R : F(x) , 1} , `.F

The analysis of MDA(L) is more involved. It contains

such diverse df’s as the exponential, normal, lognor-

mal, and gamma. For details see Embrechts, Klüppel-

berg, and Mikosch (1997, Section 3.3.3).

3. TAIL AND QUANTILE ESTIMATION
Theorem 3 is the basis of EVT. In order to show how

this theory can be put into practice, consider, for in-

stance, the pricing of an XL treaty. Typically, the pri-

ority (or attachment point) u is determined as a t-year

event corresponding to a specific claim event with

claim size df F, for example. This means that

1←u 5 u 5 F 1 2 . (7)S Dt t

In our notation used before, ut 5 x . Whenever t121/t

is large—typically the case in the catastrophic, that

is, rare, event situation—the following result due to

Balkema, de Haan, Gnedenko, and Pickands (see

EKM, Theorem 3.4.13(b)) is very useful.

Theorem 4

Suppose X , . . . , Xn are iid with df F. Equivalent are:1

i) F [ MDA(Hj), j [ R,

ii) for some function b : R → R ,1 1

lim sup u F (x) 2 G (x)u 5 0, (8)u j, b(u)
u↑x 0,x,x 2uF F

where Fu(x) 5 P(X 2 u # x u X . u), and the gen-

eralized Pareto df is given by

21/j
x

G (x) 5 1 2 1 1 j , (9)S Dj , b b
1

for b . 0. M

It is exactly the so-called excess df Fu that risk man-

agers as well as reinsurers should be interested in.

Theorem 4 states that for large u, Fu has a generalized

Pareto df (9). Now, to estimate the tail (u 1 x) forF

a fixed large value of u and all x $ 0, consider the

trivial identity

F(u 1 x) 5 F(u) F (x), u, x $ 0. (10)u

In order to estimate (u 1 x), one first estimatesF

(u) by the empirical estimatorF

Nuˆ(F(u)) 5 ,
n

where Nu 5 # {1 # i # n : Xi . u}. In order to have

a ‘‘good’’ estimator for (u), we need u not too large:F
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Figure 4
Log Histogram of the Fire Insurance Data

Figure 5
Mean-Excess Plot of the Fire Insurance Data

the level u has to be well within the data. Given such

a u-value, we approximate u(x) via (8) byF

ˆ(F (x)) 5 G , (x)ˆ ˆu j b(u)

for some estimators and (u), depending on u. Forˆ ˆj b

this to work well, we need u large (indeed, in Theorem

(4ii), u ↑ xF , the latter being 1` in the Fréchet case).

A ‘‘good’’ estimator is obtained via a trade-off between

these two conflicting requirements on u.

The statistical theory developed to work out the

above program runs under the name Peaks over

Thresholds Method and is discussed in detail in Em-

brechts, Klüppelberg, and Mikosch (1997, Section

6.5), McNeil and Saladin (1997), and references

therein. Software (S-plus) implementation can be

found at

http://www.math.ethz.ch/,mcneil/software.

This maximum-likelihood-based approach also allows

for modeling of the excess intensity Nu , as well as the

modeling of time (or other co-variable) dependence in

the relevant model parameters. As such, a highly ver-

satile modeling methodology for extremal events is

available. Related approaches with application to in-

surance are to be found in Beirlant, Teugels, and

Vynckier (1996), Reiss and Thomas (1997), and the

references therein. Interesting case studies using up-

to-date EVT methodology are McNeil (1997), Resnick

(1997), and Rootzén and Tajvidi (1997). The various

steps needed to perform a quantile estimation within

the above EVT context are nicely reviewed in McNeil

and Saladin (1997), where a simulation study is also

found. In the next section, we illustrate the method-

ology on real and simulated data relevant for insur-

ance and finance.

4. EXAMPLES

4.1 Industrial Fire Insurance Data
In order to highlight the methodology briefly dis-

cussed in the previous sections, we first apply it to

8043 industrial fire insurance claims. We show how a

tail-fit and the resulting quantile estimates can be ob-

tained. Clearly, a full analysis (as found, for instance,

in Rootzén and Tajvidi 1997 for windstorm data)

would require much more work.

Figure 4 contains the log histogram of the data. The

right-skewness stresses the long-tailed behavior of

the underlying data. A useful plot for specifying the

long-tailed nature of data is the mean-excess plot

given in Figure 5. In it, the mean-excess function

e(u) 5 E(X 2 u u X . u) is estimated by its empirical

counterpart

n1
1e (u) 5 (X 2 u) .On i#{1 # i # n : X . u} i51i

The Pareto df can be characterized by linearity (posi-

tive slope) of e(u). In general, long-tailed df’s exhibit

an upward sloping behavior, exponential-type df’s have

roughly a constant mean-excess plot, whereas short-

tailed data yield a plot decreasing to 0. In our case,

the upward trend clearly stresses the long-tailed be-

havior. The increase in variability toward the upper

end of the plot is characteristic of the technique,

since toward the largest observation X , only a few1,n

data points go into the calculation of en(u). The main

aim of our EVT analysis is to find a fit of the under-

lying df F(x) (or of its tail (x)) by a generalizedF



Name /8042/03     04/21/99 09:19AM     Plate # 0 pg 36   # 7

36 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 3, NUMBER 2

NAAJ (SOA)

Figure 7
Maximum Likelihood Estimate of j as a

Function of the Threshold u (top),
Alternatively as a Function of the

Number of Exceedances

Figure 6
Empirical Estimator of on DoublyF

Logarithmic Scale

Pareto df, especially for the larger values of x. The

empirical df n is given in Figure 6 on a doubly loga-F

rithmic scale. This scale is used to highlight the tail

region. Here an exact Pareto df corresponds to a linear

plot.

Using the theory presented in Theorems 2 and 4, a

maximum-likelihood-based approach yields estimates

for the parameters of the extreme value df H andj ; m,s

the generalized Pareto df G . In order to start thisj ; b

procedure, a threshold value u has to be chosen, as

estimates depend on the excesses over this threshold.

The estimates of the key shape parameter j as a func-

tion of u (alternatively as a function of the number of

order statistics used) is given in Figure 7. Approxi-

mate 95% confidence intervals are given. The picture

shows a rather stable behavior for values of u below

300. An estimate in the range (0.7, 0.9) results, which

corresponds to an a-value in the range (1.1, 1.4). It

should be remarked that the ‘‘optimal’’ value of the

threshold u to be used is difficult (if not impossible)

to obtain. See Embrechts, Klüppelberg, and Mikosch

(1997, p. 351) and Beirlant, Teugels, and Vynckier

(1996) for some discussion. We also would like to

stress that in order to produce Figure 7, a multitude

of models (one for each u chosen) has to be

estimated.

For each given u, a tail fit for u and (as in (10))F F

can be obtained. For the former, in the case of u 5
100 an estimate 5 0.747 results. A graphical rep-ĵ

resentation of 100 is given in Figure 8. Using the pa-F

rameter estimates corresponding to u 5 100 in (10),

the tail fit of on a doubly logarithmic scale is givenF

in Figure 9.

Though we have extended the generalized Pareto fit

to the left of u 5 100, clearly only the range above

this u-value is relevant. The fitting method is designed

only for the tail. Below u (where typically data are

abundant) one could use a smooth version of the em-

pirical df. From the latter plot, quantile estimates can

be deduced.

Figure 10 contains as an example the estimate for

the 99.9% quantile x together with the profile0.999

likelihood. The latter can be used to find confidence

intervals for x . The 95% and 99% intervals are0.999

given. Figure 11 contains the same picture, but the

(symmetric) confidence intervals are calculated using

the Wald statistic. Finally, the 99.9% quantile esti-

mates across a whole range of models (depending on

the threshold value, or number of exceedances used)

are given in Figure 12. Though the estimate of x0.999

settles between 1400 and 1500, the 95% Wald inter-

vals are rather wide, ranging from 500 to about 2200.

The above analysis yields a summary about the high

quantiles of the fire insurance data based on the in-

formation on extremes available in the data. The anal-

ysis can be used as a tool in the final pricing of risks

corresponding to high layers (catastrophic, rare

events). All the methods used are based on extremes

and are fairly standard.

4.2 An ARCH Example
To further illustrate some of the available techniques,

we simulated an ARCH(1) time series of length

99,000. The time series, called testarch, has the form
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Figure 11
Estimate of x0.999 with 95% Wald-Statistic

Confidence Interval

Figure 12
Estimates of the Quantile x0.999 as a Function

of the Threshold u

Figure 8
Maximum Likelihood Fit of the Mean-Excess
Tail u Based on Exceedances above u 5 100F

Figure 9
Tail Fit for Based on a Threshold Value ofF

u 5 100, Doubly Logarithmic Scale

Figure 10
Tail Fit with an Estimate for x0.999 and the

Corresponding Profile Likelihood

2 1/2j 5 X (b 1 lj ) , n $ 1, (11)n n n21

where {Xn} are iid N(0, 1) random variables. In our

simulation, we took

b 5 1, l 5 0.5.

From known results of Kesten (1973) (see also EKM,

Theorem 8.4.12; Goldie 1991; Vervaat 1979)

22kP(j . x) , c(x ), x → `, (12)1

and we get from Table 3.2 of de Haan et al. (1989)

that k 5 2.365 (see also Hooghiemstra and Meester

1995).

There are several reasons why we choose to simulate

an ARCH process:
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Figure 13
Time Series Plot of Shortarch

• Despite the fact that the ARCH process is depen-

dent, much of the classical extreme value analysis

applies with suitable modifications.

• The ARCH process has heavy tails, which matches

what is observed in data sets emerging from finance.

• Although it is often plausible to model large insur-

ance claims as iid, data from the finance industry

such as exchange rate or equity data are demon-

strably not iid. For some of these examples, the data

look remarkably uncorrelated, but squares or abso-

lute values of the data appear to have high correla-

tions. It is this property that the ARCH process and

its cousins were designed to model. See, for in-

stance, Taylor (1986) for more details.

To experiment with these ARCH data we took the

first 10,000 observations to form a data set short-

arch, which will be used for estimation. Based on the

estimation, some model-based predictions can then

be made and compared with actual data in

testarch\shortarch.

Figure 13 shows a time series plot of shortarch. The

plot exhibits the characteristic heavy tail appearance.

The Hill estimator is a popular way of detecting

heavy tails and estimating the Pareto index 1/j for j .
0 in (9). See, for instance, Embrechts, Klüppelberg,

and Mikosch (1997) for an introduction. Figure 14

contains four views of the Hill estimator applied to

shortarch.

The Hill estimator is known to be a consistent es-

timator of 2k for the ARCH process (Resnick and Stăr-

ică 1996). In our case, the Hill estimator is trying to

estimate 2k < 2 3 2.365 < 4.7. A review of Figure

14 yields an estimate of about 4. If H represents thek,n

Hill estimator when the sample is n and k upper order

statistics are used, that is,

21k1
H 5 log X 2 log X ,OS Dk,n j ,n k,nk j51

the usual methodology is to make a Hill plot {(k,

H ), 1 # k # n}. The upper left graph is a Hill plot21
k,n

with some values for small and large k deleted to make

the picture scale attractively. The upper right plot is

the Hill plot in alt scale (see Resnick and Stărică

1997), where we plot {(u, H ), 0 # u # 1}. The21
u[n ],n

lower left plot applies a smoother (Resnick and Stăr-

ică 1997) and plots in alt scale.

A supplementary tool for estimating the Pareto in-

dex is the QQ plot (see Embrechts, Klüppelberg, and

Mikosch 1997, Section 6.2.1), which has the added

advantage of allowing simultaneous estimation of the

constant c appearing in (12). The method is sensitive

to the choice of the number of upper order statistics,

and some trial and error is usually necessary. In Figure

15 we give the QQ plot based on the upper 400 order

statistics. This gives estimates of 2k 5 3.851904 and

c 5 1.15389. (Applying this technique to the full test-

arch data produced estimates of 2k 5 3.861008 and

c 5 1.319316, when the number of upper order sta-

tistics was 300.)

Based on these estimates, we experiment with some

predictions and compare them with what is observed

from that part of the data set testarch called playarch,

obtained by removing the 10,000 shortarch observa-

tions. Thus the length of playarch is 99,000 2
10,000 5 89,000. In Table 2 we give estimated mar-

ginal probabilities that the ARCH variable exceeds x

for x 5 5, 10, 15, 20. Note that we are predicting

values that are beyond the range of the data and have

not been observed. The second row gives the estimate

(12) based on the fitted values for c and 2k. In the

third row we compute the empirical frequency that

elements of playarch exceed x. The last row gives the

corresponding probabilities 1 2 F(x, m, s2) based on

a normal distribution whose mean and variance are

the sample mean and variance computed from short-

arch. One can see from Table 2 the penalty paid for

ignoring extreme value analysis and relying on more

conventional normal-distribution-based analysis.

The extreme value theory for the ARCH process is

somewhat complicated by the ARCH dependence

structure not present for an iid sequence. A quantity

called the extremal index must be accounted for; see

Embrechts, Klüppelberg, and Mikosch (1997, Section

8.1). From (11) and de Haan et al. (1989, Table 3.2),

we have
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Figure 14
Hill Plots of Shortarch

Table 2
Exceedance Probabilities
for the ARCH Example

x 5 10 15 20

P(X . x) 0.002309062 0.0001589119 0.0000332 0.0000109
(X . x)P̂ 0.002640449 0.0001797753 0.0000449 0.0000112

1 2 F(x,
2m, s )

0.000186 5.29 3 10213 0 0

Figure 15
QQ Plot of Shortarch

P(max{j , . . . , j } # y)i n

1
22k< exp 2 cu9ny , (13)H J

2

where the extremal index u9 5 0.835 accounts for the

effective reduction in sample size due to dependence.

From this formula, estimates of upper quantiles can

be worked out. The upper 100p% quantile xp would be

21/2k
2

x < 2log(1 2 p) . (14)S Dp cu9n

Table 3 gives a few representative values.

4.3 Value at Risk: A Word of Warning
We have already pointed out the similarity in estimat-

ing attachment points or retentions in reinsurance

and VaR calculations in finance. Both are statistically

based methods, where the basic underlying risk mea-

sure corresponds to a quantile estimate p of an un-x̂

known df. Through the work of Artzner et al. (1996,

1998) we know that a quantile-based risk measure for

general (nonnormal) data fails to be coherent—such

a measure is not subadditive, creating inconsistencies

in the construction of risk capital based upon it. This
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Table 3
Quantile Estimates for the ARCH Example

y 15 20 25 30

P(max{j i , . . . , j n} # y) 0.28229 0.65862 0.83794 0.91613

p 0.05 0.01 0.005 0.0005

x p 34.47153 52.63015 63.04769 114.692

Figure 16
Time Series and Mean-Excess Plots

of BMW Return Data

situation typically occurs in portfolios containing non-

linear derivatives. Further critical statements con-

cerning VaR are to be found in Danielsson, Hartmann,

and de Vries (1992), Garman (1997), Longin (1997a,

b), and Cárdenas et al. (1997). A nice discussion on

calculating VaR in stochastic volatility models using

EVT is given by Frey and McNeil (1998).

A much better, and indeed (almost) coherent, risk

measure is the conditional VaR (or mean excess)

E(X u X . x̂ ). (15)p

For the precise formulation of coherency see Artzner

et al. (1996). We want to point out that the latter

measure is well known in insurance but is only grad-

ually being recognized as fundamental to risk man-

agement. It is one of the many instances where an

exchange of ideas between actuaries and finance ex-

perts may lead to improved risk measurement. Note

that in the equation above, E(X u X . p) 5 e( p) 1x̂ x̂

p. One could use the mean-excess plot {(u, en(u)),x̂

u $ 0} to visualize the tail behavior of the underlying

data and hence get some insight on the coherent risk

measure (15) above.

As a final example, we have plotted in Figure 16 the

daily log-returns of BMW over the period January 23,

1973–July 12, 1996, together with the mean-excess

plot of the absolute values of the negative returns

(hence corresponding to down-side risk). In the latter

plot, the heavy-tailed nature of the returns is very

clear. Also clear is the change in curvature of the plot

around 0.03. This phenomenon is regularly observed

in all kinds of data. One can look at it as a pictorial

view of Theorem 4; indeed, Smith (1990) indicates

how to base on this observation a graphical tool for

determining an initial threshold value for an extreme

value analysis. See also Embrechts, Klüppelberg, and

Mikosch (1997, p. 356), for a discussion. However, we

would like to warn the reader that because of the in-

tricate dependencies in finance data, one should be

careful in using these plots beyond the mere descrip-

tive level.

More work is needed to combine the ideas pre-

sented in this paper with detailed statistical informa-

tion on financial time series before risk measures such

as conditional VaR (15) can be precisely formulated

and reliably estimated. Once more, the interplay be-

tween statisticians, finance experts, and actuaries

should prove to be fruitful toward achieving this goal.
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‘‘Extremal Behaviour of Solutions to a Stochastic Differ-

ence Equation with Applications to ARCH Processes,’’ Sto-

chastic Processes and Their Applications 32:213–24.

HOOGHIEMSTRA, G., AND MEESTER, L. 1995. ‘‘Computing the Ex-

tremal Index of Special Markov Chains and Queues,’’ Sto-

chastic Processes and Their Applications 65:171–85.

JAFFE, D.M., AND RUSSELL, T. 1996. Catastrophe Insurance, Cap-

ital Markets and Uninsurable Risk. Philadelphia: Financial

Institutions Center, The Wharton School, pp. 96–112.

KESTEN, H. 1973. ‘‘Random Difference Equations and Renewal

Theory for Products of Random Matrices,’’ Acta Mathe-

matica 131:207–48.

LONGIN, F.M. 1997a. From Value at Risk to Stress Testing: The

Extreme Value Approach. Paris: ESSEC and CEPR,

preprint.

LONGIN, F.M. 1997b. Beyond the VaR. Paris: ESSEC and CEPR,

preprint.

MCNEIL, A.J. 1997. ‘‘Estimating the Tails of Loss Severity Dis-

tributions Using Extreme Value Theory,’’ Astin Bulletin

27(2):117–37.

MCNEIL, A.J. 1998. ‘‘On Extremes and Crashes,’’ RISK 11:99.

MCNEIL, A.J., AND SALADIN, T. 1997. ‘‘The Peaks over Threshold

Method for Estimating High Quantiles of Loss Distribu-

tions,’’ Proceedings of the XXVIIIth International ASTIN

Colloquium, pp. 23–43.

PUNTER, A. 1997. ‘‘A Critical Evaluation of Progress to Date,’’

in Practical Applications of Financial Market Tools to Cor-

porate Risk Management. International Risk Managment,

London: Emap Finance Ltd., pp. 7–12.

REISS, R.-D., AND THOMAS, M. 1997. Statistical Analysis of Extre-

mal Values. Basel: Birkhäuser.
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