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I .  INTRODUCTORY REMARKS 

By intuition, the subdivision of an insurance portfolio into a 
number of classes is said to be good if it reflects the heterogeneity 
of the portfolio in an efficient way. To illustrate this rather vague 
statement we take the following very simple example: 

The portfolio consists of 20 independent risks, IO of them pro- 
ducing an expected loss ratio of say 30% each (type A risks) and 
80% each (type B risks) respectively. 

This "natura l"  subdivision is certainly better than, for instance, 

no subdivision at all; 
or, the finest possible subdivision with 20 classes consisting of only 

I risk each (because there is no point in differentiating between 
risks of the same type); 

or, 5 classes each containing two A- and two B-risks (here the num- 
ber of classes is unnecessarily high and the heterogeneity has 
been completely wiped out; statistics based on this subdivision 
would even make us believe that  the portfolio is totally homo- 
geneous). 

As a matter  of fact, the above "natura l"  subdivision is--of 
course !--the best of all subdivisions, it is the optimal subdivision 
in this case. 

In practice, however, as we all know, it is not easy to find the 
optimal subdivision. For one thing, the inherent structure or 
"natura l"  subdivision is not known a priori and secondly, for many 
different reasons, we can only choose from a limited number of 
subdivisions and not from all theoretically possible solutions. Note 
that  even with only 20 risks there are 58 . lO TM possibilities of sub- 
dividing the portfolio. Thus, in practice, there is only a relatively 



258 SUBDIVISIONS INTO TARIFF CLASSES 

small n u m b e r  of admissible  subdivisions and  the  opt imal  one m a y  
not  be among them,  bu t  we still need some sort  of s tat is t ical  
cr i ter ion to choose the best  one f rom these admissible subdivisions. 

2. TI-IE MODEL 

Let  the  s t ruc tu re  ( =  " n a t u r a l "  subdivision) of the  portfol io be 
given by  N classes, assume the  existence of claims stat ist ics over  
the  last n years  and  let class no. j be charac ter ized  b y  the  risk 
pa r a me te r  0j. If  Phs denotes  the n u m b er  of risks (or to ta l  sum in- 
sured or under ly ing  p remium volume,  or any  o ther  measure  of 
volume) and  Xhj the  loss ra t io  of class j in year  h respect ively,  we 
fu r the r  assume independence  of the  Xhj and  

E [Xhj I 0j = Xj] = ~(Xj), Var  EXhjlOa = xj~ - p~ j  

We now consider the  above-ment ioned  admissible subdivisions of 
the  portfol io:  Le t  there  be L of such admissible subdivisions which 
we can choose from, and  let t hem be n u m b ered  f rom g : I to 
g = L. If  now P~)  and  X~ ~) denote  the vo lume and  loss rat ios  of 
year  h and class r of the subdivision g, we then  under  the  above  
a s sumpt ions - -~ave  for 

0 = (01, 0~ . . . .  ON) and X = (Xl, X2 . . . .  KN) 

E [ X~r~ l0 = X] = ~ P~r~j t~(Xj), Var  r X  <a) l0 =X] = 

where  pta) denotes  the n u m b e r  of risks in the  r-th class of sub- hrJ 
division g which at  the  same t ime belong to the j - th  class of the 
na tu ra l  subdivision. 

These  equat ions  hold for h = I,  2 . . . .  n and  r = I,  2 , . . .  N a 

(N a being the  n u m b e r  of classes wi thin  subdivision g) and g = I,  
2, . . .  L. 

Here  the  vec tor  0 of risk pa rame te r s  is regarded  as a s tochast ic  
vec to r  of N independen t  and ident ical ly  d i s t r ibu ted  components .  

Actual ly ,  it  is on ly  necessary  to assume 

E[t~(0j) ] = m, E[a2(0j)] = v and  Var  [~(0j)] = w independen t  of j 
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in order to get 

__ _ _  ~ h r J  E[Var  [i(aa r) I0]] --  p~a) and Var [E[X(aa r) I O]J = w 
P~(r g) /~r I - Z  

For  averages over t ime, i.e. for 

= 

P(a~ 
• . - ,  ~ XaO r) with P ~ ) - - -  

we get  the  same type  of formulae,  namely  
N 

E[Var  ~FX (a).r [0]]_ ---- p(Ur----- i and  Var [E[X~  ) .  10]]_ = w L ~ • r ~  ~< 
• À - X  " 

(~< w). 

W 

with 

3 .  C H O O S I N G  T H E  B E S T  S U B D I V I S I O N  F O R  T H E  T A R I F F  

We shall see in the  sequel tha t  the  stat is t ical  va lue  

T~) = (Ng - -  z) (W~) - -  V~)) 

W(g ) _ I N~ P(gr ) 
i - -  

r - 1  

and V(g ) = I I --ar ~ - __ n - -  I ~ ( x ~ )  x(o)~'.,. , 
-- I t - -Z  

N f  

where X = ~ and P = .r 
r - - 1  r - - I  

has the  p rope r ty  tha t  its ma themat ica l  expec ta t ion  is m a x i m u m  if 
g is the  na tura l  subdivision• 

For  a proof of the  above  s ta tement ,  we 

write  W = -P- " n ------I -fi-~ hJ - -  X"I)~ 
J = l  j - x  h - z  

and T = (N - -  I) (W - -  V) for the  na tura l  subdivision and  show 

NIT(g); = E [ ( N g  - -  z) ( W  ~ol - -  V~))] < E [ ( N  - -  z) ( W  - -  V)] = 
N 

t - 1  
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where equality holds if g is the natural subdivision or subdivides 
it further. In the latter case E[W cg)] < E[W]. In practice it there- 
fore is reasonable to choose the subdivision g that  shows the highest 
value of W ~) among those with high T~Lvalues, Then one could 
hope that  it will come closest to the optimal, i.e. the natural sub- 
division of the portfolio. 

We first note that  

ErX~O~7 = m ~ ~ P~ + v 

~ h r  
7 - 1  

and 

D2(e) V 
, - a "  #'~1 

t - 1  

(In the following we write Pr and Prt instead of P.r and p.d) 
and therefore 

E[W(a)] = P + N o -  x PP~fl) -fi~ 
t - 1  

and 

v w 

E[V(a)] = -fi + pNa(n__ i) P ~  
~-I T - X  A- 

Next we prove that  
v 

E[V~] >_ -~ 

and for this purpose define 
p(g) 

P(kah rJ 

¢, -- plat) - -  pr~, ) 

Summing up the squares ¢~ multiplied with PHI 

we get 

~ iD2 (O) 02(0) ~rl ~ k r J  
en Pg).  Pig) >- o 

h ffi 1 h - t li,#'J 
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showing t ha t  the  second t e rm in E [ V  ~o~] is nonnega t ive  and  equal  to 
zero if and  only  if for each r and j 

pig) pea) 
hrj rl 

Looking at  E [ W  Ca)] again, we have  

Z ~ rj--Z--rj_ p~(re) (~ ] p p r ¢ o ) -  pp~g) < P(r~ ) = I 
J - - 1  r = l  r = l  ~ = 1  = / 

Thus,  the  m a x i m u m  of EEW (a)] is a t t a ined  for Ng > N if and 
only  if for  each r = I, 2 . . . .  N a the equal i ty  

N N 

X o2(g) P (ah2 "~ rJ = ( Z rl J 
t - x  /=a 

holds, i.e. i f - - a p a r t  f rom possible pe rmuta t ions  of the subscripts  r 

and  j4--PCg)rl = 3riP1 and N a ~ N,  where  8rt = Kronecker  symbol,  
t ha t  is to say, if g is the na tura l  subdivision. Bu t  in this case EEV(a) l 
is a min imum at the same time, since P~r~ ) = 8rjPj involves 

p(e) p(g) 
hri rj 

Also note  t ha t  the  m a x i m u m  value  of E [ T  (a)] is given by  

N 

V m a x  EET (a)] = w / ,  D 

I 

Conclusion: Choosing f rom different  possible subdivisions of a 
portfol io into risk classes, we take  among those which maximize  
(apart  f rom an unknown  factor) an unbiased es t imator  for the 
var iance w of the  individual  loss ra t io  the  one tha t  maximizes  W (g~. 

A N U M E R I C A L  E X A M P L E  

R. GRfJNIG 

Zti r ich  

Let  us look at  a mo to r  portfol io for which we possess da t a  of five 
years,  b roken  down according to two cri ter ia:  Age of dr iver  and  
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horsepower .  W e  h a v e  three  age groups  AI, A2, A3, and  th ree  horse-  
power  groups  H I ,  H2,  H3,  i.e. 9 classes in all. 

We  now seek the  best  subdivis ion of our  portfolio.  
As admiss ible  subdivis ions  we allow all combina t ions  of the  age 

groups  (5 possibilities) and  combina t ions  of ne ighbour ing  horse-  
power  g roups  (4 possibilities).  We  get  5 . 4  = 2o cases. 

To  tes t  the  me thod ,  we h a v e  d r awn  the  loss ra t ios  for each class 
f r o m  lognormal  d is t r ibut ions  wi th  the  following means  $ and  
s t a n d a r d  dev ia t ions  a 

H i  

i .oo 

0.25 

0.7o 
0 .21  

H2 H3 

tz 

I .OO 

0.25 

0.55 
0.33 

0.85 
0.425 

0.55 
0.33 

0.55 
0.33 

0.85 
0.425 

0.55 
0.33 

AI 

A2 

A3 

As can be seen f rom the  table ,  we took  the  same  dis t r ibut ions  
for age groups  A I and  A 3 and  for the horsepower  g roups  H2 and  H 3. 
W e  can therefore  combine  these g roups  which  leads to  the  theo-  
ret icaUy " n a t u r a l "  subdivis ion (AI  + A3, H2  + H3).  

H2 + H 3 
Hi  combined 

I.OO 0.55 
0.25 0.33 

0.70 0.85 
o.21 0.425 

Ai + A 3  
combined 

A2 

For  the  five yea r  p r e m i u m s  (which can also be i n t e rp re t ed  as 
n u m b e r  of risks or sum insured) we used 

H I  H2 H 3 

IIO I34 247 

445 7 °o 482 
l 

249 ] 367 424 

A I  

A2 

A3 



SUBDIVIS IONS  INTO T A R I F F  CLASSES 

T h e  s i m u l a t i o n s  l e d  t o  t h e  f o l l o w i n g  f i v e  y e a r s  l o s s  r a t i o  

H i  H 2  H 3 

1.o18 [ o .381 0 .437  

0 .690  0 .966  o .672 

1.040 0 .398  0 .528  

H i  

A 2  

A 3  

2 6 3  

B a s e d  o n  t h e s e  f i g u r e s ,  t h e  s t a t i s t i c s  T ~g) a n d  W ~g) f o r  t h e  2 0  

a d m i s s i b l e  c a s e s  w e r e  c a l c u l a t e d  a s :  

n o  of  A g e  g r o u p s  H P  g r o u p s  
s u b d i v i s i o n  N g  c o m b i n e d  c o m b i n e d  i o o o  T(g) IOOO W(g) 

i 9 - -  - -  39 .8  6 .6  

2 6 I + 2 - -  26.5 6 .9  

3 6 I + 3 - -  41-4 lO.5 

4 6 2 + 3 - -  12.7 4 -1 

5 6 - -  I + 2 9.5 3 .8 

6 6 - -  2 + 3 35 .9  8 .8  

7 4 I + 2 I + 2 8.2 4 .6  

8 4 I + 2 2 + 3 18.6 8 .0  

9 4 I + 3 I + 2 lO.9 6.2 

IO 4 I + 3 2 + 3 36 .8  14-5 

I i  4 2 + 3 i + 2 7.2 4.1 

12 4 2 + 3 2 + 3 12.1 5 .4  

13 3 i + 2 + 3 - -  7 .8 5 .9  

14 3 - -  i + 2 + 3 6 .7  5 .9  

15 2 i + e + 3 i + 2 7 .6  9 .7  

16 2 i + 2 + 3 2 + 3 5 .0  7.1 

17 2 i + 2 i + 2 + 3 1.4 4 .3  

18 2 i + 3 i + 2 + 3 7.9 11.6 

19 2 2 + 3 i + 2 + 3 2.0 3.4 

20 i 1 + 2 + 3  1 + 2 + 3  o o 

C o m m e n t :  

T h e  s u b d i v i s i o n s  g = I ,  3 ,  6 ( a l l  t h r e e  b e i n g  s u b d i v i s i o n s  o f  

g = I 0 )  a n d  I 0  ( n a t u r a l  o n e )  s h o w  h i g h  T ~ a ~ - v a l u e s .  A m o n g  t h e s e  

w e  f i n d  t h e  h i g h e s t  W ( g ) - v a l u e  f o r  g - -  I 0 .  


